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GROUND ENERGY OF THE MAGNETIC LAPLACIAN
IN POLYHEDRAL BODIES

VIRGINIE BONNAILLIE-NOEL, MONIQUE DAUGE, NICOLAS POPOFF

Abstract. The asymptotic behavior of the first eigenvalues of magnetic Laplacian operators
with large magnetic fields in polyhedral domains is characterized by a hierarchy of model
problems. We investigate properties of the model problems (continuity, semi-continuity,
existence of generalized eigenfunctions). We prove estimates for the remainders of our
asymptotic formula. Lower bounds are obtained with the help of a classical IMS partition
based on adequate coverings of the polyhedral domain, whereas upper bounds are established
by a novel construction of quasimodes, qualified as sitting or sliding according to spectral
properties of local model problems.

1. Introduction. Main results

The Schrodinger operator with magnetic field (also called magnetic Laplacian) takes the
form
(—iV + A)?

where A is a given vector field that will be assumed to be regular. When set on a domain
Q of R” (n = 2 or 3) and completed by natural boundary conditions (Neumann), this
operator is denoted by H(A, 2). If Q2 is bounded with Lipschitz boundary, the form domain
of H(A, Q) is the standard Sobolev space H*(Q2) and H(A, Q) is positive self-adjoint with
compact resolvent. The ground states of H(A, Q) are the eigenpairs (X, 9)

(—=iIV+A?2Y =Xy in Q,
(=i0p+n-A)Y =0 on 09,

associated with the lowest eigenvalues . If €2 is simply connected, its eigenvalues only
depend on the magnetic field B defined as

(1.2) B = curl A.

(1.1)

The eigenvectors corresponding to two different instances of A for the same B are deduced
from each other by a gauge transform.

Introducing a (small) parameter h > 0 and setting
Hy(A, Q) = (—ihV + A)? with Neumann b.c. on 8,
we get the relation

(1.3) Hy(A, Q) = h2H<%,Q>
1
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linking the problem with large magnetic field to the semiclassical limit h — 0. We denote
by An(B, €2) (or X\, if no confusion is possible) the smallest eigenvalue of H,(A, 2) and by
Y, an associated eigenvector, so that

{(—/W+A)2¢h =\, in Q,

(1.4) :
(—ihd, +n-A)Y,=0 on 0Of2.

The behavior of A, as h — 0 clearly provide equivalent information about the lowest eigen-
value of H(A,2) when B is large, especially in the parametric case when B = BB where
the real number B tends to +o0o and B is a chosen reference magnetic field.

From now on, we consider that B is fixed. We assume that it is smooth and does not
vanishes! on Q. We normalize B by the condition

(1.5) min |B(x)| = 1.
xeQ

The question of the semiclassical behavior of A, has been considered in many papers for
a variety of domains, with constant or variable magnetic fields: Smooth domains [18,
13, 10, 1, 28] and polygons [3, 4, 5] in dimension n = 2, and mainly smooth domains
[19, 14, 15, 29, 11] in dimension n = 3. Until now, three-dimensional non-smooth domains
are only addressed in two particular configurations—rectangular cuboids [22] and lenses
[24, 27], with special orientation of the (constant) magnetic field. We give more detail
about the state of the art in section 2.

Let us briefly describe our main results in the three-dimensional setting.
Each point x in the closure of a polyhedral domain €2 is associated with a homogeneous

tangent open set [y, according to the following cases:

(1) If x is an interior point, M, = R3,

(2) If x belongs to a face f (i.e., a connected component of the smooth part of 9Q2),
[y is a half-space,

(3) If x belongs to an edge e, Iy is an infinite wedge,

(4) If x is a vertex v, Iy is an infinite polyhedral cone.

Let B, be the magnetic field frozen at x. Let E(By, 1) be the bottom of the spectrum
(ground energy) of the tangent operator H(A,, I1y) where A, is the linear approximation of
A at x, so that

curl Ay = By .
We introduce the quantity

(1.6) £(B,Q) = inf £(By, M)

1Should B cancel, the situation would be completely different [12, 9].
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In this paper, we prove that this quantity provides the value of the limit of A\,/h as h — 0
with some control of the convergence rate as h — 0, namely

(1.7) — Ch* < 2\p(B, Q) — h&(B, Q) < ChY/*,

where the constant C is bounded by the norm of A in W?>°(Q), as proved in Theorems 6.1
and 7.1. We can also control the constant C by the magnetic field B as established in
Corollaries 6.2 and 7.2.

With the point of view of large magnetic fields in the parametric case B = BB, (1.7) yields
obviously

(1.8) —CB¥* < \B,Q)—B&B,Q) < CB¥*,  as B — 4.
Note that B&(B, Q) = &(B, Q) by homogeneity (see Lemma 4.1).

This result is new in this generality. In view of [15] (smooth three-dimensional case) the
upper bound is optimal. The lower bound coincides with the one obtained in the smooth case
in dimensions 2 and 3 when no further assumptions are done. In the literature, improvements
of the convergence rates are possible in certain cases when one knows more on &(B, Q2),
in particular whether the infimum is attained in some special points.

Our result does not need such extra assumptions, but our proofs have to distinguish cases
whether the local ground energies E(By, Iy) are attained or not, and we have to understand
the behavior of the function x — E(By, ,) when x spans the different regions of Q. We
have proved very general continuity and semi-continuity properties as described now.

Let § be the set of faces f, & the set of edges e and U the set of vertices of 2. They form
a partition of the closure of €2, called stratification

(1.9) a=au(JfH)u(Je)u(lJ v).

The sets Q, f, e and v are called the strata of Q, compare with [20] and [21, Ch. 9]. We
denote them by t and their set by €. For each stratum t, let us denote by A; the function

(1.10) At it 2 x— E(By, Ty).
We will show the following facts

a) The function x — E(By, My) is lower semi-continuous on Q.

b) For each stratum t € ¥, the function A is continuous on t and can be continuously
extended to the closure t of t. Moreover, for each xq € t, A¢(xo) is the bottom
of the spectrum E(Bx, NMx) of a tangent magnetic operator H(Ag, lNx) associated
with a singular chain X originating at xq.

As a consequence, the infimum determining the limit & (B, 2) in (1.6) is a minimum

(1.11) £(B, Q) = min E(By,My).
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Contents. In section 2 we place our results in the framework of existing literature for
dimensions 2 and 3. In section 3 we introduce the wider class of corner domains, alongside
with their tangent cones and singular chains. We particularize these notions in the case of
polyhedral domains. In section 4 we introduce and classify magnetic model problems on tan-
gent cones (taxonomy) and extract from the literature related facts. We show that to each
point x € Q is associated a singular chain X originating at x for which the tangent operator
H(Ag, MNx) possesses admissible generalized eigenvectors with energy E(By, y). In section
5 we prove the semi-continuity and continuity properties of the functions x — E(By, I1y)
on Q and its strata. In section 6 we prove the upper bound X\,(B, Q) < h&(B, Q) + Ch®/*
by a construction of quasimodes based on admissible generalized eigenvectors for tangent
problems. In section 7 we prove the lower bound h& (B, Q) — Ch®* < X\,(B,Q2) by a
classical IMS formula.

Notation. We denote by &(L) the spectrum of a self-adjoint operator L.

2. State of the art

In this section we review the literature about the semiclassical limit for the first eigenvalue
An(B, Q) of the magnetic Laplacian H,(A, Q) depending on the dimension n € {2, 3} and
the geometry of the domain 2.

2.1. Dimension 2. In dimension n = 2, two classes of domains are considered: the domains
with a regular boundary and the polygonal domains.

2.1.1. Regular domains. Let Q C R? be a regular domain and B be a regular non-vanishing
scalar magnetic field on Q. To each x € Q is associated a tangent problem. According
to whether x is an interior point or a boundary point, the tangent problem is the magnetic
Laplacian on the plane R? or the half-plane [, tangent to Q at x, with the constant
magnetic field B, = B(x). The associated spectral quantities E(By, R?) and E(By, IN,) are
respectively equal to |By| and |By|©g where ©g := E(1,R3) is a universal constant whose
value is close to 0.59 (see [30]). With the quantities

(2.1) b= )l(QSfZ|B(x)| and b = xlenan\B(x)\,
we find

E(B,Q) =min(b, b'Oy) .
In this generality, the asymptotic limit

(B, Q2)
(2.2) fLI—%T =&(B,Q)
is proven by Lu and Pan in [18]. Improvements of this result depend on the geometry and

the variation of the magnetic field as we describe now.
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e (Constant magnetic field. If the magnetic field is constant and normalized to 1, then
&(B,2) = ©y. The following estimate is proved by Helffer and Morame:

3C >0, —Ch¥? < Xy(1,Q) — h©y < Ch3/?

for h small enough [13, §10], while the upper bound was already given by Bernoff and
Sternberg [2]. This result is improved in [13, §11] in which a two-term asymptotics is proved,
showing that a remainder in @(h*?) is optimal. Under the additional assumption that the
curvature of the boundary admits a unique and non-degenerate maximum, a complete
expansion of A\,(1, Q) is provided by Fournais and Helffer [10].

e Variable magnetic field. Here we recall results from [13, §9] for variable magnetic fields
(we use the notation (2.1))

If b< ©ob, 3C >0, IAn(B, Q) — hb| < CH2,
If b> 0/, 3C>0  —Ch¥* < Ay(B,Q)— hOob < Ch3/2,
If b=0ob, 3C >0, —CH/* < My(B, Q) — hb < Ch?,

for h small enough. Under further assumptions, more precise asymptotic expansions are
given by Aramaki [1] and Raymond [28]. They show that the upper bounds above are sharp.

