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GROUND ENERGY OF THE MAGNETIC LAPLACIAN

IN POLYHEDRAL BODIES

VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF

Abstract. The asymptotic behavior of the first eigenvalues of magnetic Laplacian operators

with large magnetic fields and Neumann realization in polyhedral domains is characterized by

a hierarchy of model problems. We investigate properties of the model problems (continuity,

semi-continuity, existence of generalized eigenfunctions). We prove estimates for the remain-

ders of our asymptotic formula. Lower bounds are obtained with the help of a classical IMS

partition based on adequate coverings of the polyhedral domain, whereas upper bounds are

established by a novel construction of quasimodes, qualified as sitting or sliding according to

spectral properties of local model problems.
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2 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF

6.1. Change of variables 28

6.2. Construction of quasimodes 29

6.3. Estimation of the quasimodes 32

6.4. Improvement for more regular magnetic fields 37

6.5. Improvement for a straight polyhedron with constant magnetic field 45

7. Lower bound for first eigenvalues 47

Appendix A. Technical lemmas 49

A.1. Gauge transform 49

A.2. Change of variables 51

A.3. Miscellaneous 52

A.4. Cut-off effect 52

Appendix B. Partition of unity suitable for IMS formulas 53

References 58

1. Introduction. Main results

The Schrödinger operator with magnetic field (also called magnetic Laplacian) takes the

form

(−i∇+A)2

where A is a given vector field that will be assumed to be regular. When set on a domain Ω of

Rn (n = 2 or 3) and completed by natural boundary conditions (Neumann), this operator is

denoted by H(A,Ω). If Ω is bounded with Lipschitz boundary, the form domain of H(A,Ω)

is the standard Sobolev space H1(Ω) and H(A,Ω) is positive self-adjoint with compact

resolvent. The ground state of H(A,Ω) is the eigenpair (λ,ψ)

(1.1)

{
(−i∇+A)2ψ = λψ in Ω,

(−i∂n + n · A)ψ = 0 on ∂Ω,

associated with the lowest eigenvalue λ. If Ω is simply connected, its eigenvalues only depend

on the magnetic field B defined as

(1.2) B = curlA.

The eigenvectors corresponding to two different instances of A for the same B are deduced

from each other by a gauge transform.

Introducing a (small) parameter h > 0 and setting

Hh(A,Ω) = (−ih∇+ A)2 with Neumann b.c. on ∂Ω,

we get the relation

(1.3) Hh(A,Ω) = h
2H

(A
h
,Ω

)
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linking the problem with large magnetic field to the semiclassical limit h → 0. We denote by
λh(B,Ω) (or λh if no confusion is possible) the smallest eigenvalue of Hh(A,Ω) and by ψh
an associated eigenvector, so that

(1.4)

{
(−ih∇+ A)2ψh = λhψh in Ω ,

(−ih∂n + n · A)ψh = 0 on ∂Ω .

The behavior of λh as h → 0 clearly provide equivalent information about the lowest eigen-
value of H(Ă,Ω) when B̆ is large, especially in the parametric case when B̆ = BB where the

real number B tends to +∞ and B is a chosen reference magnetic field.
From now on, we consider that B is fixed. We assume that it is smooth and does not

vanish1 on Ω. The question of the semiclassical behavior of λh has been considered in

many papers for a variety of domains, with constant or variable magnetic fields: Smooth

domains [23, 18, 13, 2, 34] and polygons [4, 5, 6] in dimension n = 2, and mainly smooth

domains [24, 19, 20, 35, 14] in dimension n = 3. Until now, three-dimensional non-smooth

domains are only addressed in two particular configurations—rectangular cuboids [28] and

lenses [30, 33], with special orientation of the (constant) magnetic field. We give more detail

about the state of the art in Section 2.

1.1. Asymptotic formulas with remainders. Let us briefly describe our main results in the

three-dimensional setting.

Each point x in the closure of a polyhedral domain Ω is associated with a dilation invariant,

tangent open set Πx, according to the following cases:

(1) If x is an interior point, Πx = R
3,

(2) If x belongs to a face f (i.e., a connected component of the smooth part of ∂Ω), Πx

is a half-space,

(3) If x belongs to an edge e, Πx is an infinite wedge,

(4) If x is a vertex v, Πx is an infinite polyhedral cone.

Let Bx be the magnetic field frozen at x. Let E(Bx ,Πx) be the bottom of the spectrum

(ground energy) of the tangent operator H(Ax ,Πx) where Ax is the linear approximation of

A at x, so that

curlAx = Bx .

We introduce the quantity

(1.5) E (B,Ω) := inf
x∈Ω

E(Bx ,Πx).

In this paper, we prove that this quantity provides the value of the limit of λh/h as h → 0
with some control of the convergence rate as h → 0, namely
(1.6) − Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch5/4,
1Should B cancel, the situation would be very different, leading to another type of asymptotics [17, 12].
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where the constant C is bounded by the norm of A in W 2,∞(Ω), as proved in Theorems 6.1
and 7.1. We can also control the constant C by the magnetic field B as established in

Corollaries 6.2 and 7.2. With the point of view of large magnetic fields in the parametric

case B̆ = BB, (1.6) yields obviously

(1.7) − CB3/4 ≤ λ(B̆,Ω)−BE (B,Ω) ≤ CB3/4, as B → +∞.
Note that BE (B,Ω) = E (B̆,Ω) by homogeneity (see Lemma A.5).

If the magnetic potential is more regular A ∈ W 3,∞(Ω), we establish in Theorem 6.3 a better
upper bound:

(1.8) − Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch4/3,
where the constant C is bounded by the norm of A in W 3,∞(Ω) and can be controlled by the
magnetic field B as mentioned in Corollary 6.4. Like for (1.7), we deduce the asymptotics

for large magnetic fields B̆ = BB:

(1.9) − CB3/4 ≤ λ(B̆,Ω)−BE (B,Ω) ≤ CB2/3, as B → +∞.
These results are new in this generality. In view of [20, Theorem 1.1] (in the smooth three-

dimensional case) the upper bound in (1.9) is optimal. The lower bound coincides with the

one obtained in the smooth case in dimensions 2 and 3 when no further assumptions are

done. In the literature, improvements of the convergence rates are possible in certain cases

when one knows more on E (B,Ω), in particular whether the infimum is attained in some

special points.

Our result does not need such extra assumptions, but our proofs have to distinguish cases

whether the local ground energies E(Bx ,Πx) are attained or not, and we have to understand

the behavior of the function x 7→ E(Bx ,Πx) when x spans the different regions of Ω. We

have proved very general continuity and semi-continuity properties as described now.

Let F be the set of faces f, E the set of edges e and V the set of vertices of Ω. They form

a partition of the closure of Ω, called stratification

(1.10) Ω = Ω ∪
(⋃

f∈F
f
)
∪
( ⋃

e∈E
e
)
∪
( ⋃

v∈V
v
)
.

The sets Ω, f, e and v are called the strata of Ω, compare with [25] and [27, Ch. 9]. We

denote them by t and their set by T. For each stratum t, let us denote by Λt the function

(1.11) Λt : t ∋ x 7→ E(Bx ,Πx).

We will show the following facts

a) The function x 7→ E(Bx ,Πx) is lower semi-continuous on Ω.

b) For each stratum t ∈ T, the function Λt is continuous on t and can be continuously

extended to the closure t̄ of t. Moreover, for each x0 ∈ t̄, Λt(x0) is the bottom of

the spectrum E(BX ,ΠX) of a tangent magnetic operator H(AX,ΠX) associated with

a singular chain X originating at x0.
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As a consequence, the infimum determining the limit E (B,Ω) in (1.5) is a minimum

(1.12) E (B,Ω) = min
x∈Ω

E(Bx ,Πx) .

1.2. Contents of the paper. In Section 2 we place our results in the framework of existing

literature for dimensions 2 and 3. In Section 3 we introduce the wider class of corner domains,

alongside with their tangent cones and singular chains. We particularize these notions in

the case of three-dimensional polyhedral domains. In Section 4 we introduce and classify

magnetic model problems on tangent cones (taxonomy) and extract from the literature

related facts. We show that to each point x ∈ Ω is associated a singular chain X originating
at x for which the tangent operator H(AX,ΠX) possesses admissible generalized eigenvectors

with energy E(Bx ,Πx). In Section 5 we prove the semi-continuity and continuity properties

of the functions x 7→ E(Bx ,Πx) on Ω and its strata. In Section 6 we prove the upper bounds

λh(B,Ω) ≤ hE (B,Ω) + Chκ, with κ = 5/4 or κ = 4/3 according to the regularity of A,

by a construction of quasimodes based on admissible generalized eigenvectors for tangent

problems. In Section 7 we prove the lower bound hE (B,Ω)−Ch5/4 ≤ λh(B,Ω) by a classical
IMS formula.

1.3. Notations. For a generic (unbounded) self-adjoint operator L we denote by Dom(L)

its domain and S(L) its spectrum. Likewise the domain of a quadratic form q is denoted by

Dom(q).

Domains as open simply connected subsets of Rn are denoted by O if they are generic, Π if
they are invariant by dilatation (cones) and Ω if they are bounded.

In this paper, the quadratic forms of interest are those associated with magnetic Laplacians,

namely, for a positive constant h, a smooth magnetic potential A, and a generic domain O

(1.13) qh[A,O](f ) :=
∫

O
(−ih∇+ A)f · (−ih∇+ A)f dx,

and its domain

(1.14) Dom(qh[A,O]) = {f ∈ L2(O), (−ih∇+ A)f ∈ L2(O)} .

For a bounded domain Ω, Dom(qh[A,Ω]) coincides with H
1(Ω). For h = 1, we omit the

index h, denoting the quadratic form by q[A,O].
In relation with changes of variables, we will also use the more general form with metric:

(1.15) qh[A,O,G](ψ) =
∫

O
(−ih∇+ A)ψ · G

(
(−ih∇+ A)ψ

)
|G|−1/2 dx,

where G is a smooth function with values in 3×3 positive symmetric matrices and |G| = detG.
Its domain is (see [20, §5] for more details)

Dom(qh[A,O,G]) = {ψ ∈ L2G(O), G1/2(−ih∇+ A)ψ ∈ L2G(O)} ,
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where L2G(O) is the space of the square-integrable functions for the weight |G|−1/2 and G1/2
is the square root of the matrix G.

The domain of the magnetic Laplacian with Neumann boundary conditions on the set O is

(1.16) Dom (Hh(A,O)) =
{
ψ ∈ L2(O),

(−ih∇+A)2ψ ∈ L2(O) and (−ih∂n + n · A)ψ = 0 on ∂O
}
.

We will also use the space of the functions which are locally2 in the domain of Hh(A,O):

(1.17) Dom loc (Hh(A,O)) := {ψ ∈ H1loc(O),
(−ih∇+A)2ψ ∈ H0loc(O) and (−ih∂n + n ·A)ψ = 0 on ∂O}.

When h = 1, we omit the index h in (1.16) and (1.17).

2. State of the art

Here we collect some results of the literature about the semiclassical limit for the first eigen-

value of the magnetic Laplacian depending on the geometry of the domain and the variation

of the magnetic field. We briefly mention the case when the domain has no boundary, before

reviewing in more detail what is known on bounded domains Ω ⊂ Rn with Neumann boundary
condition depending on the dimension n ∈ {2, 3}. To keep this section relatively short, we
only quote results related with our problematics, i.e., the asymptotic behavior of the ground

energy with error estimates from above and from below.

2.1. Without boundary or with Dirichlet conditions. Here M is either a compact Rie-

mannian manifold without boundary or Rn, and Hh(A,M) is the magnetic Laplacian asso-

ciated with the 1-form A. In this very general framework, the magnetic field is the 2-form

B = curlA. Then for each x ∈ M the local energy at x is the intensity
b(x) := 1

2
Tr([B∗(x) · B(x)]1/2)

and E (B,M) = b0 := infx∈M b(x). It is proved by Helffer and Mohamed in [17] that if b0 is
positive and under a condition at infinity if M = Rn, then

∃C > 0, −Ch5/4 ≤ λh(B,M)− hE (B,M) ≤ Ch4/3 .
More precise results are proved in dimension 2 when b admits a unique positive non-degenerate

minimum: A complete asymptotic expansion of the eigenvalues of Hh(A,M) in powers of√
h has been obtained by Helffer and Kordyukov in [15], and improved in by Vũ Ngo.c and

Raymond in [38] where it is proved that the sole integer powers of h appear in the expansion.

These results imply in particular that with these assumptions there holds

|λh(B,M)− hE (B,M)| ≤ Ch2.
2Here Hmloc(O) denotes for m = 0, 1 the space of functions which are in Hm(O ∩ B) for any ball B.
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The case of Dirichlet boundary condition is very close to the case without boundary.

2.2. Neumann conditions in dimension 2. In contrast, when Neumann boundary condi-

tions are applied on the boundary, the local energy drops significantly as was established in

[39] by Saint-James and de Gennes as early as 1963. In this review of the dimension n = 2,

we classify the domains in two categories: those with a regular boundary and those with a

polygonal boundary.

2.2.1. Regular domains. Let Ω ⊂ R2 be a regular domain and B be a regular non-vanishing
scalar magnetic field on Ω. To each x ∈ Ω is associated a tangent problem. According
to whether x is an interior point or a boundary point, the tangent problem is the magnetic

Laplacian on the plane R2 or the half-plane Πx tangent to Ω at x, with the constant magnetic

field Bx ≡ B(x). The associated spectral quantities E(Bx,R
2) and E(Bx,Πx) are respectively

equal to |Bx| and |Bx|Θ0 where Θ0 := E(1,R2+) is a universal constant whose value is close
to 0.59 (see [39]). With the quantities

(2.1) b = inf
x∈Ω
|B(x)| and b′ = inf

x∈∂Ω
|B(x)|,

we find

E (B,Ω) = min(b, b′Θ0) .

In this generality, the asymptotic limit

(2.2) lim
h→0

λh(B,Ω)

h
= E (B,Ω)

is proved by Lu and Pan in [23]. Improvements of this result depend on the geometry and

the variation of the magnetic field as we describe now.

• Constant magnetic field. If the magnetic field is constant and normalized to 1, then
E (B,Ω) = Θ0. The following estimate is proved by Helffer and Morame:

∃C > 0, −Ch3/2 ≤ λh(1,Ω)− hΘ0 ≤ Ch3/2 ,
for h small enough [18, §10], while the upper bound was already given by Bernoff and
Sternberg [3]. This result is improved in [18, §11] in which a two-term asymptotics is
proved, showing that a remainder in O(h3/2) is optimal. Under the additional assumption that

the curvature of the boundary admits a unique and non-degenerate maximum, a complete

expansion of λh(1,Ω) is provided by Fournais and Helffer [13].

