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Abstract

In this paper, we present a reduction algorithm for abstract simpli-

cial complexe that we apply to Vietoris-Rips complexes based on random

point processes. Our algorithm aims at reducing the number of simplices

of an abstract simplicial complex without modifying its topology, i.e. its

Betti numbers. The vertices are removed in a optimal order for the ab-

stract simplicial complex implementation complexity. Some mathematical

properties of the reduction algorithm and its resulting abstract simplicial

complex are derived. Then the complexity of the algorithm is investigated:

we are reduced to compute the behavior of the size of the largest simplex

in the abstract simplicial complex, which is known in graph theory as

the clique number. We find its asymptotic behavior when the number

of vertices goes to infinity depending on the percolation regime for the

underlying random geometric graph on the torus.

1 Introduction

Algebraic topology is the mathematic field that uses algebraic tools to study
topological spaces. Simplicial homology is the branch of algebraic topology
dealing with topological spaces made up of k-simplices, the k-dimensional coun-
terparts of triangles. First developed for the classification of manifolds, it is now
heavily used in image processing and geometric data analysis. More recently,
simplicial homology representation for wireless sensor networks was initiated
in [8]. Consider a set of sensors deployed in a bounded domain of the plane,
which can monitor some aspects (temperature, humidity, intrusion, etc) of their
coverage disks. The coverage problem is then to know whether the domain is
fully monitored by the sensor network, which holds if there is no coverage hole.
First, simplicial homology provides a mathematical tool to represent the wire-
less sensor network by the union of coverage disks centered on each sensor via
the C̆ech complex. The method consists in calculating from the geometric data,
a combinatorial object known as the simplicial complex. Basically an abstract
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simplicial complex is a list of vertices, edges, triangles, tetrahedra, etc, called
k-simplices, satisfying one condition: every subset of a k-simplex of the complex
must be in the list of l-simplices, l < k, of the complex. Then algebraic topology
gives a way to compute the number of coverage holes in a simplicial complex.
An algebraic structure on the list of simplices and linear maps between them
are build. Some of the topological properties, such as the number of connected
components and the number of coverage holes, are then given by the dimension
of some quotient vector spaces: the so-called Betti numbers.

The coverage of a wireless sensor network is computed via homology in [4,8].
However, the computational time can explode with the size of the simplicial com-
plex. Persistent homology provides a way to compute the Betti numbers while
avoiding the combinatorial explosion, as seen in [5,14,20]. Another way to avoid
the combinatorial explosion is to reduce the size of the simplicial complex. For
example, in [7, 12], the authors use reduction of chain complexes in order to
compute the homology groups and the Betti numbers. Witness complexes are
another example of simplicial complexes reduction: the simplicial complex is
reduced to a given number of vertices in order to compute the various topolog-
ical invariants, such as the Betti numbers. So reduction of a simplicial complex
has been used in order to compute its homology. We intend to do the oppo-
site: reduction of the simplicial complex become the aim, while the homology
computation is the mean to do it.

In this paper, we present a reduction algorithm for abstract simplicial com-
plexes: vertices are removed one by one from an abstract simplicial complex
while its topology remains intact. The order in which the vertices are removed
is such that the complexity of the abstract simplicial complex implementation is
reduced as much as possible. When a vertex is removed from a simplicial com-
plex, all the simplices it is a face of are subsequently removed. The algorithm
and its properties are presented here for a particular random abstract simplicial
complexes: the Vietoris-Rips complex built on either a binomial or a Poisson
point process. However it can be applied to any type of abstract simplicial
complexes. We show that the algorithm reaches a local optimum solution and
we exhibit both an upper and a lower bound for the number of removed ver-
tices. We also provide some characteristics of the resulting abstract simplicial
complex. Finally we investigate the complexity of our reduction algorithm. We
show that it depends on the size of the largest simplex of the abstract simplicial
complex of which we compute the almost sure asymptotical behavior on the
torus.

This is the first reduction algorithm for abstract simplicial complexes that
uses homology to reduce the complex that we know of. The reduction problem
can be seen as a dominating graph problem [11]. However, since there is no
notion of coverage in graphs, algorithm for the dominating graph problem do
not maintain the topology of the initial simplicial complex. Our problem has
also been studied under a game-theoretic approach in [2], where authors define
a coverage function. But they can inly identify sub-optimal solutions that do
not guarantee an unmodified coverage. When computing the complexity of the
algorithm, we are reduced to compute the behavior of the size of the largest
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simplex, which is known as the clique number in graph theory. The clique num-
ber of the random geometric graph has been heavily studied in the literature,
and its behavior described according to percolation regimes in [16]. In [9], the
authors proved that monotone properties of random geometric graphs, such as
the connectivity of the graph, have sharp thresholds. In [17], then in [15] for
a weaker assumption, the authors prove a conjecture of Penrose [16] stating
that, in the subcritical regime, the clique number becomes concentrated on two
consecutive integers, as in the Erdös-Rényi model cf. [13]. Moreover, in the sub-
critical regime, weak laws of large numbers [19] and central limits theorems [18]
have been found by Penrose and Yukich for some functionals, including the
clique number, in random geometric graphs. Then in the supercritical regime,
using the uniform norm, Appel and Russo [1], were able to find strong laws
for the maximum vertex degree and for cliques. In particular, they found the
behavior of the clique number in the supercritical regime via the behavior of
the maximum vertex degree.

The remainder of the paper is organized as followed. First in Section 2,
we remind some simplicial homology and random configurations definitions and
properties. Then the reduction algorithm is described in Section 3, while its
properties are exposed in Section 4. Finally the complexity of the algorithm is
investigated in Section 5.

