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GROUND ENERGY OF THE MAGNETIC LAPLACIAN

IN POLYHEDRAL BODIES

VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF

Abstract. The asymptotic behavior of the first eigenvalues of magnetic Laplacian operators

with large magnetic fields in polyhedral domains is characterized by a hierarchy of model

problems. We investigate properties of the model problems (continuity, semi-continuity,

existence of generalized eigenfunctions). We prove estimates for the remainders of our

asymptotic formula. Lower bounds are obtained with the help of a classical IMS partition

based on adequate coverings of the polyhedral domain, whereas upper bounds are established

by a novel construction of quasimodes, qualified as sitting or sliding according to spectral

properties of local model problems.

1. Introduction. Main results

The Schrödinger operator with magnetic field (also called magnetic Laplacian) takes the

form

(−i∇+ A)2

where A is a given vector field that will be assumed to be regular. When set on a domain

Ω of Rn (n = 2 or 3) and completed by natural boundary conditions (Neumann), this

operator is denoted by H(A,Ω). If Ω is bounded with Lipschitz boundary, the form domain

of H(A,Ω) is the standard Sobolev space H1(Ω) and H(A,Ω) is positive self-adjoint with

compact resolvent. The ground states of H(A,Ω) are the eigenpairs (λ,ψ)

(1.1)

{
(−i∇+ A)2ψ = λψ in Ω,

(−i∂n + n · A)ψ = 0 on ∂Ω,

associated with the lowest eigenvalues λ. If Ω is simply connected, its eigenvalues only

depend on the magnetic field B defined as

(1.2) B = curlA.

The eigenvectors corresponding to two different instances of A for the same B are deduced

from each other by a gauge transform.

Introducing a (small) parameter h > 0 and setting

Hh(A,Ω) = (−ih∇+A)2 with Neumann b.c. on ∂Ω,

we get the relation

(1.3) Hh(A,Ω) = h
2H

(A
h
,Ω

)

1
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linking the problem with large magnetic field to the semiclassical limit h → 0. We denote
by λh(B,Ω) (or λh if no confusion is possible) the smallest eigenvalue of Hh(A,Ω) and by

ψh an associated eigenvector, so that

(1.4)

{
(−ih∇+ A)2ψh = λhψh in Ω ,

(−ih∂n + n · A)ψh = 0 on ∂Ω .

The behavior of λh as h→ 0 clearly provide equivalent information about the lowest eigen-
value of H(Ă,Ω) when B̆ is large, especially in the parametric case when B̆ = BB where

the real number B tends to +∞ and B is a chosen reference magnetic field.
From now on, we consider that B is fixed. We assume that it is smooth and does not

vanishes1 on Ω. We normalize B by the condition

(1.5) min
x∈Ω
|B(x)| = 1.

The question of the semiclassical behavior of λh has been considered in many papers for

a variety of domains, with constant or variable magnetic fields: Smooth domains [18,

13, 10, 1, 28] and polygons [3, 4, 5] in dimension n = 2, and mainly smooth domains

[19, 14, 15, 29, 11] in dimension n = 3. Until now, three-dimensional non-smooth domains

are only addressed in two particular configurations—rectangular cuboids [22] and lenses

[24, 27], with special orientation of the (constant) magnetic field. We give more detail

about the state of the art in section 2.

Let us briefly describe our main results in the three-dimensional setting.

Each point x in the closure of a polyhedral domain Ω is associated with a homogeneous

tangent open set Πx, according to the following cases:

(1) If x is an interior point, Πx = R
3,

(2) If x belongs to a face f (i.e., a connected component of the smooth part of ∂Ω),

Πx is a half-space,

(3) If x belongs to an edge e, Πx is an infinite wedge,

(4) If x is a vertex v, Πx is an infinite polyhedral cone.

Let Bx be the magnetic field frozen at x. Let E(Bx ,Πx) be the bottom of the spectrum

(ground energy) of the tangent operator H(Ax ,Πx) where Ax is the linear approximation of

A at x, so that

curlAx = Bx .

We introduce the quantity

(1.6) E (B,Ω) := inf
x∈Ω

E(Bx ,Πx).

1Should B cancel, the situation would be completely different [12, 9].



GROUND ENERGY OF THE MAGNETIC LAPLACIAN IN POLYHEDRAL BODIES 3

In this paper, we prove that this quantity provides the value of the limit of λh/h as h → 0
with some control of the convergence rate as h → 0, namely
(1.7) − Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch5/4,
where the constant C is bounded by the norm of A in W 2,∞(Ω), as proved in Theorems 6.1
and 7.1. We can also control the constant C by the magnetic field B as established in

Corollaries 6.2 and 7.2.

With the point of view of large magnetic fields in the parametric case B̆ = BB, (1.7) yields

obviously

(1.8) − CB3/4 ≤ λ(B̆,Ω)− BE (B,Ω) ≤ CB3/4, as B → +∞.
Note that BE (B,Ω) = E (B̆,Ω) by homogeneity (see Lemma 4.1).

This result is new in this generality. In view of [15] (smooth three-dimensional case) the

upper bound is optimal. The lower bound coincides with the one obtained in the smooth case

in dimensions 2 and 3 when no further assumptions are done. In the literature, improvements

of the convergence rates are possible in certain cases when one knows more on E (B,Ω),

in particular whether the infimum is attained in some special points.

Our result does not need such extra assumptions, but our proofs have to distinguish cases

whether the local ground energies E(Bx ,Πx) are attained or not, and we have to understand

the behavior of the function x 7→ E(Bx ,Πx) when x spans the different regions of Ω. We

have proved very general continuity and semi-continuity properties as described now.

Let F be the set of faces f, E the set of edges e and V the set of vertices of Ω. They form

a partition of the closure of Ω, called stratification

(1.9) Ω = Ω ∪
(⋃

f∈F
f
)
∪
(⋃

e∈E
e
)
∪
( ⋃

v∈V
v
)
.

The sets Ω, f, e and v are called the strata of Ω, compare with [20] and [21, Ch. 9]. We

denote them by t and their set by T. For each stratum t, let us denote by Λt the function

(1.10) Λt : t ∋ x 7→ E(Bx ,Πx).

We will show the following facts

a) The function x 7→ E(Bx ,Πx) is lower semi-continuous on Ω.

b) For each stratum t ∈ T, the function Λt is continuous on t and can be continuously

extended to the closure t̄ of t. Moreover, for each x0 ∈ t̄, Λt(x0) is the bottom

of the spectrum E(BX ,ΠX) of a tangent magnetic operator H(AX,ΠX) associated

with a singular chain X originating at x0.

As a consequence, the infimum determining the limit E (B,Ω) in (1.6) is a minimum

(1.11) E (B,Ω) = min
x∈Ω

E(Bx ,Πx) .
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Contents. In section 2 we place our results in the framework of existing literature for

dimensions 2 and 3. In section 3 we introduce the wider class of corner domains, alongside

with their tangent cones and singular chains. We particularize these notions in the case of

polyhedral domains. In section 4 we introduce and classify magnetic model problems on tan-

gent cones (taxonomy) and extract from the literature related facts. We show that to each

point x ∈ Ω is associated a singular chain X originating at x for which the tangent operator
H(AX,ΠX) possesses admissible generalized eigenvectors with energy E(Bx ,Πx). In section

5 we prove the semi-continuity and continuity properties of the functions x 7→ E(Bx ,Πx)

on Ω and its strata. In section 6 we prove the upper bound λh(B,Ω) ≤ hE (B,Ω)+Ch5/4

by a construction of quasimodes based on admissible generalized eigenvectors for tangent

problems. In section 7 we prove the lower bound hE (B,Ω) − Ch5/4 ≤ λh(B,Ω) by a

classical IMS formula.

Notation. We denote by S(L) the spectrum of a self-adjoint operator L.

2. State of the art

In this section we review the literature about the semiclassical limit for the first eigenvalue

λh(B,Ω) of the magnetic Laplacian Hh(A,Ω) depending on the dimension n ∈ {2, 3} and
the geometry of the domain Ω.

2.1. Dimension 2. In dimension n = 2, two classes of domains are considered: the domains

with a regular boundary and the polygonal domains.

2.1.1. Regular domains. Let Ω ⊂ R2 be a regular domain and B be a regular non-vanishing
scalar magnetic field on Ω. To each x ∈ Ω is associated a tangent problem. According
to whether x is an interior point or a boundary point, the tangent problem is the magnetic

Laplacian on the plane R2 or the half-plane Πx tangent to Ω at x, with the constant

magnetic field Bx ≡ B(x). The associated spectral quantities E(Bx,R
2) and E(Bx,Πx) are

respectively equal to |Bx| and |Bx|Θ0 where Θ0 := E(1,R2+) is a universal constant whose
value is close to 0.59 (see [30]). With the quantities

(2.1) b = inf
x∈Ω
|B(x)| and b′ = inf

x∈∂Ω
|B(x)|,

we find

E (B,Ω) = min(b, b′Θ0) .

In this generality, the asymptotic limit

(2.2) lim
h→0

λh(B,Ω)

h
= E (B,Ω)

is proven by Lu and Pan in [18]. Improvements of this result depend on the geometry and

the variation of the magnetic field as we describe now.
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• Constant magnetic field. If the magnetic field is constant and normalized to 1, then
E (B,Ω) = Θ0. The following estimate is proved by Helffer and Morame:

∃C > 0, −Ch3/2 ≤ λh(1,Ω)− hΘ0 ≤ Ch3/2 ,
for h small enough [13, §10], while the upper bound was already given by Bernoff and
Sternberg [2]. This result is improved in [13, §11] in which a two-term asymptotics is proved,
showing that a remainder in O(h3/2) is optimal. Under the additional assumption that the
curvature of the boundary admits a unique and non-degenerate maximum, a complete

expansion of λh(1,Ω) is provided by Fournais and Helffer [10].

• Variable magnetic field. Here we recall results from [13, §9] for variable magnetic fields
(we use the notation (2.1))

If b < Θ0b
′, ∃C > 0, |λh(B,Ω)− hb| ≤ Ch2,

If b > Θ0b
′, ∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hΘ0b′ ≤ Ch3/2,

If b = Θ0b
′, ∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hb ≤ Ch2,

for h small enough. Under further assumptions, more precise asymptotic expansions are

given by Aramaki [1] and Raymond [28]. They show that the upper bounds above are sharp.

2.1.2. Polygonal domains. Let Ω be a curvilinear polygon and let V be the (finite) set of

its vertices. In this case, new model operators appear on infinite sectors Πx tangent to Ω

at vertices x ∈ V. By homogeneity E(Bx ,Πx) = |B(x)|E(1,Πx) and by gauge invariance,

E(1,Πx) only depends on the opening α(x) of the sector Πx. Let Sα be a model sector of
opening α ∈ (0, 2π). Then

E (B,Ω) = min
(
b, b′Θ0,min

x∈V
|B(x)|E(1,Sα(x))

)
.

