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UNIMODALITY OF HITTING TIMES FOR STABLE PROCESSES

JULIEN LETEMPLIER AND THOMAS SIMON

Abstract. We show that the hitting times for points of real α−stable Lévy processes
(1 < α ≤ 2) are unimodal random variables. The argument relies on strong unimodality and
several recent multiplicative identities in law. In the symmetric case we use a factorization
of Yano et al. [16], whereas in the completely asymmetric case we apply an identity of the
second author [11]. The method extends to the general case thanks to a fractional moment
evaluation due to Kuznetsov et al. [6].

1. Introduction and statement of the result

A real random variable X is said to be unimodal if there exists a ∈ R such that its
distribution function P[X ≤ x] is convex on (−∞, a) and concave on (a,+∞). When X is
absolutely continuous, this means that its density is non-decreasing on (−∞, a] and non-
increasing on [a,+∞). The number a is called a mode of X and might not be unique. A
random variable with a single mode is called strictly unimodal. The problem of unimodality
has been intensively studied for infinitely divisible random variables and we refer to Chapter
10 in [10] for details. This problem has also been settled in the framework of hitting times of
processes and Rösler - see Theorem 1.2 in [9] - showed that hitting times for points of real-
valued diffusions are always unimodal. However, much less is known when the underlying
process has jumps, for example when it is a Lévy process.

In this paper we consider a real strictly α−stable process (1 < α ≤ 2), which is a Lévy
process {Xt, t ≥ 0} starting from zero and having characteristic exponent

log[E[eiλX1 ]] = −(iλ)αe−iπαρ sgn(λ), λ ∈ R,

where ρ ∈ [1 − 1/α, 1/α] is the positivity parameter of {Xt, t ≥ 0} that is ρ = P[X1 ≥ 0].
We refer to [17] and to Chapter 3 in [10] for an account on stable laws and processes. In
particular, comparing the parametrisations (B) and (C) in the introduction of [17] shows
that the characteristic exponent of {Xt, t ≥ 0} takes the more familiar form

c |λ|α(1− iθ tan(
πα

2
) sgn(λ))

with ρ = 1/2 + (1/πα) tan−1(θ tan(πα/2)) and c = cos(πα(ρ − 1/2)). The constant c is
a scaling parameter which could take any arbitrary positive value without changing our
purposes below. We are interested in the hitting times for points of {Xt, t ≥ 0}:

τx = inf{t > 0, Xt = x}, x ∈ R.
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It is known [7] that τx is a proper random variable which is also absolutely continuous.
Recall also - see e.g. Example 43.22 in [10] - that points are polar for strictly α−stable Lévy
process with α ≤ 1, so that τx = +∞ a.s. in this situation. In the following we will focus
on the random variable τ = τ1. Again, this does not cause any loss of generality since by
self-similarity one has

τx
d
= xατ1 and τ

−x
d
= xατ

−1

for any x ≥ 0, and because the law of τ
−1 can be deduced from that of τ1 in considering the

dual process {−Xt, t ≥ 0}. We show the

Theorem. The random variable τ is unimodal.

In the spectrally negative case ρ = 1/α, the result is plain because τ is then a positive
stable random variable of order 1/α, which is known to be unimodal - see e.g. Theorem
53.1 in [10]. We will implicitly exclude this situation in the sequel and focus on the case
with positive jumps. To proceed with this non-trivial situation we use several facts from the
recent literature, in order to show that τ factorizes into the product of a certain unimodal
random variable and a product of powers of Gamma random variables. The crucial property
that the latter product preserves unimodality by independent multiplication [2] allows to
conclude. Our argument follows that of [12], where a new proof of Yamazato’s theorem for
the unimodality of stable densities was established, but it is more involved. In passing we
obtain a self-decomposability property for the Kanter random variable, which is interesting
in itself and extends the main result of [8].

For the sake of clarity we divide the proof into three parts. We first consider the symmetric
case ρ = 1/2, appealing to a factorization of τ in terms of generalized Rayleigh and Beta
random variables which was discovered in [16]. Second, we deal with the spectrally positive
case ρ = 1−1/α, with the help of a multiplicative identity in law for τ involving positive stable
and shifted Cauchy random variables which was obtained in [11]. In the third part, we observe
the remarkable fact that this latter identity extends to the general case ρ ∈ (1 − 1/α, 1/α),
thanks to the evaluation of the Mellin transform of τ which was performed in [6], and which
can actually be obtained very easily - see section 2.4. This identity allows also to show that
the density of τ is real-analytic and that τ is strictly unimodal - see the final remark (a).