• Variable magnetic field. Here we recall results from [18, §9] for variable magnetic fields
(we use the notation (2.1))

If b < Θ0b
′, ∃C > 0, |λh(B,Ω)− hb| ≤ Ch2,(2.3a)

If b > Θ0b
′, ∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hΘ0b′ ≤ Ch3/2,(2.3b)

If b = Θ0b
′, ∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hb ≤ Ch2,(2.3c)
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Under non-degeneracy hypotheses, the optimality of the interior estimates (2.3a) is a conse-

quence of [15], whereas the eigenvalue asymptotics provided in [34, 37] yield that the upper

bound in (2.3b) is sharp.

2.2.2. Polygonal domains. Let Ω be a curvilinear polygon and let V be the (finite) set of

its vertices. In this case, new model operators appear on infinite sectors Πx tangent to Ω

at vertices x ∈ V. By homogeneity E(Bx ,Πx) = |B(x)|E(1,Πx) and by rotation invariance,

E(1,Πx) only depends on the opening α(x) of the sector Πx. Let Sα be a model sector of
opening α ∈ (0, 2π). Then

E (B,Ω) = min
(
b, b′Θ0,min

x∈V
|B(x)|E(1,Sα(x))

)
.

In [4, §11], it is proved that
∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch9/8.

This estimate can be improved under the assumption that

(2.4) E (B,Ω) < min(b, b′Θ0),

which means that at least one of the corners makes the energy lower than in the regular

case: The asymptotic expansions provided in [5] then yield the sharp estimates

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch3/2 .

From [21, 4] follows that for all α ∈ (0, π
2
] there holds

(2.5) E(1,Sα) < Θ0.
Therefore condition (2.4) holds for constant magnetic fields as soon as there is an angle

opening αx ≤ π
2
. Finite element computations by Galerkin projection as presented in [6]

suggest that (2.5) still holds for all α ∈ (0, π). Let us finally mention that if Ω has straight
sides and B is constant, the convergence of λh(B,Ω) to hE (B,Ω) is exponential: Their

difference is bounded by C exp(−βh−1/2) for suitable positive constants C and β (see [5]).

2.3. Neumann conditions in dimension 3. In dimension n = 3 we still distinguish the

regular and singular domains.

2.3.1. Regular domains. Here Ω ⊂ R3 is assumed to be regular. For a continuous magnetic
field B it is known ([24] and [19]) that (2.2) holds. In that case

E (B,Ω) = min
(
inf
x∈Ω
|B(x)|, inf

x∈∂Ω
|B(x)|σ(θ(x))

)
,

where θ(x) ∈ [0, π
2
] denotes the unoriented angle between the magnetic field and the bound-

ary at the point x ∈ ∂Ω, and the quantity σ(θ) is the bottom of the spectrum of a model
problem, see Section 4. Let us simply mention that σ is increasing on [0, π

2
] and that

σ(0) = Θ0, σ(π/2) = 1.
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• Constant magnetic field. Here the magnetic field B is assumed to be constant and unitary.
There exists a non-empty set Σ of ∂Ω on which B(x) is tangent to the boundary. In that

case we have

E (B,Ω) = Θ0 .

Theorem 1.1 of [20] states that

∃C > 0, |λh(B,Ω)− hΘ0| ≤ Ch4/3,
for h small enough. Under some extra assumptions on Σ, Theorem 1.2 of [20] yields a

two-term asymptotics for λh(B,Ω) showing the optimality of the previous estimate.

• Variable magnetic field. Let B be a smooth non-vanishing magnetic field. There holds
[14, Theorem 9.1.1]

∃C > 0, −Ch5/4 ≤ λh(B,Ω)− hE (B,Ω) ≤ Ch5/4 .
The proof of this result was already sketched in [24]. In [20, Remark 6.2], the upper bound

is improved to O(h4/3).

Under the following two extra assumptions

a) The inequality infx∈∂Ω |B(x)|σ(θ(x)) < infx∈Ω |B(x)| holds,
b) The function x 7→ |B(x)|σ(θ(x)) reaches its minimum at a point x0 where B is neither
normal nor tangent to the boundary,

a three-term quasimode is constructed in [35], providing the sharp upper bound:

∃C > 0, λh(B,Ω)− hE (B,Ω) ≤ Ch3/2 .

2.3.2. Singular domains. Until now, two examples of non-smooth domains have been ad-

dressed in the literature. In both cases, the magnetic field B is assumed to be constant.

• Rectangular cuboids. The case where Ω is a rectangular cuboid (i.e., the product of three
bounded intervals) is considered by Pan [28]: The asymptotic limit (2.2) holds for such a

domain and there exists a vertex v ∈ V such that E (B,Ω) = E(B,Πv). Moreover, in the

case where the magnetic field is tangent to a face but is not tangent to any edge, there

holds

E(B,Πv) < inf
x∈Ω\V

E(B,Πx)

and eigenfunctions associated to λh(B,Ω) concentrate near corners as h → 0.

• Lenses. The case where Ω has the shape of a lens is treated in [30] and [33]. The domain
Ω is supposed to have two faces separated by an edge e that is a regular loop contained in

the plane x3 = 0. The magnetic field considered is B = (0, 0, 1).

It is proved in [30] that, if the opening angle α of the lens is constant and ≤ 0.38π,
inf
x∈e
E(B,Πx) < inf

x∈Ω\e
E(B,Πx)
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and that the asymptotic limit (2.2) holds with the following estimate:

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch5/4 .
When the opening angle of the lens is variable and under some non-degeneracy hypotheses,

a complete eigenvalue asymptotics is obtained in [33] resulting into the optimal estimate

∃C > 0, |λh(B,Ω)− hE (B,Ω)| ≤ Ch3/2 .

3. Polyhedral domains and their singular chains

For the sake of completeness and for ease of further discussion, in the same spirit as in [10,

Section 2], we introduce here a recursive definition of two intertwining classes of domains

a) Pn, a class of infinite open cones in R
n.

b) D(M), a class of bounded connected open subsets of a smooth manifold without

boundary—actually, M = Rn or M = Sn, with Sn the unit sphere of Rn+1,

3.1. Domains and tangent cones. We call a cone any open subset Π of Rn satisfying

∀ρ > 0 and x ∈ Π, ρx ∈ Π,
and the section of the cone Π is its subset Π ∩ Sn−1. Note that S0 = {−1, 1}.
Initialization: P0 has one element, {0}. D(S0) is formed by all subsets of S0.
Recurrence: For n ≥ 1,

(1) Π ∈ Pn if and only if the section of Π belongs to D(S
n−1),

(2) Ω ∈ D(M) if and only if for any x ∈ Ω, there exists a cone Πx ∈ Pn and a local C
∞

diffeomorphism Ux which maps a neighborhood Ux of x in M onto a neighborhood Vx
of 000 in Rn and such that

(3.1) Ux(Ux ∩Ω) = Vx ∩ Πx and Ux(Ux ∩ ∂Ω) = Vx ∩ ∂Πx.

We assume without restriction that the differential of Ux at the point x is the identity

matrix In. The cone Πx is said to be tangent to Ω at x.

Examples:

• The elements of P1 are R, R+ and R−.
• The elements of D(S1) are S1 and all open intervals I ⊂ S1 such that I 6= S1.
• The elements of P2 are R2 and all sectors with opening α ∈ (0, 2π), including
half-spaces (α = π).

• The elements of D(R2) are curvilinear polygons with piecewise non-tangent smooth
sides. Note that corner angles do not take the values 0 or 2π, and that D(R2)

includes smooth domains.

Definition 3.1. Let On denote the group of orthogonal linear transformations of R
n.
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a) We say that a cone Π is equivalent to another cone Π′ and denote

Π ≡ Π′

if there exists U ∈ On such that UΠ = Π
′.

b) Let Π ∈ Pn. If Π is equivalent to R
n−d × Γ with Γ ∈ Pd and d is minimal for such

an equivalence, Γ is said to be a minimal reduced cone associated with Π.

c) Let x ∈ Ω and let Πx be its tangent cone. We denote by d0(x) the dimension of the

minimal reduced cone associated with Πx.

3.2. Recursive definition of singular chains. A singular chain X = (x0, x1, . . . , xν) ∈ C(Ω)

(with a natural number ν) is a finite collection of points according to the following recursive

definition.

Initialization: x0 ∈ Ω,

• Let Cx0 be the tangent cone to Ω at x0 (here Cx0 = Πx0),

• Let Γx0 ∈ Pd0 be its minimal reduced cone: Cx0 = U
0(Rn−d0 × Γx0).

• Alternative:
– If ν = 0, stop here.

– If ν > 0, then d0 > 0 and let Ωx0 ∈ D(Sd0−1) be the section of Γx0

Recurrence: xj ∈ Ωx0,...,xj−1 ∈ D(Sdj−1−1). If dj−1 = 1, stop here (ν = j). If not:

• Let Cx0,...,xj be the tangent cone to Ωx0,...,xj−1 at xj ,

• Let Γx0,...,xj ∈ Pdj be its minimal reduced cone: Cx0,...,xj = U
j(Rdj−1−1−dj × Γx0,...,xj ).

• Alternative:
– If j = ν, stop here.

– If j < ν, then dj > 0 and let Ωx0,...,xj ∈ D(Sdj−1) be the section of Γx0,...,xj .

Note that n ≥ d0 > d1 > . . . > dν. Hence ν ≤ n. Note also that for ν = 0, we obtain the
trivial one element chain (x0) for any x0 ∈ Ω.
While C(Ω) is the set of all singular chains, for any x ∈ Ω, we denote by Cx(Ω) the subset

of chains originating at x, i.e., the set of chains X = (x0, . . . , xν) with x0 = x. Note that

the one element chain (x) belongs to Cx(Ω). We also set

(3.2) C∗x(Ω) = {X ∈ Cx(Ω), ν > 0} = Cx(Ω) \ {(x)}.

We set finally, with the notation 〈y〉 for the vector space generated by y,
(3.3)

ΠX =





Cx0 = Πx0 if ν = 0,

U0
(
Rn−d0 × 〈x1〉 × Cx0,x1

)
if ν = 1,

U0
(
Rn−d0 × 〈x1〉 × . . .× Uν−1

(
Rdν−2−1−dν−1 × 〈xν〉 × Cx0,...,xν

)
. . .

)
if ν ≥ 2.

Note that if dν = 0, the cone Cx0,...,xν coincides with R
dν−1−1, leading to ΠX = R

n.
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Definition 3.2. Let X = (x0, . . . , xν) and X
′ = (x′0, . . . , x

′
ν ′) be two chains in C(Ω). We say

that X is equivalent to X′ if x0 = x′0 and ΠX = ΠX′.

Special subsets of Ω: For d ∈ {0, . . . , n}, let
(3.4) Ad(Ω) = {x ∈ Ω, d0(x) = d}.
The strata of Ω are the connected components of Ad(Ω), for d ∈ {0, . . . , n}. They are
denoted by t and their set by T.

Examples:

• A0(Ω) coincides with Ω.

• A1(Ω) is the subset of ∂Ω of the regular points of the boundary.

• If n = 2, A2(Ω) is the set of corners.
• If n = 3, A2(Ω) is the set of edge points.
• If n = 3, A3(Ω) is the set of corners.

3.3. Polyhedral domains. Polyhedral domains and polyhedral cones form subclasses of

D(M) and Pn, denoted by D(M) and Pn, respectively:

a) The cone Π ∈ Pn is a polyhedral cone if its boundary is contained in a finite union

of (hyper)surfaces. We write Π ∈ Pn.

b) The domain Ω ∈ D(M) is a polyhedral domain if all its tangent cones Πx are poly-

hedral. We write Ω ∈ D(M).

This allows to make precise the definition of faces, edges and corners in dimension 3, in

connection with singular chains.

(1) Interior point x ∈ Ω. Only one chain in Cx(Ω): X = (x).

(2) The faces f are the connected components of A1(Ω). The set of faces is denoted

by F. Let x belong to a face. There are two chains in Cx(Ω):

(a) X = (x) with ΠX = Πx, the tangent half-space. ΠX ≡ R2 × R+.
(b) X = (x, x1) where x1 = 1 is the only element in R+ ∩ S0. Thus ΠX = R3.

(3) The edges e are the connected components of A2(Ω). The set of edges is denoted

by E. Let x belong to an edge. There are three types of chains in Cx(Ω):

(a) X = (x) with ΠX = Πx, the tangent wedge (which is not a half-plane). The

reduced cone of Πx is a sector Γx the section of which is an interval Ix ⊂ S1.
(b) X = (x, x1) where x1 ∈ Ix.

(i) If x1 is interior to Ix, ΠX = R3. No further chain.
(ii) If x1 is a boundary point of Ix, ΠX is a half-space, containing one of the
two faces ∂±Πx of the wedge Πx.

(c) X = (x, x1, x2) where x1 ∈ ∂Ix, x2 = 1 and ΠX = R3.
To sum up, there are 4 equivalence classes in Cx(Ω) in the case of an edge point x:

• X = (x)
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• X = (x, x±1 ) with {x−1 , x+1 } = ∂Ix
• X = (x, x◦1) with x◦1 any chosen point in Ix.

(4) The corners v are the connected components of A3(Ω). The set of corners is denoted

by V. There are four types of chains in Cx(Ω):

(a) X = (x) with ΠX = Πx, the tangent cone (that is not a wedge). It coincides

with its reduced cone. Its section Ωx is a polygonal domain in S
2.

(b) X = (x, x1) where x1 ∈ Ωx.

(i) If x1 is interior to Ωx, ΠX = R
3. No further chain.

(ii) If x1 is in a side of Ωx, ΠX is a half-space, containing one of the faces of

the cone Πx.

(iii) If x1 is a corner of Ωx, ΠX is a wedge. Its edge contains one of the edges

of Πx.

(c) X = (x, x1, x2) where x1 ∈ ∂Ωx

(i) If x1 is in a side of Ωx, x2 = 1, ΠX = R
3. No further chain.

(ii) If x1 is a corner of Ωx, Cx,x1 is plane sector, and x2 ∈ Ix,x1 where the
interval Ix,x1 is its section. If x2 is an interior point, then ΠX = R3.

(d) X = (x, x1, x2, x3) where x1 is a corner of Ωx, x2 ∈ ∂Ix,x1 and x3 = 1. Then

ΠX = R
3.

Let xj1, 1 ≤ j ≤ N, be the corners of Ωx, and f
j
1, 1 ≤ j ≤ N, be its sides (notice that

there are as many corners as sides). There are 2N + 2 equivalence classes in Cx(Ω):

• X = (x) (vertex)
• X = (x, xj1) with 1 ≤ j ≤ N (edge points limit)
• X = (x, x◦,j1 ) with x◦,j1 any chosen point inside f j1 (face points limit)
• X = (x, x◦1) with x◦1 any chosen point in Ωx (interior points limit).

Remark 3.3. For polyhedral domains Ω, it is a consequence of the description above that

chains (x0, x1) of length 2 are enough to describe all equivalence classes of the set of chains

C∗x0(Ω) (3.2). This does not hold anymore if general corner domains are considered. Besides,
the notion of equivalence classes as introduced in Definition 3.2 is sufficient for the analysis

of operators Hh(A,Ω) in the case of magnetic fields B smooth in Cartesian variables. Should

B be smooth in polar variables only, the whole hierarchy of singular chains would be needed.