In [3, §11], it is proved that
∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch9/8.

This estimate can be improved under the assumption that

(2.3) E (B,Ω) < min(b, b′Θ0),

which means that at least one of the corners makes the energy lower than in the regular

case: The asymptotic expansions provided in [4] then yield the sharp estimates

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch3/2 .

From [16, 3] follows that for all α ∈ (0, π
2
] there holds

(2.4) E(1,Sα) < Θ0.
Therefore condition (2.3) holds for constant magnetic fields as soon as there is an angle

opening αx ≤ π
2
. Finite element computations by Galerkin projection as presented in [5]

suggest that (2.4) still holds for all α ∈ (0, π). Let us finally mention that if Ω has straight
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sides and B is constant, the convergence of λh(B,Ω) to hE (B,Ω) is exponential: Their

difference is bounded by C exp(−βh−1/2) for suitable positive constants C and β (see [4]).

2.2. Dimension 3. In dimension n = 3 we still distinguish the regular and singular domains.

2.2.1. Regular domains. Here Ω ⊂ R3 is assumed to be regular. For a continuous magnetic
field B it is known ([19] and [14]) that (2.2) holds. In that case

E (B,Ω) = min
(
inf
x∈Ω
|B(x)|, inf

x∈∂Ω
|B(x)|σ(θ(x))

)
,

where θ(x) ∈ [0, π
2
] denotes the angle between the magnetic field and the boundary at the

point x ∈ ∂Ω, and the quantity σ(θ) is the bottom of the spectrum of a model problem,
see section 4. Let us simply mention that σ is increasing on [0, π

2
] and that σ(0) = Θ0,

σ(π/2) = 1.

• Constant magnetic field. Here the magnetic field B is assumed to be constant and

unitary. There exists a non-empty set Σ of ∂Ω on which B(x) is tangent to the boundary.

In that case we have

E (B,Ω) = Θ0 .

Theorem 1.1 of [15] states that

∃C > 0, |λh(B,Ω)− hΘ0| ≤ Ch4/3,
for h small enough. Under some extra assumptions on Σ, Theorem 1.2 of [15] yields a

two-term asymptotics for λh(B,Ω) showing the optimality of the previous estimate.

• Variable magnetic field. Let B be a smooth non-vanishing magnetic field. There holds
[11, Theorem 9.1.1]

∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch5/4 .
The proof of this result was already sketched in [19]. In [15, Remark 6.2], the upper bound

is improved to O(h4/3).
Under the following two extra assumptions

• The inequality infx∈∂Ω |B(x)|σ(θ(x)) < infx∈Ω |B(x)| holds,
• The function x 7→ |B(x)|σ(θ(x)) reaches its minimum at a point x0 where B is

neither normal nor tangent to the boundary,

a two-term asymptotics is valid [29], providing the sharp estimate:

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch3/2 .

2.2.2. Singular domains. Until now, two examples of non-smooth domains have been ad-

dressed in the literature. In both cases, the magnetic field is assumed to be constant.
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• Rectangular cuboids. There exists a vertex v ∈ V such that E (B,Ω) = E(B,Πv) and

that (2.2) holds [22]. Note that Πv is homeomorphic to the octant (R+)
3. In the case

where the magnetic field is tangent to a face but is not tangent to any edge, Pan [22]

shows

E(B,Πv) < inf
x∈Ω\V

E(B,Πx)

and deduces that eigenfunctions associated to λh(B,Ω) concentrate near corners as h → 0.

• Lenses. The case where Ω has the shape of a lens is treated in [24] and [27]. The domain
Ω is supposed to have two faces separated by an edge that is a regular loop Σ contained in

the plane x3 = 0. The magnetic field considered is B = (0, 0, 1).

It is proved in [24] that, if the opening angle α of the lens is constant and ≤ 0.38π,

inf
x∈Σ

E(B,Πx) < inf
x∈Ω\Σ

E(B,Πx)

and that (2.2) holds with the following estimate:

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch5/4 .

When the opening angle of the lens is variable and under some non-degeneracy hypotheses,

a complete eigenvalue asymptotics is obtained in [27] resulting into the optimal estimate

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch3/2 .

3. Polyhedral domains and their singular chains

For the sake of completeness and for ease of further discussion, in the same spirit as in [7,

section 2], we introduce here a recursive definition of two intertwining classes of domains

a) Pn, a class of infinite open cones in R
n.

b) D(M), a class of bounded connected open subsets of a smooth manifold without

boundary—actually, M = Rn or M = Sn, with Sn the unit sphere of Rn+1,

3.1. Domains and tangent cones. We call a cone any open subset Π of Rn satisfying

∀ρ > 0 and x ∈ Π, ρx ∈ Π,

and the section of the cone Π is its subset Π ∩ Sn−1. Note that S0 = {−1, 1}.
Initialization: P0 has one element, {0}. D(S0) is formed by all subsets of S0.
Recurrence: For n ≥ 1,

(1) Π ∈ Pn if and only if the section of Π belongs to D(S
n−1),
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(2) Ω ∈ D(M) if and only if for any x ∈ Ω, there exists a cone Πx ∈ Pn and a

local smooth diffeomorphism Ux which maps a neighborhood Ux of x in M onto a
neighborhood Vx of 0 in Rn and such that

(3.1) Ux(Ux ∩Ω) = Vx ∩ Πx and Ux(Ux ∩ ∂Ω) = Vx ∩ ∂Πx.

We assume without restriction that the differential of Ux at the point x is the identity

matrix In. The cone Πx is said to be tangent to Ω at x.

Examples:

• The elements of P1 are R, R+ and R−.
• The elements of D(S1) are S1 and all open intervals I ⊂ S1 such that I 6= S1.
• The elements of P2 are R2 and all sectors with opening α ∈ (0, 2π).
• The elements of D(R2) are curvilinear polygons with piecewise smooth sides and
opening angles 6= 0, 2π.

Let On denote the group of orthogonal linear transformations of R
n. We say that a cone

Π is equivalent to another cone Π′ and denote

Π ≡ Π′

if there exists U ∈ On such that UΠ = Π
′. Let Π ∈ Pn. If Π is equivalent to R

n−d × Γ with
Γ ∈ Pd and d is minimal for such an equivalence, Γ is said to be a minimal reduced cone

associated with Π.

3.2. Recursive definition of singular chains. A singular chain X = (x0, x1, . . . , xk) ∈ C(Ω)

is a finite collection of points according to the following recursive definition.

Initialization: x0 ∈ Ω,

• Cx0 tangent cone to Ω at x0,

• Γx0 ∈ Pd0 its minimal reduced cone: Cx0 = U0(R
ν0 × Γx0), with ν0 = n − d0.

• Alternative:
– If k = 0, stop here.

– If k > 0, then d0 > 0 and let Ωx0 ∈ D(Sd0−1) be the section of Γx0

Recurrence: xj ∈ Ωx0,...,xj−1 ∈ D(Sdj−1−1). If dj−1 = 1, stop here (k = j). If not:

• Cx0,...,xj tangent cone to Ωx0,...,xj−1 at xj ,

• Γx0,...,xj ∈ Pdj its minimal reduced cone: Cx0,...,xj = Uj(R
νj × Γx0,...,xj ).

• Alternative:
– If j = k , stop here.

– If j < k , then dj > 0 and let Ωx0...,xj ∈ D(Sdj−1) be the section of Γx0...,xj .

Note that n ≥ d0 > d1 > . . . > dk . Hence k ≤ n. Note also that for k = 0, we obtain the
trivial one element chain (x0) for any x0 ∈ Ω.
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While C(Ω) is the set of all singular chains, for any x ∈ Ω, we denote by Cx(Ω) the subset

of chains originating at x, i.e., the set of chains X = (x0, . . . , xk) with x0 = x. Note that

the one element chain (x) belongs to Cx(Ω). We also set

(3.2) C∗x(Ω) = {X ∈ Cx(Ω), k > 0} = Cx(Ω) \ {(x)}.

We set finally, with the notation 〈y〉 for the vector space generated by y,

(3.3) ΠX =

{
Rn if dk−1 = 1

U0
(
Rν0 × 〈x1〉 × U1

(
Rν1 × 〈x2〉 × . . .Uk(Rνk × Γxk )

))
if dk−1 > 1

Note that if dk = 0, ΠX = R
n. Note also that if ν0 = 0, U0 = In.

Definition 3.1. Let X = (x0, . . . , xk) and X
′ = (x′0, . . . , x

′
k ′) be two chains in C(Ω). We say

that X is equivalent to X′ if x0 = x′0 and ΠX = ΠX′.

Special subsets of Ω: For d ∈ {0, . . . , n}, let
(3.4) Ad(Ω) = {x ∈ Ω, d0(x) = d}.
The strata of Ω are the connected components of Ad(Ω), for d ∈ {0, . . . , n}. They are
denoted by t and their set by T.

Examples:

• A0(Ω) coincides with Ω.

• A1(Ω) is the subset of ∂Ω of the regular points of the boundary.

• If n = 2, A2(Ω) is the set of corners.
• If n = 3, A2(Ω) is the set of edge points.
• If n = 3, A3(Ω) is the set of corners.

3.3. Polyhedral domains. Polyhedral domains and polyhedral cones form subclasses of

D(M) and Pn, denoted by D(M) and Pn, respectively:

a) The cone Π ∈ Pn is a polyhedral cone if its boundary is contained in a finite union

of (hyper)surfaces. We write Π ∈ Pn.

b) The domain Ω ∈ D(M) is a polyhedral domain if all its tangent cones Πx are

polyhedral. We write Ω ∈ D(M).

This allows to make precise the definition of faces, edges and corners in dimension 3, in

connection with singular chains.

(1) Interior point x ∈ Ω. Only one chain in Cx(Ω): X = (x).

(2) The faces f are the connected components of A1(Ω). The set of faces is denoted

by F. Let x belong to a face. There are two chains in Cx(Ω):

(a) X = (x) with ΠX = Πx, the tangent half-space. ΠX ≡ R2 × R+.
(b) X = (x, x1) where x1 = 1 is the only element in R+ ∩ S0. Thus ΠX = R3.
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(3) The edges e are the connected components of A2(Ω). The set of edges is denoted

by E. Let x belong to an edge. There are three types of chains in Cx(Ω):

(a) X = (x) with ΠX = Πx, the tangent wedge (which is not a half-plane). The

reduced cone of Πx is a sector Γx the section of which is an interval Ix ⊂ S1.
(b) X = (x, x1) where x1 ∈ Ix.

(i) If x1 is interior to Ix, ΠX = R3. No further chain.
(ii) If x1 is a boundary point of Ix, ΠX is a half-space, containing one of the
two faces ∂±ΠX of the wedge Πx.

(c) X = (x, x1, x2) where x1 ∈ ∂Ix, x2 = 1 and ΠX = R3.
There are 4 equivalence classes in Cx(Ω) in the case of an edge point x:

• X = (x)
• X = (x, x±1 ) with {x−1 , x+1 } = ∂Ix
• X = (x, x◦1) with x◦1 any chosen point in Ix.