2. Proof of the Theorem

2.1. The symmetric case. Formula (5.12) and Lemma 2.17 in [16] yield together with the
normalization (4.1) therein, which is the same as ours, the following independent factorization

(2.1) τ
d
= 2−αL−

α
2 ×

(

Z
(− 1

2
)

α
2

)

−
α
2

× B−1
1− 1

α
, 1
α

with the following notation, which will be used throughout the text:

• L is the unit exponential random variable.
• Ba,b is the Beta random variable (a, b > 0) with density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−11(0,1)(x)
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• Zc is the positive c−stable random variable (0 < c ≤ 1), normalized such that

E
[

e−λZc
]

= e−λc

, λ ≥ 0.

• For every t ∈ R and every positive random variable X such that E[X t] < +∞, the
random variable X(t) is the size-biased sampling of X at order t, which is defined by

E
[

f(X(t))
]

=
E [X tf(X)]

E [X t]

for every f : R+ → R bounded continuous.

Notice that the above random variable Z
(− 1

2
)

α
2

makes sense from the closed expression of

the fractional moments of Zc:

(2.2) E[Zs
c] =

Γ(1− s/c)

Γ(1− s)
, s < c,

which ensures E[Z
−

1

2
α
2

] < +∞. Observe also that for every t > 0 one has L(t−1) d
= Γt where

Γt is the Gamma random variable with density

xt−1e−x

Γ(t)
1(0,+∞)(x).

It is easy to see that

(2.3) X(t) × Y (t) d
= (X × Y )(t) and

(

X(t)
)p d

= (Xp)(
t
p
)

for every t, p ∈ R such that the involved random variables exist, and where the products in
the first identity are supposed to be independent. In particular, one has

(κX)(t)
d
= κX(t)

for every positive constant κ. Combined with (2.1) the second identity in (2.3) entails

τ
d
= 2−αL−

α
2 ×

(

Z
−

α
2

α
2

)( 1

α
)

× B−1
1− 1

α
, 1
α

.

On the other hand, Kanter’s factorization - see Corollary 4.1 in [4] - reads

(2.4) Z
−

α
2

α
2

d
= L1−α

2 × bα
2
(U)

where U is uniform on (0, 1) and

bc(u) =
sin(πu)

sinc(πcu) sin1−c(π(1− c)u)

for all u, c ∈ (0, 1). Since bc is a decreasing function from κc = c−c(1 − c)c−1 to 0 - see the
proof of Theorem 4.1 in [4] for this fact, let us finally notice that the support of the random
variable

Kc = κ−1
c bc(U)
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is [0, 1]. Putting everything together shows that

τ
d
= 2−ακα

2

L−
α
2 ×

(

L1−α
2

)( 1

α
)
× K

( 1

α
)

α
2

× B−1
1− 1

α
, 1
α

.

By Theorem 3.7. and Corollary 3.14. in [2], the random variable

Xα = 2−ακα
2

L−
α
2 ×

(

L1−α
2

)( 1

α
) d
= 2−ακα

2

L−
α
2 ×

(

L( 1

α
−

1

2
)
)1−α

2 d
= 2−ακα

2

L−
α
2 × Γ

1−α
2

1

α
+ 1

2

is multiplicatively strongly unimodal, that is its independent product with any unimodal
random variable remains unimodal. Indeed, a straightforward computation shows that the
random variables log(L) and log(Γ 1

α
+ 1

2

) have a log-concave density, and the same is true for

log(Xα) by Prékopa’s theorem. All in all, we are reduced to show the

Proposition 1. With the above notation, the random variable K
( 1

α
)

α
2

×B−1
1− 1

α
, 1
α

is unimodal.

Proof. A computation shows that the density of B−1
1− 1

α
, 1
α

decreases on (1,+∞). Hence, there

exists Fα : (0, 1) 7→ (1,+∞) increasing and convex such that

B−1
1− 1

α
, 1
α

d
= Fα(U).

On the other hand, up to normalization the density of K
( 1

α
)

α
2

writes

gα(x) = x
1

αfα(x)

on (0, 1), where fα is the density ofKα
2
. It follows from Lemma 2.1 in [13] that fα increases on

(0, 1), so that the density of gα also increases on (0, 1) and that there exists Gα : (0, 1) 7→ (0, 1)
increasing and concave such that

K
( 1

α
)

α
2

d
= Gα(U).