4. Taxonomy of model problems

4.1. Tangent and model operators. We recall that A is a magnetic potential associated

with the magnetic field B on the polyhedral domain Ω ∈ D(R3). For each singular chain

X = (x0, x1, . . . , xν) ∈ C(Ω) we set

(4.1) BX = B(x0) and AX(x) = ∇A(x0) · x, x ∈ ΠX,
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so that BX is the magnetic field frozen at x0 and AX the linear part
3 of the potential at x0.

We have obviously

curlAX = BX ,

so that the tangent magnetic operator H(AX ,ΠX) and its ground energy E(BX ,ΠX) make

sense. By homogeneity, there holds for tangent problems (cf. Lemma A.5)

Lemma 4.1. Let Π ∈ P3 be a cone, B be a constant magnetic field with norm b > 0. There

holds

(4.2) E(B,Π) = b E
(B
b
,Π

)
.

Moreover, let A be a linear potential associated with B. Then x 7→ Ψ(
√
b x) is an eigen-

function of H(A,Π) associated with E(B,Π) if and only if x 7→ Ψ(x) is an eigenfunction of
H(A/b,Π) associated with E(B/b,Π).

That is why we can reduce to consider model problems on cones Π ∈ P3 with unitary

constant magnetic fields.

4.2. Singular chains and generalized eigenvectors for model problems. Let Π ∈ P3 be a

polyhedral cone and B be a unitary constant magnetic field associated with a linear potential

A. Let Γ ∈ Pd be a minimal reduced cone associated with Π. We recall that this means

that Π ≡ R3−d × Γ and that the dimension d is minimal for such an equivalence.
Let C000(Π) denote the singular chains of Π originating at its vertex 000 and let C

∗
000(Π) be the

subset of chains of length ≥ 2 (see (3.2)). Note that C∗000(Π) is empty if and only if Π = R3,
i.e., if d = 0. We introduce the energy along higher chains:

Definition 4.2 (Energy along higher chains). We define the quantity

(4.3) E
∗(B,Π) :=

{
infX∈C∗0(Π) E(B,ΠX) if d > 0,

+∞ if d = 0,

which is the infimum of the ground energy of the magnetic Laplacian over all the singular

chains of length ≥ 2.

If d > 0, let Ω0 ∈ D(Sd−1) be the section of Γ. Since Π is a polyhedral cone, we have (cf.
Remark 3.3)

(4.4) E
∗(B,Π) = inf

x1∈Ω0
E(B,Π(000,x1)) ,

i.e., among all chains X ∈ C∗000(Π), we can restrict to those of length 2, X = (000, x1).

3In (4.1), ∇A is the 3 × 3 matrix with entries ∂kAj , 1 ≤ j, k ≤ 3, and · x denotes the multiplication by the
column vector x = (x1, x2, x3)

⊤.
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Since the cone Π is unbounded, it is relevant to define λess(B,Π) as the bottom of the

essential spectrum of the operator H(A,Π). When d ≤ 2, due to translation invariance we
have E(B,Π) = λess(B,Π). When d = 3, the operator H(A,Π) may have discrete spectrum.

With the aim of constructing quasimodes for our original problem on Ω, we need general-

ized eigenvectors for its tangent problems. For this we make use of the localized domain

Dom loc (H(A,Π)) of the model magnetic Laplacian H(A,Π) as introduced in (1.17).

Definition 4.3 (Generalized eigenvector). Let Π ∈ P3 be a polyhedral cone and A a linear

magnetic potential. We call generalized eigenvector for H(A,Π) a nonzero function Ψ ∈
Dom loc(H(A,Π)) associated with a real number Λ, so that

(4.5)

{
(−i∇+A)2Ψ = ΛΨ in Π,

(−i∂n + n · A)Ψ = 0 on ∂Π.

Definition 4.4 (Admissible generalized eigenvector). Under the hypothesis of Definition 4.3,

a generalized eigenvector Ψ for H(A,Π) is said to be admissible if there exist a rotation

U : Π 7→ R3−k ×Υ with k ≥ d and Υ ∈ Pk , and a system of coordinates (y, z) ∈ R3−k ×Rk
such that

(4.6) Ψ ◦ U−1(y, z) = ei ϑ(y,z)Φ(z) ,
with some real polynomial function ϑ of degree ≤ 2 and some exponentially decreasing
function Φ, namely there exist positive constants cΨ and CΨ such that

(4.7) ‖ecΨ|z|Φ‖L2(Υ) ≤ CΨ‖Φ‖L2(Υ) .
We will denote by x♮ = (y, z) ∈ R3−k ×Υ the natural coordinates and by Ψ♮ = Ψ ◦ U−1 the
natural form of Ψ.

Remark 4.5. By Lemma A.4 it is straightforward that in coordinates x♮ the magnetic potential

and the magnetic field are transformed into

A♮ = J⊤
(
A ◦ U−1

)
and B♮ = J⊤

(
B ◦ U−1

)

where the orthogonal 3×3 matrix J is such that U−1(x♮) = Jx♮. Note also that U(x) = J⊤x.
Therefore Ψ is an admissible generalized eigenfunction of H(A,Π) associated with the value

Λ if and only if Ψ ◦ U−1 is a generalized eigenfunction of H(A♮,R3−k ×Υ) associated with
the same value Λ.

Lemma 4.6. If Ψ is an admissible generalized eigenvector for H(A,Π) associated with Λ,

for any other linear magnetic potential A′ such that curlA′ = curlA, the operator H(A′,Π)
possesses an admissible generalized eigenvector Ψ′ associated with the same value Λ.

Proof. If curlA = curlA′ and A, A′ are both linear, there exists a polynomial function φ of
degree 2 such that A = A′ −∇φ. Using a change of gauge (Lemma A.1), we find that Ψ′
defined as

Ψ′(x) = eiφ(x)eiϑ(y,z)Φ(z), x ∈ Π,
is an admissible generalized eigenvector for H(A′,Π). �
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4.3. Dichotomy for model problems. The main result which we prove in this section is a

dichotomy statement, as follows.

Theorem 4.7. Let Π ∈ P3 be a polyhedral cone and B be a constant nonzero magnetic field.

Let A be any associated linear magnetic potential. Recall that E(B,Π) is the ground energy

of H(A,Π) and E ∗(B,Π) is the energy along higher chains introduced in (4.4). Then,

(4.8) E(B,Π) ≤ E
∗(B,Π)

and we have the dichotomy:

(i) If E(B,Π) < E
∗(B,Π), then H(A,Π) admits an admissible generalized eigenvector

associated with the value E(B,Π).

(ii) If E(B,Π) = E ∗(B,Π), then there exists a singular chain X ∈ C∗000(Π) such that

E(B,ΠX) = E(B,Π) and E(B,ΠX) < E
∗(B,ΠX).

Remark 4.8. In the case (ii), we note that by statement (i) applied to the cone ΠX, H(A,ΠX)

admits an admissible generalized eigenvector associated with the value E(B,Π).

• Outline of the proof of Theorem 4.7. Owing to Lemma 4.1 we may assume that B :=
curlA is unitary. The proof relies on an exhaustion of cases, organized according increasing

values of d , the dimension of the reduced cone of Π. First note that quantities E(B,Π)

and E
∗(B,Π), like the definition of admissible generalized eigenvectors, are independent of

a choice of Cartesian coordinates. Thus, for each value of d , ranging from 0 to 3, once

Π and a constant unitary magnetic field B are chosen, we exhibit a system of Cartesian

coordinates x = (x1, x2, x3) that allows the simplest possible description of the configuration

(B,Π). In these coordinates, the magnetic field can be viewed as a reference one and we

denote it by B. We also choose a corresponding reference linear potential A, since we have

gauge independence by virtue of Lemma 4.6. Then relying on various results corresponding

to each case, we prove that we are either in situation (i) and exhibit coordinates4 (y, z) and

admissible generalized eigenvectors, or in situation (ii).

In each of Sections 4.4–4.7 we consider one value of d , from 0 to 3, which will achieve

the proof of Theorem 4.7. In Section 4.8, we collect all possible structures of admissible

generalized eigenvectors Ψ, organized according to increasing values of k , the number of

directions in which Ψ has exponential decay.

4.4. Full space. d = 0. Π is the full space. We take coordinates x = (x1, x2, x3) so that

Π = R3 and B = (1, 0, 0),

and choose as reference potential

A = (0,−x3
2
, x2
2
).

4As our system of Cartesian coordinates x = (x1, x2, x3) will be already chosen in some optimal way, coor-

dinates (y, z) will simply be a splitting of (x1, x2, x3). But it is noticeable that the dimension k of z variables

may be strictly larger than d .
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Hence

H(A,Π) = H(A,R3) = D21 + (D2 − x3
2
)2 + (D3 +

x2
2
)2 with Dj = −i∂xj .

It is classical (see [22]) that the spectrum of H(A,R3) is [1,+∞). Therefore
(4.9) E(B,R3) = 1 .

An admissible generalized eigenfunction associated to the ground energy is

Ψ(x) = e−(x
2
2+x

2
3 )/4 ,

which has the form (4.6) with y = x1, z = (x2, x3), and ϑ ≡ 0 .

4.5. Half space. d = 1. Π is a half-space. We take coordinates x = (x1, x2, x3) so that

Π = R3+ := {(x1, x2, x3) ∈ R3, x3 > 0} and B = (0, b1, b2) with b
2
1 + b

2
2 = 1 ,

and choose as reference potential

A = (b1x3 − b2x2, 0, 0) .
Hence

H(A,Π) = H(A,R3+) = (D1 + b1x3 − b2x2)2 +D22 +D23.
We note that

(4.10) E
∗(B,R3+) = E(B,R

3) = 1.

There exists θ ∈ [0, 2π) such that b1 = cos θ and b2 = sin θ, so that θ is the angle between
the magnetic field and the boundary of R3+. Due to symmetries we can reduce to θ ∈ [0, π2 ].
Denote by F1 the Fourier transform in x1-variable, τ the Fourier variable associated with x1,
and

Ĥτ (A,R
3
+) := (τ + b1x3 − b2x2)2 +D22 +D23,

acting on L2(R×R+) with natural boundary condition. There holds

F1 H(A,R3+) F∗1 =
∫ ⊕

τ∈R
Ĥτ(A,R

3
+) dτ.

We discriminate three cases:

• Tangent field. θ = 0, then Ĥτ(A,R3+) := D22+D23+(τ + x3)2, let ξ be the partial Fourier
variable associated with x2 and define the new operators

Ĥξ,τ(A,R
3
+) := ξ

2 +D23 + (τ + x3)
2, H(τ) = D23 + (τ + x3)2 ,

where H(τ) (sometimes called the de Gennes operator) acts on L2(R+) with Neumann
boundary condition. There holds

inf S(H(τ)) = µ(τ), inf S(Ĥτ,ξ(A,R
3
+)) = µ(τ) + ξ

2,

in which the behavior of the first eigenvalue µ(τ) is well-known (see [11]): The function µ

admits a unique minimum denoted by Θ0 ≃ 0.59 for the value τ = −
√
Θ0. Hence

E(B,R3+) = Θ0 < E
∗(B,R3+).
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We are in case (i) of Theorem 4.7. If Φ denotes an eigenvector of H(τ) associated with Θ0
(function of x3 ∈ R+), a corresponding admissible generalized eigenvector is
(4.11) Ψ(x) = e−i

√
Θ0 x1 Φ(x3).

which has the form (4.6) with y = (x1, x2), z = x3, and ϑ(y, z) = −x1
√
Θ0.

• Normal field. θ = π
2
, then Ĥτ(A,R

3
+) := D

2
2 +D

2
3 + (τ − x2)2. There holds for all τ ∈ R,

inf S(Ĥτ(A,R
3
+)) = 1 (see [24, Theorem 3.1]), hence

E(B,R3+) = 1 = E
∗(B,R3+).

We are in case (ii) of Theorem 4.7. The chain X is given by (000, 1) and ΠX = R
3, for which

E(B,R3) < E ∗(B,R3).

• Neither tangent nor normal. θ ∈ (0, π
2
). Then for any τ ∈ R, Ĥτ(A,R3+) is isospectral to

Ĥ0(A,R
3
+) the ground energy of which is an eigenvalue σ(θ) < 1 (see [19]). We deduce

E(B,R3+) = σ(θ) with σ(θ) < 1.

We are in case (i) of Theorem 4.7. We recall:

Lemma 4.9. The function θ 7→ σ(θ) is continuous and increasing on (0, π
2
) ([19, 24]). Set

σ(0) = Θ0 and σ(
π
2
) = 1. Then the function θ 7→ σ(θ) is of class C 1 on [0, π

2
] ([7]).

The first eigenvalue of Ĥ0(A,R
3
+) is associated with an exponentially decreasing eigenvector

Φ which is a function of (x2, x3) ∈ R × R+. An admissible generalized eigenvector for
H(A,R3+) is given by

(4.12) Ψ(x) = Φ(x2, x3),

which has the form (4.6) with y = x1, z = (x2, x3), and ϑ ≡ 0.
Thus Theorem 4.7 is proved for half-spaces.

4.6. Wedges. d = 2. Π is a wedge and let α ∈ (0, π)∪ (π, 2π) denote its opening. Let us
introduce the model sector Sα and the model wedge Wα

(4.13) Sα =
{
{x = (x2, x3), x2 tan α2 > |x3|

}
if α ∈ (0, π)

{x = (x2, x3), x2 tan α2 > −|x3|
}
if α ∈ (π, 2π)

and Wα = R× Sα .

We take coordinates x = (x1, x2, x3) so that

Π =Wα and B = (b1, b2, b3) with b
2
1 + b

2
2 + b

2
3 = 1 ,

and choose as reference potential

A = (b2x3 − b3x2, 0, b1x2) .
Hence

H(A,Π) = H(A,Wα) = (D1 + b2x3 − b3x2)2 +D22 + (D3 + b1x2)2.



GROUND ENERGY OF THE MAGNETIC LAPLACIAN IN POLYHEDRAL BODIES 19

Denote by τ the Fourier variable associated with x1, and

(4.14) Ĥτ (A,Wα) := (τ + b2x3 − b3x2)2 +D22 + (D3 + b1x2)2

acting on L2(Sα) with natural Neumann boundary condition. We introduce the notation:
s(B,Sα; τ) := inf S(Ĥτ(A,Wα)),

so that we have the direct Fourier integral decomposition

F1 H(A,Wα) F∗1 =
∫ ⊕

τ∈R
Ĥτ(A,Wα) dτ

and the relation

(4.15) E(B,Wα) = inf
τ∈R

s(B,Sα; τ) .

The singular chains of C∗000(Wα) have three equivalence classes, cf. Definition 3.2 and Sec-

tion 3.3 (3), corresponding to three distinct model operators, associated to half-spaces Π±α
corresponding to the faces ∂±Wα of Wα, and to the full space R

3. Thus

E
∗(B,Wα) = min{E(B,Π+α), E(B,Π−α), E(B,R3)}.