(4) The corners v are the connected components of A3(Ω). The set of corners is

denoted by V. There are four types of chains in Cx(Ω):

(a) X = (x) with ΠX = Πx, the tangent cone (which is not a wedge). It coincides

with its reduced cone. Its section Ωx is a polygonal domain in S
2.

(b) X = (x, x1) where x1 ∈ Ωx.

(i) If x1 is interior to Ωx, ΠX = R
3. No further chain.

(ii) If x1 is in a side of Ωx, ΠX is a half-space, containing one of the faces of

the cone Πx.

(iii) If x1 is a corner of Ωx, ΠX is a wedge. Its edge contains one of the edges

of Πx.

(c) X = (x, x1, x2) where x1 ∈ ∂Ωx

(i) If x1 is in a side of Ωx, x2 = 1, ΠX = R
3. No further chain.

(ii) If x1 is a corner of Ωx, Cx,x1 is plane sector, and x2 ∈ Ix,x1 where the
interval Ix,x1 is its section. If x2 is an interior point, then ΠX = R3.

(d) X = (x, x1, x2, x3) where x1 is a corner of Ωx, x2 ∈ ∂Ix,x1 and x3 = 1. Then

ΠX = R
3.

Let xj1, 1 ≤ j ≤ N, be the corners of Ωx, and S j be its sides. There are 2N + 2
equivalence classes in Cx(Ω):

• X = (x) (vertex)
• X = (x, xj1) with 1 ≤ j ≤ N (edge points limit)
• X = (x, x◦,j1 ) with x◦,j1 any chosen point inside S j (face points limit)
• X = (x, x◦1) with x◦1 any chosen point in Ωx (interior points limit).

Remark 3.2. For polyhedral domains Ω, it is a consequence of the description above that

chains (x0, x1) of length 2 are enough to describe all equivalence classes of the set of

chains C∗x0(Ω) (3.2). This does not hold anymore if general corner domains are considered.
Besides, the notion of equivalence classes as introduced in Definition 3.1 is sufficient for

the analysis of operators Hh(A,Ω) in the case of magnetic fields B smooth in Cartesian
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variables. Should B be smooth in polar variables only, the whole hierarchy of singular chains

would be needed.

4. Taxonomy of model problems

4.1. Tangent and model operators. We recall that A is a magnetic potential associated

with the magnetic field B on the polyhedral domain Ω ∈ D(R3). For each singular chain

X = (x0, x1, . . . , xk) ∈ C(Ω) we set

(4.1) BX = B(x0) and AX = A(x0) +
(
∇A(x0)

)
(x− x0).

We have obviously

curlAX = BX ,

so that the tangent magnetic operator H(AX ,ΠX) and its ground energy E(BX ,ΠX) make

sense.

The domain of H(AX ,ΠX) is

(4.2) Dom (H(AX ,ΠX)) =
{
ψ ∈ L2(ΠX),

(−i∇+ AX)
2ψ ∈ L2(ΠX) and (−i∂n + n · AX)ψ = 0 on ∂ΠX

}
.

The quadratic form associated is

q[AX,ΠX](ψ) :=

∫

ΠX

|(−i∇+AX)ψ|2

defined on {ψ ∈ L2(ΠX), (−i∇+ AX)ψ ∈ L2(ΠX)}.
By a change of variables we obtain

Lemma 4.1. Let O be a domain in R3 and for r > 0, we denote by rO the domain
{x ∈ R3, x = rx′ with x′ ∈ O}. Let B be a constant magnetic field. Then

E(B,O) = ρE
(B
ρ
,
√
ρO

)
.

As a consequence there holds for tangent problems (setting ρ = |BX|)

(4.3) E(BX,ΠX) = |BX|E
( BX

|BX|
,ΠX

)
.

That is why we can reduce to consider model problems on cones Π ∈ P3 with unitary

constant magnetic fields.
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4.2. Singular chains and generalized eigenvectors for model problems. Let Π ∈ P3
be a polyhedral cone and B be a unitary constant magnetic field associated with a linear

potential A. Let Γ ∈ Pd be a minimal reduced cone associated with Π. We recall that this

means that Π ≡ R3−d × Γ and that the dimension d is minimal for such an equivalence.
Let C0(Π) denote the singular chains of Π originating at its vertex 0 and let C

∗
0(Π) be the

subset of chains of length ≥ 2 (see (3.2)). Note that C∗0(Π) is empty if and only if Π = R3,
i.e., if d = 0. We introduce the quantity

(4.4) E
∗(B,Π) :=

{
infX∈C∗0(Π)E(B,ΠX) if d > 0,

+∞ if d = 0,

the infimum of the ground energy of the magnetic Laplacian over all the singular chains of

length ≥ 2. If d > 0, let Ω0 ∈ D(Sd−1) be the section of Γ. Since Π is a polyhedral cone,
we have (cf. Remark 3.2)

(4.5) E
∗(B,Π) = inf

x1∈Ω0
E(B,Π(0,x1)) ,

i.e., among all chains X ∈ C∗0(Π), we can restrict to those of length 2, X = (0, x1).

Since the cone Π is unbounded, it is relevant to define λess(B,Π) as the bottom of the

essential spectrum of the operator H(A,Π). When d ≤ 2, due to translation invariance
we have E(B,Π) = λess(B,Π). When d = 3, the operator H(A,Π) may have discrete

spectrum.

With the aim of constructing quasimodes for our original problem on Ω, we need generalized

eigenvectors for its tangent problems. We first need to introduce the space of the functions

which are locally2 in the domain of H(A,Π):

(4.6) Dom loc (H(A,Π)) := {ψ ∈ H1loc(Π),
(−i∇+A)2ψ ∈ H0loc(Π) and (−i∂n + n · A)ψ = 0 on ∂Π}.

We now make precise what we understand by generalized eigenvector.

Definition 4.2. Let Π ∈ P3 be a polyhedral cone and A a linear magnetic potential. We

call generalized eigenvector for H(A,Π) a function Ψ ∈ Dom loc(H(A,Π)) associated with
a real number λ, so that {

(−i∇+ A)2Ψ = λΨ in Π,

(−i∂n + n · A)Ψ = 0 on ∂Π.

The function Ψ is said to be an admissible generalized eigenvector if in addition there exists

a system of coordinates (y, z) ∈ R3−k × Rk for some k ∈ {0, . . . , 3}, in which Π takes the
form R3−k ×Υ with Υ ∈ Pk , and

(4.7) Ψ(x) = ei ϕ(y,z)Φ(z)

2Here Hmloc(Π) denotes for m = 0, 1 the space of functions which are in H
m(Π ∩ B) for any ball B.
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with some exponentially decreasing function Φ and some real polynomial function ϕ of

degree ≤ 2.
Lemma 4.3. If Ψ is an admissible generalized eigenvector for H(A,Π) associated with λ,

for any other linear magnetic potential A′ such that curlA′ = curlA, the operator H(A′,Π)
possesses an admissible generalized eigenvector Ψ′ associated with the same value λ.

Proof. If curlA = curlA′ and A, A′ are both linear, there exists a polynomial function φ of
degree 2 such that A = A′ −∇φ. Using a change of gauge (Lemma A.1), we find that Ψ′
defined as

Ψ′(x) = eiφ(x)eiϕ(y,z)Φ(z), x ∈ Π,
is an admissible generalized eigenvector for H(A′,Π). �

The main result which we prove in this section is a dichotomy statement, as follows.

Theorem 4.4. Let Π ∈ P3 be a polyhedral cone and A be a linear magnetic potential (B

is a constant magnetic field). Then

(4.8) E(B,Π) ≤ E
∗(B,Π) .

Moreover there exists a singular chain X ∈ C0(Π) such that H(A,ΠX) admits an admissible

generalized eigenvector associated with the value E(B,Π) and we have the dichotomy:

(i) If E(B,Π) < E ∗(B,Π), then ΠX = Π.

(ii) If E(B,Π) = E ∗(B,Π), then X ∈ C∗0(Π) and ΠX 6= Π.
Remark 4.5. In the case (ii), we note that the model cone ΠX associated with the chain X

satisfies E(B,ΠX) < E
∗(B,ΠX).

The following subsections are devoted to the proof of this statement according to increasing

values of d , the dimension of the reduced cone of Π. For each value of d we also provide

examples for the cases (i) and (ii) of the dichotomy. Owing to Lemma 4.3, in each case

we may choose a suitable gauge to determine Ψ.

4.3. Full space, d = 0. Π = R3. By a change of variables and a change of gauge, the

operator H(A,R3) is isospectral to H(A,R3) with

A = ( x3
2
, 0,−x1

2
) and B = (0, 1, 0).

Hence

H(A,R3) = (D1 +
x3
2
)2 +D22 + (D3 − x1

2
)2 with Dj = −i∂xj .

It is classical (see [17]) that the spectrum of H(A,R3) is [1,+∞). Therefore
(4.9) E(B,R3) = 1 .

An admissible generalized eigenfunction associated to the ground energy is

Ψ(x) = e−(x
2
1+x

2
3 )/4 ,
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which has the form (4.7) with y = x2, z = (x1, x3), and ϕ ≡ 0 .

4.4. Half space, d = 1. Π = R3+. By a change of variables and a change of gauge,

H(A,Π) is isospectral to H(A,R3+) with

R
3
+ = {x = (x1, x2, x3) ∈ R3, x1 > 0} and A = (0, 0, b1x2 − b2x1) with b21 + b22 = 1.

Hence

B = (b1, b2, 0) and H(A,R3+) = D
2
1 +D

2
2 + (D3 + b1x2 − b2x1)2.

We note that

(4.10) E
∗(B,R3+) = E(B,R

3) = 1.

There exists θ ∈ [0, 2π) such that b1 = sin θ and b2 = cos θ, so that θ is the angle between
the magnetic field and the boundary of R3+. Due to symmetries we can reduce to θ ∈ [0, π2 ].
Denote by F3 the Fourier transform in x3-variable, τ the Fourier variable associated with
x3, and

Ĥτ(A;R
3
+) := D

2
1 +D

2
2 + (τ + sin θ x2 − cos θ x1)2,

there holds

F3 H(A,R3+) F∗3 =
∫ ⊕

τ∈R
Ĥτ (A;R

3
+) dτ.

We discriminate three cases:

• Tangent field. θ = 0, then Ĥτ(A;R3+) := D21+D22+(τ −x1)2, let ξ be the partial Fourier
variable associated with x2 and define the new operators

Ĥξ,τ(A;R
3
+) := D

2
1 + ξ

2 + (τ − x1)2, L(R+; τ) = D
2
1 + (τ − x1)2.