2.1.2. Polygonal domains. Let €2 be a curvilinear polygon and let U be the (finite) set of
its vertices. In this case, new model operators appear on infinite sectors [, tangent to Q2
at vertices x € Y. By homogeneity E(Bx, ) = |B(x)|E(1, ) and by gauge invariance,
E(1,Ty) only depends on the opening a(x) of the sector I,. Let S, be a model sector of
opening a € (0,2m). Then

&(B,%) = min (b, S, min [B(x)| E(1, Sace)) -

In [3, §11], it is proved that

3C >0, —Ch”* <X\ (B,Q)—h&(B,Q) < Ch8.
This estimate can be improved under the assumption that
(2.3) &(B, Q) < min(b, b'Oy),

which means that at least one of the corners makes the energy lower than in the regular
case: The asymptotic expansions provided in [4] then yield the sharp estimates

3C >0, |M(B,Q)—h&(B, Q)| <Ch¥?.

From [16, 3] follows that for all o € (0, 5] there holds
(2.4) E(1,8,) < ©.

Therefore condition (2.3) holds for constant magnetic fields as soon as there is an angle
opening a, < 7. Finite element computations by Galerkin projection as presented in [5]
suggest that (2.4) still holds for all @ € (0, 7). Let us finally mention that if 2 has straight
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sides and B is constant, the convergence of \,(B,2) to h&(B,2) is exponential: Their
difference is bounded by C exp(—Bh~%/?) for suitable positive constants C and 3 (see [4]).

2.2. Dimension 3. In dimension n = 3 we still distinguish the regular and singular domains.

2.2.1. Regular domains. Here 2 C R3 is assumed to be regular. For a continuous magnetic
field B it is known ([19] and [14]) that (2.2) holds. In that case

&(B, Q) = min (Xig2 B, inf IB(x)|a(8(x))),

where 6(x) € [0, 5] denotes the angle between the magnetic field and the boundary at the
point x € 9%, and the quantity c(0) is the bottom of the spectrum of a model problem,
see section 4. Let us simply mention that o is increasing on [0, 7] and that o(0) = O,
o(m/2) =1.

e (Constant magnetic field. Here the magnetic field B is assumed to be constant and
unitary. There exists a non-empty set ¥ of Q2 on which B(x) is tangent to the boundary.
In that case we have

&(B,Q) =0, .
Theorem 1.1 of [15] states that
3C >0, [M(B,Q)— hOy| < Ch*3,

for h small enough. Under some extra assumptions on ¥, Theorem 1.2 of [15] yields a
two-term asymptotics for A,(B, 2) showing the optimality of the previous estimate.

e Variable magnetic field. Let B be a smooth non-vanishing magnetic field. There holds
[11, Theorem 9.1.1]

3C >0, —Ch* < Xy(B.Q)— h&(B,Q) < ChY* .

The proof of this result was already sketched in [19]. In [15, Remark 6.2], the upper bound
is improved to O(h*3).

Under the following two extra assumptions

e The inequality infycan |B(x)| 0(8(x)) < infyeq |[B(x)| holds,
e The function x — |B(x)|o(6(x)) reaches its minimum at a point xq where B is
neither normal nor tangent to the boundary,

a two-term asymptotics is valid [29], providing the sharp estimate:

3C >0, |M(B,Q)—h&(B, Q)| < Ch¥?,

2.2.2. Singular domains. Until now, two examples of non-smooth domains have been ad-
dressed in the literature. In both cases, the magnetic field is assumed to be constant.
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e Rectangular cuboids. There exists a vertex v € U such that &(B,Q) = E(B,I1,) and
that (2.2) holds [22]. Note that I, is homeomorphic to the octant (R, )3. In the case
where the magnetic field is tangent to a face but is not tangent to any edge, Pan [22]
shows

E(B,MN,) < inf E(B,TIy)
xEQ\Y

and deduces that eigenfunctions associated to A,(B, 2) concentrate near corners as h — 0.

e [enses. The case where Q2 has the shape of a lens is treated in [24] and [27]. The domain
(2 is supposed to have two faces separated by an edge that is a regular loop > contained in
the plane x3 = 0. The magnetic field considered is B = (0,0, 1).

It is proved in [24] that, if the opening angle a of the lens is constant and < 0.38r,

inf E(B,Ty) < inf E(B,T)
x€Q\X

XEX
and that (2.2) holds with the following estimate:
3C >0, |M(B,Q)—h&(B, Q)| < Ch¥* .

When the opening angle of the lens is variable and under some non-degeneracy hypotheses,
a complete eigenvalue asymptotics is obtained in [27] resulting into the optimal estimate

3C >0, |M(B,Q)—h&(B, Q)| < Ch¥?,

3. Polyhedral domains and their singular chains

For the sake of completeness and for ease of further discussion, in the same spirit as in [7,
section 2], we introduce here a recursive definition of two intertwining classes of domains

a) P, a class of infinite open cones in R".
b) ©®(M), a class of bounded connected open subsets of a smooth manifold without
boundary—actually, M = R"” or M = S”, with S” the unit sphere of R"*!,

3.1. Domains and tangent cones. \We call a cone any open subset [1 of R” satisfying
Vo>0 and xe€ll, pxell,

and the section of the cone I is its subset M N S""!. Note that S° = {1, 1}.
Initialization: 3 has one element, {0}. D(S°) is formed by all subsets of S°.

Recurrence: For n > 1,

(1) M € B, if and only if the section of I belongs to D(S"1),
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(2) Q € D(M) if and only if for any x € Q, there exists a cone I, € B, and a
local smooth diffeomorphism U, which maps a neighborhood U, of x in M onto a
neighborhood Vy of 0 in R” and such that

(3.1) Ux(Us N Q) =V, NI and Uy (U N OQ) =V, N Oly.

We assume without restriction that the differential of U, at the point x is the identity
matrix II,,. The cone I, is said to be tangent to 2 at x.

Examples:

e The elements of B¥; are R, Ry and R_.

e The elements of D(S*) are S* and all open intervals T C S* such that T # S'.

e The elements of B, are R? and all sectors with opening a € (0, 27).

e The elements of D(RR?) are curvilinear polygons with piecewise smooth sides and
opening angles # 0, 2.

Let O, denote the group of orthogonal linear transformations of R”. We say that a cone
I is equivalent to another cone " and denote

Nn=rn’

if there exists U € O, such that UM =", Let I € B,. If M is equivalent to R"9 x [ with
[ € Py and d i1s minimal for such an equivalence, [ is said to be a minimal reduced cone
associated with T1.

3.2. Recursive definition of singular chains. A singular chain X = (xq, X1, ..., xx) € €(2)
is a finite collection of points according to the following recursive definition.

Initialization: x, € Q,

e C,, tangent cone to 2 at xq,
o [y, € Py, its minimal reduced cone: Cy, = Ug(R* x I'y,), with vy = n — db.
e Alternative:

— If k=0, stop here.

— If k >0, then dy > 0 and let Q,, € D(S®~1) be the section of I,

Recurrence: x; € Q. « , € D(S971). If dj_y =1, stop here (k = ). If not:

_x, tangent cone to Q0 4 , at x;,
e X e Xy
x € Pg, its minimal reduced cone: Gy, .5, = Uj(RY X Ty &)

e Alternative:
— If j = k, stop here.
— Ifj < k, then d; > 0 and let 2, € D(S%1) be the section of ..,

Note that n > dy > d; > ... > di. Hence kK < n. Note also that for k = 0, we obtain the
trivial one element chain (xg) for any xq € €2.
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While €(Q) is the set of all singular chains, for any x € Q, we denote by €,(€) the subset

of chains originating at x, i.e., the set of chains X = (xo, ..., Xx) with xg = x. Note that
the one element chain (x) belongs to &,(Q2). We also set
(3.2) C(Q) ={X e &(Q), k> 0} =&\ {(x)}.

We set finally, with the notation (y) for the vector space generated by vy,
R” if dik1 =1
(3.3) My = b
uo(RUO X <X1> X ul(Rul X <X2> X ___uk(RVk X l_xk) )) if dk—l > 1
Note that if dy = 0, llx = R". Note also that if 5 =0, Uy =1,.

Definition 3.1. Let X = (xo, ..., xx) and X' = (xp, ..., X)) be two chains in €(2). We say
that X is equivalent to X' if xg = x{ and lMx = Mx.

Special subsets of Q: For d € {0, ..., n}, let
(3.4) Ay(Q) = {x €T, do(x) = d}.

The strata of Q are the connected components of ,4($2), for d € {0, ..., n}. They are
denoted by t and their set by ¥.

Examples:

e 2 (2) coincides with Q.

o 2A;(Q) is the subset of 00 of the regular points of the boundary.
o If n=2, A(Q) is the set of corners.

o If n=3, A(Q) is the set of edge points.

o If n=3, A3(Q) is the set of corners.