Let θ± ∈ [0, π
2
] be the angle between B and the face ∂Π±α . We have, cf. Lemma 4.9,

(4.16) E
∗(B,Wα) = min{σ(θ+), σ(θ−), 1} = σ(min{θ+, θ−}).

When Π =Wα, Theorem 4.7 relies on the following result [32, Theorem 3.5]:

Lemma 4.10. We have E(B,Wα) ≤ E ∗(B,Wα).

Moreover, if E(B,Wα) < E ∗(B,Wα), then the function τ 7→ s(B,Sα; τ) reaches its infimum.
Let τ∗ be a minimizer. Then E(B,Wα) is a discrete eigenvalue for the operator Ĥτ∗(A,Wα)

and the associated eigenfunctions have exponential decay.

From the previous lemma we deduce

(i) If E(B,Wα) < E ∗(B,Wα), there exists τ
∗ such that the operator Ĥτ∗(A,Wα) admits

an exponential decaying eigenfunction Φ of (x2, x3) ∈ Sα associated with E(B,Wα).

The function

Ψ(x) = eiτ
∗x1Φ(x2, x3)

is an admissible generalized eigenvector for the operator H(A,Wα) associated with

E(B,Wα). It has the form (4.6) with y = x1, z = (x2, x3), and ϑ(y, z) = τ
∗y.

(ii) If E(B,Wα) = E ∗(B,Wα), let ◦ ∈ {−,+} satisfy θ◦ = min(θ−, θ+) and Π◦α be the
corresponding face. We have θ◦ ∈ [0, π

2
) and E ∗(B,Wα) = σ(θ

◦). We deduce from
Section 4.5 that E ∗(B,Π◦α) = 1, hence E(B,Wα) = E(B,Π

◦
α) < E ∗(B,Π◦α).

Thus Theorem 4.7 is proved for wedges. We extend the definition ofWα to α = π by setting

Wπ := R
3
+. Let us quote now the continuity result of [32, Theorem 4.5]:

Lemma 4.11. The function (B, α) 7→ E(B,Wα) is continuous on S
2 × (0, 2π).
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We end this paragraph by a few examples.

Example 4.12. Let B ∈ S2 be a constant magnetic field. Let α be chosen in (0, π)∪(π, 2π).
a) For α small enough E(B,Wα) < E

∗(B,Wα) (see [32] when the magnetic field is not

tangent to the plane of symmetry of the wedge and [30, Ch. 7] otherwise).

b) Let B = (0, 0, 1) be tangent to the edge. Then E
∗(B,Wα) = Θ0 and E(B,Wα) =

E(1,Sα), cf. Section 2.2.2. According to whether the ground energy E(1,Sα) of the plane
sector Sα is less than Θ0 or equal to Θ0, we are in case (i) or (ii) of the dichotomy.
c) Let B be tangent to a face of the wedge and normal to the edge. Then E ∗(B,Wα) =

Θ0. It is proved in [31] that there holds E(B,Wα) < Θ0 for α small enough, whereas

E(B,Wα) = Θ0 for α ∈ [π2 , π).

As a direct consequence of the whole description performed in the previous Sections 4.4-4.6,

we obtain the following continuity statements.

Theorem 4.13. Let Π be a cone in P3 with d < 3 (i.e. Π is the full space, a half-space or

a wedge). Then the function B 7→ E(B,Π) is continuous on S2.

Corollary 4.14. Let Π be a cone in P3. The function B 7→ E ∗(B,Π) is continuous on S2.

4.7. Polyhedral cones. d = 3 The main result of this paragraph is the characterization of

the bottom λess(B,Π) of the essential spectrum of H(A,Π).

Proposition 4.15. Let Π ∈ P3 be a polyhedral cone with d = 3, which means that Π is not

a wedge, nor a half-space, nor the full space. Let B be a constant magnetic field. With the

quantity E ∗(B,Π) introduced in (4.3), there holds

λess(B,Π) = E
∗(B,Π) .

Before writing proof details, let us specify what is E ∗(B,Π) in the case of a polyhedral cone.
Let Ω0 be the section of Π, i.e., Ω0 = Π ∩ S2. We recall from (4.4) that
(4.17) E

∗(B,Π) = inf
x1∈Ω0

E(B,Π(000,x1)) .

In fact the set of equivalence classes (Definition 3.2) of the chains X = (000, x1) is finite. Let

us describe this set, cf. Section 3.3 (4). Let F and E be the set of faces f and edges e of Π.

For f ∈ F, let Πf be the half-space whose boundary contains f and containing points of Π

near any point of f. For e ∈ E, there are two faces f±e adjacent to e. Let Πe be the wedge

whose boundary contains e ∪ f+e ∪ f−e and containing points of Π near any point of f
+
e ∪ f−e .

Let x1 ∈ Ω0. There are three possibilities:

(1) x1 is interior to Ω0. Then Π(000,x1) = R
3.

(2) x1 belongs to a side of Ω0. This side is contained in a face f of Π. Then Π(000,x1) = Πf.

(3) x1 belongs to a vertex of Ω0. This vertex is contained in an edge e of Π. Then

Π(000,x1) = Πe.
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We have that

(4.18) E
∗(B,Π) = min

{
min
e∈E

E(B,Πe), min
f∈F

E(B,Πf), 1
}
.

Since (4.8) is proved for d = 2, we have E(B,Πe) ≤ min{E(B,Πf+e
), E(B,Πf−e

)}. Therefore
equation (4.18) becomes

(4.19) E
∗(B,Π) = min

e∈E
{E(B,Πe)} .

We recall the Persson Lemma that gives a characterization of the bottom of the essential

spectrum (see [29]):

Lemma 4.16. We have

λess(B,Π) = lim
R→+∞

Σ (B,Π, R)

with

Σ (B,Π, R) := inf
ψ∈C∞0 (Π∩∁BR)

ψ 6=0

q[A,Π](ψ)

‖ψ‖2

where BR is the ball of radius R centered at the origin and ∁BR its complementary in R3.

Proof. (of Proposition 4.15). Let A be a linear potential associated with B.

Upper bound: We denote by xe∗ a vertex of Ω0 and e∗ the associated edge such that
E ∗(B,Π) = E(B,Πe∗), cf. (4.19). Let ε > 0, there exists ψε ∈ C∞0 (Πe∗) a normalized

function such that

q[A,Πe∗](ψε) ≤ E(B,Πe∗) + ε .

For r > 0 we define

ψrε(x) := e
i〈x ,A(rxe∗)〉ψε(x− rxe∗) ,

so that we have, due to gauge invariance and translation effect, cf. Lemma A.2,

supp(ψrε) = supp(ψε) + rxe∗ and q[A,Π](ψrε) = q[A,Πe∗](ψε) .

Let R > 0, for r large enough we have supp(ψrε) ⊂ ∁BR and ψrε ∈ Dom(q[A,Π]). We get
q[A,Π](ψrε) = q[A,Πe∗](ψε) ≤ E(B,Πe∗) + ε .

We deduce

∀ε > 0, ∀R > 0, Σ(B,Π, R) ≤ E(B,Πe∗) + ε

and Lemma 4.16 provides the upper bound of Proposition 4.15: λess(B,Π) ≤ E ∗(B,Π).

Lower bound: Let

U000 ∪
(⋃

f∈F
Uf

)
∪
(⋃

e∈E
Ue

)

a covering of Ω0 according to its stratification, which means that

U000 ⊂ Ω0, Uf ∩Ω0 = Πf ∩Ω0 (∀f ∈ F), and Ue ∩Ω0 = Πe ∩Ω0 (∀e ∈ E).
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Let χ̂j , j ∈ J := {000} ∪F∪E, be an associated partition of unity of the section Ω0 such that
∑

j∈J
(χ̂j)

2 = 1 and supp(χ̂j) ⊂ Uj , ∀j ∈ J.

Let χ ∈ C∞(R+) such that χ ≡ 0 on [0, 12 ] and χ ≡ 1 on [1,+∞). We now define a
partition of the unity of ∁BR ∩ Π by setting

χRj (x) = χ
( |x|
R

)
χ̂j

( x

|x|
)
, j ∈ J.

We have
∑

j(χ
R
j )
2 = 1 on ∁BR ∩ Π and

∀R > 0,
∑

j∈J
|∇χRj |2 ≤ CR−2.

Moreover we have supp(χRj ) ∩ Π ⊂ Πj , j ∈ J = {000} ∪ F ∪ E, where we have set Π000 = R
3.

The IMS formula for quadratic forms (see Lemma A.7) provides

∀ψ ∈ C
∞
0 (Π ∩ ∁BR), q[A,Π](ψ) ≥

∑

j∈J
q[A,Π](χRj ψ)− CR−2‖ψ‖2

=
∑

j∈J
q[A,Πj ](χ

R
j ψ)− CR−2‖ψ‖2

≥
∑

j∈J
E(B,Πj)‖χRj ψ‖2 − CR−2‖ψ‖2

≥ (E ∗(B,Π)− CR−2)‖ψ‖2.

Thus we deduce the lower bound of Proposition 4.15 by using Lemma 4.16. �

Then it is clear that Theorem 4.7 in the case of polyhedral cones is a consequence of

Proposition 4.15:

• if E(B,Π) < E ∗(B,Π) = λess(B,Π), then there exists an eigenvector for H(A,Π),

which by standard arguments based on Agmon estimates is exponentially decreasing,

see [1].

• if E(B,Π) = E ∗(B,Π) = λess(B,Π) = mine∈E{E(B,Πe)}, we are reduced to the
previous cases in lower values of d .

Example 4.17 (Octant). Let Π = (R+)
3 be the model octant and B be a constant magnetic

field with |B| = 1. We quote from [28, §8]:

(i) If the magnetic field B is tangent to a face but not to an edge of Π, there exists an

edge e such that E ∗(B,Π) = E(B,Πe) and there holds E(B,Π) < E(B,Πe).

(ii) If the magnetic field B is tangent to an edge e of Π, E ∗(B,Π) = E(B,Πe) = E(B,Π).

Moreover by [28, §4], E(B,Πe) = E(1,Sπ/2) < Θ0 = E ∗(B,Πe).
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4.8. Structure of the admissible generalized eigenvectors. We have described in the pre-

vious Sections 4.4-4.7 admissible generalized eigenvectors in every situation. In this section

we list the model configurations (B,Π) owning admissible generalized eigenvectors and give

a comprehensive overview of their structure in a table. We also prove some stability prop-

erties of the generalized eigenvectors and the associated energy under perturbation of the

magnetic field B.

Let B be a constant magnetic field and Π a cone in P3. Let us assume that E(B,Π) <

E ∗(B,Π). Therefore by Theorem 4.7 there exist admissible generalized eigenvectors Ψ that
have the form (4.6). We recall the discriminant parameter k ∈ {1, 2, 3} which is the number
of directions in which the generalized eigenvector has an exponential decay. For further use

we call (G1), (G2), and (G3) the situation where k = 1, 2, and 3, respectively.

In Table 1 we gather all possible situations for (k, d) where d is the dimension of the reduced

cone of Π. We assume that the magnetic field B is unitary, similar formulas can be found

using Lemma 4.1 for any non-zero constant magnetic field. We provide the explicit form of

an admissible generalized eigenfunction Ψ of H(A,Π) in variables (y, z) ∈ R3−k ×Υ where
A is a model linear potential associated with B in these variables. We also give the cone Υ

on which the generalized eigenfunction has exponential decay (note that Υ does not always

coincide with the reduced cone Γ of Π).

(k, d) Model (B,Π) Potential A Υ Explicit Ψ Φ eigenvector of

(3,3) Π = Γ Φ(z) H(A,Π)

(2,2) (b0, b1, b2)

Π = R× Sα
(b1z2 − b2z1, 0, b0z1) Sα = Γ eiτ

∗yΦ(z) Ĥτ (A,Wα), cf (4.14)

(2,1) (0, b1, b2), b2 6= 0
Π = R2 × R+

(b1z2 − b2z1, 0, 0) R× R+ Φ(z) −∆z + (b1z2 − b2z1)2

(2,0) (1, 0, 0)

Π = R3
(0,−12z2, 12z1) R

2 e−|z|
2/4 −∆z + iz×∇z +

|z|2
4

(1,1) (0, 1, 0)

Π = R2 × R+
(z, 0, 0) R+ = Γ e−iy1

√
Θ0Φ(z) −∂2z + (z −

√
Θ0)

2

Table 1. Generalized eigenfunctions of H(A,Π) depending on the geometry

(B,Π) with E(B,Π) < E ∗(B,Π) written in variables (y, z) ∈ R3−k ×Υ.

Remark 4.18. In the case where Π is a half-space and B is normal to ∂Π, we have E(B,Π) =

E
∗(B,Π) = 1 and we are in case (ii) of Theorem 4.7, therefore there exists an admissible
generalized eigenvector for the strict singular chain R3 of Π. However there also exists an

admissible generalized eigenfunction for the operator on the half-plane Π. Let z = (z1, z2)

be coordinates of ∂Π and y coordinate normal to ∂Π. Let A(y , z1, z2) := (0,−z2
2
, z1
2
). As
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described in [24, Lemma 4.3], the function Ψ : (y , z1, z2) 7→ e−(z
2
1+z

2
2 )/4 is an admissible gen-

eralized eigenvector for H(A,Π) associated with 1, indeed it satisfies the Neumann boundary

condition at the boundary y = 0 since it is constant in the y direction and it is a solution of

the eigenvalue equation H(A,Π)Ψ = Ψ, see Section 4.4.

A perturbation of the magnetic field has distinct effects according to the situation : (G1) is

not stable whereas (G2) is. We prove this in the following lemma together with local uniform

estimates for exponential decay.

Lemma 4.19. Let B0 be a non zero constant magnetic field and Π be a cone in P3 with

d < 3. Assume that E(B0,Π) < E ∗(B0,Π).

(a) In a ball B(B0, ε), the function B 7→ E(B,Π) is Lipschitz-continuous and

E(B,Π) < E
∗(B,Π).

(b) We suppose moreover that (B0,Π) is in situation (G2). For B ∈ B(B0, ε), we denote
by ΨB an admissible generalized eigenfunction given by Theorem 4.7. For ε small

enough, (B,Π) is still in situation (G2) and ΨB has the form

ΨB(x) = eiϑ
B(y,z)ΦB(z) for UBx = (y, z) ∈ R×Υ,

with UB a suitable rotation, and there exist constants c > 0 and C > 0 such that

(4.20) ∀B ∈ B(B0, ε), ‖ΦBec |z|‖L2(Υ) ≤ C‖ΦB‖L2(Υ) .