There holds

inf S(L(R+; τ)) = µ(τ), inf S(Ĥτ,ξ(A;R
3
+)) = µ(τ) + ξ

2,

in which the behavior of the first eigenvalue µ(τ) is well-known (see [8]): The function µ

admits a unique minimum denoted by Θ0 ≃ 0.59 for the value τ =
√
Θ0. Hence

E(B,R3+) = Θ0 < E
∗(B,R3+).

We are in case (i) of Theorem 4.4. If Φ denotes an associated eigenvector (function of

x1 ∈ R+), a corresponding admissible generalized eigenvector is
(4.11) Ψ(x) = ei

√
Θ0 x3 Φ(x1).

which has the form (4.7) with y = (x2, x3), z = x1, and ϕ(y, z) = y2
√
Θ0 = x3

√
Θ0.

• Normal field. θ = π
2
, then Ĥτ (A;R

3
+) := D

2
1+D

2
2+(τ + x2)

2. There holds for all τ ∈ R,
inf S(Ĥτ(A;R

3
+)) = 1, hence

E(B,R3+) = 1 = E
∗(B,R3+).

We are in case (ii) of Theorem 4.4 and we can use the admissible generalized eigenvector

on the full space associated with the chain X = (0, 1).
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• Neither tangent nor normal. θ ∈ (0, π
2
). Then for any τ ∈ R, Ĥτ (A;R3+) is isospectral

to Ĥ0(A;R
3
+) the ground energy of which is an eigenvalue σ(θ) < 1 (see [14]). We deduce

E(B,R3+) = σ(θ) with σ(θ) < 1.

We are in case (i) of Theorem 4.4. We recall from [14, 19] the continuity properties:

Lemma 4.6. Set σ(0) = Θ0 and σ(1) = 1. The function θ 7→ σ(θ) is continuous and

increasing on [0, π
2
].

The first eigenvalue of Ĥ0(A;R
3
+) is associated with an exponentially decreasing eigenvector

Φ which is a function of (x1, x2) ∈ R2+. An admissible generalized eigenvector is given by

(4.12) Ψ(x) = Φ(x1, x2),

which has the form (4.7) with y = x3, z = (x1, x2), and ϕ ≡ 0.
Thus Theorem 4.4 is proved for half-spaces.

4.5. Wedges, d = 2. Let Π be a wedge and let α denote its opening, α ∈ (0, π)∪ (π, 2π).
Let

(4.13) Sα =
{
{x = (x1, x2), x1 tan α2 > |x2|

}
if α ∈ (0, π)

{x = (x1, x2), x1 tan α2 > −|x2|
}
if α ∈ (π, 2π)

and Wα = Sα × R

be the model sector and wedge. By a change of variables and a change of gauge, H(A,Π)

is isospectral to H(A,Wα) where

A = (0, b3x1, b1x2 − b2x1) with b21 + b
2
2 + b

2
3 = 1.

Hence

B = (b1, b2, b3) and H(A,Wα) = D
2
1 + (D2 + b3x1)

2 + (D3 + b1x2 − x1b2)2.

Denote by τ the Fourier variable associated with x3, and

Ĥτ(A;Wα) := D
2
1 + (D2 + b3x1)

2 + (τ + b1x2 − b2x1)2.

We introduce the notation:

s(B,Sα; τ) := infS(Ĥτ(A,Wα)),

so that we have the direct Fourier integral decomposition

F3 H(A,Wα) F∗3 =
∫ ⊕

τ∈R
Ĥτ(A,Wα) dτ

and the relation

(4.14) E(B,Wα) = inf
τ∈R

s(B,Sα; τ) .
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The singular chains of C∗0(Wα) have three equivalence classes, cf. Definition 3.1 and section

3.3 (3), corresponding to three distinct model operators, associated to half-spaces Π±α
corresponding to the faces ∂±Wα of Wα, and to the full space R

3. Thus

E
∗(B,Wα) = min{E(B,Π+α), E(B,Π−α), E(B,R3)}.

Let θ± ∈ [0, π
2
] be the angle between B and the face ∂Π±α . We have, cf. Lemma 4.6,

(4.15) E
∗(B,Wα) = min{σ(θ+), σ(θ−), 1} = σ(min{θ+, θ−}).

When Π =Wα, Theorem 4.4 relies on the following result [25, Theorem 3.5]:

Lemma 4.7. We have E(B,Wα) ≤ E ∗(B,Wα).

Moreover, if E(B,Wα) < E ∗(B,Wα), then the function τ 7→ s(B,Sα; τ) reaches its in-
fimum. Let τ∗ be a minimizer. Then E(B,Wα) is a discrete eigenvalue for the operator

Ĥτ∗(A,Wα) and the associated eigenfunctions have exponential decay.

From the previous lemma we deduce

(i) If E(B,Wα) < E ∗(B,Wα), there exists τ
∗ such that the operator Ĥτ∗(A,Wα)

admits an exponential decaying eigenfunction Φ of (x1, x2) ∈ Sα associated with
E(B,Wα). The function

Ψ(x) = eiτ
∗x3Φ(x1, x2)

is an admissible generalized eigenvector for the operator H(A,Wα) associated with

E(B,Wα). It has the form (4.7) with y = x3, z = (x1, x2), and ϕ(y, z) = τ
∗y.

(ii) If E(B,Wα) = E ∗(B,Wα), let ε ∈ {−,+} satisfy θε = min(θ−, θ+). We have
θε ∈ [0, π

2
) and E

∗(B,Wα) = σ(θε). We deduce from Subsection 4.4 that there

exists an admissible generalized eigenvector for the operator H(A,Πεα) associated

with the eigenvalue σ(θε).

Thus Theorem 4.4 is proved for wedges. We extend the definition of Wα to α = π by

setting Wπ := R
3
+. Let us quote now the continuity result of [25, Theorem 4.5]:

Lemma 4.8. The function (B, α) 7→ E(B,Wα) is continuous on S
2 × (0, 2π).

We end this subsection by a few examples.

Example 4.9. Let B ∈ S2 be a constant magnetic field. Let α be chosen in (0, π)∪ (π, 2π).
a) For α small enough E(B,Wα) < E ∗(B,Wα) (see [25] when the magnetic field is not

tangent to the plane of symmetry of the wedge and [24, Ch. 7] otherwise).

b) Let B = (0, 0, 1) be tangent to the edge. Then E ∗(B,Wα) = Θ0 and E(B,Wα) =

E(1,Sα), cf. section 2.1.2. According to whether the ground energy E(1,Sα) of the plane
sector Sα is less than Θ0 or equal to Θ0, we are in case (i) or (ii) of the dichotomy.
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c) Let B be tangent to a face of the wedge and normal to the edge. Then E
∗(B,Wα) =

Θ0. It is proved in [26] that there holds E(B,Wα) < Θ0 for α small enough, whereas

E(B,Wα) = Θ0 for α ∈ [π2 , π).

4.6. Polyhedral cones, d = 3. The main result of this subsection is the characterization

of the bottom of the essential spectrum of H(A,Π).

Proposition 4.10. Let Π ∈ P3 be a polyhedral cone with d = 3, which means that Π is

not a wedge, nor a half-space, nor the full space. Let B be a constant magnetic field. With

the quantity E ∗(B,Π) introduced in (4.4), there holds

λess(B,Π) = E
∗(B,Π) .

Before writing proof details, let us specify what is E ∗(B,Π) in the case of a polyhedral cone.
Let Ω0 be the section of Π, i.e., Ω0 = Π ∩ S2. We recall from (4.5) that

(4.16) E
∗(B,Π) = inf

x1∈Ω0
E(B,Π(0,x1)) .

In fact the set of equivalence classes (Definition 3.1) of the chains X = (0, x1) is finite. Let

us describe this set, cf. section 3.3 (4). Let F and E be the set of faces f and edges e of Π.

For f ∈ F, let Πf be the half-space whose boundary contains f and containing points of Π

near any point of f. For e ∈ E, there are two faces f±e adjacent to e. Let Πe be the wedge

whose boundary contains e∪ f+e ∪ f−e and containing points of Π near any point of f+e ∪ f−e .
Let x1 ∈ Ω0. There are three possibilities:

(1) x1 is interior to Ω0. Then Π(0,x1) = R
3.

(2) x1 belongs to a side of Ω0. This side is contained in a face f of Π. Then Π(0,x1) = Πf .

(3) x1 belongs to a vertex of Ω0. This vertex is contained in an edge e of Π. Then

Π(0,x1) = Πe.

We have that

(4.17) E
∗(B,Π) = min

{
min
e∈E

E(B,Πe), min
f∈F

E(B,Πf), 1
}
.

Since (4.8) is proved for d = 2, we have E(B,Πe) ≤ min{E(B,Πf+e
), E(B,Πf−e

)}. Therefore
equation (4.17) becomes

(4.18) E
∗(B,Π) = min

e∈E
{E(B,Πe)} .

We recall the Persson Lemma that gives a characterization of the bottom of the essential

spectrum (see [23]):

Lemma 4.11. We have

λess(B,Π) = lim
R→+∞

Σ (B,Π, R)
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with

Σ (B,Π, R) := inf
u∈C∞0 (Π∩∁BR)

u 6=0

q[A,Π](u)

‖u‖2

where BR is the ball of radius R centered at the origin and ∁BR its complementary in R3.

Proof. (of Proposition 4.10). Let A be a linear potential associated with B.

Upper bound: We denote by xe∗ a vertex of Ω0 and e∗ the associated edge such that
E ∗(B,Π) = E(B,Πe∗), cf. (4.18). Let ε > 0, there exists ψε ∈ C∞0 (Πe∗) a normalized

function such that

q[A,Πe∗](ψε) ≤ E(B,Πe∗) + ε .

For r > 0 we define

ψrε(x) := e
i〈x ,A(rxe∗)〉ψε(x− rxe∗) ,

so that we have, due to gauge invariance and translation effect, cf. Lemma A.3,

supp(ψrε) = supp(ψε) + rxe∗ and q[A,Π](ψrε) = q[A,Πe∗](ψε) .

Let R > 0, for r large enough we have supp(ψrε) ⊂ ∁BR and ψrε ∈ Dom(q[A,Π]). We get
q[A,Π](ψrε) = q[A,Πe∗](ψε) ≤ E(B,Πe∗) + ε .

We deduce

∀ε > 0, ∀R > 0, Σ(B,Π, R) ≤ E(B,Πe∗) + ε

and Lemma 4.11 provides the upper bound of Proposition 4.10: λess(B,Π) ≤ E ∗(B,Π).

Lower bound: Let

U000 ∪
(⋃

f∈F
Uf

)
∪
(⋃

e∈E
Ue

)

a covering of Ω0 according to its stratification, which means that

U000 ⊂ Ω0, Uf ∩Ω0 = Πf ∩Ω0 (∀f ∈ F), and Ue ∩Ω0 = Πe ∩Ω0 (∀e ∈ E).

Let χ̂j , j ∈ J := {000}∪F∪E, be an associated partition of unity of the section Ω0 such that
∑

j∈J
(χ̂j)

2 = 1 and supp(χ̂j) ⊂ Uj , ∀j ∈ J.