2 Preliminaries

2.1 Simplicial homology

For further reading on algebraic topology, see [10]. Graphs can be general-
ized to more generic combinatorial objects known as simplicial complexes. While
graphs model binary relations, simplicial complexes represent higher order rela-
tions. A simplicial complex is a combinatorial object made up of vertices, edges,
triangles, tetrahedra, and their n-dimensional counterparts. Given a set of ver-
tices V and an integer k, a k-simplex is an unordered subset of k + 1 vertices
[v0, v1 . . . , vk] where vi ∈ V and vi 6= vj for all i 6= j. Thus, a 0-simplex is a
vertex, a 1-simplex an edge, a 2-simplex a triangle, a 3-simplex a tetrahedron,
etc. See Figure 1 for instance.

0-simplex 1-simplex 2-simplex

Figure 1: Example of k-simplices.

3



Any subset of vertices included in the set of the k+1 vertices of a k-simplex
is a face of this k-simplex. Thus, a k-simplex has exactly k + 1 (k − 1)-faces,
which are (k − 1)-simplices. For example, a tetrahedron has four 3-faces which
are triangles. The inverse notion of face is coface: if a simplex S1 is a face of a
larger simplex S2, then S2 is a coface of S1. A simplicial complex is a collection
of simplices which is closed with respect to the inclusion of faces, i.e. all faces of a
simplex are in the set of simplices, and whenever two simplices intersect, they do
so on a common face. An abstract simplicial complex is a purely combinatorial
description of the geometric simplicial complex and therefore does not need the
property of intersection of faces.

One can define an orientation for an abstract simplicial complex, where a
change in the orientation corresponds to a change in the sign of the coefficient.
For instance if one swaps vertices vi and vj :

[v0, . . . , vi, . . . , vj , . . . , vk] = −[v0, . . . , vj , . . . , vi, . . . , vk].

Then let us define vector spaces of k-simplices and a boundary map on them:

Definition 1 Given an abstract simplicial complex X, for each integer k, Ck(X)
is the vector space spanned by the set of oriented k-simplices of X.

Definition 2 The boundary map ∂k is defined to be the linear transformation
∂k : Ck → Ck−1 which acts on basis elements [v0, . . . , vk] of Ck via

∂k[v0, . . . , vk] =

k
∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].

The boundary map on any k-simplex, is the cycle of its (k − 1)-faces. This
map gives rise to a chain complex: a sequence of vector spaces and linear trans-
formations.

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ . . .
∂1−→ C0

∂0−→ 0.

Finally let us define:

Definition 3 The k-th boundary group of X is Bk(X) = im ∂k+1.

Definition 4 The k-th cycle group of X is Zk(X) = ker ∂k.

The boundary map applied to a cycle gives the cycle of this cycle which is
zero as can be seen in Figure 2. Therefore a standard result asserts that for any
integer k,

∂k ◦ ∂k+1 = 0.

It follows that Bk ⊂ Zk.
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v0

v1

v2

[v0, v1, v2] ∂2−→

v0

v1

v2

[v0, v1] + [v1, v2]

+[v2, v0]

∂1−→

v0

v1

v2

v1 − v0 + v2 − v1

+v0 − v2 = 0

Figure 2: Application of the boundary map to a 2-simplex.

We are now able to define the k-th homology group and its dimension:

Definition 5 The k-th homology group of X is the quotient vector space:

Hk(X) =
Zk(X)

Bk(X)
.

Definition 6 The k-th Betti number of X is the dimension:

βk = dimHk = dimZk − dimBk.

We can compute the Betti numbers in a simple case as an example. Let X
be the abstract simplicial complex made up of 5 vertices [v0], . . . , [v4], 6 edges
[v0, v1], [v0, v2], [v1, v2], [v1, v4], [v2, v3] and [v3, v4], and one triangle [v0, v1, v2]
represented in Figure 3.

v0

v1

v2
v3

v4

Figure 3: A geometric representation of X .

The boundary maps associated to the abstract simplicial complex X are easy
to obtain in matrix form:

∂1 =













[v0v1] [v0v2] [v1v2] [v1v4] [v2v3] [v3v4]

[v0] −1 −1 0 0 0 0
[v1] 1 0 −1 −1 0 0
[v2] 0 1 1 0 −1 0
[v3] 0 0 0 0 1 −1
[v4] 0 0 0 1 0 1













,
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∂2 =

















[v0, v1, v2]

[v0, v1] 1
[v0, v2] −1
[v1, v2] 1
[v1, v4] 0
[v2, v3] 0
[v3, v4] 0

















.

The boundary map ∂0 is the null function on the set of vertices. Then we
can compute the Betti numbers:

β0(X) = dimker∂0 − dim im ∂1

= 5− 4

= 1

β1(X) = dimker∂1 − dim im ∂2

= 2− 1

= 1

2.2 Model

In this paper, we apply our reduction algorithm to Vietoris-Rips complexes
based on random point processes that we define here. Let us first denote by T

d
a

the torus of side a in dimension d. The space of configurations on T
d
a, is the set

of locally finite simple point measures (see [3] for details):

ΩX =

{

ω =
n
∑

k=1

δ(xk) : (xk)
k=n
k=1 ⊂ X, n ∈ N ∪ {∞}

}

,

where δ(x) denotes the Dirac measure at x ∈ T
d
a. It is often convenient to

identify an element ω of ΩX with the set corresponding to its support, i.e.
∑n

k=1 δ(xk) is identified with the unordered set {x1, . . . , xn}. For A ∈ B(X),
we have δ(x)(A) = 1[A](x), so that

ω(A) =
∑

x∈ω

1[A](x),

counts the number of atoms in A. Simple measure means that ω({x}) ≤ 1 for
any x ∈ X . Locally finite means that ω(K) < ∞ for any compact K of X . The
configuration space ΩX is endowed with the vague topology and its associated
σ-algebra denoted by FX .