Proof. Let us distinguish the three possible situations according to the value of d :

d = 0 : When Π = R3, we have E(B,Π) = |B| and E ∗(B,Π) = +∞. The admissible
generalized eigenvector ΨB is explicit as explained above. Thus (a) and (b) are

established in this case.

d = 1 : When Π is a half-space, we denote by θ(B) the unoriented angle in [0, π
2
] between

B and the boundary. The function B 7→ θ(B) is Lipschitz. Moreover the function σ

is C 1 on [0, π/2] (see Lemma 4.9). We deduce that the function B 7→ σ(θ(B)) is

Lipschitz outside any neighborhood of B = 0. Thus point (a) is proved. Assuming

furthermore that (Π,B0) is in situation (G2), we have θ(B0) ∈ (0, π2 ) and there exist
ε > 0, θmin and θmax such that

∀B ∈ B(B0, ε), θ(B) ∈ [θmin, θmax] ⊂ (0, π2 ) .
The admissible generalized eigenvector is constructed above. The uniform exponen-

tial estimate is proved in [7, §2].
d = 2 : When Π is a wedge, point (a) is proved in [32, §4]. Due to the continuity of B 7→

E(B,Π) there exist c > 0 and ε > 0 such that

∀B ∈ B(B0, ε), E
∗(B,Π)− E(B,Π) > c.

Point (b) is then a direct consequence of [32, Proposition 4.2].
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The proof of Lemma 4.19 is complete. �

5. Continuity properties of the ground energy

Let Ω ∈ D(R3) and let B ∈ C 0(Ω) be a continuous magnetic field. In this section we

investigate the continuity properties on Ω of the application Λ : x 7→ E(Bx,Πx). Let t be a

stratum of Ω (see (1.10)). We have denoted by Λt the restriction of Λ to t (see (1.11)).

Combining (4.2), (4.9), Lemma 4.9 and Lemma 4.11 we get that Λt is continuous.

Let us assume that t is not reduced to a point. We now describe how we extend Λt to the

boundary of t. Let x ∈ ∂t and Πx ∈ P3 be its tangent cone. Let Ux, Vx and Ux be the open

sets and the diffeomorphism introduced in Section 3.1. Let t̃ be the stratum of Πx such that

Ux(t ∩ Ux) = t̃ ∩ Vx .
To t̃ is associated the singular chain X ∈ C∗000(Πx) such that ΠX is the tangent cone to Πx at

any point of t̃.

We extend Λt in x by setting

(5.1) Λt(x) = E(Bx,ΠX) .

Lemma 5.1. Let Ω ∈ D(R3) and let B ∈ C 0(Ω). Let t a stratum of Ω which is not a vertex.

Then formula (5.1) defines a continuous extension of the function Λt to t.

Proof. For x ∈ ∂t we show that the extension defined by (5.1) is continuous in x. Let

y ∈ Ux ∩ t and Πy be the tangent cone to Ω at y. In the following we will prove that

(5.2) lim
y→x

E(By,Πy) = E(Bx,ΠX) .

For a tangent cone Π we denote by d(Π) the dimension of its reduced cone. Since t is not

reduced to a point, we have d(ΠX) = d(Πy) ≤ 2 and we distinguish several cases:

• d = 0. ΠX = Πy = R
3. It follows from Section 4.4 that E(By,Πy) = |By| and

E(Bx,ΠX) = |Bx|. Therefore (5.2).
• d = 1. ΠX and Πy are half-spaces. We denote by θx (respectively θy) the angle

between Bx and ΠX (respectively By and Πy). We have E(By,Πy) = |By|σ(θy) and
E(Bx,ΠX) = |Bx|σ(θx) (see Section 4.5). Since θy goes to θx when y goes to x,

(5.2) follows from the continuity of the function σ, see Lemma 4.9.

• d = 2. ΠX and Πy are wedges. We denote by αx and αy their openings. We denote

by Ux ∈ O3 (respectively U
y ∈ O3) the linear orthogonal transformation which maps

ΠX on Wαx
(respectively Πy on Wαy

). We have

(5.3) E(Bx,ΠX) = E(Bx,Wαx
) and E(By,Πy) = E(By,Wαy

) .

where we have denoted Bx = U
x(Bx) and By = U

y(By). We have

lim
y→x
‖Ux − Uy‖ = 0 and lim

y→x
|αx − αy| = 0 ,
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therefore we deduce (5.2) from (5.3) and Lemma 4.11.

Hence we have proved (5.2) in all cases. �

Let x ∈ ∂t, we deduce from (4.8) that
Λt(x) = E(Bx,ΠX) ≥ E(Bx,Πx) = Λ(x) .

Combining this with Lemma 5.1, we obtain the following:

Theorem 5.2. Let Ω ∈ D(R3) and let B ∈ C
0(Ω) be a continuous magnetic field. Then

the function Λ : x 7→ E(Bx,Πx) is lower semi-continuous on Ω.

6. Upper bound for first eigenvalues in polyhedral domains

In this section we prove general upper bounds for the first eigenvalue λh(B,Ω) by hE (B,Ω)

up to a remainder of size hκ with κ > 1. The first theorem provides an upper bound with

κ = 5
4
using a novel construction of quasimodes depending on the geometry. Under more

regularity assumptions on the potential and using more knowledge on the model problems

we refine the quasimodes and we reach an upper bound with κ = 4
3
.

Here is our first result:

Theorem 6.1. Let Ω ∈ D(R3) be a polyhedral domain, A ∈ W 2,∞(Ω) be a twice differen-
tiable magnetic potential such that the associated magnetic field B does not vanish on Ω.

Then there exist C(Ω) > 0 and h0 > 0 such that

(6.1) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖A‖2W 2,∞(Ω)) h5/4 .
We recall that the quantity E (B,Ω) is the lowest local energy defined in (1.5).

It is possible to obtain an upper bound in (6.1) depending on the magnetic field B and not

on the magnetic potential. For this, we consider B as a datum and associate a potential A

with it. Operators A : B 7→ A lifting the curl (i.e. such that curl ◦A = I) and satisfying

suitable estimates do exist in the literature. We quote [8] in which it is proved that such

lifting can be constructed as a pseudo-differential operator of order −1. As a consequence
A is continuous between Hölder classes of non integer order:

∀α ∈ (0, 1), ∃Cα > 0, ‖A B‖W 2+α,∞(Ω) ≤ Cα‖B‖W 1+α,∞(Ω) .
Choosing A = A B in Theorem 6.1, we deduce the following.

Corollary 6.2. Let Ω ∈ D(R3) be a polyhedral domain, B ∈ W 1+α,∞(Ω) be a non-vanishing
Hölder continuous magnetic field of order 1 + α with some α ∈ (0, 1). Then there exist
C(Ω) > 0 and h0 > 0 such that

(6.2) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖B‖2W 1+α,∞(Ω)) h5/4 .
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Theorem 6.1 is proved in Sections 6.1–6.3 according to the following plan. Since the energy

x 7→ E(Bx,Πx) is lower semi-continuous (see Theorem 5.2), it reaches its infimum over the

compact Ω. We denote by x0 ∈ Ω a point such that
(6.3) E(Bx0 ,Πx0) = E (B,Ω)

where Πx0 is the tangent cone at x0. Starting from this, the proof is organized in three main

steps, developed in Sections 6.1, 6.2, and 6.3 respectively:

(1) By the local diffeomorphism Ux0 in the neighborhood Ux0 of x0 introduced in (3.1),
we reduce to a local magnetic operator set on the tangent cone Πx0.

(2) We construct quasimodes for the tangent magnetic operator at the vertex 000 of Πx0.

Here we use Theorem 4.7 which provides us with a suitable admissible generalized

eigenfunction associated with the energy E(Bx0 ,Πx0). This generalized eigenfunction

will be scaled, truncated and translated in order to give a quasimode for the local

magnetic operator.

(3) The estimation of various terms in the associated Rayleigh quotient and the min-max

principle will finally prove Theorem 6.1.

If steps (1) and (3) are very classical, step (2) reveals much more originality, because our

constructions are valid in any configuration: We do not need to know a priori whether

(Bx0 ,Πx0) is in situation (i) or (ii) of the dichotomy theorem. If we are in situation (i) – the

most classical one – our quasimodes will be classical too, and qualified as “sitting”. If we are

in situation (ii), we define our quasimodes on a higher structure ΠX and make then “slide”

towards the vertex 000 of Πx0.

Our second result is also general, the unique additional assumption is a supplementary reg-

ularity on the magnetic potential (or equivalently on the magnetic field).

Theorem 6.3. Let Ω ∈ D(R3) be a polyhedral domain, A ∈ W 3,∞(Ω) be a magnetic potential
such that the associated magnetic field does not vanish. Then there exist C(Ω) > 0 and

h0 > 0 such that

(6.4) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖A‖2W 3,∞(Ω)) h4/3 .

Like for Corollary 6.2, we can deduce an upper bound where the constant depends on the

magnetic field.

Corollary 6.4. Let Ω ∈ D(R3) be a polyhedral domain, B ∈ W 2+α,∞(Ω) be a non-vanishing
Hölder continuous magnetic field of order 2 + α with some α ∈ (0, 1). Then there exist
C(Ω) > 0 and h0 > 0 such that

(6.5) ∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖B‖2W 2+α,∞(Ω)) h4/3 .

Note that the h4/3 bound was known for smooth three-dimensional domains, [20, Proposition

6.1 & Remark 6.2] and that our result extends this result to polyhedral domains without loss.



28 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF

Theorem 6.3 is proved in Section 6.4 and we give now some hint on the proof. Like for

Theorem 6.1 we start from admissible generalized eigenfunctions and construct sitting or

sliding quasimodes adapted to the geometry. However, unlike for the proof of Theorem

6.1, we are going to actually take advantage of the decaying property of the generalized

eigenfunctions and adopt different strategies depending on the number k of directions in

which the generalized eigenfunction has exponential decay: A Feynman-Hellmann formula if

k = 1, a refined Taylor expansion of the potential if k = 2, and an Agmon decay estimate if

k = 3.

6.1. Change of variables. Let us recall from Section 3.1 that the local smooth diffeomor-

phism Ux0 maps a neighborhood Ux0 of x0 onto a neighborhood Vx0 of 000 so that
(6.6) Ux0(Ux0 ∩Ω) = Vx0 ∩ Πx0 and Ux0(Ux0 ∩ ∂Ω) = Vx0 ∩ ∂Πx0.

The differential of Ux0 at the point x0 is the identity matrix I3. Let

J := d(Ux0)−1 and G := J−1(J−1)⊤

be the jacobian matrix of the inverse of Ux0 and the associated metric. Lemma A.4 leads

to introduce the following formulas for the transformed magnetic potential Ã and magnetic

field B̃ = curl Ã in Vx0 ∩ Πx0

(6.7) Ã := J⊤
(
(A− A(x0)) ◦ (Ux0)−1

)
and B̃ := | det J| J−1

(
B ◦ (Ux0)−1

)
.

We also introduce the phase shift

(6.8) ζx0h (x) = e
−i〈A(x0),x〉/h, x ∈ Ux0.

To any function f in H1(Ω) with support in Ux0 corresponds the function
(6.9) ψ := (ζx0h f ) ◦ (Ux0)−1

defined in Πx0, with support in Vx0. For any h > 0 we have
(6.10) qh[A,Ω](f ) = qh[A−A(x0),Ω](ζ

x0
h f )

and thus

(6.11) qh[A,Ω](f ) = qh[Ã,Πx0,G](ψ) and ‖f ‖L2(Ω) = ‖ψ‖L2G(Πx0)
,

where the quadratic forms qh[A,Ω] and qh[Ã,Πx0,G] are defined in (1.13) and (1.15), re-

spectively.

Since dUx0(x0) = I3 by definition, there holds

(6.12) B̃(000) = B(x0) .

Likewise, let Ã000 be the linear part of Ã at the vertex 000 of Πx0. Note that, as a consequence

of (6.7), Ã(000) = 0 and the two potentials Ã000 and Ax0 coincide (we recall that Ax0 is the

linear part of A at x0).
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Lemma 6.5. Let r0 > 0 be such that Vx0 contains the ball B(000, r0) of center 000 and radius
r0. Then there exists a constant C(Ω) such that for all r ∈ (0, r0], if ψ ∈ H1(Πx0) with

supp(ψ) ⊂ B(000, r) we have the two estimates
∣∣qh[Ã,Πx0](ψ)− qh[A−A(x0),Ω](ψ ◦ Ux0)

∣∣ ≤ C(Ω) r qh[Ã,Πx0](ψ),(6.13)

∣∣‖ψ‖L2(Πx0)
− ‖ψ ◦ Ux0‖L2(Ω)

∣∣ ≤ C(Ω) r ‖ψ‖L2(Πx0)
.(6.14)

Proof. Recall that J = d(Ux0)−1 and G := J−1(J−1)⊤. Since dUx0(x0) = d(U
x0)−1(000) = I3

by definition, we have J(000) = I3 and G(000) = I3. We deduce

(6.15) ‖G− I3 ‖L∞(B(000,r)) ≤ r‖G‖W 1,∞(Vx0).

Since Ω is assumed to be polyhedral, its curvature (curvature of the faces and curvature of the

edges) is bounded, therefore there exists a uniform bound C(Ω) for the norm in W 1,∞(Vx0)
of the metric G = Gx0 when x0 runs through Ω. Notice that qh[Ã,Πx0] = qh[Ã,Πx0, I3], so

we deduce the Lemma by using (6.15) in (6.11). �

Therefore we are reduced to study the Laplacian with magnetic potential Ã on the cone Πx0

with the identity metric.

6.2. Construction of quasimodes. Let x0 ∈ Ω be a point satisfying (6.3). Thus x0 mini-
mizes the local ground energy. For shortness we denote by Λ000 this energy:

(6.16) Λ000 = E(Bx0,Πx0).

In order to prove Theorem 6.1, we are going to construct a family of quasimodes fh ∈ H1(Ω)
satisfying the estimate for h ≤ h0 (with some chosen positive h0)

(6.17)
qh[A,Ω](fh)

‖fh‖2
≤ hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω))h5/4.

Let Ã be the magnetic potential in the tangent cone Πx0 ∩Vx0 given by (6.7). We recall that
Ã000 is the linear part of Ã at 000. We recall that since dU

x0(x0) = I3, the point values of the

corresponding fields B̃(000) and Bx0 coincide.

Theorem 4.7 provides a singular chain5 X in Cx0(Ω) ≡ C000(Πx0) and its associated cone ΠX
such that the operator H(Ã000,ΠX) has an admissible generalized eigenfunction Ψ

X associated

with the energy E(Bx0,Πx0) = Λ000.

There exists a rotation U which transforms ΠX into R
3−k × Υ so that in coordinates x♮ ∈

R3−k ×Υ, with Υ ∈ Pk the generalized eigenfunction writes:

(6.18) ΨX(x) = Ψ♮(x♮) = eiϑ(y,z)Φ(z) with Ux = x♮ = (y, z) ∈ R3−k ×Υ,

5In the case (i) of Theorem 4.7, X is the trivial chain (x0) and ΠX = Πx0 .
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where Φ is an exponentially decreasing function. The function ΨX satisfies

(6.19)

{
(−i∇+ Ã000)

2ΨX = Λ000Ψ
X in ΠX,

(−i∂n + n · Ã000)ΨX = 0 on ∂ΠX.