3.3. Polyhedral domains. Polyhedral domains and polyhedral cones form subclasses of
D (M) and B, denoted by D(M) and R, respectively:

a) The cone N € P, is a polyhedral cone if its boundary is contained in a finite union
of (hyper)surfaces. We write I € 3,,.

b) The domain 2 € ®(M) is a polyhedral domain if all its tangent cones [, are
polyhedral. We write Q € D(M).

This allows to make precise the definition of faces, edges and corners in dimension 3, in
connection with singular chains.

(1) Interior point x € €2. Only one chain in &(Q2): X = (x).

(2) The faces f are the connected components of 24;(€2). The set of faces is denoted
by §. Let x belong to a face. There are two chains in €, (Q):
(a) X = (x) with Mg = M,, the tangent half-space. My =R? x R,.
(b) X = (x,x;) where x; = 1 is the only element in R, N'S°. Thus Mg = R3.



10 VIRGINIE BONNAILLIE-NOEL, MONIQUE DAUGE, NICOLAS POPOFF

(3) The edges e are the connected components of 2,(€2). The set of edges is denoted
by €. Let x belong to an edge. There are three types of chains in €,(Q):
(a) X = (x) with My = M, the tangent wedge (which is not a half-plane). The
reduced cone of MMy is a sector [, the section of which is an interval Z, C S*.
(b) X = (x,x1) where x; € Z,.
(i) If x; is interior to Zy, My = R3. No further chain.
(ii) If x1 is a boundary point of Z,, Nx is a half-space, containing one of the
two faces 0Ty of the wedge M.
(c) X = (x,x1,x5) where x; € 8Z,, xo = 1 and Ny = R3.
There are 4 equivalence classes in €,(£2) in the case of an edge point x:
o X = (x)
o X = (x,x{) with {x7,x]} = 0Z,
o X = (x,x}) with x{ any chosen point in Z,.

(4) The corners v are the connected components of 3(€2). The set of corners is
denoted by 0. There are four types of chains in €,(Q):
(a) X = (x) with My = I, the tangent cone (which is not a wedge). It coincides
with its reduced cone. Its section Q, is a polygonal domain in S2.
(b) X = (x,x1) where x; € Q,.
(i) If x; is interior to €, Mx = R3. No further chain.
(i) If x; is in a side of Q, Ny is a half-space, containing one of the faces of
the cone 1.
(i) If x1 is a corner of €, lNx is a wedge. Its edge contains one of the edges
of .
(c) X = (x,x1,X%2) where x; € 0
(i) If x; is in a side of Q,, x, = 1, Mg = R3. No further chain.
(i) If x; is a corner of €, Cyx, is plane sector, and x, € Z,,, Where the
interval Z, ,, is its section. If x, is an interior point, then Myx = R3.
(d) X = (x,x1,X2,x3) Where x; is a corner of Q, x, € 0Zxx, and x3 = 1. Then
My = R3.
Let x’1 1 <j < N, be the corners of €, and &’ be its sides. There are 2N + 2
equivalence classes in €,(2):
e X = (x) (vertex)
e X = (x,x}) with 1 < j < N (edge points limit)
e X = (x,x}”) with x;” any chosen point inside S’ (face points limit)
o X = (x,x}) with x] any chosen point in Q (interior points limit).

Remark 3.2. For polyhedral domains €2, it is a consequence of the description above that
chains (xg,x1) of length 2 are enough to describe all equivalence classes of the set of
chains & (€2) (3.2). This does not hold anymore if general corner domains are considered.
Besides, the notion of equivalence classes as introduced in Definition 3.1 is sufficient for
the analysis of operators H,(A,2) in the case of magnetic fields B smooth in Cartesian
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variables. Should B be smooth in polar variables only, the whole hierarchy of singular chains
would be needed.

4. Taxonomy of model problems

4.1. Tangent and model operators. \We recall that A is a magnetic potential associated
with the magnetic field B on the polyhedral domain Q € D(R?). For each singular chain
X = (%0, X1, .-, Xx) € €(Q2) we set

(4.1) Bx =B(xo) and Ax=A(xo)+ (VA(x0))(x — xo).
We have obviously
curl Ax = By,

so that the tangent magnetic operator H(Ax, Mx) and its ground energy E(Bx, Mx) make
sense.

The domain of H(Ag, M) is
(4.2) Dom (H(Ax, Mx)) = {¥ € L*(Nx),
(—1V + Ax)*p € L*(Mx) and (=i, +n-Ax)p =0 on oy} .

The quadratic form associated is

qlAx, MNx](¢) = . [(—=iV + Ax)9|

defined on {% € L2(Mx), (—=iV + Ax)¥ € L2(Mx)}.

By a change of variables we obtain

Lemma 4.1. Let O be a domain in R® and for r > 0, we denote by r©O the domain
{x € R3, x=rx withx' € O}. Let B be a constant magnetic field. Then

B
E(B,0O) = pE(;, \/5(9> .
As a consequence there holds for tangent problems (setting p = |Bx|)

(4.3) E(Bx, Mx) = |Bx| E(‘E—;. HX) -

That is why we can reduce to consider model problems on cones I € B, with unitary
constant magnetic fields.
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4.2. Singular chains and generalized eigenvectors for model problems. Let 1 € B,
be a polyhedral cone and B be a unitary constant magnetic field associated with a linear
potential A. Let [ € B, be a minimal reduced cone associated with . We recall that this
means that M = R379 x I" and that the dimension d is minimal for such an equivalence.

Let & (M) denote the singular chains of I1 originating at its vertex 0 and let €§(I1) be the
subset of chains of length > 2 (see (3.2)). Note that €}(1) is empty if and only if M = R3,

i.e., if d =0. We introduce the quantity
infxcesm E(B, 1 if d >0,
(4.4) &8, n) = | Mreeym E(B. )
+00 if d =0,

the infimum of the ground energy of the magnetic Laplacian over all the singular chains of
length > 2. If d > 0, let Qy € D(SY!) be the section of I". Since I is a polyhedral cone,
we have (cf. Remark 3.2)

(4.5) (B, M) = inf E(B,Moxy) .

Xler

i.e., among all chains X € &(IM), we can restrict to those of length 2, X = (0, x1).

Since the cone [T is unbounded, it is relevant to define Aess(B, 1) as the bottom of the
essential spectrum of the operator H(A, ). When d < 2, due to translation invariance
we have E(B, ) = Aes(B, ). When d = 3, the operator H(A, 1) may have discrete
spectrum.

With the aim of constructing quasimodes for our original problem on €2, we need generalized
eigenvectors for its tangent problems. We first need to introduce the space of the functions
which are Jocally? in the domain of H(A, M):

(4.6) Dompc (H(A, M) := {y € HL (),
(=iV + A2 € H°(TT) and (—id, +n-A)yY =0 on dM}.

We now make precise what we understand by generalized eigenvector.

Definition 4.2. Let 1 € 5 be a polyhedral cone and A a linear magnetic potential. We
call generalized eigenvector for H(A, 1) a function W € Dom (H(A, 1)) associated with
a real number A, so that

(=i8, +n-A)W =0 on arl.

The function WV is said to be an admissible generalized eigenvector if in addition there exists
a system of coordinates (y, z) € R3 % x Rk for some k € {0, ..., 3}, in which I takes the
form R3% x T with T € B, and

(4.7) V(x) = e'*0? d(2)

{(—/v FARY =XV inTl,

Here H{_(TT) denotes for m = 0, 1 the space of functions which are in H™(M N B) for any ball B.
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with some exponentially decreasing function ® and some real polynomial function ¢ of
degree < 2.

Lemma 4.3. /f\V s an admissible generalized eigenvector for H(A, 1) associated with X,
for any other linear magnetic potential A" such that curl A" = curl A, the operator H(A', 1)
possesses an admissible generalized eigenvector V' associated with the same value .

Proof. If curl A = curl A" and A, A’ are both linear, there exists a polynomial function ¢ of
degree 2 such that A = A’ — V¢. Using a change of gauge (Lemma A.1), we find that W’
defined as

V'(x) = e®®e®D d(z2), xe,

is an admissible generalized eigenvector for H(A’, T1). O

The main result which we prove in this section is a dichotomy statement, as follows.

Theorem 4.4. [et ] € $3 be a polyhedral cone and A be a linear magnetic potential (B
Is a constant magnetic field). Then
(4.8) E(B, M) <& (B,M) .
Moreover there exists a singular chain X € €y(M) such that H(A, Mx) admits an admissible
generalized eigenvector associated with the value E(B, 1) and we have the dichotomy:

(i) IfE(B, M) < &*(B, M), then My = T1.

(i) If E(B, M) =&*(B, M), then X € €§(M) and Mx # I1.

Remark 4.5. In the case (ii), we note that the model cone [y associated with the chain X
satisfies E(B, Mx) < &*(B, MNx).

The following subsections are devoted to the proof of this statement according to increasing
values of d, the dimension of the reduced cone of 1. For each value of d we also provide
examples for the cases (i) and (ii) of the dichotomy. Owing to Lemma 4.3, in each case
we may choose a suitable gauge to determine V.