Here, the set of points of the Vietoris-Rips complex is represented by a
random point process: binomial or random:

Definition 7 (Binomial point process) Let f be the uniform probability den-
sity function on the torus T

d
a, and n an integer. Then a point process ω is a

binomial point process of n points on T
d
a, if the following two conditions hold:
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i) The process ω has n points,

ii) The vertices positions are drawn according to f independently of each other.

Definition 8 (Poisson point process) Let λ be a positive real number. Then
a point process ω is a Poisson point process of intensity λ on T

d
a if the following

two conditions hold:

i) For any subset A of T
d
a, the number of points of ω in A has a Poisson

distribution with parameter λ‖A‖

Pr(ω(A) = k) = eλ‖A‖ (λ‖A‖)k
k!

,

ii) For any disjoint subset A, A′ of Td
a, the random variables ω(A) and ω(A′)

are independent.

Conditionally to the number of points, the points of a Poisson point process
are drawn uniformly, that is to say according to f independently of each other.
So the difference between a binomial and a Poisson point process lies in the fact
that the number of points is set in the first one and drawn in the second one.

Given a set of points randomly drawn, we can now define the Vietoris-Rips
complex which vertices are the set of points:

Definition 9 (Vietoris-Rips complex) Given (X, d) a metric space, ω a fi-
nite set of points in X, and r a real positive number. The Vietoris-Rips complex
of parameter r of ω, denoted Rr(ω), is the abstract simplicial complex whose
k-simplices correspond to unordered (k + 1)-tuples of vertices in ω which are
pairwise within distance less than 2r of each other.

3 Reduction algorithm

In this section, we present the reduction algorithm which provides which
vertices and associated simplices may be removed from an abstract simplicial
complex without altering its topology. We use algebraic topology in order to
compute the complex topology, but we also use this information to have the
order in which we can remove the vertices so that the computation complexity
is reduced as much as possible.

The algorithm needs two inputs. First it needs the abstract simplicial com-
plex, with all its simplices specified. With only an abstract simplicial complex,
the optimal reduction with no modification in the homology will always be to
reduce the complex to a simple vertex. That is why the algorithm needs as a
second input a list of vertices of the abstract simplicial complex that have to be
kept by the reduction algorithm. We call these vertices critical vertices. Then
the algorithm removes non-critical vertices and their faces one by one from the
simplicial complex without changing its homology, i.e. its Betti numbers. At
the end, we obtain a final simplicial complex, and a list of removed vertices. In
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this paper we reduce our examples to the Vietoris-Rips complex, even though
the algorithm works with any abstract simplicial complex.

There are as many nonzero homology groups, hence nonzero Betti numbers,
as sizes of simplices in the abstract simplicial complex. Therefore it is possible
to define different algorithms following the number of Betti numbers that have
to be kept unchanged. We will denote by k0 the number of Betti numbers that
the algorithm takes into account.

In dimension d, for the Vietoris-Rips complex there are d Betti numbers
that have a relevant geometric meaning. For simulations reasons we restrict
our examples to maximum two dimensions. So in one dimension, the reduction
algorithm can only consider one Betti number, whereas in two dimensions the
algorithm can maintain only connectivity, or both connectivity and coverage.

Let us now define the full domain hypothesis when the reduction algorithm
is applied a Vietoris-Rips complex in two or less dimensions:

Definition 10 (Full domain hypothesis) In dimension d ≤ 2, we define if
k0 = d, for a C̆ech or a Vietoris-Rips complex with β0 = 1 and, if k0 = 2,
β1 = 0, the full domain hypothesis which holds when all the vertices of the
abstract simplicial complex lie within the same geometric domain defined by the
critical vertices.

In one dimension, this means that the critical vertices are two extremity
vertices and all other vertices have to be in the same path linking the two critical
vertices.

In two dimensions, this means that the critical vertices are boundary vertices
and all other vertices have to lie in the area defined by the critical vertices.

We can note that it is always possible to satisfy the full domain hypothesis by
removing, before the reduction algorithm, all vertices not in the path defined
by the critical vertices for the connectivity algorithm in one dimension, or not
lying in the convex hull of the critical vertices in two dimensions.

3.1 Degrees

The first step of the algorithm is the calculation of a number, which we
call the degree, that we define for every k0-simplex, where k0 is the number
of Betti numbers to be kept unchanged. To connect vertices, we only need
1-simplices, and to cover an area, we only need 2-simplices. Generalizing this
idea, we have that we only need k0-simplices to maintain k0 Betti numbers. And
larger simplices, i.e. simplices with more than k0 + 1 vertices, are superflous
for the k0-th homology (first k0 Betti numbers). We intend to characterize the
superfluousness of k0-simplices with the following definition of degree:

Definition 11 For k0 an integer, the degree of a k0-simplex [v0, v1, . . . , vk0
] is

the size of its largest coface:

D[v0, v1, . . . , vk0
] = max{d | [v0, v1, . . . , vk0

] ⊂ d-simplex}.
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By definition we have D[v0, v1, . . . , vk0
] ≥ k0.

For the remainder of the thesis, let sk(X), or sk, be the number of k-simplices
of the simplicial complex X . Let D1, . . . , Dsk0

denote the sk0
degrees of a

simplicial complex; they are computed according to Algorithm 1.