Then the scaled function

(6.20) ΨXh (x) := Ψ
X

( x√
h

)
, for x ∈ ΠX,

defines a generalized eigenfunction for the operator Hh(Ã000,ΠX) associated with hΛ000.

According as Πx0 equals ΠX or not (cases (i) or (ii) in Theorem 4.7, respectively), our

constructions will be different, leading to two types of quasimodes qualified as “sitting” or

“sliding”.

6.2.1. Sitting quasimodes. When we are in case (i) of the dichotomy given by Theorem 4.7,

X = (x0) and ΠX = Πx0. In a classical way, the construction amounts to realize a suitable

cut-off of the scaled generalized eigenfunction ΨXh . For doing this, let us choose, once for

all, a model cut-off function χ ∈ C∞(R+) such that

(6.21) χ(r) =

{
1 if r ≤ 1,
0 if r ≥ 2.

For any R > 0, let χ
R
be the cut-off function defined by

(6.22) χ
R
(r) = χ

( r
R

)
,

and, finally

(6.23) χh(x) = χR

( |x|
hδ

)
= χ

( |x|
Rhδ

)
with 0 ≤ δ ≤ 1

2
.

Here the exponent δ is the decay rate of the cut-off. It will be tuned to optimize remainders.

We choose R = 1 in the formula for the cut-off and set6

(6.24) ϕXh (x) = ψ
X

h (x) = χh(x)Ψ
X

h (x)

which provides a quasimode for qh[Ã000,ΠX] satisfying (−ih∂n + n · Ã000)ψXh = 0 on ∂ΠX. Note
that when h decreases, the supports of ϕXh decrease while staying embedded in each other.

6.2.2. Sliding quasimodes. Now we are in case (ii) of the dichotomy given by Theorem 4.7,

which means that Λ000 = E
∗(Bx0,Πx0) and that there exists a chain X ∈ C∗x0(Ω) such that

Λ000 = E(BX,ΠX) < E
∗(BX,ΠX). Let U

0 ∈ O3 such that Πx0 = U
0(R3−d × Γ) where Γ is the

reduced cone of Πx0. Let Ω0 = Γ∩Sd−1 be the section of Γ. According to Remark 3.3, there
exists x1 ∈ Ω0 so that X = (x0, x1). Then we define the unitary vector τ by the formulas
(6.25) τ := (0, x1) ∈ R3−d × Γ and τ = U0 τ ∈ S2.
6The reason for the double notation ϕX

h (x) = ψ
X

h (x) will appear clearly later on, see (6.26a)-(6.26b).
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Remark 6.6. The cone ΠX can be the full space, a half-space or a wedge, and τ gives a

direction associated with ΠX starting from the origin 000 of Πx0:

(1) If ΠX ≡ R3, τ belongs to the interior of Πx0.

(2) If ΠX ≡ R3+, τ belongs to a face of Πx0.

(3) If ΠX ≡ Wα, τ belongs to an edge of Πx0.

Note that unless we are in the latter case (ΠX is a wedge), the choice of τ is not unique.

At this point, let us emphasize that we need that our quasimodes on the tangent cone Πx0

are compatible with the structure of ΠX that provides the admissible generalized eigenvector

ΨX. Here the vector τ introduced in (6.25) comes into play. Instead of being concentric like

before, the supports of the quasimodes are sliding along τ and concentrate at the same rate

hδ: We define our quasimode ϕXh by setting

ψXh (x) = χh(x)Ψ
X

h (x), (∀x ∈ ΠX) ,(6.26a)

ϕXh (x) = e
−i〈Ã000(p),x〉/h ψXh (x− p) with p = hδτ (∀x ∈ Πx0) .(6.26b)

The vector p is a shift and the translation Tp by −p sends a neighborhood of p in Πx0 onto

a neighborhood of 000 in ΠX. We check that

(6.27) (−ih∇+ Ã000(x))ϕ
X

h (x) = e
−i〈Ã000(p),x〉/h (−ih∇+ Ã000(x− p))ψXh (x− p), ∀x ∈ Πx0 .

We choose R > 0 in (6.22) such that B(τ , 2R)∩Πx0 = B(τ , 2R)∩ΠX. Note that R depends
only on the geometry of Ω near x0. Hence, using the translation T

τ : x 7→ x− τ ,

(6.28) Tτ
{
supp

(
χ
R
(· − τ )

)
∩ Πx0

}
= supp(χ

R
) ∩ ΠX .

It follows by scaling that, with the translation Tp : x 7→ x− p,

∀h > 0, Tp
{
supp(ϕXh ) ∩ Πx0

}
= supp(ψXh ) ∩ ΠX .

Therefore, in virtue of (6.27) we have

(6.29) qh[Ã000,Πx0](ϕ
X

h ) = qh[Ã000,ΠX](ψ
X

h ) ,

with ψXh satisfying the Neumann boundary conditions (−ih∂n+n · Ã000)ψXh = 0 on ∂ΠX, which
allows to take advantage of better cut-off estimates, cf. Lemma A.8.

The localization of the quasimodes ϕXh can be deduced from Remark 6.6:

(1) If ΠX ≡ R3, ϕXh is centered in the interior of Πx0.

(2) If ΠX ≡ R3+, ϕXh is centered on the face of Πx0 associated with τ .

(3) If ΠX ≡ Wα, ϕ
X

h is centered on the edge of Πx0 associated with τ .
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6.2.3. Synthesis. We have constructed the functions ϕXh ∈ Dom(Hh(Ã000,Πx0)) by formulas

(6.18)-(6.28):

(i) If X = (x0), the functions ϕ
X

h are sitting quasimodes:

(6.30a) ϕXh (x) = χR

( |x|
hδ

)
ΨX

( x

h1/2

)
, for x ∈ Πx0,

(ii) If X = (x0, x1), the functions ϕ
X

h are sliding quasimodes:

(6.30b) ϕXh (x) = e
−i〈Ã000(p),x〉/h χ

R

( |x− p|
hδ

)
ΨX

(
x− p

h1/2

)
, for x ∈ Πx0 and p = hδτ ,

6.3. Estimation of the quasimodes. We separately estimate the cut-off errors, the lin-

earization errors, and the error due to the change of metric.

6.3.1. Cut-off effect. In both situations of sitting and sliding quasimodes, relying on formulas

(6.24), (6.26a) and (6.29), we can apply Lemma A.8 with the magnetic potential Ã000, χ = χh
and ψ = ΨXh , we obtain for the Rayleigh quotient of ϕ

X

h :

(6.31a)
qh[Ã000,Πx0](ϕ

X

h )

‖ϕXh ‖2
=
qh[Ã000,ΠX](ψ

X

h )

‖ψXh ‖2
=
qh[Ã000,ΠX](χhΨ

X

h )

‖χhΨXh ‖2
= hΛ000 + h

2ρh

with

(6.31b) ρh =
‖ |∇χh|ΨXh‖2
‖χhΨXh ‖2

.

The fact that ΨXh belongs to Dom loc(Hh(Ã000,ΠX)) is essential for the validity of the identities

above.

The following lemma estimates the remainder due to the cut-off effect:

Lemma 6.7. Let Ψ be an admissible generalized eigenvector given by (6.18) and Ψh the

rescaled associated function given by (6.20). Let χh be the cut-off function defined by

(6.23) involving parameters R > 0 and δ ∈ [0, 1
2
]. Then there exist constants C0 > 0 and

c0 > 0 depending only on h0 > 0, R0 > 0 and Ψ such that

ρh =
‖ |∇χh|Ψh‖2
‖χhΨh‖2

≤
{
C0 h

−2δ if k < 3,

C0 h
−2δ e−c0h

δ−1/2
if k = 3,

∀R ≥ R0, ∀h ≤ h0, ∀δ ∈ [0, 12 ] .

Proof. By assumption Ψ(x) = eiϑ(y,z)Φ(z) for Ux = (y, z) ∈ R3−k × Υ and there exist
positive constants cΨ, CΨ such that

(6.32)

∫

Υ

e2cΨ|z||Φ(z)|2dz ≤ CΨ‖Φ‖2L2(Υ).

Let us set T = Rhδ, so that χh(x) = χ(|x|/T ).
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Let us first give an upper bound for ‖ |∇χh|Ψh‖:
If k < 3, then

‖ |∇χh|Ψh‖2 ≤ CT−2
∫

|y|≤2T
dy

∫

Υ∩{|z|≤2T}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz

≤ CT−2 T 3−k hk/2‖Φ‖2L2(Υ),
else, if k = 3

‖ |∇χh|Ψh‖2 ≤ CT−2
∫

Υ∩{T≤|z|≤2T}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz

≤ CT−2 hk/2
∫

Υ∩
{
Th−

1
2≤|z|≤2Th−

1
2

} |Φ(z)|2 dz

≤ CT−2 hk/2 e−2cΨT/
√
h

∫

Υ∩
{
Th−

1
2≤|z|≤2Th−

1
2

} e2c |z| |Φ(z)|2 dz

≤ CT−2 hk/2 e−2cΨT/
√
h ‖Φ‖2L2(Υ).

Let us now consider ‖χhΨh‖ (we use that 2|y| < R and 2|z| < R implies |x| < R):

‖χhΨh‖2 ≥
∫

2|y|≤T
dy

∫

Υ∩{2|z|≤T}

∣∣∣∣Φ
( z√

h

)∣∣∣∣
2

dz

≥ CT 3−khk/2
∫

Υ∩
{
2|z|≤Th−

1
2

} |Φ(z)|2 dz(6.33)

≥ CT 3−khk/2 I(Th− 12 ) ‖Φ‖2L2(Υ)(6.34)

where we have set for any S ≥ 0

I(S) :=
(∫

Υ∩{2|z|≤S}
|Φ(z)|2 dz

)(∫

Υ

|Φ(z)|2 dz
)−1

.

The function S 7→ I(S) is continuous, non-negative and non-decreasing on [0,+∞). It is
moreover increasing and positive on (0,∞) since Φ, as a solution of an elliptic equation
with polynomial coefficients and null right hand side, is analytic inside Υ. Consequently,

I(Th− 12 ) = I(Rhδ− 12 ) is uniformly bounded from below for R ≥ R0, h ∈ (0, h0), δ ∈ [0, 12 ]
and thus

ρh ≤
{
CT−2

{
I(Th− 12 )

}−1 ≤ C0h−2δ if k < 3,

CT−2 e−2cΨT/
√
h
{
I(Th− 12 )

}−1 ≤ C0h−2δe−c0hδ−1/2 if k = 3,

where the constants C0 and c0 in the above estimation depend only on the lower bound R0
on R, the upper bound h0 on h, and on the model problem associated with x0, provided

δ ∈ [0, 1
2
]. Lemma 6.7 is proved. �

If the exponent δ is bounded from above by a number δ0 <
1
2
, we obtain the following

improvement of the previous lemma.
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Lemma 6.8. Under the conditions of Lemma 6.7, let δ0 <
1
2
be a positive number. Let

R0 > 0. Then there exist constants h0 > 0, C1 > 0 and c1 > 0 depending only on R0, δ0
and on the constants cΨ, Cψ in (6.32) such that

ρh =
‖ |∇χh|Ψh‖2
‖χhΨh‖2

≤
{
C1 h

−2δ if k < 3,

C1 e
−c1hδ−1/2 if k = 3,

∀R ≥ R0, ∀h ≤ h0, ∀δ ∈ [0, δ0] .

Proof. We obtain an upper bound of ‖ |∇χh|Ψh‖2 as in the proof of Lemma 6.7. Let us
now deal with the lower-bound of ‖χhΨh‖2. With T = Rhδ, we have

‖χhΨh‖2 ≥ CT 3−khk/2
∫

Υ∩
{
2|z|≤Th−

1
2

} |Φ(z)|2 dz

≥ CT 3−khk/2
(
1− CΨe−cΨRh

δ−1/2
)
‖Φ‖2L2(Υ).(6.35)

Since 0 ≤ δ ≤ δ0 < 1
2
, there holds CΨe

−cΨRhδ−1/2 < 1
2
for h small enough or R large enough.

Thus we deduce the lemma. �

6.3.2. Linearization. Note that in any case (sitting or sliding) the quasimode ϕXh (6.30) on

Πx0 belongs to Dom(qh[Ã,Πx0]). We can compare the quadratic form for the magnetic

potential and its linear part by using (A.7) with A = Ã, A′ = Ã000, O = Πx0, and ψ = ϕ
X

h :

(6.36) qh[Ã,Πx0](ϕ
X

h ) = qh[Ã000,Πx0](ϕ
X

h )

+ 2Re

∫

Πx0

(−ih∇+ Ã000)ϕ
X

h (x) · (Ã− Ã000)(x)ϕ
X

h (x) dx+ ‖(Ã− Ã000)ϕ
X

h ‖2.

Combining with (6.31) we get

(6.37)
qh[Ã,Πx0](ϕ

X

h )

‖ϕXh ‖2
= hΛ000 + h

2ρh

+
2Re

∫
Πx0
(−ih∇+ Ã000)ϕ

X

h (x) · (Ã− Ã000)(x)ϕ
X

h (x) dx

‖ϕXh ‖2
+
‖(Ã− Ã000)ϕ

X

h ‖2
‖ϕXh ‖2

.

By Cauchy-Schwarz inequality, we obtain easily

(6.38a)
qh[Ã,Πx0](ϕ

X

h )

‖ϕXh ‖2
≤ hΛ000 + h2ρh + 2

√
h
√
Λ000 + hρh ah + a

2
h

where we have set

(6.38b) ah =
‖(Ã− Ã000)ϕ

X

h ‖
‖ϕXh‖

.

We now estimate the remainder due to the linearization of Ã.

Lemma 6.9. Let r0 > 0 be such that Vx0 ⊃ B(000, r0). For any r ∈ (0, r0], we have
(6.39) ∀x ∈ B(000, r), |Ã(x)− Ã000(x)| ≤ 1

2
‖Ã‖W 2,∞(B(0,r))|x|2 .
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Proof. Since Ã000 is the linear part of Ã and Ã(000) = 0, the formula is deduced from the Taylor

expansion of Ã at x = 000. �

By construction, there exists C(Ω) > 0 such that the support of ϕXh is included in the ball

B(000, C(Ω)hδ). Consequently, we obtain immediately

(6.40) ah ≤ C(Ω)‖Ã‖W 2,∞(supp(ϕXh ))h
2δ.

Moreover using the definition of Ã (see (6.7)) we get

‖Ã‖W 2,∞(supp(ϕXh )) ≤
(
1 + ‖ I3−J‖L∞(Vx0)h

δ
)
‖A‖W 2,∞(Ux0)

≤
(
1 + C(Ω)hδ

)
‖A‖W 2,∞(Ω)

Thus, putting this last inequality in (6.40), we deduce

(6.41) ah ≤ C(Ω)‖A‖W 2,∞(Ω)h2δ.