We can now conclude by the lemma in [12].
�

Remark 1. The lemma in [12] shows that the mode ofK
( 1

α
)

α
2

×B−1
1− 1

α
, 1
α

is actually 1. However,

this does not give any information on the mode of τ.

2.2. The spectrally positive case. This situation corresponds to the value ρ = 1 − 1/α
of the positivity parameter. The characteristic exponent of {Xt, t ≥ 0} can be extended to
the negative half-plane, taking the simple form

log[E[e−λX1 ]] = λα, λ ≥ 0.

With this normalization, we will use the following independent factorization which was
obtained in [11]:

τ
d
= Uα × Z 1

α

where Uα is a random variable with density

fUα
(t) =

−(sin πα)t1/α

π(t2 − 2t cosπα+ 1)
·
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It is easy to see that Uα is multiplicatively strongly unimodal for α ≤ 3/2 and this was used
in Proposition 8 of [11] to deduce the unimodality of τ in this situation. To deal with the
general case α ∈ (1, 2) we proceed via a different method. First, it is well-known and easy
to see - solve e.g. Exercise 4.21 (3) in [1] - that the independent quotient

(

Zα−1

Zα−1

)α−1

has the density
− sin(πα)

π(t2 − 2t cosπα + 1)

over R+, whence we deduce

τ
d
=

(

Zα−1
α−1

Zα−1
α−1

)( 1

α
)

× Z 1

α

d
= κ−α

1

α

(

L2−α

L2−α

)( 1

α
)

× L1−α × K
( 1

α
)

α−1 × (K−1
α−1)

( 1

α
) ×K−α

1

α

with the above notation. Similarly as above, the first product with the three exponential

random variables is multiplicatively strongly unimodal, whereas the random variable K
( 1

α
)

α−1

has an increasing density on (0, 1). Hence, reasoning as in Proposition 1 it is enough to show

that the random variable (K−1
α−1)

( 1

α
) ×K−α

1

α

has a decreasing density on (1,+∞). We show

the more general

Proposition 2. With the above notation, the random variable

(K−r
β )(t) × K−s

γ

has a decreasing density on (1,+∞) for every r, s > 0 and β, γ, t in (0, 1).

The proof of the proposition uses the notion of self-decomposability - see Chapter 3 in [10]
for an account. Recall that a positive random variable X is self-decomposable if its Laplace
transform reads

E[e−λX ] = exp−

[

aXλ +

∫

∞

0

(1− e−λx)
ϕX(x)

x
dx

]

, λ ≥ 0,

for some aX ≥ 0 which is called the drift coefficient of X, and some non-increasing function
ϕX : (0,+∞) → R

+ which will be henceforth referred to as the spectral function of X.
Introduce the following random variable

Wβ = − log(Kβ)

and notice that its support is R+, thanks to our normalization for Kβ. A key-observation is
the following
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Lemma 1. The random variable Wβ is self-decomposable, without drift and with a spectral

function taking the value 1/2 at 0+.

Proof. Combining (2.2), (2.4) and the classical formula for the Gamma function

Γ(1− u) = exp

[

γu +

∫

∞

0

(eux − 1− ux)
dx

x(ex − 1)

]

, u < 1,

(where γ is Euler’s constant) yields the following expression for the Laplace transform of
Wβ - see (3.5) in [8]:

E[e−λWβ ] = E[Kλ
β] = exp−

[
∫

∞

0

(1− e−λx)
ϕβ(x)

x
dx

]

, λ ≥ 0,

with

ϕβ(x) =
e−x

1− e−x
−

e−x/β

1− e−x/β
−

e−x/(1−β)

1− e−x/(1−β)
, x > 0.

It was shown in Lemma 3 of [8] that the function ϕβ is non-negative and an asymptotic
expansion at order 2 yields ϕβ(0+) = 1/2.

We finally show that ϕβ is non-increasing on (0,+∞). Following the proof and the notation
of Lemma 3 in [8] this amounts to the fact that the function x 7→ xψβ(x) therein is non-
decreasing on (0, 1), which is a clear consequence of the following claim

(2.5) t 7→ log(1− et)− log(1− ert) is convex on R
− for every r ∈ (0, 1).

Let us show the claim. Differentiating twice, we see that we are reduced to prove that

r2xr−1(1− x)2

(1− xr)2
≥ 1, 0 < x, r < 1.