Algorithm 1 Degree calculation
for i = 1 → sk0

do
Get (v0, . . . , vk0

) the vertices of the i-th k0-simplex
k = k0
while (v0, . . . , vk0

) are vertices of a (k + 1)-simplex do
k = k + 1

end while
Di = k

end for
return D1, . . . , Dsk0

We can see an example of values of the degree for 2-simplices in Figure 4:
The degree of an alone 2-simplex is 2, when it is the face of 3-simplex it becomes
3.

v0

v1

v2

D[v0, v1, v2] = 2

v0

v1

v2 v3

D[v0, v1, v2] = 3

Figure 4: Example of values of the degree for 2-simplices

3.2 Indices

In order to reduce the abstract simplicial complex, we need to remove k-
simplices for any k, including k < k0. So, we remove the smallest simplices:
0-simplices, i.e. vertices, and their faces are subsequently removed. That is
why we bring the superfluousness information of the k0-simplices down to the
vertices with an index. We consider a vertex sensitive if its removal leads to
a change in the Betti numbers of the simplicial complex. Since a vertex is as
sensitive as its most sensitive k0-simplex, the index of a vertex is the minimum
of the degrees of the k0-simplices it is a vertex of:
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Definition 12 The index of a vertex v is the minimum of the degrees of the
k0-simplices it is a vertex of:

I[v] = min{D[v0, v1, . . . , vk0
] | v ∈ [v0, v1, . . . , vk0

]},

If a vertex v is not a vertex of any k0-simplex then I[v] = 0.

Let v1, v2, . . . , vs0 be the vertices of the simplicial complex, the computation
of the s0 indices is done as shown in Algorithm 2.

Algorithm 2 Indices computation
for i = 1 → s0 do
I[vi] = 0
for j = 1 → sk0

do
if vi is vertex of k0-simplex j then

if I[vi] == 0 then
I[vi] = Dj

else
I[vi] = min{I[vi], Dj}

end if
end if

end for
end for
return I[v1], . . . , I[vs0 ]

We can see in Figure 5 an example of index values in a simplicial complex.
Vertices of a k0-simplex are more sensitive than vertices of only largest simplices.

v0

v1

v2 v3

v4

D[v0, v1, v2]=D[v0, v1, v3]=D[v0, v2, v3]=D[v1, v2, v3]=3

D[v1, v3, v4] = 2

I[v0]=I[v2]=3 and I[v1]=I[v3]=I[v4]=2

Figure 5: Example of values of the indices of vertices in a simplicial complex

The index of a vertex is then an indicator of the density of vertices around
the vertex: an index of k0 indicates that at least one of its k0-coface has no
(k0+1)-cofaces, whereas a higher index indicates that each one of its k0-cofaces
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is the face of at least one larger simplex. The main idea of the algorithm is thus
to remove the vertices with the greatest indices.

Remark 1 An index of 0 indicates that the vertex has no k0-coface: the vertex
is isolated up to the k0-th degree. For k0 = 1, that means that the vertex is
disconnected from any other vertices. For k0 = 2, the vertex is only linked to
other vertices by edges, therefore it is inside a coverage hole. Under the full
domain hypothesis, these vertices should not exist.

3.3 Optimized order

The algorithm now removes vertices from the initial abstract simplicial com-
plex following an optimized order for the topology computation complexity.
Indeed the computation of the Betti numbers as well as the implementation of
the abstract simplicial complex can have their complexity explode with the size
of the abstract simplicial complex. The removal of a vertex leads to the removal
of all the simplices it is a face of. So the removal of a vertex with many k0-faces
leads to a significant decrease first in the complexity of the k0-simplices degrees
computations, then in the complexity of the Betti number βk0−1 computation,
since the boundary map ∂k0

size decreases, but also in the abstract simplicial
complex implementation itself. Indeed, an abstract simplicial complex is imple-
mented via the list of all its simplices.

We begin by computing the first k0 Betti numbers. Then the degrees of all
the k0-simplices and the indices of all the vertices are computed as explained
in the previous section. The critical vertices of the input list are given a neg-
ative index, to flag them as unremovable. Then the indices give us an order
for the removal of vertices: the greater the index of a vertex, the more likely
it is superfluous for the k0-th homology of its simplicial complex. Therefore,
the vertices with the greatest index are candidates for removal: one is chosen
randomly. The removal of a vertex leads to the degradation of all its k-faces to
(k − 1)-simplices for every integer k ≥ 1.

At every vertex removal, we need to ensure that the homology is unchanged.
We compute the first k0 Betti numbers thanks to the boundary maps every
time a vertex is removed. This computation is instantaneous since the complex
is already built, and only adjacency matrices defining the complex are needed.
If the removal changes the homology, the vertex is put back in the simplicial
complex. Moreover its index is assigned a temporary negative value so that
the vertex is not candidate for the following draw. The temporary values are
recalculated at the next effective removal of a vertex.

Otherwise, if the removal does not change the homology, the removal is
confirmed. And the modified degrees of the k0-simplices and the indices of the
vertices are recalculated. We can note that only the vertices of maximum index
can have their indices changed, as explained in Lemma 1. Moreover, in order to
improve the algorithm performance it is possible to only compute the modified
degrees of k0-simplices. It suffices to flag the k-simplices, k > k0, which are the
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largest cofaces of k0-simplices. Then when one of them is degraded, the degrees
of its k0-faces are decreased by one.

Lemma 1 When a vertex of index Imax is removed, only the vertices sharing
an Imax-simplex with it, and of index Imax can have their index changed.

Proof Let w be the removed vertex of index Imax, and v any vertex of the
simplicial complex.

If v does not share any simplex with w, none of the degrees of its k0-simplex
will change, and neither will its index.

Thus let us consider that the maximum common simplex of v and w is a
k-simplex. If k < k0, then the removal of w and this k-simplex has no incidence
at all on the degree of v by definition. Next, if k0 ≤ k < Imax then w has an
index k < Imax, which is absurd. We can thus assume that k ≥ Imax. Either the
index of v is strictly less than Imax and thus comes from a simplex not shared
with w, therefore it is unmodified by the removal of w. Or if the index of v is
Imax, it either still comes from a Imax-simplex not shared with w and remains
unmodified, or it comes from a common Imax-simplex. This latter case is the
only case where the index of v can change.