Combining (6.38), (6.41) and Lemma 6.7 we get

(6.42)
qh[Ã,Πx0](ϕ

X

h )

‖ϕXh‖2
≤ hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δ + h

1
2
+2δ + h4δ) .

Note that we have also used Λ000 ≤ ‖B‖L∞(Ω) ≤ ‖A‖W 1,∞(Ω) (since B = curlA) in order to
control the cross term

√
h
√
Λ000 + hρhah in the right hand side of (6.38).

6.3.3. Quasimode on Ω and estimation of the remainders. We now define a quasimode for

qh[A,Ω]. Let us note that for h small enough, in any situation (sitting or sliding) ϕ
X

h is

supported in Vx0. Therefore we can define fh by

(6.43) fh(x) = ϕ
X

h ◦ Ux0(x) ζx0h (x), x ∈ Ux0 ,

where the phase shift ζx0h was introduced in (6.8). We extend fh by zero, thus defining a

function fh ∈ H1(Ω). Combining (6.42) and (6.10) with Lemma 6.5 for r = hδ we get

qh[A,Ω](fh)

‖fh‖2
≤

(
hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δ + h

1
2
+2δ + h4δ)

)
(1 + C(Ω)hδ) .

Therefore there exists a constant C(Ω) > 0 such that

(6.44)
qh[A,Ω](fh)

‖fh‖2
≤ hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δ + h

1
2
+2δ + h4δ + h1+δ) .

We optimize this upper bound by taking δ = 3
8
, which provides immediately estimate (6.17).

The min-max principle then yields Theorem 6.1.
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6.3.4. Improvement in case of corner concentration. When the geometry minimizing the

energy is given by a corner whose tangent problem has an eigenvalue under its essential

spectrum, we get a better upper bound by improving the estimate on ah:

Proposition 6.10. Let Ω ∈ D(R3) be a polyhedral domain, A ∈ W 2,∞(Ω) be a twice
differentiable magnetic potential such that the associated magnetic field B does not vanish

on Ω. We assume moreover that there exists a corner x0 ∈ Ω such that
E (B,Ω) = E(Bx0,Πx0) < E

∗(Bx0,Πx0).

Then there exist C(Ω) > 0 and h0 > 0 such that

∀h ∈ (0, h0), λh(B,Ω) ≤ hE (B,Ω) + C(Ω)(1 + ‖A‖2W 2,∞(Ω)) h3/2| log h| .

Remark 6.11. As in Corollary 6.2 we can express this upper bound in function of the Hölder

norm of the magnetic field.

Proof. Since Πx0 is a polyhedral corner and E(Bx0,Πx0) < E
∗(Bx0,Πx0), by Proposition 4.15

the generalized eigenfunction Ψ of H(Ax0,Πx0) provided by Theorem 4.7 is an eigenfunction

and has exponential decay when |x| → +∞. Here X = (x0), the quasimode ϕXh is sitting and
defined by (6.24). From now on we may drop in this proof the superscript X. Using (6.39)

we get C(Ω) > 0 such that

∀x ∈ supp(ϕh), |(Ã− Ã000)(x)| ≤ C(Ω)‖Ã‖W 2,∞(supp(ϕh))|x|2 .
Using the change of variable X = xh−1/2 and the exponential decay of Ψ we get

ah =
‖(Ã− Ã000)ϕh‖
‖ϕh‖

≤ C(Ω)‖Ã‖W 2,∞(supp(ϕh))h,

where ah is set in (6.38b). Now (6.38) provides, with Lemma 6.7, for any δ ∈ (0, 12 ]
qh[Ã,Πx0](ϕh)

‖ϕh‖2
≤ hΛ000 + C(Ω) h

2−2δe−ch
δ− 12 + C(Ω)‖A‖W 2,∞(Ω)h3/2 + C(Ω)‖A‖2W 2,∞(Ω)h2

≤ hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω)) (h2−2δe−ch
δ− 12 + h3/2).

Therefore the quasimode fh defined in (6.43) satisfies

qh[A,Ω](fh)

‖fh‖2
≤ (1 + C(Ω)hδ)

{
hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2−2δe−ch

δ− 12 + h3/2)
}

≤ hΛ000 + C(Ω)(1 + ‖A‖2W 2,∞(Ω))
{
h1+δ + h2−2δe−ch

δ− 12 + h3/2
}
.

Here C(Ω) denotes various constants independent from h ≤ h0 and δ ≤ 1
2
. We optimize this

by taking δ = 1
2
− ε(h) with ε(h) so that h1+δ = h2−2δe−chδ−

1
2 , i.e.

h
3
2
−ε(h) = h1+2ε(h)e−ch

−ε(h)
.

We find

ech
−ε(h)
= h−

1
2
+3ε(h), i.e. h−ε(h) = 1

c
(−1
2
+ 3ε(h)) log h .
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The latter equation has one solution ε(h) which tends to 0 as h tends to 0. Replacing h−ε(h)

by the value above in h
3
2
−ε(h), we find that the remainder is a O(h3/2| log h|) and the min-max

principle provides the proposition. �

6.4. Improvement for more regular magnetic fields. The object of this section is the proof

of Theorem 6.3. In fact, our proof of the h5/4 upper bound as done in previous sections

weakly uses the exponential decay of generalized eigenfunctions in some directions. It would

also work with purely oscillating generalized eigenfunctions.

Now the proof of the h4/3 upper bound makes a more extensive use of fine properties of

the model problems: First, the decay properties of admissible generalized eigenvectors and

their stability upon perturbation, and second, the Lipschitz regularity of the ground energy

depending on the magnetic field, cf. Lemma 4.19.

We recall that x0 ∈ Ω is a point such that E(Bx0 ,Πx0) = E (B,Ω) =: Λ000. We apply Theorem

4.7 (and Remark 4.8) with (Bx0,Πx0): we denote by X the corresponding singular chain which

satisfies

E (B,Ω) = E(Bx0,Πx0) = E(Bx0,ΠX) < E
∗(Bx0,ΠX).

We now split our analysis between three geometric configurations depending on the number

of variables k in which the generalized eigenfunction has exponential decay (see Section 4.8):

(G1) ΠX is a half-space and Bx0 is tangent to the boundary.

(G2) We are in one of the following situations:

– Either ΠX is a wedge,

– or ΠX is a half-space and Bx0 is neither tangent nor normal to the boundary.

– or ΠX = R
3.

(G3) ΠX is a polyhedral cone of dimension 3 and coincides with Πx0.

Let us now deal with each situation. The arguments are specific to each case.

• Assume that we are in situation (G3). This means that x0 is a corner and that we have
the strict inequality E(Bx0,Πx0) < E ∗(Bx0,Πx0). In that case we can rely on Proposition

6.10 in which we have already proved a better upper bound for λh(B,Ω), even with a weaker

regularity assumption on the magnetic field.

• Assume that we are in situation (G2). The generalized eigenfunction Ψ associated with
H(Ã000,ΠX) has two directions of decay, z1 and z2, leaving one direction y with a purely

oscillating character. In this case, we are going to improve the linearization error: Until

now we have used that Ã(x) − Ã000(x) is a O(|x|2). Here, by a suitable phase shift (which
corresponds to a change of gauge), we can eliminate from this error the term in O(|y |2),
replacing it by a O(|y |3). The other terms containing at least one power of |z|, we can take
advantage of the decay of Ψ. The sitting modes will be constructed following exactly this

strategy, whereas concerning sliding modes, we have to linearize the potential at the point

p := hδτ , instead of 000 as previously. Let us develop details now.
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Quasimodes fh on Ω are still defined by the formula (6.43), but we alter now the definition

of ϕXh . We first treat sitting modes, and second, sliding modes.

– Sitting quasimodes. This is the case when X = (x0). Here we use the admissible generalized

eigenvector Ψ♮ in natural variables as introduced in (6.18) and its scaled version Ψ♮h. We set

(6.45) ψ♮h(x
♮) = χh(x

♮)Ψ♮h(x
♮) = χ

R

( |x♮|
hδ

)
Ψ♮

(
x♮

h1/2

)
, x♮ ∈ R×Υ .

We are going to apply Lemma A.3 in the variables (y , z) = x♮. We recall that U is the

rotation (J its associated matrix) such that U(x) = J⊤(x) = x♮ (here x ∈ ΠX). Let A♮ be
the magnetic potential associated with Ã in variables x♮. Let A♮000 and Ã000 be their linear parts

at 000. There holds, cf. Remark 4.5

(6.46) A♮(x♮) = J⊤
(
Ã(x)

)
and A

♮
000(x

♮) = J⊤(Ã000(x)), ∀x ∈ Vx0 .
Lemma A.3 in variables (u1, u2, u3) = (y , z1, z2) with ℓ = 1 then gives us a function F such

that ∂2y (A
♮ −∇F )(000) = 0 leading to the estimates

(6.47)
∣∣(A♮ − A

♮
000 −∇F

)
(x♮)

∣∣ ≤ C(Vx0) ‖Ã‖W 3,∞(Vx0)
(
|y |3 + |y ||z|+ |z|2

)
.

After (6.45), we define

(6.48) ψ̂♮h(x
♮) := e−iF (x

♮)/hψ♮h(x
♮) for x♮ ∈ R×Υ,

which leads to our new quasimode given by

(6.49) ϕXh (x) = ψ̂
X

h (x) := ψ̂
♮
h(x

♮) for x ∈ Πx0 = ΠX.

We have obviously ‖ψ̂Xh ‖ = ‖ψ♮h‖. Formulas (A.3) and (A.7) then yield:
qh[Ã,ΠX](ψ̂

X

h ) = qh[A
♮,R×Υ](ψ̂♮h)(6.50)

= qh[A
♮ −∇F,R×Υ](ψ♮h)

= qh[A
♮
000,R×Υ](ψ♮h) +

∥∥(A♮ − A♮000 −∇F )ψ♮h
∥∥2

+ 2Re

∫

R×Υ
(−ih∇+ A

♮
000)ψ

♮
h(x

♮) ·
(
A♮ −A

♮
000 −∇F

)
ψ♮h(x

♮) dx♮.

By analogy with (6.38b), we define

(6.51) âh =
‖(A♮ −A♮000 −∇F )ψ♮h‖

‖ψ♮h‖
.

Combining (6.50) with (6.31), we obtain

(6.52)
qh[Ã,ΠX](ψ̂

X

h )

‖ψ̂Xh ‖2
≤ hΛ000 + h2ρh + 2

√
h
√
Λ000 + hρh âh + â

2
h

In comparison with (6.38), we have âh instead of ah. It remains to bound âh from above.

The following Lemma provides an improvement when compared to (6.40), due to estimates

(6.47) which replace (6.39).
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Lemma 6.12. With the previous notation, there exist constants C(Ω) > 0 and h0 > 0 such

that for all h ∈ (0, h0)

(6.53) âh =
‖(A♮ −A♮000 −∇F )ψ♮h‖

‖ψ♮h‖
≤ C(Ω)‖Ã‖W 3,∞(Vx0)h

min(1, 1
2
+δ,3δ).

Proof. Using the form of the admissible generalized eigenvector Ψ♮:

Ψ♮(x♮) = eiϑ(x
♮)Φ(z) with x♮ = (y , z) ,

we obtain by definition of ψ♮h (6.45)

|ψ♮h(x♮)| = χR
( |x♮|
hδ

) ∣∣∣Φ
( z

h1/2

) ∣∣∣ .

Then relying on (6.47) and using the changes of variables Z = zh−1/2 and Y = yh−δ, we
find the bounds

∥∥∥|y |3 χ
R

( |x♮|
hδ

)
Φ
( z

h1/2

)∥∥∥ ≤ h3δ ‖ψ♮h‖
∥∥∥|y | |z| χ

R

( |x♮|
hδ

)
Φ
( z

h1/2

)∥∥∥ ≤ hδ+
1
2 ‖ψ♮h‖

∥∥∥|z|2 χ
R

( |x♮|
hδ

)
Φ
( z

h1/2

)∥∥∥ ≤ h ‖ψ♮h‖.

Summing up the latter three estimates leads to the lemma. �

We now take the same arguments as in Section 6.3.2 but instead of (6.41) we use Lemma

6.12 to estimate âh and (6.52) becomes

qh[Ã,ΠX](ψ̂
X

h )

‖ψ̂Xh ‖2
≤ hΛ000 + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h3/2 + h2−2δ + h1+δ + h3δ+

1
2 + h6δ) .

Let fh be the quasimode defined in the same way as in (6.43). The same arguments as in

Section 6.3.3 and Lemma 4.19 combined with (6.66) yields

(6.54)
qh[A,Ω](fh)

‖fh‖2
≤ hΛ000 + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h2−2δ + h3δ+

1
2 + h6δ + h1+δ) .

We optimize this upper bound by taking δ = 1
3
. The min-max principle provides Theorem

6.3 in the case (G2) if X = (x0).

– Sliding modes. This is the case when X = (x0, x1). Let us explain now how the above

arguments adapt to sliding quasimodes. We recall that we have introduced a vector τ in

(6.25) depending on Πx0 and ΠX. Mimicking definition (6.30b) for quasimodes ϕ
X

h , we are

going to construct new quasimodes with two adaptations: first, we linearize the potential at

the point p := hδτ , second, we shift the phase to optimize remainders.
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Let us denote by Ãp the potential transformed from Ã by the translation Tp : x→ x− p

Ãp(x) = Ã(x+ p)− Ã(p), x ∈ ΠX
(compare with (6.7)) and by Ãp

000 the linear part of Ã
p at 000:

Ã
p
000(x) = ∇Ã(p) · x, x ∈ ΠX.

We have curl Ãp
000 = B̃p where the constant B̃p is the magnetic field B̃ frozen at p.

We have E(Bx0,ΠX) < E ∗(Bx0,ΠX). Due to Lemma 4.19, we have

(6.55) ∃ε > 0, ∀p ∈ B(0, ε) ∩ Πx0, E(B̃p,ΠX) < E
∗(B̃p,ΠX) ,

and (B̃p,ΠX) is still in situation (G2). There exists an admissible generalized eigenfunction

ΨX,p for the operator H(Ãp
000,ΠX) associated with E(B̃p,ΠX) (denoted by Λp for shortness):

(6.56) Ψ♮,p(x♮) = ΨX,p ◦ (Up)−1(y , z) = eiϑ
p(y,z)Φp(z) for (y , z) ∈ R×Υ,

where the rotation7 Up maps ΠX onto R×Υ. Here Υ is a cone in 2 dimensions (namely a
sector, a half-space or R2). We have

(6.57)

{
(−i∇+ Ã

p
000)
2ΨX,p = ΛpΨ

X,p in ΠX,

(−i∂n + n · Ãp
000)Ψ

X,p = 0 on ∂ΠX.