The limit of the quantity on the left-hand side is 1 when x → 1−, whereas its logarithmic
derivative equals

(r − 1)(1− xr+1) + (r + 1)(xr − x)

x(1− x)(1− xr)
·

The latter fraction is negative for all 0 < x, r < 1 because its numerator is concave as a
function of x ∈ (0, 1) which vanishes together with its derivative at x = 1−. This shows (2.5)
and finishes the proof of the lemma.

�

Proof of Proposition 2. Set fβ,r resp. fγ,s for the density of rWβ resp. sWγ. By
multiplicative convolution, the density of (K−r

β )(t) × K−s
γ writes

∫ x

1

(xy−1)tf
K

−r
β

(xy−1)f
K

−s
γ
(y)

dy

y

on (1,+∞), up to some normalization constant. This transforms into

xt−1

∫ x

1

fβ,r(log(x)− log(y))fγ,s(log(y))
dy

yt+1
= xt−1

∫ log(x)

0

fβ,r(log(x)− u)e−tufγ,s(u) du
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and since t ∈ (0, 1) it is enough to prove that the function

(2.6) v 7→

∫ v

0

fβ,r(v − u)e−tufγ,s(u) du

is non-increasing on (0,+∞). Lemma 1 and a change of variable show that fβ,r(u) resp.
e−tufγ,s(u) is up to normalization the density of a positive self-decomposable random variable
without drift and with spectral function ϕβ(xr

−1) resp. e−txϕγ(xs
−1), with the notation of

the proof of Lemma 1. By additive convolution this entails that the function in (2.6) is the
constant multiple of the density of a positive self-decomposable random variable without
drift and with spectral function

ϕβ(xr
−1) + e−txϕγ(xs

−1).

By Lemma 1 this latter function takes the value 1 at 0+, and we can conclude by Theorem
53.4 (ii) in [10].

�

Remark 2. By Theorem 4 in [3] we know that Wβ has also a completely monotone density,
in other words - see Theorem 51.12 in [10] - that its spectral function writes

ϕβ(x) = x

∫

∞

0

e−txθα(t)dt, x ≥ 0,

for some function θα(t) valued in [0, 1] and such that t−1θα(t) is integrable at 0+. This entails
that K−r

β has a completely monotone density as well for every r > 0 - see Corollary 3 in [3].

However, this latter property does not seem true in general for (K−r
β )(t) × K−s

γ .

2.3. The general case. We now suppose ρ ∈ (1− 1/α, 1/α), which means that our stable
Lévy process has jumps of both signs. The symmetric case was dealt with previously but it
can also be handled with the present argument. Theorem 3.10 in [6] computes the fractional
moments of τ in closed form:

(2.7) E[τ s] =
sin(π

α
) sin(πρα(s+ 1

α
))

sin(πρ) sin(π(s+ 1
α
))

×
Γ(1− αs)

Γ(1− s)
, −1−

1

α
< s < 1−

1

α

(the initial normalization of [6] is the same as ours - see the introduction therein - but beware
that with their notation our τ has the law of T0 under P

−1). On the other hand, it is easy
to see from (2.2) and the complement formula for the Gamma function that

E

[(

Zρα
ρα

Zρα
ρα

)s]

=
sin(πραs)

ρα sin(πs)
, −1 < s < 1.

Hence, a fractional moment identification entails

(2.8) τ
d
=

(

Zρα
ρα

Zρα
ρα

)( 1

α
)

× Z 1

α
·

Making the same manipulations as in the spectrally positive case, we obtain

(2.9) τ
d
= κ−α

1

α

(

L1−ρα

L1−ρα

)( 1

α
)

× L1−α × K
( 1

α
)

ρα × (K−1
ρα )

( 1

α
) ×K−α

1

α
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and we can conclude because Proposition 2 applies here as well.
�

2.4. A short proof of (2.7). In this paragraph we give an independent proof of the frac-
tional moment evaluation (2.7), which is short and standard. This method was suggested
to us by L. Chaumont and P. Patie and we would like to thank them for reminding us this
classical argument. Setting fXt

for the density of Xt, by Theorem 43.3 in [10] one has

E[e−qτ ] =
uq(1)

uq(0)

where by self-similarity

uq(1) =

∫

∞

0

e−qtfXt
(1) dt =

∫

∞

0

e−qtt−1/αfX1
(t−1/α) dt,

and

uq(0) =

∫

∞

0

e−qtfXt
(0) dt =

1

ϕ(q)

with ϕ the Laplace exponent of the inverse local time at zero of {Xt, t ≥ 0}. It is well-known
and easy to see by self-similarity - see e.g. Theorem 2 in [14] - that