The algorithm goes on removing vertices until every remaining vertex is
unremovable, thus achieving optimal result. Every vertex is unremovable when
all indices are strictly below k0. By the definition of indices, that means when
all indices are equal to zero or negative (temporarily or not).

Some things can be refined with the full domain hypothesis in the wireless
sensor network application case. First the stopping condition can be improved
to Imax being strictly greater than k0:

Lemma 2 Under the full domain hypothesis, the algorithm can stop when all
vertex indices are below or equal to k0.

Proof Let us suppose the input data satisfies the full domain hypothesis. Let
v be a vertex of index I(v) = k0, which means that at least one of its k0-cofaces
has no (k0 +1)-coface. The removal of this vertex would lead to the removal of
this particular k0-simplex. Since we need to maintain the homology on the entire
simplicial complex that is defined by the critical vertices without shrinking its
covered domain, this would lead to a k0-dimensional hole, and an increment of
βk0−1.

For the connectivity algorithm, the removal of an edge which is not the side
of a triangle leads to a disconnectivity in the path linking the critical vertices.
For the coverage algorithm, the removal of a triangle which is not the face of a
tetrahedron leads to the creation of a coverage hole inside the area defined by
the critical vertices.

Then under the full domain hypothesis in the wireless sensor network ap-
plication, all temporarily unremovable vertices (negative index vertices) stay
unremovable:
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Lemma 3 Under the full domain hypothesis, when the removal of a vertex mod-
ify the homology, it will always modify it.

Proof In the full domain hypothesis, the distance between the extremity ver-
tices can not be decreased, or the covered domain can not have its area de-
creased. Since the domain size is unchanged, as in the proof of Lemma 2, the
removal of a vertex that has led to a change in a Betti number will always lead
to the same change.

We give in Algorithm 3 the whole algorithm for the conservation of the first
k0 Betti numbers.

Algorithm 3 Reduction algorithm
Require: Simplicial complex X , list LC of critical vertices.

Computation of β0(X), . . . , βk0−1(X)
Computation of D1(X), . . . , Dsk0

(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ LC do
I[v] = −1

end for
Imax = max{I[v1(X)], . . . , I[vs0(X)]}
while Imax ≥ k0 do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X

′), . . . , βk0−1(X
′)

if βi(X
′) 6= βi(X) for some i = 0, . . . , k0 − 1 then

I[w] = −1
else

Computation of D1(X
′), . . . , Ds′

k0
(X ′)

for i = 1 → s′0 do
if I[vi(X

′)] == Imax then
Recomputation of I[vi(X ′)]

end if
if I[vi(X

′)] == −1 && vi /∈ LC then
Recomputation of I[vi(X ′)]

end if
end for
Imax = max{I[v1(X ′)], . . . , I[vs′

0
(X ′)]}

X = X ′

end if
end while
return X

13



3.4 Figures

We can see in Figure 6 one realization of the connectivity algorithm on a
Vietoris-Rips complex of parameter ǫ = 1 based on a Poisson point process
of intensity λ = 4 on a square of side length 4, with random critical vertices:
a vertex is critical with probability pc = 0.5 independently from every other
vertices. Critical vertices are circled, and non-critical vertices which are kept to
maintain the connectivity between critical vertices are starred.
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Figure 6: A Vietoris-Rips complex before and after the connectivity algorithm.
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We can see in Figure 7 one realization of the coverage algorithm on a Vietoris-
Rips complex of parameter ǫ = 1 based on a Poisson point process of intensity
λ = 4.2 on a square of side length a = 2, with a fixed boundary of vertices on the
square perimeter. The critical vertices are the boundary vertices, thus satisfying
the full domain hypothesis for the coverage algorithm. They are circled on the
figure.
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Figure 7: A Vietoris-Rips complex before and after the coverage algorithm.
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4 Properties

The first property of our algorithm is that the reached solution is optimal.
It may not be the optimum solution if there are multiple optima but it is a local
optimum. In game theory vocabulary that means that the algorithm reaches a
Nash equilibrium:

Theorem 1 (Nash equilibrium) The reduction algorithm reaches a Nash equi-
librium as defined in [2]: every vertex in the final simplicial complex is needed
to maintain its homology.

Proof In the final simplicial complex, every vertex is of index strictly smaller
than k0 in the general case. By the definition of the indices, we then differentiate
two types of vertices: vertices of index −1 and 0.

First, negative indices are given to vertices to flag them as unremovable.
Either a vertex is of negative index because it is a critical vertex, in which case
it is required to stay in the complex. Or a vertex is of negative index if its
removal leads to a change in the Betti numbers. Since there has been no other
removal that has changed the complex, that fact is still true.

Then a vertex of null index is an isolated vertex. If it is isolated up to the
k0-th degree, its removal will decrease the k0-th Betti number. For example,
the removal of a disconnected vertex would decrement β0. As well the removal
of a vertex inside of a hole would lead to the union of 2 or more holes.

Finally, if the input data satisfies the full domain hypothesis, the proof of
Lemma 2 shows that the algorithm still reaches a Nash equilibrium.

Secondly, we are able to find both a lower and an upper bound the number
of removed vertices. The number of removed vertices is at least one vertex
removed by index value, and at most every vertex of non minimal index before
the algorithm:

Theorem 2 (Upper and lower bounds) Let Ek be the set of vertices that
have indices k before the algorithm. The number of removed vertices M is
bounded by:

Imax
∑

k=k0+1

1[Ek 6=∅] ≤ M ≤
Imax
∑

k=k0+1

|Ek|.

with |Ek| being the cardinality of Ek.