4.3. Full space, d = 0. 1 = R3. By a change of variables and a change of gauge, the
operator H(A,RR?) is isospectral to H(A, R3) with

A=(%,0—-%) and B=(01,0).
Hence
H(A,R®) = (D; +%£)>+ D3+ (D3 — 2)> with D; = —id,.
It is classical (see [17]) that the spectrum of H(A, R3) is [1, +oo). Therefore
(4.9) E(B,R*) =1.
An admissible generalized eigenfunction associated to the ground energy is

W(x) = e CEHd)/4
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which has the form (4.7) with y = x5, z = (x1, x3), and ¢ =0 .

4.4. Half space, d = 1. 1 = R3. By a change of variables and a change of gauge,
H(A, ) is isospectral to H(A,R?) with

Ri’_ = {X = (Xl,XQ,X3) € Ra, X1 > O} and A = (O, 0, b1X2 - b2X1) with b% + bg =1

Hence

B = (b1, b,0) and H(A ,R?)=D3+ D3+ (Ds+ bixo — byx1)?.
We note that
(4.10) &*(B,R3) = E(B,R*) = 1.
There exists 6 € [0, 27) such that b; = sin8 and b, = cosf, so that 0 is the angle between
the magnetic field and the boundary of R3. Due to symmetries we can reduce to 6 € [0, 5].
Denote by F3 the Fourier transform in xs-variable, 7 the Fourier variable associated with
X3, and R

Hr(A;RY) := D7 + D3+ (T +sin6 x — cos 6 x1)?,
there holds ®
Fa HARY) 75 = [ A (AR dr
TE

We discriminate three cases:
e Tangent field. 6§ = 0, then H,(A; R3) := D2+ D2+ (T —x1)?, let & be the partial Fourier
variable associated with x, and define the new operators

Her(A;R3) :=D2 4+ €%+ (1 —x)%  L(Ry;7) =D3 + (17— x)%
There holds

inf S(L(Ry; 7)) = (1), inf &(Hre(ARY)) = (1) + &,

in which the behavior of the first eigenvalue wu(7) is well-known (see [8]): The function p
admits a unique minimum denoted by ©y ~ 0.59 for the value 7 = /©,. Hence

E(B,R3) =0, < &(B,RY).

We are in case (i) of Theorem 4.4. If ® denotes an associated eigenvector (function of
x; € R,), a corresponding admissible generalized eigenvector is

(4.11) W(x) = e Vo8 d(xy).
which has the form (4.7) with y = (x0, x3), z = X1, and ©(y, z) = y»v/Oy = X3/ Og.

o Normal field. 6 =%, then H,(A;R2) := D2+ D2 + (7 + x,)2. There holds for all T € R,

~

inf S(H-(A;R3)) = 1, hence
E(B.R}) =1=¢&"(B,R?).

We are in case (ii) of Theorem 4.4 and we can use the admissible generalized eigenvector
on the full space associated with the chain X = (0, 1).
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e Neither tangent nor normal. 6 € (0,%). Then for any 7 € R, ﬁT(A; R?) is isospectral
to Ho(A; R3) the ground energy of which is an eigenvalue o(8) < 1 (see [14]). We deduce
E(B,RY) =0(f) with o(f) < 1.

We are in case (i) of Theorem 4.4. We recall from [14, 19] the continuity properties:

Lemma 4.6. Set 0(0) = ©q and o(1) = 1. The function 6 — o(8) is continuous and
increasing on [0, ].

The first eigenvalue of ﬁO(A; Ri) Is associated with an exponentially decreasing eigenvector
& which is a function of (x1, x2) € R2. An admissible generalized eigenvector is given by

(4.12) V(x) = d(xq, x),
which has the form (4.7) with y = x3, z = (x1, x2), and ¢ = 0.

Thus Theorem 4.4 is proved for half-spaces.

4.5. Wedges, d = 2. Let [1be a wedge and let o denote its opening, o € (0, ) U (7, 27).
Let

(4.13) S, = {x = (x1, %), xitan > |x|} ffa € (0,m) and Wa = S, xR
{x=(x1, %), xitan% > —|x|} if a € (m2m)

be the model sector and wedge. By a change of variables and a change of gauge, H(A, 1)
is isospectral to H(A, Wy ) where

A = (0, bsxy, bixo — boxy)  with b2 4 b3 + b3 = 1.
Hence
B = (b1, by, bs) and  H(A, Wy) = D3I + (Dz + bsx1)? + (D3 + bixo — xy ).
Denote by 7 the Fourier variable associated with x3, and
Hr(A; We) i= D2 + (D2 + bsxi)? + (T + bixo — boxt)2.
We introduce the notation:

s(B, Sy T) = inf S(H (A, W,)),

so that we have the direct Fourier integral decomposition

D
Fy HA Wa) F; = / A.(A, W,) dr

€eR

and the relation

(4.14) E(B, Wa) = inf s(B, Sa; 7).
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The singular chains of €§(W,) have three equivalence classes, cf. Definition 3.1 and section
3.3 (3), corresponding to three distinct model operators, associated to half-spaces I"I§
corresponding to the faces W, of W, and to the full space R3. Thus

£(B.Wa) = min{E(B.N3), E(B.M;), E(B,R%)}
Let 6= € [0, 3] be the angle between B and the face AMZ. We have, cf. Lemma 4.6,
(4.15) &E*(B,W,) = min{c(6"),0(67), 1} = a(min{6", 67 }).
When M =W,, Theorem 4.4 relies on the following result [25, Theorem 3.5]:

Lemma 4.7. We have E(B, W,) < &*(B, W,).

Moreover, if E(B, Wy) < &*(B,W,), then the function T — s(B, S4;T) reaches its in-
fimum. Let T* be a minimizer. Then E(B, W) is a discrete eigenvalue for the operator
ﬁT* (A, W,) and the associated eigenfunctions have exponential decay.

From the previous lemma we deduce

() If E(B,W,) < &*(B,W,), there exists 7 such that the operator Hy(A, W)
admits an exponential decaying eigenfunction ® of (xi, x2) € S, associated with
E(B,W,). The function

V(x) = e™ 8P (xq, x0)
is an admissible generalized eigenvector for the operator H(A, W,) associated with
E(B, W,). It has the form (4.7) with y = x3, z = (x1, x2), and ©(y, z) = T*y.

(i) If E(B,Wy) = &*(B,W,), let ¢ € {—,+} satisfy 8 = min(6—,6%). We have
6° € [0, %) and &*(B, W,) = 0(6°). We deduce from Subsection 4.4 that there
exists an admissible generalized eigenvector for the operator H(A, ) associated
with the eigenvalue o(6°).

Thus Theorem 4.4 is proved for wedges. We extend the definition of W, to o = 7 by
setting W, :=RR3. Let us quote now the continuity result of [25, Theorem 4.5]:

Lemma 4.8. The function (B, a) — E(B,W,) is continuous on S? x (0, 2).

We end this subsection by a few examples.

Example 4.9. Let B € S§? be a constant magnetic field. Let a be chosen in (0, ) U (7, 27).

a) For a small enough E(B,W,) < &*(B, W,) (see [25] when the magnetic field is not
tangent to the plane of symmetry of the wedge and [24, Ch. 7] otherwise).

b) Let B = (0,0, 1) be tangent to the edge. Then &*(B, Wy) = ©g and E(B, W,) =
E(1,8,), cf. section 2.1.2. According to whether the ground energy £(1, S,) of the plane
sector S, is less than ©g or equal to ©g, we are in case (i) or (ii) of the dichotomy.
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c) Let B be tangent to a face of the wedge and normal to the edge. Then &*(B,W,) =
©p. It is proved in [26] that there holds E(B,W,) < ©¢ for a small enough, whereas
E(B.W,) = O for a € [5, 7).

4.6. Polyhedral cones, d = 3. The main result of this subsection is the characterization
of the bottom of the essential spectrum of H(A, ).

Proposition 4.10. Let 1 € §3 be a polyhedral cone with d = 3, which means that 1 is
not a wedge, nor a half-space, nor the full space. Let B be a constant magnetic field. With
the quantity &*(B, ) introduced in (4.4), there holds

>\ESS(Br |_|) = @@*(B' |_|) .

Before writing proof details, let us specify what is &*(B, ) in the case of a polyhedral cone.
Let Qo be the section of 1, i.e., Qo = M NS2. We recall from (4.5) that

(4.16) &*(B, M) = inf E(B,Mox)) .

x1 €0

In fact the set of equivalence classes (Definition 3.1) of the chains X = (0, x1) is finite. Let
us describe this set, cf. section 3.3 (4). Let § and € be the set of faces f and edges e of I1.
For f € §, let lf be the half-space whose boundary contains f and containing points of [l
near any point of f. For e € &, there are two faces ff adjacent to e. Let [l be the wedge
whose boundary contains e U f} Uf, and containing points of M near any point of f} Uf, .

Let x; € Q. There are three possibilities:

(1) x; is interior to Qg. Then M(gx,) = R>.

(2) x; belongs to a side of Q2. This side is contained in a face f of 1. Then Mg,y = [s.

(3) x; belongs to a vertex of €25. This vertex is contained in an edge e of I1. Then
H(O,xl) - l_le-

We have that
(4.17) &*(B, 1) = min { min £(B, M), mmEBI'I ), 1}.

ece¢
Since (4.8) is proved for d = 2, we have E(B, ) < min{E(B, I ), £(B, Mg )}. Therefore
equation (4.17) becomes

(4.18) &*(B, M) = min{E(B. )}

We recall the Persson Lemma that gives a characterization of the bottom of the essential
spectrum (see [23]):

Lemma 4.11. We have
dess(B, 1) = lim X (B, I, R)

R—+o00
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with
AT
sB.NR) = inf AW
ueC: (T008) [[ul

where Bg is the ball of radius R centered at the origin and CBg its complementary in R3.