ϕ(q) = κ q
α−1

α ,

where κ > 0 is a normalizing constant to be determined later. Making a change of variable,
we deduce

E[e−qτ ] = κ̃ q
α−1

α E[Z1e
−qZ1 ]

with κ̃ = αρκ and Z1 = (X1|X1 ≥ 0)−α. For every s ∈ (0, 1) one has

E[τ−s] =
1

Γ(s)

∫

∞

0

E[e−qτ ]qs−1dq

=
κ̃

Γ(s)
E

[

Z1

∫

∞

0

e−qZ1q
α−1

α
+s−1dq

]

= κ̃
Γ(1− 1/α+ s)

Γ(s)
E

[

Z
1

α
−s

1

]

= κ̃
Γ(1− 1/α+ s)

Γ(s)
E
[

(X1|X1 ≥ 0)αs−1
]

.

On the other hand, by the formula (2.6.20) in [17] one has

E
[

(X1|X1 ≥ 0)αs−1
]

=
Γ(αs)Γ(1 + 1/α− s)

Γ(1− ρ+ ραs)Γ(1 + ρ− ραs)

and putting everything together entails

E[τ−s] =
κ̃Γ(αs)Γ(1− 1/α+ s)Γ(1 + 1/α− s)

Γ(s)Γ(1− ρ+ ραs)Γ(1 + ρ− ραs)
=

sin(π
α
) sin(πρα(−s+ 1

α
))Γ(1 + αs)

sin(πρ) sin(π(−s+ 1
α
))Γ(1 + s)

for every s ∈ (0, 1), where we used standard properties of the Gamma function and the
identification of the constant comes from E[τ 0] = 1. This completes the proof of (2.7) for
s ∈ (−1, 0), and hence for s ∈ (−1 − 1/α, 1− 1/α) by analytic continuation.

�
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Remark 3. The above computation shows that the normalizing constant for the inverse
local time at zero reads

κ =
α sin(π

α
)

sin(πρ)
·

One can check that this constant is the same as the one computed by Fourier inversion in
[14] p. 636.

2.5. Final remarks. (a) The identity in law (2.8) shows that the density of τ is the mul-
tiplicative convolution of two densities which are real-analytic on (0,+∞). Indeed, it is
well-known - see e.g. [17] Theorem 2.4.1 - that the density of Z 1

α
is real-analytic on (0,+∞),

whereas the density of the first factor in (2.8) reads

sin(πρα) sin(π
α
)t

1

α

π sin(πρ)(t2 + 2t cos(πρα) + 1)
·

Hence, the density of τ is itself real-analytic on (0,+∞) and a combination of our main
result and the principle of isolated zeroes entails that τ is strictly unimodal. Besides, its
mode is positive since we know from Theorem 3.15 (iii) in [6] in the spectrally two-sided
case, and from Proposition 2 in [11] in the spectrally positive case, that the density of
τ always vanishes at 0+ (with an infinite first derivative). The strict unimodality of τ can
also be obtained in analyzing more sharply the factors in (2.9) and using Step 6 p. 212 in [2].

(b) The identity in law (2.8) can be extended in order to encompass the whole set of
admissible parameters {α ∈ (1, 2], 1 − 1/α ≤ ρ ≤ 1/α} of strictly α−stable Lévy processes
that hit points in finite time a.s. Using the Legendre-Gauss multiplication formula and a
fractional moment identification, one can also deduce from (2.8) with ρ = 1/2 the formula
(5.12) of [16]. It is possible to derive a factorization of τ with the same inverse Beta factor for
α ≤ n/(n−1) and ρ = 1/n, but this kind of identity in law does not seem to be true in general.

(c) When ρα ≥ 1/2, the formula (2.8) shows that the law of τ is closely related to that of
the positive branch of a real stable random variable with scaling parameter 1/α and positivity
parameter ρα. Indeed, Bochner’s subordination - see e.g. Chapter 6 in [10] or Section 3.2
in [17] for details - shows that the latter random variable decomposes into the independent
product

(

Zρα
ρα

Zρα
ρα

)

× Z 1

α
·

(d) The identity (2.8) is attractive in its simplicity. Compare with the distribution of first
passage times of stable Lévy processes, whose fractional moments can be computed in certain
situations - see Theorem 3 in [5] and the references therein for other recent results in the
same vein - but with complicated formulæ apparently not leading to tractable multiplicative
identities in law. In the framework of hitting times, it is natural to ask whether (2.8) could
not help to investigate further distributional properties of τ, in the spirit of [15]. This will
be the matter of further research.
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