Proof Let us begin with the upper bound. The maximum number of vertices
the can be removed by the algorithm is the number of vertices that initially
have their index strictly greater than k0. This is an optimal upper bound since
this number of removed vertices is reached in the following case:
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Let a k-simplex, with k > k0, be the initial abstract simplicial complex, and
nC of its vertices be the initial critical vertices, necessarily nC ≤ k + 1. The
nC critical vertices have negative indices, the k+1− nC other vertices have an
index of k, and they are all removed.

v0
I[v0] = 4

v1
I[v1] = −1

v2
I[v2] = −1

v3
I[v3] = 4

Before

v0

v1
I[v1] = −1

v2
I[v2] = −1

v3

After

Figure 8: Example of this case with k = 3 and nC = 2, the two vertices v0 and
v3 are removed by the algorithm.

For the lower bound, we have seen in Lemma 1 that the removal of a vertex
of index Imax can only change the index of vertices of index Imax. In the worst
case, it decreases all indices Imax and the value of Imax changes, not necessarily
to Imax − 1 depending on the critical vertices. Thus we can see, that at least
one vertex per index value can be removed, hence the result.

The lower bound is reached in the previous case if nC = k.

Then if we use the following definition of a dominating set:

Definition 13 (Dominating set) As defined in [11], a set S ⊆ V of vertices
of a graph G = (V,E) is called a dominating set if every vertex v ∈ V is either
an element of S or is adjacent to an element of S.

Under the full domain hypothesis, the final set of vertices is a dominating
set of the initial set:

Theorem 3 In two dimensions for the coverage algorithm applied to a a Vietoris-
Rips complex under the full domain hypothesis, the set of remaining vertices of
the final complex is a dominating set of the set of vertices of the initial complex.

Proof Under the full domain hypothesis, initial vertices are all in the geometric
domain defined by the critical vertices. For the coverage algorithm that means
that initial vertices lie in the area defined by the critical vertices. The homology
of the complex is unmodified by the algorithm therefore there is no coverage hole
in the final complex. The area is still covered. Then, each point of this area is
inside a 2-simplex. This is true for every vertex of the initial complex, it is thus
adjacent to three remaining vertices.

17



5 Complexity

In this section, we investigate the complexity of our algorithm for the Vietoris-
Rips complex based on a binomial point process. If we consider the number of
vertices n = s0 to be the parameter, then the complexity of the implementation
of the abstract simplicial complex is potentially exponential. Indeed, the num-
ber of simplices in an abstract simplicial complex of n vertices is at most 2n−1.
Therefore the data implementation is at most of complexity O(2n) compared to
the number of vertices n.

Theorem 4 (Complexity) The complexity of the algorithm to keep k0 Betti
numbers for an abstract simplicial complex of sk k-simplices and n = s0 vertices,
is upper bounded by:

n2sk0
+ (n+ sk0

)

C−1
∑

k=0

sk

with C being the size of the largest simplex in the initial abstract simplicial
complex.

Proof At the beginning we suppose that the entry data is the simplicial com-
plex represented by the list of all its simplices. So all simplices are already
implemented.

Let C−1 be the size of the largest simplex in the abstract simplicial complex,
C being known as the clique number of the underlying graph.

For the computation of the degrees of every k0-simplex, the algorithm tra-
verses at most all the k-simplices for k0 < k ≤ C − 1 to check if the k0-simplex
is included in it. Since there is sk k-simplices, that means that the degrees
computation complexity is upper bounded by sk0

∑C−1
k=k0+1 sk.

For the computation of the indices, the algorithm traverses, for every one
of the n vertices, its k0-cofaces, which is at most all the k0-simplices. The
complexity of the computation of the indices has therefore an upper bound of
nsk0

.
For the computation of the Betti numbers, we need to implement the bound-

ary map matrices which are of sizes n × s1 and s1 × s2 respectively. These
computations do not appear on the algorithm complexity since their complexity
is strictly less than the complexity of the computations of the degrees.

These three computations are done at the beginning of the algorithm. Then
at each removal of vertices, at most n removed vertices, the following is done:

• The simplices of the removed vertex are deleted: complexity which upper
bound is

∑C−1
k=0 sk.

• The Betti numbers are recomputed via the adjacency matrices which al-
ready exist.

• The modified degrees are recomputed automatically with the deletions of
simplices.
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• The at most n − 1 modified indices are recomputed: complexity which
upper bound is (n− 1)sk0

.

Remark 2 Since the simplicial complex is of size O(2n), the complexity of the
algorithm is polynomial relatively to the size of the input data.

One can easily see that the size of the largest simplex of a Vietoris-Rips
complex based on a binomial point process is the clique number of the underlying
random geometric graph. And this parameter, denoted C, as one can see in the
complexity formula of Theorem 4, is of great importance in the complexity:
it can make the latter go from polynomial to exponential. That is why we
investigate its behavior in more details.

In [6], the authors provide expressions for moments of random variables of
the C̆ech complex by means of Malliavin calculus. Thanks to their use of the
uniform norm the so-called C̆ech complex is the exact same as the Vietoris-Rips
complex. Then we are able to apply the results of [6] to our case, especially in
the expressions of the expectation and the variance of the number of (k − 1)-
simplices.

In order to use the results from [6], we first need to make a few assumptions:

1. First, we use the uniform norm to calculate the distance between two
vertices. Note that [6] also provides the needed results for the Euclidean
norm, however their expressions are not as tractable as the ones for the
uniform norm.

2. Let us take θ =
(

r
a

)d
, then we must have θ ≤

(

1
2

)d
. This insures that the

graph is small on the torus, and that no vertex is its own neighbor.

We can note that the parameter θ acts as a coverage parameter: if one puts
vertices along a regular grid of side r, one needs 1

θ
vertices to cover the area of

T
d
a. These assumptions hold for the remainder of the section.