Proof. (of Proposition 4.10). Let A be a linear potential associated with B.
Upper bound: We denote by xe- a vertex of o and e* the associated edge such that
&*(B,M) = E(B,Me), cf. (4.18). Let € > 0, there exists 9, € €5°(Me:) a normalized
function such that
Q[A- He*](ws) S E(B, I_Ie*) +eE.

For r > 0 we define

YE(x) 1= A g (x — e,
so that we have, due to gauge invariance and translation effect, cf. Lemma A.3,

supp(r) = supp(We) + rxe-  and  g[A, N]()) = q[A, Me](Pe) -

Let R > 0, for r large enough we have supp(¢.) C CBg and 9. € Dom(g[A, 1]). We get

qlA, N](¥7) = g[A, Me:](We) < E(B, M) + €.
We deduce
Ve >0,VR >0, X(B,M,R)<E(B,Me)+c¢
and Lemma 4.11 provides the upper bound of Proposition 4.10: Aes(B, 1) < &*(B, ).

Lower bound: Let

U U (|t )u(l )

feg ec¢
a covering of Qp according to its stratification, which means that
uOCQo, Z/{fmﬁozﬂfmﬁo (VfES), and Z/{emﬁozﬂeﬁﬁo (Vee@f)
Let Xj, j €3 := {0} UFUE, be an associated partition of unity of the section Qy such that
Y (%)?=1 and supp(x) CU;, Vj €.
JEJ
Let x € ¥>°(Ry) such that x = 0 on [0,%] and x = 1 on [1,4+00). We now define a
partition of the unity of CBx N T by setting

X[\ . (% .
o0 -x(E)2(Z). ses
We have Y (xf)> =1 on CBr N T and
VR>0, > |VX[|?<CR™

JEJ
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Moreover we have supp(xj YNTICT, jey={0}UFUE, where we have set My = R>.
The IMS formula for quadratic forms (see Lemma A.4) provides

v € 6°(MNCBr).  glANI(w) =Y alA M) — CR[Y|
JEJ
=Y alA (X[ %) — CR |9
JEJ
> " E(B. M) X[ Y]* — CR?||9|?
JEJ

> (6*(B, M) = CR7?)[[¥|*.
Thus we deduce the lower bound of Proposition 4.10 by using Lemma 4.11. ]

Then it is clear that Theorem 4.4 in the case of polyhedral cones is a consequence of
Proposition 4.10.

Example 4.12 (Octant). Let M = O be an octant, e.g. (R, )3. We quote from [22, §8]:

(i) If the magnetic field B is tangent to a face but not to an edge, there exists an edge
e such that &*(B, O) = E(B, ) and there holds E(B, O) < E(B, ).

(ii) If the magnetic field B is tangent to an edge e of the octant, £*(B, O) = E(B, 1) =
E(B,0).

5. Continuity properties of the ground energy

Let Q € D(R3) and let B € ¥°(Q) be a continuous magnetic field. In this section we
investigate the continuity properties on Q of the application A : x — E(By, ). Let t be
a stratum of Q (see (1.9)). We have denoted by A, the restriction of A to t (see (1.10)).
Combining (4.3), (4.9), Lemma 4.6 and Lemma 4.8 we get that A; is continuous.

Let us assume that t is not reduced to a point. We now describe how we extend A; to the
boundary of t. Let x € Ot and Iy € $3 be its tangent cone. Let Uy, V, and U, be the open
sets and the diffeomorphism introduced in Subsection 3.1. Let t be the stratum of [, such
that

U(ENUy) =TN Y, .

To t is associated the singular chain X € ¢5(My) such that My is the tangent cone to Iy at
any point of t.

We extend A; in x by setting
(5.1) Ae(x) = E(By, Mx) .

Lemma 5.1. Let Q € D(R®) and let B € €°(Q). Let t a stratum of Q which is not a
vertex. Then formula (5.1) defines a continuous extension of the function /\; to t.
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Proof. For x € Ot we show that the extension defined by (5.1) is continuous in x. Let
y € Uy Nt and [y be the tangent cone to 2 at y. In the following we will prove that
(5.2) lim E(By, MNy) = E(By, MNx) .

y—Xx

For a tangent cone I we denote by d(I1) the dimension of its reduced cone. Since t is not
reduced to a point, we have d(x) = d(Iy) < 2 and we distinguish several cases:

e d =0. My =Ty =R3 It follows from Subsection 4.3 that E(By, MNy) = |B,| and
E(By, lNx) = |Bx|. Therefore (5.2).

e d = 1. Tlx and My are half-spaces. We denote by 6 (respectively 6,) the angle
between By and [x (respectively By and I1y). We have E(By, y) = |By|o(6y) and
E(Bx, INx) = |Bx|o(6«) (see Subsection 4.4). Since 6y goes to 65 when y goes to x,
(5.2) follows from the continuity of the function o, see Lemma 4.6.

e d =2. [lx and [, are wedges. We denote by a, and a, their openings. We denote
by Ux € O3 (respectively Uy € O3) the linear orthogonal transformation which maps
Mx on W, (respectively My on W, ). We have

(53) E(B..Mx) = EB, W,) and E(By,M,) = E(B, Ws,).
where we have denoted B, = U,(B) and B, = U,(By). We have
lim [Ux = UyJ =0 and  lim [orx — aty| = 0,
therefore we deduce (5.2) from (5.3) and Lemma 4.8.

Hence we have proved (5.2) in all cases. O

Let x € Ot, we deduce from (4.8) that
Ae(x) = E(By, Mx) > E(By, My) = A(x) .
Combining this with Lemma 5.1, we obtain the following:

Theorem 5.2. Let Q € D(R?) and let B € €°(Q) be a continuous magnetic field. Then
the function N\ : x — E(By, Ny) is lower semi-continuous on .

6. Upper bound for first eigenvalues

In this section we give upper bounds for the first eigenvalue \,(B, ). Our first result is
general and concerns polyhedral domains:

Theorem 6.1. Let Q € D(R3) be a polyhedral domain, A € W?>=(Q) be a twice differen-
tiable magnetic potential such that the associated magnetic field B does not vanish on Q.
Then there exist C(2) > 0 and hy > 0 such that

(6.1) Vh e (0,h),  An(B,Q) < h&(B, Q)+ C(Q)(L+ [|Alf2mm) .
We recall that the quantity &(B, ) is the lowest local energy defined in (1.6).
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It is possible to obtain an upper bound in (6.1) depending on the magnetic field B and not
on the magnetic potential. For this, we consider B as a datum and associate a potential A
with it. Operators &7 : B — A lifting the curl (i.e. such that curlo.e# = T) and satisfying
suitable estimates do exist in the literature. We quote [6] in which it is proved that such
lifting can be constructed as a pseudo-differential operator of order —1. As a consequence
2/ is continuous between Holder classes of non integer order:

VOL G (O, 1), ElCa > O, ||$Z{BHW2+O¢90(Q) S CaHB||W1+a,OC(Q) .
Choosing A = @B in Theorem 6.1, we deduce the following.

Corollary 6.2. Let Q2 € D(R3) be a polyhedral domain, B € W*t*>(Q) be a non-vanishing
Holder continuous magnetic field of order 1 + o with some o € (0,1). Then there exist
C(Q2) > 0 and hy > 0 such that

(6.2) Vhe (0,h),  An(B,Q) < h&(B, Q)+ C(Q)(L+|IBjyran(g)) h”* .

Theorem 6.1 is proved in subsections 6.1-6.3. Let us give here the main ideas of the proof.
Since the energy x — E(By, y) is lower semi-continuous (see Theorem 5.2), it reaches its
infimum over the compact €2. We denote by xq € €2 a point such that

(6.3) E(By,,My,) = (B, Q)

where 1y, is the tangent cone at xq. Using the diffeomorphism (3.1) Uy, in a small neigh-
borhood of xo and making a Taylor approximation of the metric associated with the change
of variable x — U,/ (x), we are led to study the magnetic Laplacian Hy(A., My,) where Ais
the magnetic potential given by the change of variable associated with Uy, .

Let Ay be the linear part of A at Xo. It satisfies curl Ag = By,. Theorem 4.4 provides a
singular chain X € &(y,) and an associated cone [x such that the operator H(Aq, Mx)
has a generalized eigenfunction associated to the energy E(By,,Iy,). This generalized
eigenfunction will be scaled, truncated and translated in order to give a quasimode for the
operator Hy(Ag, My,). Using the diffeomorphism U, we finally construct a quasimode for
Hp(A, Q) localized in a neighborhood of xo. The estimation of the associated Rayleigh
quotient and the min-max principle will provide Theorem 6.1.