Let χ ∈ C∞(R+) such that χ ≡ 0 on [0, 12 ] and χ ≡ 1 on [1,+∞). We now define a
partition of the unity of ∁BR ∩ Π by setting

χRj (x) = χ
( |x|
R

)
χ̂j

( x

|x|
)
, j ∈ J.

We have
∑

j(χ
R
j )
2 = 1 on ∁BR ∩ Π and

∀R > 0,
∑

j∈J
|∇χRj |2 ≤ CR−2.
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Moreover we have supp(χRj ) ∩ Π ⊂ Πj , j ∈ J = {000} ∪ F ∪ E, where we have set Π000 = R
3.

The IMS formula for quadratic forms (see Lemma A.4) provides

∀ψ ∈ C
∞
0 (Π ∩ ∁BR), q[A,Π](ψ) ≥

∑

j∈J
q[A,Π](χRj ψ)− CR−2‖ψ‖2

=
∑

j∈J
q[A,Πj ](χ

R
j ψ)− CR−2‖ψ‖2

≥
∑

j∈J
E(B,Πj)‖χRj ψ‖2 − CR−2‖ψ‖2

≥ (E ∗(B,Π)− CR−2)‖ψ‖2.
Thus we deduce the lower bound of Proposition 4.10 by using Lemma 4.11. �

Then it is clear that Theorem 4.4 in the case of polyhedral cones is a consequence of

Proposition 4.10.

Example 4.12 (Octant). Let Π = O be an octant, e.g. (R+)3. We quote from [22, §8]:

(i) If the magnetic field B is tangent to a face but not to an edge, there exists an edge

e such that E ∗(B,O) = E(B,Πe) and there holds E(B,O) < E(B,Πe).

(ii) If the magnetic field B is tangent to an edge e of the octant, E ∗(B,O) = E(B,Πe) =

E(B,O).

5. Continuity properties of the ground energy

Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be a continuous magnetic field. In this section we

investigate the continuity properties on Ω of the application Λ : x 7→ E(Bx,Πx). Let t be

a stratum of Ω (see (1.9)). We have denoted by Λt the restriction of Λ to t (see (1.10)).

Combining (4.3), (4.9), Lemma 4.6 and Lemma 4.8 we get that Λt is continuous.

Let us assume that t is not reduced to a point. We now describe how we extend Λt to the

boundary of t. Let x ∈ ∂t and Πx ∈ P3 be its tangent cone. Let Ux, Vx and Ux be the open

sets and the diffeomorphism introduced in Subsection 3.1. Let t̃ be the stratum of Πx such

that

Ux(t ∩ Ux) = t̃ ∩ Vx .
To t̃ is associated the singular chain X ∈ C∗0(Πx) such that ΠX is the tangent cone to Πx at

any point of t̃.

We extend Λt in x by setting

(5.1) Λt(x) = E(Bx,ΠX) .

Lemma 5.1. Let Ω ∈ D(R3) and let B ∈ C 0(Ω). Let t a stratum of Ω which is not a

vertex. Then formula (5.1) defines a continuous extension of the function Λt to t.
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Proof. For x ∈ ∂t we show that the extension defined by (5.1) is continuous in x. Let

y ∈ Ux ∩ t and Πy be the tangent cone to Ω at y. In the following we will prove that

(5.2) lim
y→x

E(By,Πy) = E(Bx,ΠX) .

For a tangent cone Π we denote by d(Π) the dimension of its reduced cone. Since t is not

reduced to a point, we have d(ΠX) = d(Πy) ≤ 2 and we distinguish several cases:

• d = 0. ΠX = Πy = R
3. It follows from Subsection 4.3 that E(By,Πy) = |By| and

E(Bx,ΠX) = |Bx|. Therefore (5.2).
• d = 1. ΠX and Πy are half-spaces. We denote by θx (respectively θy) the angle

between Bx and ΠX (respectively By and Πy). We have E(By,Πy) = |By|σ(θy) and
E(Bx,ΠX) = |Bx|σ(θx) (see Subsection 4.4). Since θy goes to θx when y goes to x,
(5.2) follows from the continuity of the function σ, see Lemma 4.6.

• d = 2. ΠX and Πy are wedges. We denote by αx and αy their openings. We denote

by Ux ∈ O3 (respectively Uy ∈ O3) the linear orthogonal transformation which maps

ΠX on Wαx
(respectively Πy on Wαy

). We have

(5.3) E(Bx,ΠX) = E(Bx,Wαx
) and E(By,Πy) = E(By,Wαy

) .

where we have denoted Bx = Ux(Bx) and By = Uy(By). We have

lim
y→x
‖Ux − Uy‖ = 0 and lim

y→x
|αx − αy| = 0 ,

therefore we deduce (5.2) from (5.3) and Lemma 4.8.

Hence we have proved (5.2) in all cases. �

Let x ∈ ∂t, we deduce from (4.8) that
Λt(x) = E(Bx,ΠX) ≥ E(Bx,Πx) = Λ(x) .

Combining this with Lemma 5.1, we obtain the following:

Theorem 5.2. Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be a continuous magnetic field. Then

the function Λ : x 7→ E(Bx,Πx) is lower semi-continuous on Ω.

6. Upper bound for first eigenvalues

In this section we give upper bounds for the first eigenvalue λh(B,Ω). Our first result is

general and concerns polyhedral domains:

Theorem 6.1. Let Ω ∈ D(R3) be a polyhedral domain, A ∈ W 2,∞(Ω) be a twice differen-
tiable magnetic potential such that the associated magnetic field B does not vanish on Ω.

Then there exist C(Ω) > 0 and h0 > 0 such that

(6.1) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖A‖2W 2,∞(Ω))h5/4 .
We recall that the quantity E (B,Ω) is the lowest local energy defined in (1.6).
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It is possible to obtain an upper bound in (6.1) depending on the magnetic field B and not

on the magnetic potential. For this, we consider B as a datum and associate a potential A

with it. Operators A : B 7→ A lifting the curl (i.e. such that curl ◦A = I) and satisfying

suitable estimates do exist in the literature. We quote [6] in which it is proved that such

lifting can be constructed as a pseudo-differential operator of order −1. As a consequence
A is continuous between Hölder classes of non integer order:

∀α ∈ (0, 1), ∃Cα > 0, ‖A B‖W 2+α,∞(Ω) ≤ Cα‖B‖W 1+α,∞(Ω) .

Choosing A = A B in Theorem 6.1, we deduce the following.

Corollary 6.2. Let Ω ∈ D(R3) be a polyhedral domain, B ∈ W 1+α,∞(Ω) be a non-vanishing
Hölder continuous magnetic field of order 1 + α with some α ∈ (0, 1). Then there exist
C(Ω) > 0 and h0 > 0 such that

(6.2) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖B‖2W 1+α,∞(Ω))h5/4 .

Theorem 6.1 is proved in subsections 6.1–6.3. Let us give here the main ideas of the proof.

Since the energy x 7→ E(Bx,Πx) is lower semi-continuous (see Theorem 5.2), it reaches its

infimum over the compact Ω. We denote by x0 ∈ Ω a point such that

(6.3) E(Bx0 ,Πx0) = E (B,Ω)

where Πx0 is the tangent cone at x0. Using the diffeomorphism (3.1) Ux0 in a small neigh-

borhood of x0 and making a Taylor approximation of the metric associated with the change

of variable x→ Ux0(x), we are led to study the magnetic Laplacian Hh(Ã,Πx0) where Ã is

the magnetic potential given by the change of variable associated with Ux0.

Let A0 be the linear part of Ã at x0. It satisfies curlA0 = Bx0. Theorem 4.4 provides a

singular chain X ∈ C0(Πx0) and an associated cone ΠX such that the operator H(A0,ΠX)

has a generalized eigenfunction associated to the energy E(Bx0,Πx0). This generalized

eigenfunction will be scaled, truncated and translated in order to give a quasimode for the

operator Hh(A0,Πx0). Using the diffeomorphism Ux0 we finally construct a quasimode for

Hh(A,Ω) localized in a neighborhood of x0. The estimation of the associated Rayleigh

quotient and the min-max principle will provide Theorem 6.1.

6.1. Change of variables. In this subsection we describe how the operator Hh(A,Ω) acting

on functions with support in a small neighborhood of a point x ∈ Ω is transformed using
the change of variable associated with Ux into an operator on the tangent cone Πx. Note

that the results below are valid for any point x ∈ Ω and will be useful in establishing the
lower bound for the first eigenvalue, see Section 7.

• Magnetic Laplacian with a metric. Let G be a metric of R3, that is a 3 × 3 positive
symmetric matrix with regular coefficients. We define the magnetic Laplacian with metric



22 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF

G as the Friedrichs extension of the quadratic form

qh[A,Ω, G](ψ) =

∫

Ω

(hDx − A)ψ · G((hDx −A)ψ) |G|−1/2 dx

where A is a magnetic potential associated with the magnetic field B and |G| = detG.
The Friedrichs extension is taken from the space of the square-integrable functions for the

weight |G|−1/2 denoted by L2G(Ω) with natural Neumann boundary conditions associated to
the metric G, see [15, §5] for more details. The associated scalar product is 〈f , g〉L2G(Ω) :=∫
Ω
f g |G|−1/2 dx and we denote by ‖ · ‖L2G(Ω) the associated norm.

We also denote by qh[A,Ω] = qh[A,Ω, I3] the quadratic form associated with the operator

Hh(A,Ω). These definitions are still valid if we take for the domain a cone Π ∈ D3.

• Effect of a change of variable. Let Ux, Vx, and Ux be the open sets and the diffeomorphism

described in Subsection 3.1. We denote by

Jx := d(U
−1
x )

the jacobian matrix of the inverse of Ux. Let f be a function of H
1(Ω) compactly supported

in Ux and ψ := f ◦ U−1x be the associated function supported in Vx. We have
(6.4) qh[A,Ω](f ) = qh[Ã,Πx, Gx](ψ) and ‖f ‖L2(Ω) = ‖ψ‖L2Gx(Πx)

where the new magnetic potential and the metric are respectively given by

(6.5) Ã := JTx · A ◦ U−1x and Gx := J
−1
x (J

−1
x )

T .

We deduce:

Lemma 6.3. Let Ω ∈ D(R3) be a polyhedral domain. Let x ∈ Ω and Ux, Vx, Ux be the

open sets and diffeomorphism associated with x, see (3.1). Let A be a magnetic potential.