Thus, let Nk denote the number of (k − 1)-simplices. Then N1 = n is the
number of vertices, and the results of [6] state that:

Theorem 5 ( [6]) The expectation and variance of the number of (k − 1)-
simplices, for k > 1, in a Vietoris-Rips simplex based on a binomial point process
on the torus T

d
a are given by:

E [Nk] =

(

n

k

)

kdθk−1, (1)

and,

V [Nk] =

k
∑

i=1

(

n

2k − i

)(

2k − i

k

)(

k

i

)

θ2k−i−1

(

2k − i+ 2
(k − i)2

i+ 1

)d

. (2)
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In this section, we are interested in the almost sure asymptotic behavior of
the complexity of our algorithm as n tends to infinity. Let us first define almost
sure:

Definition 14 We say that G(n, r) asymptotically almost surely has property
P if P[G(n, r) ∈ P ] → 1 when n tends to infinity.

Then throughout the article, we use Bachman-Landau notations. For non-
negative functions f and g we write as n tends to infinity:

• f(n) = o(g(n)) if for every ǫ > 0 there exists n0 such that for n ≥ n0, we
have f(n) ≤ ǫg(n). We say that f is dominated by g asymptotically.

• f(n) = O(g(n)) if there exists k > 0 and n0 such that for n ≥ n0, we have
f(n) ≤ kg(n). We say that f is bounded by g asymptotically.

• f(n) ∼ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)). We say that f and g
are equal asymptotically.

• f(n) ≪ g(n) if f(n)
g(n) = o(1). We say that f is small compared to g

asymptotically.

We study the asymptotical behavior of the size of the largest simplex under
percolation regimes: these regimes are defined following the variations of θ
compared to 1

n
.

5.1 Subcritical regime

In this subsection, we consider that θ = o( 1
n
). In the subcritical regime

for the percolation, the Vietoris-Rips complex mainly consists of disconnected
components. The size of the largest simplex is small compared to the number
of vertices n when the latter tends to infinity. Therefore we can focus on k-
simplices for k asymptotically small compared to n.

From the exact expressions we had from [6], we can derive asymptotical
expressions for the moments of the number of (k − 1)-simplices:

Lemma 4 For k ≥ 1 small compared to n, according to Theorem 5,

E [Nk] ∼ nkθk−1kd, and V [Nk] ∼ nkθk−1kd.

Proof This is a direct consequence of the subcritical regime hypothesis applied
to Equations 1 and 2.

The size of the largest simplex in this regime has sharp thresholds [15, 17],
that means that it grows by steps, but we still need to find the regimes of θ
where we can bind the expectation of the number of (k − 1)-simplices:
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Definition 15 We define for η > 0 and for k ≥ 1:

θ′k =
k

1+η−d
k−1

n
k

k−1

, and θk =
k−

1+η+d
k−1

n
k

k−1

.

Then for θ > θ′k, thanks to the approximations of Lemma 4 we have:

E [Nk] ≥ nk

(

k
1+η−d
k−1

n
k

k−1

)k−1

kd ≥ k1+η.

And for θ < θk,

E [Nk] ≤ nk

(

k−
1+η+d
k−1

n
k

k−1

)k−1

kd ≤ k−(1+η)

This leads to:

Theorem 6 In the subcritical regime, for k ≥ 1 small compared to n, and
θ′k < θ < θk+1, the size of the largest simplex is asymptotically almost surely
C = k.

Proof For k ≥ 1 small compared to n when n tends to infinity, we can easily
check that if n > k2(1+η)k. This holds in particular when n tends to infinity and
k is fixed. Then we have that θk+1 > θ′k.

We can now consider θ such that θ′k < θ < θk+1. Thanks to the approxima-
tions of Lemma 4, we can, on one hand, find an upper bound for the probability
of the non-existence of (k − 1)-simplices:

P[Nk = 0, θ > θ′k] ≤
V [Nk]

E [Nk]
2 ∼ 1

E [Nk]
≤ 1

k1+η
.

On the other hand, we can find an upper bound for the probability of existence
of k-simplices:

P[Nk+1 > 0, θ < θk+1] ≤ E [Nk+1] ≤
1

(k + 1)1+η
.

Finally we have:

P[∃θ, θ′k < θ < θk+1, C 6= k] <
1

k1+η
+

1

(k + 1)1+η
.

As the sum
∑∞

k=1 k
1+η converges, the Borel-Cantelli theorem implies that with

the exception of finitely many k’s, for all θ such that θ′k < θ < θk+1, one has
C = k. Then when n goes to infinity, we have asymptotically almost surely that
C = k:

P[C = k, θ′k < θ < θk+1] → 1,

concluding the proof.
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Finally we can conclude about the complexity of our algorithm in the sub-
critical regime:

Theorem 7 (Subcritical regime complexity) In the subcritical regime for
θ′k < θ < θk+1, the complexity of the reduction algorithm to keep k0 Betti
numbers for the Vietoris-Rips complex on a binomial point process on the torus
T
d
a, is in O(nk0+2).

Proof This is a direct consequence of Lemma 4, Theorem 4 and Theorem 6
with the subcritical regime assumptions.

5.2 Critical regime

In the critical regime, where θ ∼ 1
n
, percolation occurs: disconnected com-

ponents of the complex begin to connect into one sole connected component.
The size of the largest simplex is still rather small compared to n, allowing us
to consider only the k-simplices for k = O(n) when n goes to infinity.

In this regime we have a direct approximation of our variable θ, allowing
us to compute an approximation of the expected number of (k − 1)-simplices
integer from the Equation 1.

Lemma 5 For k = O(n), and according to Theorem 5, we have:

E [Nk] ∼
1√
2π

nkd−k− 1
2 , and V [Nk] ∼

1√
2π

nkd−k− 1
2 .