6.1. Change of variables. In this subsection we describe how the operator H,(A, 2) acting
on functions with support in a small neighborhood of a point x € Q is transformed using
the change of variable associated with U, into an operator on the tangent cone [1,. Note
that the results below are valid for any point x € © and will be useful in establishing the
lower bound for the first eigenvalue, see Section 7.

e Magnetic Laplacian with a metric. Let G be a metric of R3, that is a 3 x 3 positive
symmetric matrix with regular coefficients. We define the magnetic Laplacian with metric
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G as the Friedrichs extension of the quadratic form
1A, 2.61%) = [ (hDy— A G(TD, — ATP) 6] i
Q

where A is a magnetic potential associated with the magnetic field B and |G| = detG.
The Friedrichs extension is taken from the space of the square-integrable functions for the
weight |G|~%/2 denoted by LZ(Q) with natural Neumann boundary conditions associated to
the metric G, see [15, §5] for more details. The associated scalar product is (f, g);2(q) =

Jo, fg|G|7/2dx and we denote by || - l2(q) the associated norm.

We also denote by gx[A, Q2] = gu[A, 2, 13] the quadratic form associated with the operator
Hyn(A, €2). These definitions are still valid if we take for the domain a cone 1 € ©5.

e FEffect of a change of variable. Let Uy, Vy, and Uy be the open sets and the diffeomorphism
described in Subsection 3.1. We denote by
Jy:=d(Uh)

the jacobian matrix of the inverse of U,. Let f be a function of H(Q2) compactly supported
in Uy and 1 := f o U ! be the associated function supported in V,. We have

(6.4) an[A, Q(F) = qu[A, N, GJ(W) and  [|f]li2) = 1l ()
where the new magnetic potential and the metric are respectively given by
(6.5) A=J" AoU' and Gyi=J ' (ULDT .

We deduce:

Lemma 6.3. Let Q € D(R3) be a polyhedral domain. Let x € Q and Uy, Vy, Uy be the
open sets and diffeomorphism associated with x, see (3.1). Let A be a magnetic potential.
Let f € HY(Q) be a function compactly supported in Uy. We denote by 1 := f o U ! the
associated function on I, and A the magnetic potential given by (6.5). Let ry > 0 be such
that V, contains the ball B(0, ry) of center O and radius ry. Then there exists a constant
C(QQ) such that for all r € (0, ro], if supp(¢) C B(0, r) we have the two estimates

(6.6) |anlA, T (¥) — anlA, QU(F)| < C(Q) r gulA, TL(W),
(6.7) W2y = I Fllz@| < CQ) r |92y

Proof. Recall that J(x) = I3 and therefore G,(x) = 5. We deduce

(6.8) 1Gx — Is || Lo (B(0.r)) < rl|Gxllwree(y)-
Since Q2 is assumed to be polyhedral, its curvature (curvature of the faces and curvature of

the edges) is bounded, therefore

sup || Gxllwroo vy < +o0.
Xx€ES2

We deduce the Lemma by using (6.8) in (6.4). O
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Therefore we are reduced to study the Laplacian with magnetic potential A on the cone My
with the identity metric.

6.2. Construction of quasimodes. Let x, € Q be a point satisfying (6.3). Thus xg
minimizes the local ground energy. For shortness we denote by A this energy:

(6.9) A= E(By,, MMy,).

In order to prove Theorem 6.1, we are going to construct a family of quasimodes f, € H'(Q)
satisfying the estimate for h < hy (with some chosen positive hg)

an[A, Q(fh)
14112

Let Ag be the linear part of A at xq. Let A be the magnetic potential in the tangent cone
My, N Vy, given by (6.5). Since dUy,(xq) = I3, the linear part of A at xo is still Ay. Let
X € €y(My,) be a singular chain given by Theorem 4.4 and [lMx be the associated tangent
cone. Let W be an admissible generalized eigenvector for H(Aq, lNx) associated with .

(6.10) < A+ C(Q) (1 + [|A][fy20e () ) 1

Up to a rotation, we can assume that the coordinates in My are x = (y, z) € R3 K x 7T,
with T € B, and that in these coordinates, the generalized eigenfunction writes:
(6.11) W(x) =YD d(z), (y,z) eR>KxT,
where ® is an exponentially decreasing function (see Theorem 4.4). The function W satisfies
—IV 4+ Ap)?V = AV in M,
(6.2 (=17 + o) "
(—=i0p+n-Ag)W =0 on Oly.

Then the scaled function

(6.13) Wy (x) = w(\%)

defines a generalized eigenfunction for the operator H,(Ay, Mx) associated with h.

For any R >0, let x, be a cut-off function in €>°(R™) such that

(6.14) (r) = 1ifr <R,
| X\ T 0if r > 2R,
We define the cut-off function

x| _ 1
(6.15) Xn(X) = X, <F with  0<0 < 5
and set
(6.16) PYr(x) = Xn(x)Wn(x)

which provides a quasimode for gn[Ao, Mx] satisfying (—ihd, +n - Ay)WV, = 0 on Ollx.

At this point, let us emphasize that, in order to obtain better cut-off estimates, cf.
Lemma A.5, we need that our quasimodes on the tangent cone [l, satisfy the Neumann
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boundary conditions. Here the dichotomy in Theorem 4.4 comes into play: According as
E(By,, MNy,) is less or equal to &*(By,, Iy,), we are in case (i) or (ii) of the dichotomy and
we define our quasimode in distinct ways as follows.

(i) E(By,. My,) < &*(By,,My,). Then X is the trivial chain (xq) and Mx = T,,. The
function 4, will be our quasimode.

(i) E(By,, My,) = &*(Byy, My,). Then X € & (2). Let U € O3 such that UM, =
R3~9 x [ where I is the reduced cone of I,,. Let €4 be the section of I'. According
to Remark 3.2, there exists x; € Qp so that X = (xo,x1). Let 7 := (0,x;) €
R379 x . We take 7 = U7}(7). and we define our quasimode by

(6.17) PYI(x) = &M gy (x — 7hY),  x €My,
In case (ii), T gives a direction associated to the cone [x starting from the origin of I,,:

(1) If Nx = R3, T belongs to the interior of M,, and 9] is centered on the interior.
(2) If Mx =R3, T belongs to a face of M, and ¥} is centered on the same face.
(3) If Mx = W,, T belongs to an edge of [y, and 9] is centered on the same edge.

Note that unless we are in the last case ([, is a wedge), the choice of T is not unique.
In case (i), to unify notation we set 7 = 0 and ¥} = 4. We choose R =1 in (6.14).
In case (i), we choose R > 0 in (6.14) such that B(T,2R) N T, = B(T,2R) NMx. Hence

(6.18) supp (ZR(' — T)) N My, = supp <XR(' — ‘r)) NMNx .
Note that R depends only on the geometry of {2 near xq. It follows by scaling that
Vh >0, supp(¢y) Ny, = supp(¢p) NMx.
Therefore 1] satisfies Neumann boundary conditions on Olly, and we have
an[Ao. Ml (¥h) = anl[Ao. Nl (¥h) = gn[Ao. Mx](¥n)
the last equality coming from Lemma A.3.

Definition 6.4. The functions 9] € Dom(Hx(Ao, MNy,)) constructed above along formulas
(6.11)-(6.18) are called

(i) sitting quasimodes when T = 0: Their supports contain the vertex 0 of Iy,
(ii) sliding quasimodes when T # 0: Their supports do not contain O but get closer as
h — 0.

6.3. Estimation of the quasimodes. \We separately estimate the cut-off errors, the lin-
earization errors, and error due to the change of metric.
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6.3.1. Cut-off effect. Applying Lemma A.5 with Ay, G = Id, x = X, and ¥ = V,, we
obtain for the Rayleigh quotient of 17 :

nlAo, My [ (F) _ an[Ao, Mx](xnVn)
KA X W2

The following lemma estimates the remainder due to the cut-off effect:

- IVxh Wh|?
= h\+ h° with = —
Ph VAR

(6.19)

Lemma 6.5. Let W be an admissible generalized eigenvector given by (6.11), W, the
rescaled associated function given by (6.13) and x, a cut-off function defined by (6.15).
Then there exists a constant C(Q2) > 0 such that

1 Vxn Wil - C(Q)h== ifk <3,
Ph= T -1
" [xrWall? C(Q)e=r"?  ifk=3
Proof. By assumption, there exist positive constants ¢, C such that
| eio@Pdz < Cloft,
Let us first give a upper bound for ||Vx,Wsl|:
If k < 3, then
C
HVXhWh||2 < = dy /
ly|<2mR TN {|z|<2n0R}
_ _ K
< Ch™28 HE=8 ||| 2, o,

else, if k =3 (here we use § < %)
C

26
h2° Jor o o R<z<2mRY

K 51
< Ch‘25h5/ 1 o e R el o (2) dz
TN{P¥ 2R<|z|<2K 2R}

VXVl

1
< Ch 2 hie <RI 2 |02, .

Let us now consider ||x,Wy|| (we use that 2]y| < R and 2|z| < R implies |x| < R):

2
z
ool = [ oy f @(_)’ iz
Y 2ly|<hR T N{2/z|<hR} vh
_ k R -3
(6.20) > ChBRpz (1 — e c2h 7) H(DH%Z(T)-
Consequently
Ch(3=K)8 p=20 h& h—(3—K)5 j— % (1 B e_cg,p%)—l _ o(r) P
pn <

-1
Ch-28phe—cRN 2 p-(3-K)s - (1- e_Cghé_%) — O(e <R ) ifk=3.
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We notice that all the constants in the above estimation depend only on X, and on the
model problem associated with xg. Lemma 6.5 is proved. [

6.3.2. Linearization. Note that 1] € Dom(qh[ﬂ, My,]). We can compare the quadratic

form for the magnetic potential and its linear part by using (A.3) with A = A A = Ao,
U =Ty, and ¢ = Y7:

(6.21)  qulA, My ](W]) = anlAc, M) (W)
+2Re {(—ihV + Ao)yf, (A — Ag)PT) + [|(A — Ao)yr|I°.