Let f ∈ H1(Ω) be a function compactly supported in Ux. We denote by ψ := f ◦ U−1x the
associated function on Πx and Ã the magnetic potential given by (6.5). Let r0 > 0 be such

that Vx contains the ball B(0, r0) of center 0 and radius r0. Then there exists a constant
C(Ω) such that for all r ∈ (0, r0], if supp(ψ) ⊂ B(0, r) we have the two estimates

∣∣qh[Ã,Πx](ψ)− qh[A,Ω](f )
∣∣ ≤ C(Ω) r qh[Ã,Πx](ψ),(6.6)

∣∣‖ψ‖L2(Πx) − ‖f ‖L2(Ω)
∣∣ ≤ C(Ω) r ‖ψ‖L2(Πx).(6.7)

Proof. Recall that Jx(x) = I3 and therefore Gx(x) = I3. We deduce

(6.8) ‖Gx − I3 ‖L∞(B(0,r)) ≤ r‖Gx‖W 1,∞(Vx).
Since Ω is assumed to be polyhedral, its curvature (curvature of the faces and curvature of

the edges) is bounded, therefore

sup
x∈Ω
‖Gx‖W 1,∞(Vx) < +∞ .

We deduce the Lemma by using (6.8) in (6.4). �
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Therefore we are reduced to study the Laplacian with magnetic potential Ã on the cone Πx

with the identity metric.

6.2. Construction of quasimodes. Let x0 ∈ Ω be a point satisfying (6.3). Thus x0
minimizes the local ground energy. For shortness we denote by λ this energy:

(6.9) λ = E(Bx0,Πx0).

In order to prove Theorem 6.1, we are going to construct a family of quasimodes fh ∈ H1(Ω)
satisfying the estimate for h ≤ h0 (with some chosen positive h0)

(6.10)
qh[A,Ω](fh)

‖fh‖2
≤ hλ+ C(Ω)(1 + ‖A‖2W 2,∞(Ω))h5/4.

Let A0 be the linear part of A at x0. Let Ã be the magnetic potential in the tangent cone

Πx0 ∩ Vx0 given by (6.5). Since dUx0(x0) = I3, the linear part of Ã at x0 is still A0. Let

X ∈ C0(Πx0) be a singular chain given by Theorem 4.4 and ΠX be the associated tangent

cone. Let Ψ be an admissible generalized eigenvector for H(A0,ΠX) associated with λ.

Up to a rotation, we can assume that the coordinates in ΠX are x = (y, z) ∈ R3−k × Υ,
with Υ ∈ Pk , and that in these coordinates, the generalized eigenfunction writes:

(6.11) Ψ(x) = eiϕ(y,z)Φ(z), (y, z) ∈ R3−k ×Υ,
where Φ is an exponentially decreasing function (see Theorem 4.4). The function Ψ satisfies

(6.12)

{
(−i∇+A0)

2Ψ = λΨ in ΠX,

(−i∂n + n · A0)Ψ = 0 on ∂ΠX.

Then the scaled function

(6.13) Ψh(x) := Ψ
( x√

h

)

defines a generalized eigenfunction for the operator Hh(A0,ΠX) associated with hλ.

For any R > 0, let χ
R
be a cut-off function in C

∞(R+) such that

(6.14) χ
R
(r) =

{
1 if r ≤ R,
0 if r ≥ 2R.

We define the cut-off function

(6.15) χh(x) = χR

( |x|
hδ

)
with 0 ≤ δ < 1

2

and set

(6.16) ψh(x) := χh(x)Ψh(x)

which provides a quasimode for qh[A0,ΠX] satisfying (−ih∂n + n · A0)Ψh = 0 on ∂ΠX.
At this point, let us emphasize that, in order to obtain better cut-off estimates, cf.

Lemma A.5, we need that our quasimodes on the tangent cone Πx0 satisfy the Neumann
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boundary conditions. Here the dichotomy in Theorem 4.4 comes into play: According as

E(Bx0,Πx0) is less or equal to E ∗(Bx0,Πx0), we are in case (i) or (ii) of the dichotomy and

we define our quasimode in distinct ways as follows.

(i) E(Bx0,Πx0) < E ∗(Bx0,Πx0). Then X is the trivial chain (x0) and ΠX = Πx0. The

function ψh will be our quasimode.

(ii) E(Bx0,Πx0) = E ∗(Bx0,Πx0). Then X ∈ C∗x0(Ω). Let U ∈ O3 such that UΠx0 =

R3−d×Γ where Γ is the reduced cone of Πx0. Let Ω0 be the section of Γ. According

to Remark 3.2, there exists x1 ∈ Ω0 so that X = (x0, x1). Let τ := (0, x1) ∈
R
3−d × Γ. We take τ = U−1(τ ). and we define our quasimode by

(6.17) ψτh (x) = e
i〈 x
h
,A0(τh

δ)〉ψh(x− τhδ), x ∈ Πx0 .

In case (ii), τ gives a direction associated to the cone ΠX starting from the origin of Πx0:

(1) If ΠX = R
3, τ belongs to the interior of Πx0 and ψ

τ

h is centered on the interior.

(2) If ΠX = R
3
+, τ belongs to a face of Πx0 and ψ

τ

h is centered on the same face.

(3) If ΠX =Wα, τ belongs to an edge of Πx0 and ψ
τ

h is centered on the same edge.

Note that unless we are in the last case (Πx0 is a wedge), the choice of τ is not unique.

In case (i), to unify notation we set τ = 0 and ψτh = ψh. We choose R = 1 in (6.14).

In case (ii), we choose R > 0 in (6.14) such that B(τ , 2R) ∩ Πx0 = B(τ , 2R) ∩ΠX. Hence

(6.18) supp
(
χ
R
(· − τ )

)
∩ Πx0 = supp

(
χ
R
(· − τ )

)
∩ ΠX .

Note that R depends only on the geometry of Ω near x0. It follows by scaling that

∀h > 0, supp(ψτh ) ∩ Πx0 = supp(ψ
τ

h ) ∩ ΠX .

Therefore ψτh satisfies Neumann boundary conditions on ∂Πx0 and we have

qh[A0,Πx0](ψ
τ

h ) = qh[A0,ΠX](ψ
τ

h ) = qh[A0,ΠX](ψh) ,

the last equality coming from Lemma A.3.

Definition 6.4. The functions ψτh ∈ Dom(Hh(A0,Πx0)) constructed above along formulas

(6.11)-(6.18) are called

(i) sitting quasimodes when τ = 0: Their supports contain the vertex 0 of Πx0,

(ii) sliding quasimodes when τ 6= 0: Their supports do not contain 0 but get closer as
h → 0.

6.3. Estimation of the quasimodes. We separately estimate the cut-off errors, the lin-

earization errors, and error due to the change of metric.
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6.3.1. Cut-off effect. Applying Lemma A.5 with A0, G = Id, χ = χh and ψ = Ψh, we

obtain for the Rayleigh quotient of ψτh :

(6.19)
qh[A0,Πx0](ψ

τ

h )

‖ψτh‖2
=
qh[A0,ΠX](χhΨh)

‖χhΨh‖2
= hλ+ h2ρh with ρh =

‖∇χhΨh‖2
‖χhΨh‖2

.

The following lemma estimates the remainder due to the cut-off effect:

Lemma 6.5. Let Ψ be an admissible generalized eigenvector given by (6.11), Ψh the

rescaled associated function given by (6.13) and χh a cut-off function defined by (6.15).

Then there exists a constant C(Ω) > 0 such that

ρh =
‖∇χhΨh‖2
‖χhΨh‖2

≤
{
C(Ω) h−2δ if k < 3,

C(Ω) e−ch
δ− 12 if k = 3.

Proof. By assumption, there exist positive constants c, C such that
∫

Υ

ec |z||Φ(z)|2dz ≤ C‖Φ‖2L2(Υ).

Let us first give a upper bound for ‖∇χhΨh‖:
If k < 3, then

‖∇χhΨh‖2 ≤
C

h2δ

∫

|y|≤2hδR
dy

∫

Υ∩{|z|≤2hδR}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz

≤ Ch−2δ h(3−k)δ h
k
2 ‖Φ‖2L2(Υ),

else, if k = 3 (here we use δ < 1
2
)

‖∇χhΨh‖2 ≤
C

h2δ

∫

Υ∩{hδR≤|z|≤2hδR}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz

≤ Ch−2δ h
k
2

∫

Υ∩{hδ−
1
2R≤|z|≤2hδ−

1
2R}
e−cRh

δ− 12 ec |z| |Φ(z)|2 dz

≤ Ch−2δ h
k
2 e−cRh

δ− 12 ‖Φ‖2L2(Υ).

Let us now consider ‖χhΨh‖ (we use that 2|y| < R and 2|z| < R implies |x| < R):

‖χhΨh‖2 ≥
∫

2|y|≤hδR
dy

∫

Υ∩{2|z|≤hδR}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz

≥ Ch(3−k)δh
k
2

(
1− e−c R2 hδ−

1
2

)
‖Φ‖2L2(Υ).(6.20)

Consequently

ρh ≤




Ch(3−k)δh−2δh

k
2h−(3−k)δh−

k
2

(
1− e−c R2 hδ−

1
2

)−1
= O(h−2δ) if k < 3

Ch−2δh
k
2 e−cRh

δ− 12 h−(3−k)δh−
k
2

(
1− e−c R2 hδ−

1
2

)−1
= O(e−cRhδ−

1
2 ) if k = 3.
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We notice that all the constants in the above estimation depend only on χ
R
and on the

model problem associated with x0. Lemma 6.5 is proved. �

6.3.2. Linearization. Note that ψτh ∈ Dom(qh[Ã,Πx0]). We can compare the quadratic

form for the magnetic potential and its linear part by using (A.3) with A = Ã, A′ = A0,

U = Πx0, and ψ = ψ
τ

h :

(6.21) qh[Ã,Πx0](ψ
τ

h ) = qh[A0,Πx0](ψ
τ

h )

+ 2Re
〈
(−ih∇+A0)ψ

τ

h , (Ã−A0)ψ
τ

h

〉
+ ‖(Ã− A0)ψ

τ

h‖2.

Combining with (6.19) we get

(6.22)
qh[Ã,Πx0](ψ

τ

h )

‖ψτh‖2
= hλ+ h2ρh

+
2Re

〈
(−ih∇+ A0)ψ

τ

h , (Ã−A0)ψ
τ

h

〉

‖ψτh‖2
+
‖(Ã− A0)ψ

τ

h‖2
‖ψτh‖2

.

By Cauchy-Schwarz inequality, we obtain easily

(6.23)
qh[Ã,Πx0](ψ

τ

h )

‖ψτh‖2
≤ hλ+ h2ρh + 2

√
h
√
λ+ hρh ah + a

2
h

where we have set

(6.24) ah =
‖(Ã−A0)ψ

τ

h‖
‖ψτh‖

.

We now estimate the remainder due to the linearization of Ã. Since A0 is the linear part

of Ã, then for any r ∈ (0, r0] (cf. Lemma 6.3)

(6.25) ∀x ∈ B(0, r), |Ã(x)− A0(x)| ≤ ‖Ã‖W 2,∞(B(0,r))
|x|2
2
.