Proof We have from Equation 1 that E [Nk] =
(

n
k

)

θk−1kd.
After some calculations via Stirling’s approximation n! ∼

√
2πn

(

n
e

)n
, we

obtain the result for the expectation.
Thanks to the fact that k = O(n), we can still approximate the variance of

Nk by its dominating term in i = k, and V [Nk] ∼ E [Nk].

From that approximation and using the same process as in the previous
subsection, we can write:

Theorem 8 In the critical regime, the size of the largest simplex grows asymp-
totically almost surely slower than lnn with an arbitrarily small distance:

(lnn)1−η < C < lnn, ∀η > 0.

Proof First, for k > lnn, we can find an upper bound for the expectation
approximation of Lemma 5 by:

E [Nk] < n(lnn)d−
1
2
−lnn.
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One can easily check that n(lnn)d−
1
2
−lnn → 0. Since P[Nk > 0] ≤ E [Nk],

the probability that there exists (k − 1)-simplices tends to 0 and:

P[C > k] = P[Nk > 0] → 0 ∀k > lnn,

and C < lnn asymptotically almost surely.
Then, for k < (lnn)1−η with η > 0, we can now find a lower bound for the

expectation approximation by:

E [Nk] > n(lnn)(1−η)(d− 1
2
−(lnn)1−η)

And one can check that n(lnn)(1−η)(d− 1
2
−(lnn)1−η) → +∞. Then, thanks to

the asymptotic equivalence of the variance and the expectation of Nk, we have
P[Nk = 0] ≤ 1

E[Nk]
: the probability that there exists no (k − 1)-simplices tends

to 0, and:

P [C < k] = P[Nk = 0] → 0 ∀k < (lnn)1−η.

Thus, C > (lnn)1−η asymptotically almost surely.

Finally we can conclude about the complexity of our algorithm in the critical
regime:

Theorem 9 (Critical regime complexity) In the critical regime, the com-
plexity of the reduction algorithm to keep k0 Betti numbers for the Vietoris-Rips
complex on a binomial point process on the torus T

d
a, is in O(nk0+2 lnn).

Proof This is a direct consequence of Lemma 5, Theorem 4 and Theorem 8
using Stirling’s approximation.

5.3 Supercritical regime

In the supercritical regime, 1
n

= o(θ), the Vietoris-Rips complex on a bi-
nomial point process is connected and tends to become the complete complex.
The asymptotic behavior of the clique number has already been studied in this
regime in [1] by Appel and Russo. They first find the almost sure asymptotic
rate for the maximum vertex degree. Then by squeezing the clique number
between two values of the maximum vertex degree, they obtain its asymptotic
behavior. We propose here an alternative approach.

In this regime, percolation has occurred, that is to say that the complex is
connected and the size of the simplices is not asymptotically small anymore com-
pared to n. Therefore an upper bound via the expected number of k-simplices is
not a good enough approach anymore. Instead, we came back to the definition
of the Vietoris-Rips complex.

For the first step of our exploration, we use a similar argument as in [1]. To
cover the torus Td

a, one needs at least ⌈ 1
θ
⌉ balls of diameter r in dimension d. If

one places these balls along a lattice square grid with spacing r, one can denote
Bi, for 1 ≤ i ≤ ⌈ 1

θ
⌉, the ⌈ 1

θ
⌉ needed balls centered on the points of the grid
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and of radius r
2 . Then the number of vertices n is smaller than the sum of the

number of vertices in each ball Bi:

n <

⌈ 1
θ
⌉

∑

i=1

#{Bi}

where #{Bi} is the number of vertices in Bi.
Moreover, vertices in the same ball Bi are within distance r of each other,

therefore they form a simplex. By definition, for every i we have #{Bi} ≤ C.
Thus we have:

C >
n

⌈ 1
θ
⌉ ≥ nθ

1 + θ

When θ tends to 0, the size of the largest simplex is asymptotically greater than
nθ. We can now write:

Theorem 10 In the supercritical regime, the size of the largest simplex C grows
as nθ asymptotically almost surely.

Proof We still have to prove that C is asymptotically almost surely smaller
than nθ.

A (k − 1)-simplex occurs when k vertices are in the same ball of diameter
r. Without loss of generality we can center the ball on one of the vertex of the
complex. We have:

P[C > nθ] = P[Nnθ > 0]

= P[∃ x,#{B(x,
r

2
)} ≥ nθ − 1],

where x is a vertex of the complex, and #{B(x, r
2 )} the number of vertices in

the ball centered in x and of radius r
2 .

Let x1, . . . , xn denote the n vertices, their positions are independent, thus
we can write:

P[∃ i ∈ {1, . . . , n},#{B(xi,
r

2
)} ≥ nθ − 1] ≤ P[

n
⋃

i=1

#{B(xi,
r

2
)} ≥ nθ − 1]

≤
n
∑

i=1

P[#{B(xi,
r

2
)} ≥ nθ − 1]

≤ nP[#{B(x1,
r

2
)} ≥ nθ − 1].

The number of vertices in the ball B(x1,
r
2 ) follows a binomial distribution

Binom(n− 1, θ). Therefore Hoeffding’s inequality implies that:

P[#{B(x1,
r

2
)} > nθ] ≤ P[#{B(xi,

r

2
)} > (n− 1)(θ +

θ

n− 1
)]

≤ exp (−2
θ2

n− 1
).
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Then the size of the largest simplex C is asymptotically almost surely smaller
than nθ, concluding the proof.

Finally we can conclude about the complexity of our algorithm in the super-
critical regime:

Theorem 11 (Supercritical regime complexity) When in the supercriti-
cal regime, the complexity of the reduction algorithm to keep k0 Betti numbers
for the Vietoris-Rips complex on a binomial point process on the torus T

d
a, is in

O(nk0+12n).

Proof This is a direct consequence of Theorem 4 and Theorem 10.
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