Combining with (6.19) we get

an[A, N ] (¥7)

(6.22) o hX + h?pp,
h _ ~ ~
2Re ((=ihV + Ao)¥}. (A = Ao)y)  [I(A — Ao)uf|P
1712 lnlz
By Cauchy-Schwarz inequality, we obtain easily
A, Myl (¥r
(623) qh[ ’ii/}TT|]2(’L/}h) < hx + h2,0h + 2\/%\/ A+ h,Oh an + aﬁ
h
where we have set
I(A — Ag)yj |
6.24 = :
(©:24) 7l

We now estimate the remainder due to the linearization of A. Since A is the linear part
of A, then for any r € (0, ro] (cf. Lemma 6.3)

x|?

>

By construction, there exists C(£2) > 0 such that the support of 97 is included in B(0, C(2)h?).
Consequently, we obtain immediately

(6.26) an < C(Q) I Allwesuppiapy) 1.

(6.25) Vx € B(0,r),  |A(X) — As(X)| < |Allwess0.0))

Moreover using the definition of A (see (6.5)) we get
HKHWZW(SUpp('L[/;)) < (14 11T —do | o) I) A2 024, )
< (1+CDR) [|Allweee(ey
Thus, putting this last inequality in (6.26), we deduce
(6.27) an < C(Q)||Allwase(e) I
Combining (6.23), (6.27) and Lemma 6.5 we get

anlA, M ] (¥7)

6.28
(6:28) THE

< A+ CQ)(L + [|A[[fy2oe () ) (B2 + BPFH2 4 o)
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Note that we have also used A < [|B|| =) < [|Allwi=(q) (since B = curl A) in order to
control the crossed term v/hv/X + hppay in the right hand side of (6.23).

6.3.3. Quasimode on 2 and estimation of the remainders. \We now define a quasimode for
an[A, €2]. Let us note that for h small enough, ¥} is compactly supported in V,. Therefore
we can define f, € H1(Q) by

f =17 o Uy, .

Combining (6.28) with Lemma 6.3 for r = h® we get

an[A, 2](fn)
lials

Therefore there exists a constant C(2) > 0 such that

anlA, Q(fh)

< (I + C + 1A (P72 + B2 4 1¥9) ) (14 C(Q)R)

(6.29) < A+ CQ) (L + [|A[[fyzme () (B2 BOTH2 4 40 pOFL)

AR
We optimize this upper bound by taking § = %, which provides immediately estimate (6.10).
The min-max principle then yields Theorem 6.1.

6.4. Improvement for a straight polyhedron with constant magnetic field. In this sub-
section we improve Theorem 6.1 for a straight polyhedral domain with constant magnetic
field. Since there is no curvature, we expect smaller remainders in the asymptotics of
(B, €2). Moreover, in that case, we will see that the function x — E(B, I1y) attains its
minimum at a vertex of €2.

Theorem 6.6. Let §2 be a straight polyhedron and B be a constant magnetic field with
|B| = 1. Then

&(B,Q2) = misg E(B,T1,)
ve
where 0 denotes the set of the vertices of 2. We have
(B, Q) < h&(B,Q2) + Ch? .

If there exists v € U such that E(B,T1,) = &(B,Q) < &*(B,T,), then there exist positive
constants C, ¢ such that

An(B, Q) < h&(B, Q) + Ce™ .
Proof. Since the polyhedral domain is assumed to have straight faces and edges and the

magnetic field is constant, the function x — E(B,T1,) is constant on each stratum of .
Let v € U. We apply Theorem 4.4 and relations (4.8) and (4.18) with 1 = T1,:

E(B.M,) < &°(B.MN,) = minE(B, ),
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with &, the subset of & such that for any e € &,, v € Oe and [, the wedge associated with
the edge e. In the same way we prove for each edge e € €:

E(B,Me) < min E(B, M) < 1
feSe

where §. denotes the set of the faces adjacent to an edge e. Therefore

min E(B,T,)=&(B,).

Let vg be a vertex minimizing x — E(B, ). Let x be the tangent cone given by Theorem
4.4, If E(B,M,,) < &*(B,T,,) then Mx = I, and we have an (admissible generalized)
eigenfunction on I1,, associated with £(B, I,,). If E(B,,) = &*(B, I1,), then there exists
a stratum t of €2 associated with [lx such that g is the tangent cone to any point of
t. Moreover for any point x € t we have E(B,T1,) < &*(B,I1y) therefore there exists a
generalized eigenfunction on I, associated to E(B,Tly). In both cases we have found a
point x € Q such that there exists a generalized eigenfunction on [1, associated to & (B, Q).
There exists R, > 0 such that

(6.30) QN B(0,2R,) = My N B(0, 2R,).

We define the quasimode v, as in (6.17) with 6 = 0, 7 = 0 and R = R,. We have
Yp € HY(Q) and gu[A, T,](¥n) = agnlA, Q](r). Using (6.22) and the fact that A equals
its linear part, we have:

anlA, 2 (Pn) _

6.31 hE(B, ) + hpp.

( ) H,L/}hHQ ( ) Ph

Applying Lemma 6.5 with x, as defined in (6.15), 6 = 0 and R = Ry, we have
O(1) if k <3,

6.32 = _

(6:52) o {O(e—ch Py ifk=3.

Then, by the min-max principle and (6.31), we deduce when k < 3:

(B, Q) < hinf E(B,M,) + O(h?) = h&(B, Q) + Ch*.
x€Q
If there exists v € U such that E(B,T1,) = &(B, Q) < &*(B,1,), we use Theorem 4.4,

Proposition 4.10 and there exists an (admissible generalized) eigenfunction with k = 3 of
H(A, 1,) for E(B,T1,). According to (6.31) and (6.32), we have:

an[A, ()

o S MEBN)+Ce
h

(6.33) A(B, Q) <
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7. Lower bound for first eigenvalues

In this section we give a general lower bound on the first eigenvalue, namely:

Theorem 7.1. Let Q € D(R3) be a polyhedral domain, A € W?>=(Q) be a twice differen-
tiable magnetic potential such that the associated magnetic field B does not vanish on Q.
Then there exist C(2) > 0 and hy > 0 such that

(7.1) Vhe (0,h), An(B,Q) > h&(B,Q) — C(Q(L+ |Alf2me)) .
We recall that the quantity &(B, ) is the lowest local energy defined in (1.6).
o Idea of the proof. We first make a partition of the unity of Q such that on each element
we are able to use the change of variable given in (3.1). The local energy of the associated
tangent model problem with frozen magnetic field is then bounded from below by h&' (B, Q2).

As above we then estimate the remainders due to the cut-off effects, the change of variables
and the linearization of the potential.

e IMS localization. Let § € (0,%). For h small enough, let us denote by (x;p ;) a

finite set of pairs (center, radius) provided by Lemma A.6 for p = h°. Relying on Lemma
A.7, we choose a finite associate partition of the unity (x;.x); with xjn € €5°(B(X;h, 25 1))

satisfying
Zthzl on Q
J

and the uniform estimate of gradients
(7.2) AC >0, Vhe(0,h), Vi, [IVxinlliem < Ch .
The IMS formula (see A.4) provides for all f € H(Q)

ahl[A. Q)(F) = 3 _ anlA Q106nf) = h* Y IVx5f 20

and using (7.2) and the finite covering property of the covering we get C(£2) > 0 such that
(7.3) an[A, Q(F) 2 D anlA, Q) — C(QOP 2 IF[I72q
J

where f;, denotes the localized function x; »f.

e [ocal control of the energy. We estimate each term gx[A, Q](f;») appearing in (7.3).
By construction supp(f;s) C Uy,,. Let A*" defined as in (6.5) with x = x;,. Lemma 6.3
applied with r = Kr;, < Ch? provides C(Q) > 0 such that

anlA, Q)(5) A T 1 (W;0)
INE [9.]12

(7.4) > (1-C(Q)h)
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where we have denoted 1, = f;, 0 U 1 Let Afh be the linear part of Ah at the origin of
My, We use (A.3) with ¥ =, and L{ My, -

(75) qh[ﬂj’h' l_lxj,h]('lpj,h) = qh[A{jh' l_lxj,h](’lpjxh)
+2Re ((—ihV + A" ), (A7 — AG" ) ) + | (A — A" )91
Therefore Using the Cauchy-Schwarz inequality:

AV, T 1) = nlAS", T 1) — 2 (@A, M, 1)) 2 AP — ALY ol

We cannot conclude like in (6.23) because we do not have any a priori upper bound on
qh[AJO’h. My, ](¥;n). Thatis why we use the parametric estimate

¥n >0, oA Ny, J(Win) > (1= 1)anlAS" My, J(Wn) — 02 [| (A — ALYl
based on the simple inequality 2ab < na®+ n~'b%. Since curl A" = B,,, we have

an[ A", N 1(Win) > RE(By,,, T ) 19512 -

Moreover using (6.25) and the same arguments as in Section 6.3.2 we get
|(A" = AG")nll* < CQ(L+ A2 )Nl
We deduce for all n > 0:
Gn[A" T J(W10) = (1= mhE(By,, Mo )[Wnll” =17 C(Q)(L + Al W0l
Choosing m = h*~1/2 we get
(76)  GulA". T J(Wn) > (PE(BL,. My,) = CQ+ A2 ) P22 ) 18P

> (h& (B, Q) — C(QL+ |Alzne )PP [191]12

e Conclusion. Combining the previous localized estimate (7.6) with (7.4) we deduce:
(A QA(£4) > (hE(B. Q) = CL+ Al (P42 + 1) |15,
Summing up in j and using that ) f7 = f* we obtain

7)Y @A QU(6) = (hE(B.Q) = CD+ A (152 + 1) | 72

and combining (7.7) with (7.3) we get C(2) > 0 such that

(7.8) Vf e HY(Q),

anlA, Q(F)
1712

We optimize this by taking § = % and we deduce Theorem 6.1 from the min-max principle.