By construction, there exists C(Ω) > 0 such that the support of ψτh is included in B(0, C(Ω)hδ).
Consequently, we obtain immediately

(6.26) ah ≤ C(Ω)‖Ã‖W 2,∞(supp(ψτh ))h
2δ.

Moreover using the definition of Ã (see (6.5)) we get

‖Ã‖W 2,∞(supp(ψτh )) ≤
(
1 + ‖ I3−Jx0‖L∞(Vx0)h

δ
)
‖A‖W 2,∞(Ux0)

≤
(
1 + C(Ω)hδ

)
‖A‖W 2,∞(Ω)

Thus, putting this last inequality in (6.26), we deduce

(6.27) ah ≤ C(Ω)‖A‖W 2,∞(Ω)h2δ.
Combining (6.23), (6.27) and Lemma 6.5 we get

(6.28)
qh[Ã,Πx0](ψ

τ

h )

‖ψτh‖2
≤ hλ+ C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δ + h2δ+1/2 + h4δ) .



GROUND ENERGY OF THE MAGNETIC LAPLACIAN IN POLYHEDRAL BODIES 27

Note that we have also used λ ≤ ‖B‖L∞(Ω) ≤ ‖A‖W 1,∞(Ω) (since B = curlA) in order to
control the crossed term

√
h
√
λ+ hρhah in the right hand side of (6.23).

6.3.3. Quasimode on Ω and estimation of the remainders. We now define a quasimode for

qh[A,Ω]. Let us note that for h small enough, ψ
τ

h is compactly supported in Vx0. Therefore
we can define fh ∈ H1(Ω) by

fh := ψ
τ

h ◦ Ux0 .

Combining (6.28) with Lemma 6.3 for r = hδ we get

qh[A,Ω](fh)

‖fh‖2
≤

(
hλ+ C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δ + h2δ+1/2 + h4δ)

)
(1 + C(Ω)hδ) .

Therefore there exists a constant C(Ω) > 0 such that

(6.29)
qh[A,Ω](fh)

‖fh‖2
≤ hλ+ C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δ + h2δ+1/2 + h4δ + hδ+1) .

We optimize this upper bound by taking δ = 3
8
, which provides immediately estimate (6.10).

The min-max principle then yields Theorem 6.1.

6.4. Improvement for a straight polyhedron with constant magnetic field. In this sub-

section we improve Theorem 6.1 for a straight polyhedral domain with constant magnetic

field. Since there is no curvature, we expect smaller remainders in the asymptotics of

λh(B,Ω). Moreover, in that case, we will see that the function x 7→ E(B,Πx) attains its

minimum at a vertex of Ω.

Theorem 6.6. Let Ω be a straight polyhedron and B be a constant magnetic field with

|B| = 1. Then
E (B,Ω) = min

v∈V
E(B,Πv)

where V denotes the set of the vertices of Ω. We have

λh(B,Ω) ≤ hE (B,Ω) + Ch2 .

If there exists v ∈ V such that E(B,Πv) = E (B,Ω) < E ∗(B,Πv), then there exist positive

constants C, c such that

λh(B,Ω) ≤ hE (B,Ω) + Ce−ch
−1/2
.

Proof. Since the polyhedral domain is assumed to have straight faces and edges and the

magnetic field is constant, the function x 7→ E(B,Πx) is constant on each stratum of Ω.

Let v ∈ V. We apply Theorem 4.4 and relations (4.8) and (4.18) with Π = Πv:

E(B,Πv) ≤ E
∗(B,Πv) = min

e∈Ev

E(B,Πe),
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with Ev the subset of E such that for any e ∈ Ev, v ∈ ∂e and Πe the wedge associated with

the edge e. In the same way we prove for each edge e ∈ E:

E(B,Πe) ≤ min
f∈Fe

E(B,Πf) ≤ 1

where Fe denotes the set of the faces adjacent to an edge e. Therefore

min
v∈V

E(B,Πv) = E (B,Ω).

Let v0 be a vertex minimizing x 7→ E(B,Πx). Let ΠX be the tangent cone given by Theorem

4.4. If E(B,Πv0) < E ∗(B,Πv0) then ΠX = Πv0 and we have an (admissible generalized)

eigenfunction on Πv0 associated with E(B,Πv0). If E(B,Πv) = E
∗(B,Πv), then there exists

a stratum t of Ω associated with ΠX such that ΠX is the tangent cone to any point of

t. Moreover for any point x ∈ t we have E(B,Πx) < E
∗(B,Πx) therefore there exists a

generalized eigenfunction on Πx associated to E(B,Πx). In both cases we have found a

point x ∈ Ω such that there exists a generalized eigenfunction on Πx associated to E (B,Ω).

There exists Rx > 0 such that

(6.30) Ω ∩ B(0, 2Rx) = Πx ∩ B(0, 2Rx).

We define the quasimode ψh as in (6.17) with δ = 0, τ = 0 and R = Rx. We have

ψh ∈ H1(Ω) and qh[A,Πx](ψh) = qh[A,Ω](ψh). Using (6.22) and the fact that A equals

its linear part, we have:

(6.31)
qh[A,Ω](ψh)

‖ψh‖2
= hE(B,Πx) + h

2ρh.

Applying Lemma 6.5 with χh as defined in (6.15), δ = 0 and R = Rx, we have

(6.32) ρh =

{
O(1) if k < 3,

O(e−ch−1/2) if k = 3.

Then, by the min-max principle and (6.31), we deduce when k < 3:

λh(B,Ω) ≤ h inf
x∈Ω

E(B,Πx) +O(h2) = hE (B,Ω) + Ch2.

If there exists v ∈ V such that E(B,Πv) = E (B,Ω) < E ∗(B,Πv), we use Theorem 4.4,

Proposition 4.10 and there exists an (admissible generalized) eigenfunction with k = 3 of

H(A,Πv) for E(B,Πv). According to (6.31) and (6.32), we have:

(6.33) λh(B,Ω) ≤
qh[A,Ω](ψh)

‖ψh‖2
≤ hE(B,Πv) + Ce

−ch−1/2 .

�
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7. Lower bound for first eigenvalues

In this section we give a general lower bound on the first eigenvalue, namely:

Theorem 7.1. Let Ω ∈ D(R3) be a polyhedral domain, A ∈ W 2,∞(Ω) be a twice differen-
tiable magnetic potential such that the associated magnetic field B does not vanish on Ω.

Then there exist C(Ω) > 0 and h0 > 0 such that

(7.1) ∀h ∈ (0, h0), λh(B,Ω) ≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))h5/4 .

We recall that the quantity E (B,Ω) is the lowest local energy defined in (1.6).

• Idea of the proof. We first make a partition of the unity of Ω such that on each element
we are able to use the change of variable given in (3.1). The local energy of the associated

tangent model problem with frozen magnetic field is then bounded from below by hE (B,Ω).

As above we then estimate the remainders due to the cut-off effects, the change of variables

and the linearization of the potential.

• IMS localization. Let δ ∈ (0, 1
2
). For h small enough, let us denote by (xj,h, rj,h) a

finite set of pairs (center, radius) provided by Lemma A.6 for ρ = hδ. Relying on Lemma

A.7, we choose a finite associate partition of the unity (χj,h)j with χj,h ∈ C∞0 (B(xj,h, 2rj,h))
satisfying ∑

j

χ2j,h = 1 on Ω

and the uniform estimate of gradients

(7.2) ∃C > 0, ∀h ∈ (0, h0), ∀j, ‖∇χj,h‖2L∞(Ω) ≤ Ch−2δ .

The IMS formula (see A.4) provides for all f ∈ H1(Ω)

qh[A,Ω](f ) =
∑

j

qh[A,Ω](χj,hf )− h2
∑

j

‖∇χj,hf ‖2L2(Ω)

and using (7.2) and the finite covering property of the covering we get C(Ω) > 0 such that

(7.3) qh[A,Ω](f ) ≥
∑

j

qh[A,Ω](fj,h)− C(Ω)h2−2δ‖f ‖2L2(Ω) .

where fj,h denotes the localized function χj,hf .

• Local control of the energy. We estimate each term qh[A,Ω](fj,h) appearing in (7.3).

By construction supp(fj,h) ⊂ Uxj,h . Let Ãj,h defined as in (6.5) with x = xj,h. Lemma 6.3

applied with r = Krj,h ≤ Chδ provides C(Ω) > 0 such that

(7.4)
qh[A,Ω](fj,h)

‖fj,h‖2
≥ (1− C(Ω)hδ)qh[Ã

j,h,Πxj,h ](ψj,h)

‖ψj,h‖2
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where we have denoted ψj,h = fj,h ◦ U−1xj,h . Let A
j,h
0 be the linear part of Ã

j,h at the origin of

Πxj,h . We use (A.3) with ψ = ψj,h and U = Πxj,h :

(7.5) qh[Ã
j,h,Πxj,h ](ψj,h) = qh[A

j,h
0 ,Πxj,h ](ψj,h)

+ 2Re
〈
(−ih∇+Aj,h0 )ψj,h, (Ã

j,h − Aj,h0 )ψj,h
〉
+ ‖(Ãj,h − Aj,h0 )ψ‖2.

Therefore Using the Cauchy-Schwarz inequality:

qh[Ã
j,h,Πxj,h ](ψj,h) ≥ qh[Aj,h0 ,Πxj,h ](ψj,h)− 2

(
qh[A

j,h
0 ,Πxj,h ](ψj,h)

)1/2 ‖(Ãj,h −Aj,h0 )ψj,h‖ .
We cannot conclude like in (6.23) because we do not have any a priori upper bound on

qh[A
j,h
0 ,Πxj,h ](ψj,h). That is why we use the parametric estimate

∀η > 0, qh[Ã
j,h,Πxj,h ](ψj,h) ≥ (1− η)qh[Aj,h0 ,Πxj,h ](ψj,h)− η−1‖(Ãj,h − Aj,h0 )ψj,h‖2

based on the simple inequality 2ab ≤ ηa2 + η−1b2. Since curlAj,h0 = Bxj,h we have

qh[A
j,h
0 ,Πxj,h ](ψj,h) ≥ hE(Bxj,h ,Πxj,h)‖ψj,h‖2 .

Moreover using (6.25) and the same arguments as in Section 6.3.2 we get

‖(Ãj,h −A
j,h
0 )ψj,h‖2 ≤ C(Ω)(1 + ‖A‖2W 2,∞(Ω))h4δ‖ψj,h‖2 .

We deduce for all η > 0:

qh[Ã
j,h,Πxj,h ](ψj,h) ≥ (1− η)hE(Bxj,h ,Πxj,h)‖ψj,h‖2 − η−1C(Ω)(1 + ‖A‖2W 2,∞(Ω))h4δ‖ψj,h‖2.

Choosing η = h2δ−1/2 we get

qh[Ã
j,h,Πxj,h ](ψj,h) ≥

(
hE(Bxj,h ,Πxj,h)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))h2δ+1/2

)
‖ψj,h‖2(7.6)

≥
(
hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))h2δ+1/2

)
‖ψj,h‖2.

• Conclusion. Combining the previous localized estimate (7.6) with (7.4) we deduce:

qh[A,Ω](fj,h) ≥
(
hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2δ+1/2 + h1+δ

)
‖fj,h‖2.

Summing up in j and using that
∑

j f
2
j,h = f

2 we obtain

(7.7)
∑

j

qh[A,Ω](fj,h) ≥
(
hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2δ+1/2 + h1+δ

)
‖f ‖2,

and combining (7.7) with (7.3) we get C(Ω) > 0 such that

(7.8) ∀f ∈ H1(Ω),
qh[A,Ω](f )

‖f ‖2 ≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))
(
h2δ+1/2 + h1+δ + h2−2δ

)
.

We optimize this by taking δ = 3
8
and we deduce Theorem 6.1 from the min-max principle.

Like in the last section, we have a result using only a Hölder norm of the magnetic field:
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Corollary 7.2. Let Ω ∈ D(R3) be a polyhedral domain, B ∈ W 1+α,∞(Ω) be a non-vanishing
Hölder continuous magnetic field of order 1 + α with some α ∈ (0, 1). Then there exist
C(Ω) > 0 and h0 > 0 such that

(7.9) ∀h ∈ (0, h0), λh(B,Ω) ≥ hE (B,Ω)− C(Ω)(1 + ‖B‖2W 1+α,∞(Ω))h5/4 .

Appendix A. Technical lemmas

A.1. Gauge transform.

Lemma A.1. Let ϕ be a regular function in Ω.

A function ψh is an eigenfunction for the operator Hh(A,Ω) if an only if e
iϕ/hψh is an

eigenfunction for Hh(A+∇ϕ,Ω) associated with the same eigenvalue.

Proof. It is enough to notice

Hh(A+∇ϕ,Ω)
(
ei

ϕ
hψh

)
= ei

ϕ
hHh(A,Ω)ψh.

�

Lemma A.2. Let B be a smooth magnetic field. There exists an associated magnetic

potential A such that curlA = B and one component of A−A0 cancels, where A0 denotes

the linear part of A at 0.

Proof. Let us pros that we can cancel the first component of A−A0.

Let Ã be a magnetic potential such that curl Ã = B and A0 its linear part. We can write

Ã − A0 = (P1, P2, P3) where Pi satisfy Pi(0) = 0 and (∇Pi)(0) = 0. In particular, this
means the the Taylor expansion of Pi starts with coefficients of degree at least 2. Let

ϕ(x1, x2, x3) :=

∫ x1

0

P1(x, x2, x3)dx.

We define A := Ã−∇ϕ. Then A0 is still the linear part of A, and the first component of
A− A0 equals zero. �

A.2. Translation. Let us remark that if B is a constant magnetic field, an associate mag-

netic potential is given by

(A.1) AS(x) :=
1

3
B ∧ x .

Indeed we have

curlAS =
1

3
∇∧ (B ∧ x) =

1

3
((∇ · x)B− (∇ · B)x) = B .
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Lemma A.3 (Translation). Let Ω be a domain and B be a constant magnetic field. Let

A be a linear magnetic potential such that curlA = B. Let d ∈ R3 be a vector and
Ωd := Ω+d be the translated domain. Then Hh(A,Ωd) and Hh(A,Ω) are unitary equivalent.

For ψ ∈ Dom(Hh(A,Ω)) we denote by ψd : y 7→ ψ(y − d) the translated function. Let

ϕ(y) := y · A(d). Then ψ is an eigenfunction of Hh(A,Ω) if and only if eiϕ/hψd is an

eigenfunction of Hh(A,Ωd).

Moreover if the magnetic potential is A = AS (given by (A.1)), we have

(A.2) ϕ(y) =
1

3
y · (B ∧ d) =

1

3
d · (y ∧B) =

1

3
B · (d ∧ y) .

Proof. Let Ad(y) := A(y− d) be the translated magnetic potential. We have:

ψ is an eigenfunction of (ih∇+ A)2 on Ω

⇐⇒ ψd is an eigenfunction of (ih∇+Ad)
2 on Ωd

⇐⇒ eiϕ/hψd is an eigenfunction of (ih∇+Ad +∇ϕ)2 on Ωd .

Therefore we are led to choose ϕ(y) such that ∇ϕ = A − Ad. Since A is linear we get

∇ϕ(y) = A(d) and we take ϕ(y) := y ·A(d). Moreover if A is given by (A.1), we get (A.2)
using basic vectorial identities. �

A.3. Comparison between two potentials. Let A and A′ be two magnetic potentials.
Then, for any function ψ of Dom(qh[A,U ]) ∩ Dom(qh[A′,U ]), we have:
(A.3) qh[A,U ](ψ) = qh[A′,U ](ψ) + 2Re

〈
(−ih∇+ A′)ψ, (A−A′)ψ

〉
+ ‖(A− A′)ψ‖2.

A.4. Cut-off effect.

Lemma A.4 (IMS formula). Assume that χ1, . . . , χL ∈ C∞(Ω) are such that

L∑

ℓ=1

χ2ℓ ≡ 1 on Ω.

Then, for any ψ ∈ H1(Ω)

q[A; Ω, h](ψ) =

L∑

ℓ=1

q[A; Ω, h](χℓψ)− h2
L∑

ℓ=1

‖ψ∇χℓ‖2L2(Ω)

Lemma A.5. Let ψ ∈ Dom loc(Hh(A,Ω,G)) and χ ∈ C∞0 (R
n) a real smooth function.

Then

(A.4) qh[A,Ω,G](χψ) = Re
〈
χHh(A,Ω,G)ψ,χψ

〉
Ω
+ h2

∫

Ω

∇χ⊥G∇χ |ψ|2 |G|−1/2dx.

Compare with [13, (6.11)] and [11, Proposition 7.2.1].

Proof. Let
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• |G|−1/2G =
(
gjk

)
jk
(symmetric matrix)

• Xju = (hDxj + Aj)u
• Yjχ = hDxjχ

We have the commutation relation

Xj(χψ) = χXjψ + ψYjχ.

Then

qh[A,Ω,G](χψ) =
∑

jk

∫

Ω

gjk Xj(χψ) Xk(χψ) dx(A.5)

=
∑

jk

∫

Ω

gjk (χXjψ + ψYjχ) (χXkψ + ψYkχ) dx

= I1 + I2 + I3

Let us analyze each part.

For I1, we make an integration by part

I1 =
∑

jk

∫

Ω

gjk χXjψ χXkψ dx

=
∑

jk

∫

Ω

gjk χ
2 Xjψ Xkψ dx

∑

jk

∫

Ω

Xk
(
gjk χ

2 Xjψ
)
ψ dx + ih

∑

jk

∫

∂Ω

nk gjk χ
2 Xjψ ψ dx

Using the boundary conditions of ψ, the sum of the contributions of the boundary terms

cancels. In the first term, we have to commute χ2 with Xk . Then

I1 =
∑

jk

∫

Ω

χ2 Xk
(
gjk Xjψ

)
ψ dx +

∑

jk

∫

O

2χ Ykχ gjk Xjψ ψ dx(A.6)

= I1,1 + I1,2.

We write I2

I2 =
∑

jk

∫

Ω

gjk (χXjψ) (ψYkχ) + gjk (ψYjχ) (χXkψ) dx
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We combine this with the second member I1,2 of I1 and we use that χ is real and that

Ykχ = −ih∂k :

I1,2 + I2 = −ih
∑

jk

∫

Ω

2 gjk χ ∂kχ Xjψ ψ − gjk χ ∂kχ Xjψ ψ + gjk χ ∂jχ ψ Xkψ dx

= −ih
∑

jk

∫

Ω

gjk χ ∂kχ Xjψ ψ + gjk χ ∂jχ ψ Xkψ dx

Since gjk = gkj , ∑

jk

gjk χ ∂kχ Xjψ ψ + gjk χ ∂jχ ψ Xkψ

is a real function. We deduce

(A.7) Re(I1,2 + I2) = 0.

Therefore

I3 =
∑

jk

∫

Ω

gjk ψ Yjχ ψ Ykχ dx(A.8)

= h2
∑

jk

∫

Ω

gjk ∂jχ ∂kχ ψ ψ dx

We deduce (A.4) from (A.5)-(A.8). �

A.5. IMS partition.

Lemma A.6. Let n ≥ 1 be the space dimension. M denotes Rn or Sn. Let Ω ∈ D(M)

and K > 1. There exist a positive integer LΩ and two positive constants ρΩ ≤ 1, and
κΩ ≤ 1 (depending also on K) such that for all ρ ∈ (0, ρΩ], there exists a (finite) set
Z ⊂ Ω× [κΩρ, ρ] satisfying the following four properties

(1) We have the inclusion Ω ⊂ ∪(x,r)∈Z B(x, r)
(2) For any (x, r) ∈ Z , the ball B(x, Kr) is included in a map-neighborhood Ux associ-
ated with x, cf. (3.1)

(3) Each point x0 of Ω belongs to at most LΩ different balls B(x, Kr).

Proof. The principle of the proof is a recursion on the dimension n.

The first step is an explicit construction when d = 1: The domain Ω is then an interval.

The second step consists in deducing a “local” result on a cone Γ ∈ Pd or a wedge R
n−d×Γ

from the global result on the section Ω0 ∈ Sd−1 of Γ.
The third step consists in applying a local diffeomorphism.

The fourth step consists in gluing together several local partitions to solve the case of Ω.

This latter step simply amounts to merge the local coverings. �
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Lemma A.7. Let Ω ∈ D(R3) and, with the notations of Lemma A.6, ρ ∈ (0, ρΩ]. Let Z ⊂
Ω× [κΩρ, ρ] be the associate set of pairs (center, radius). Then there exists a collection of
smooth functions (χ(x,r))(x,r)∈Z with χ(x,r) ∈ C

∞
0 (B(x, 2r)) satisfying the identity (partition

of unity) ∑

(x,r)∈Z

χ2(x,r) = 1 on Ω

and the uniform estimate of gradients

∃C > 0, ∀(x, r) ∈ Z , ‖∇χ(x,r)‖L∞(Ω) ≤ Cρ−1 ,
where C only depends on Ω.

Proof. Let ξ(x,r) ∈ C∞0 (B(x, 2r)), with the property that ξ(x,r) ≡ 1 in B(x, r), and satisfying
‖∇ξ(x,r)‖L∞(R3) ≤ Cr−1

where C is a universal constant. Then we set for each (x0, r0) ∈ Z

χ(x0,r0) =
ξ(x0,r0)

(
∑
(x,r)∈Z

ξ2(x,r))
1/2

.

Due to property (1) in Lemma A.6,
∑
(x,r)∈Z

ξ2(x,r) ≥ 1 and due to property (3),

‖
∑

(x,r)∈Z

∇ξ2(x,r)‖L∞(R3) ≤ CLΩ .

We deduce the lemma. �
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