> h&(B, Q) — C(Q)(1+ HA||5V2,°0(Q)) (HO+L/2 4 18 4 p2-26)

Like in the last section, we have a result using only a Holder norm of the magnetic field:
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Corollary 7.2. Let Q2 € D(R®) be a polyhedral domain, B € Wt**(Q) be a non-vanishing
Holder continuous magnetic field of order 1 + o with some o € (0,1). Then there exist
C(Q2) > 0 and hy > 0 such that

(7.9) Vh e (0,h),  An(B,Q) > h&(B, Q) — C(Q)(L+|IBljy1anim))h”* .

Appendix A. Technical lemmas

A.1l. Gauge transform.

Lemma A.1. Let ¢ be a regular function in Q.
A function vy, is an eigenfunction for the operator H,(A, Q) if an only if /", is an
eigenfunction for Hy,(A + Vi, Q) associated with the same eigenvalue.

Proof. It is enough to notice
Ha(A+V60,Q) (¢Fuy) = eFHy (A Q)
O

Lemma A.2. Let B be a smooth magnetic field. There exists an associated magnetic
potential A such that curl A = B and one component of A — Ay cancels, where Ay denotes
the linear part of A at 0.

Proof. Let us pros that we can cancel the first component of A — A,.

Let A be a magnetic potential such that curl A = B and A, its linear part. We can write
A — Ay = (P1, P, P5) where P, satisfy P(0) = 0 and (VP,)(0) = 0. In particular, this
means the the Taylor expansion of P, starts with coefficients of degree at least 2. Let

X1
©(x1, X2, X3) 3:/ Pi(x, X2, x3)dx.
0

We define A := A — V. Then Aq is still the linear part of A, and the first component of
A — A, equals zero. ]

A.2. Translation. Let us remark that if B is a constant magnetic field, an associate mag-
netic potential is given by

(A1) AS(x) = %B/\x.

Indeed we have

curIAS:%V/\(B/\x): (V-x)B—(V-B)x)=B.

Wl
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Lemma A.3 (Translation). Let Q be a domain and B be a constant magnetic field. Let
A be a linear magnetic potential such that curlA = B. Let d € R3 be a vector and
Qq = Q+d be the translated domain. Then Hu(A, Qq4) and H,(A, Q) are unitary equivalent.
For 1 € Dom(Hy(A,2)) we denote by ¥4 : y — (y — d) the translated function. Let
o(y) == y-A(d). Then v is an eigenfunction of Hn(A, ) if and only if €%/"y is an
eigenfunction of Hy(A, €2g).

Moreover if the magnetic potential is A = A® (given by (A.1)), we have

(A2) o(y) =3y (BAd)=3d-(yAB) =3B (dAy).

Proof. Let A4(y) := A(y — d) be the translated magnetic potential. We have:
3 s an eigenfunction of (ihV +A)> on Q
<= 1)y is an eigenfunction of (ihV + Ag)> on Qg
= e®/h, is an eigenfunction of (ihV 4+ Aq+ Vp)> on Qg .

Therefore we are led to choose ¢(y) such that Vo = A — A4. Since A is linear we get
Vo(y) = A(d) and we take @(y) :=y-A(d). Moreover if A is given by (A.1), we get (A.2)
using basic vectorial identities. O

A.3. Comparison between two potentials. Let A and A’ be two magnetic potentials.
Then, for any function 1 of Dom(gx[A, U]) N Dom(gu[A’,U]), we have:

(A3)  gnlA UI(Y) = agn[A U(P) +2Re ((—=ihV + A)p, (A — A)p) + [[(A = AP,
A.4. Cut-off effect.

Lemma A.4 (IMS formula). Assume that x1, ..., XL € €<(Q) are such that

L
fozl on €.
=1

Then, for any ¥ € HY(Q)
L

qlA; Q (W) =D alA; QM (xe) = Y [9Vxel a0

/=1 =1

Lemma A.5. Let ¢ € Domoc(Hn(A, €2, G)) and x € €5°(R") a real smooth function.
Then

(A4)  anlA, Q Gl(x¥) = Re (xHn(A, Q. G)¥, x¥), + h2/vaLva|¢\2 |G| ~*2dx.

Compare with [13, (6.11)] and [11, Proposition 7.2.1].

Proof. Let
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o |G|7Y2G = (9jk) ;i (symmetric matrix)
[ ] XJ‘U = (hDXJ + Aj)U
L] jX = hDXJX
We have the commutation relation

Xi(x¥) = x X + 9 Y;x.

Then

(A5)  alA.0.G0w) =Y /Q G X, () Ko oc) dx

= Z/ gk (XX + P Y;x) (X Xk + 9P Yix) dx
Kk 7
:/1+/2+/3

Let us analyze each part.

For /1, we make an integration by part
b= [ g xXd dx
jk 7%
- Z/ G X2 X X dx
jk 79
S [ Xulow %) B dx+ i [ o g X B
JTARAL x Jon

Using the boundary conditions of 4, the sum of the contributions of the boundary terms
cancels. In the first term, we have to commute x? with X,. Then

(6) 1= [ xXule Xw) T ax+ 3 [ 2 Vix g X o
Jjk jk 7O
— /1,1 + /1'2.

We write /o

lr = Z/ngk (XX W) (W Yix) + gix (Y Y;x) (XXe) dx
Jk
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We combine this with the second member /;, of /; and we use that x is real and that
Yyx = —1hOk:

Lo+ 1= —/hZ/QQ ik X OkX X ¥ — gix X Okx X P + gi X ;X P Xy dx
Ik

:—/hZ/gjk X X X% P+ gk X Ojx Y Xip dx
jk 7

Since 9jk = Gkj, B
Zgjk X OkxX Xy Y+ gjxe X Ojx ¥ Xy

jk
is a real function. We deduce
(A?) Re(/l,z + /2) =0.
Therefore
(A.8) Iy = Z/ Gk ¥ Yjx P Yix dx
jk 79
=13 [ gx 0x 0x ¥ ix
jk 7
We deduce (A.4) from (A.5)-(A.8). O

A.5. IMS partition.

Lemma A.6. Let n > 1 be the space dimension. M denotes R" or S". Let Q € ©D(M)
and K > 1. There exist a positive integer Lo and two positive constants po < 1, and
ko < 1 (depending also on K) such that for all p € (0, pq], there exists a (finite) set
Z C Q X [kap, p] satisfying the following four properties

(1) We have the inclusion Q C U ez B(x, r)
(2) For any (x,r) € &, the ball B(x, Kr) is included in a map-neighborhood Uy associ-
ated with x, cf. (3.1)
(3) Each point x, of Q belongs to at most Lq different balls B(x, Kr).
Proof. The principle of the proof is a recursion on the dimension n.

The first step is an explicit construction when d = 1: The domain €2 is then an interval.

The second step consists in deducing a “local” result on a cone I € PB4 or a wedge R"9 x T
from the global result on the section Qg € S9! of T

The third step consists in applying a local diffeomorphism.

The fourth step consists in gluing together several local partitions to solve the case of 2.
This latter step simply amounts to merge the local coverings. O
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Lemma A.7. Let Q € D(R3) and, with the notations of Lemma A.6, p € (0, pa]. Let Z C
Q x [kap, p] be the associate set of pairs (center, radius). Then there exists a collection of
smooth functions (X(x.r))x.rnez With X(x.rn € €5°(B(x, 2r)) satisfying the identity (partition

of unity) B
Z x%x',) =1 on Q
(x,r)ez

and the uniform estimate of gradients
IC>0, V(x,nNeZ, [[Vxxnlieg <Cot,

where C only depends on (2.

Proof. Let . € 65°(B(x, 2r)), with the property that £ ) = 1 in B(x, r), and satisfying
IVEn L@ < Crt
where C is a universal constant. Then we set for each (xq, 1) € £
o) = €(x0.10)
X0, I - .
o (Z(x,r)efg E(2x,r))1/2

Due to property (1) in Lemma A.6, Z(X,r)eg 5(2”) > 1 and due to property (3),
| Z V&G llie@s < Claq.
(x,r)ez
We deduce the lemma. O
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