An important point is that, choosing ε > 0 small enough, we may assume that, in virtue of

Lemma 4.19, the functions Φp are uniformly exponentially decreasing

(6.58) ∃c > 0, C > 0, ∀p ∈ B(000, ε), ‖Φpec |z|‖L2(Υ) ≤ C‖Φp‖L2(Υ) .
Now we take p = hδτ with h small enough. Using the p-dependent variables x♮ = (y , z) =

Up(x), we set Ψ♮,ph (x
♮) := Ψ♮,p( x♮√

h
) and, cf. (6.45)

(6.59) ψ♮,ph (x
♮) = χh(x

♮)Ψ♮,ph (x
♮) = χ

R

( |x♮|
hδ

)
Ψ♮,p

(
x♮

h1/2

)
, x♮ ∈ R×Υ .

We are arrived at point where the situation is similar as in the sitting case, with the new

feature that the generalized eigenvectors Ψ♮,ph depend (in some smooth way) on the parameter

p. The potential A♮,p in natural variables corresponding to Ãp and its linear part at 000 satisfy

(6.60) A♮,p(x♮) = J⊤
(
Ãp(x)

)
and A

♮,p
000 (x

♮) = J⊤(Ãp
000(x)) .

Like before we find a function F p satisfying

(6.61)
∣∣(A♮,p −A

♮,p
000 −∇F p

)
(x♮)

∣∣ ≤ C(Vx0) ‖Ã‖W 3,∞(Vx0)
(
|y |3 + |y ||z|+ |z|2

)
.

We define the new functions

(6.62) ψ̂♮,ph (x
♮) := e−iF

p(x♮)/hψ♮,ph (x
♮) for x♮ ∈ R×Υ ,

and

ψ̂X,ph (x) = ψ̂
♮,p
h (x

♮) for x ∈ ΠX .
7The rotation Up may depend on p but that does not hamper our analysis.
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Still with p = hδτ , we define the quasimode ϕXh in Πx0 by (cf. (6.26b))

(6.63) ϕXh (x) = e
−i〈Ã(p), x〉/h ψ̂X,ph (x− p), x ∈ Πx0 .

Using formulas (A.3) and (A.7), we have:

qh[Ã,Πx0](ϕ
X

h ) = qh[Ã
p,ΠX](ψ̂

X,p
h ) = qh[A

♮,p,R×Υ](ψ̂♮,ph ) .
Relations (6.50) are still valid if we replace ψ♮ by ψ♮,p and A♮ by A♮,p. Recall that we have

denoted Λp for E(B̃p,ΠX). Using definition (6.59) and Lemma A.8 we get like for (6.31)

(6.64)
qh[A

♮,p
000 ,R×Υ](ψ♮,ph )
‖ψ♮,ph ‖2

= hΛp + h
2ρh with ρh =

‖ |∇χh|Ψ♮,ph ‖2
‖χhΨ♮,ph ‖2

.

Here ρh satisfies the estimates as given in Lemma 6.8 because of the uniformly exponential

decay (6.58). Now âh takes the form

âh =
‖(A♮,p − A

♮,p
000 −∇F p)ψ♮,ph ‖
‖ψ♮,ph ‖

,

and we obtain

(6.65)
qh[Ã

p,ΠX](ψ̂
X,p
h )

‖ψ̂X,ph ‖2
≤ hΛp + h2ρh + 2

√
h
√
Λp + hρh âh + â

2
h

Now, when comparing with (6.52), we have Λp instead of Λ000. Using the uniform exponential

decay (6.58), we find that Lemma 6.12 holds uniformly with respect to p and we find

qh[Ã
p,ΠX](ψ̂

X,p
h )

‖ψ̂X,ph ‖2
≤ hΛp + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h3/2 + h2−2δ + h1+δ + h3δ+

1
2 + h6δ) .

Now we use Lemma 4.19 to obtain the estimate |Λp − Λ000| ≤ C|p| ≤ Chδ (as previously Λ000
denotes E(Bx0,Πx0)). Hence

(6.66)
qh[Ã,Πx0](ϕ

X

h )

‖ϕXh ‖2
=
qh[Ã

p,ΠX](ψ̂
X,p
h )

‖ψ̂X,ph ‖2
≤

hΛ000 + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h3/2 + h2−2δ + h1+δ + h3δ+
1
2 + h6δ) .

We end the proof as in the sitting case and Theorem 6.3 is proved in the case (G2).

• Assume we are in situation (G1). In situation (G1) the generalized eigenfunction has
exponential decay in one variable z . The upper bound (6.38) obtained by a Cauchy-Schwarz

inequality is too rough and we will deal with the previous identity (6.37). A Feynman-

Hellmann formula will simplify the cross term in (6.37) and the exponential decay in one

variable will provide the desired result.

In situation (G1) ΠX is a half-plane and Bx0 is tangent to its boundary. Denote by (y, z) =

(y1, y2, z) ∈ R2 ×R+ a system of coordinates of ΠX such that Bx0 is tangent to the y2-axis.

In these coordinates, the magnetic field Bx0 writes (0, b, 0).
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In the rest of this proof, we will assume without restriction that b = 1. Indeed, once

quasimodes are constructed for b = 1, Lemmas A.5 and A.6 allow to convert them into

quasimodes for any b.

Let us define the canonical reference potential

(6.67) A(y, z) = (z, 0, 0).

such that curlA = (0, 1, 0). We know (see Section 4.8) that the function

(6.68) Ψh(y, z) := e
−i
√
Θ0 y1/

√
hΦ

( z√
h

)

is a generalized eigenvector of Hh(A,R
2×R+) where Φ is a normalized eigenvector associated

with the first eigenvalue of the de Gennes operator −∂2z + (z −
√
Θ0)

2 on R+.

We define ψh in the same spirit as (6.45) but for convenience we take a cut-off function in

tensor product form (here for simplicity we denote χ
R
by χ)

(6.69) ψh(y, z) := χ
( |y|
hδ

)
χ
( z
hδ

)
Ψh(y, z), ∀(y, z) ∈ R2 × R+.

Let U : ΠX 7→ R2 × R+ be the rotation associated with the coordinates (y, z) = x♮ and J

be its associated matrix. The magnetic potential A♮ and its linear part still satisfy (6.46).

Since A♮000 and the canonical reference potential A introduced in (6.67) are both linear with

curlA♮000 = curlA, there exists a homogenous polynomial function of degree two F
♮ such that

(6.70) A
♮
000 −∇♮F ♮ = A.

Therefore, e−iF
♮/hΨh is an admissible generalized eigenvector for Hh(A

♮
000,R

3
+). So we define

(6.71) ψ♮h(y, z) := e
−iF ♮(x♮)/hψh(y, z), ∀(y, z) ∈ R2 × R+,

and

(6.72) ψXh (x) := ψ
♮
h(y, z), ∀x ∈ ΠX.

According as Πx0 equals ΠX or not we now construct adjusted quasimodes using the gener-

alized eigenvector ψXh .

– Sitting quasimodes. This is the case when X = (x0). The quasi-mode is defined by

ϕXh (x) := ψ
X

h (x) ,

where ψXh (x) is set in (6.71)-(6.72). This gives a quasimode for Hh(Ã,Πx0) and we have

qh[Ã,Πx0](ψ
X

h ) = qh[A
♮,R3+](ψ

♮
h)(6.73)

= qh[A
♮ −∇F ♮,R3+](ψh).
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Now we apply (A.7) with A = A♮−∇F ♮ and A′ = A. Using (6.70) we find A−A′ = A♮−A♮000,
and thus

qh[A
♮ −∇F ♮,R3+](ψh) = qh[A,R3+](ψh)(6.74)

+ 2Re

∫

R
3
+

(−ih∇+ A)ψh(x
♮) · (A♮ − A

♮
000)(x

♮)ψh(x♮) dx
♮(6.75)

+ ‖(A♮ −A
♮
000)ψh‖2.(6.76)

We bound from above the term (6.76) like in (6.40):

(6.77) ‖(A♮ − A
♮
000)ψh‖2 ≤ C(Ω)‖A♮‖2W 2,∞(supp(ψh)) h

4δ ‖ψh‖2.

Let us now deal with the term (6.75). We calculate (−ih∇+A)ψh by using (6.68)–(6.69):

(−ih∇+A)ψh(x
♮) = e−i

√
Θ0 y1/

√
h×




χ
( |y|
hδ

)
χ
(
z
hδ

)



(z −
√
hΘ0)Φ

(
z√
h

)

0

−i
√
hΦ′

(
z√
h

)


− ih

1−δ




y1
|y|χ

′( |y|
hδ
) χ( z

hδ
)

y2
|y|χ

′( |y|
hδ
) χ( z

hδ
)

χ( |y|
hδ
) χ′( z

hδ
)


Φ

(
z√
h

)



.

Since Φ and χ are real valued functions, the term (6.75) reduces to a single term:

Re

∫

R
3
+

(−ih∇+ A)ψh(x
♮) · (A♮ − A♮000)(x

♮)ψh(x♮) dx
♮(6.78)

=

∫

R
3
+

(z −
√
hΘ0) |ψh(x♮)|2A(rem,2)2 (x♮) dx♮

=

∫

R
3
+

(z −
√
hΘ0)

∣∣∣Φ
(
z√
h

)∣∣∣
2 ∣∣∣χ

( |y|
hδ

)∣∣∣
2 ∣∣χ

(
z
hδ

)∣∣2 A(rem,2)2 (x♮) dx♮,

where A
(rem,2)
2 denotes the second component of A♮ − A

♮
000. We write

A
(rem,2)
2 (x♮) = P2(y) +R2(x

♮) + A
(rem,3)
2 (x♮),

where A
(rem,3)
2 is the Taylor remainder of degree 3 of the second component of A♮ at 000,

whereas P2(y) + R2(x
♮) is a representation of its quadratic part in the form

P2(y) = a1y
2
1 + a2y

2
2 + a3y1y2 and R2(x

♮) = b1z
2 + b2zy1 + b3zy2.

As in (A.2) there holds

‖A(rem,3)2 ‖L∞(supp(ψh)) ≤ C‖Ã‖W 3,∞(supp(ψh)) h3δ,

leading to, with the help of the variable change Z = z/
√
h and the exponential decay of Φ:

(6.79)

∣∣∣∣∣

∫

R
3
+

(z −
√
hΘ0) |ψh(x♮)|2A(rem,3)2 (x♮) dx♮

∣∣∣∣∣ ≤ Ch
1
2
+3δ‖ψh‖2 .
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Likewise, combining the exponential decay of Φ, the change of variable Z = z/
√
h and the

localization of the support in balls of size Chδ, we deduce

(6.80)

∣∣∣∣∣

∫

R3+

(z −
√
hΘ0) |ψh(x♮)|2R2(x♮) dx♮

∣∣∣∣∣ ≤ Ch
min( 3

2
,1+δ)‖ψh‖2 .

Let us now deal with the term involving y 7→ P2(y). Due to a Feynman-Hellmann formula

applied to the de Gennes operator H(τ) at τ = −
√
Θ0 (cf. [18, Lemma A.1]) we find by

the scaling z 7→ z/
√
h the identity

∫

R+

(z −
√
hΘ0)

∣∣∣Φ
(
z√
h

)∣∣∣
2

dz = 0 .

Thus we can write∫

R
3
+

(z −
√
hΘ0) |ψh(x♮)|2 P2(y) dx♮

=

∫

R2

P2(y)
∣∣∣χ
( |y|
hδ

)∣∣∣
2

dy

∫

z∈R+
(z −

√
hΘ0)

∣∣∣Φ
(
z√
h

)∣∣∣
2

χ
(
z
hδ

)2
dz

=

∫

R2

P2(y)
∣∣∣χ
( |y|
hδ

)∣∣∣
2

dy

∫

z∈R+
(z −

√
hΘ0)

∣∣∣Φ
(
z√
h

)∣∣∣
2 (
χ
(
z
hδ

)2 − 1
)
dz

The support of the integral in z is contained in z ≥ Rhδ with δ < 1
2
. Therefore, using once

more the changes of variables Y = y/hδ and Z = z/
√
h, we find:

∣∣∣∣∣

∫

R
3
+

(z −
√
hΘ0) |ψh(x♮)|2P2(y) dx♮

∣∣∣∣∣ ≤ C‖A
♮‖W 2,∞(supp(ψh))h4δ+

1
2e−ch

δ−1/2
.

Since ‖ψh‖2 ≥ Ch2δ+
1
2 (see (6.35)), this leads to:

(6.81)

∣∣∣∣∣

∫

R
3
+

(z −
√
hΘ0) |ψh(x♮)|2P2(y) dx♮

∣∣∣∣∣ ≤ C‖A
♮‖W 2,∞(supp(ψh))e−ch

δ−1/2 ‖ψh‖2 .

Collecting (6.79), (6.80), and (6.81) in (6.75), we find the upper bound

(6.82)

∣∣∣∣∣Re
∫

R
3
+

(−ih∇+ A♮000)ψh(x
♮) · (A♮ − A♮000)ψh(x

♮) dx♮

∣∣∣∣∣

≤ C(1 + ‖A♮‖2W 3,∞(supp(ψh))) h
min( 1

2
+3δ,1+δ)‖ψh‖2 .

Returning to (6.73) via (6.74) and combining (6.82) with (6.77), we deduce

qh[Ã,Πx0](ψ
X

h )

‖ψXh ‖2
≤
qh[A,R

3
+](ψh)

‖ψh‖2
+ C(1 + ‖A♮‖2W 3,∞(supp(ψh))) (h

min(1+δ, 1
2
+3δ) + h4δ).

Inserting the cut-off error for qh[A,R
3
+](ψh) we obtain

qh[Ã,Πx0](ψ
X

h )

‖ψXh ‖2
≤ hE(Bx0,Πx0) + C(1 + ‖Ã‖2W 3,∞(supp(ψXh ))) (h

2−2δ + hmin(1+δ,
1
2
+3δ) + h4δ).
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As already seen, we have ‖Ã‖W 3,∞(supp(ψXh )) ≤ (1+C(Ω)h
δ)‖A‖W 3,∞(Ω). The quasimode fh on

Ω is defined as in (6.43) and the estimation of Section 6.3.3 provides

(6.83)
qh[A,Ω](fh)

‖fh‖2
≤ hE(Bx0,Πx0) + C(Ω)(1 + ‖A‖2W 3,∞(Ω))(h2−2δ + h3δ+

1
2 + h4δ + h1+δ) .

Choosing δ = 1
3
and using the min-max principle we get Theorem 6.3 in situation (G1).

– Sliding quasimodes. This is the case when X = (x0, x1). Let τ be the vector introduced

in (6.25) and τ ♮ = Uτ . We note that τ ♮ has no component in the z direction, because τ is

tangent to the boundary of the half-space ΠX, see Remark 6.6. We define p
♮ = hδτ ♮, which

we write p♮ = (py, 0) = (p1, p2, 0) in coordinates x
♮.

Our quasimode for Hh(Ã,Πx0) is defined by a p-translation of the quasimode ψ
X

h , cf (6.26b):

(6.84) ϕXh (x) = e
−i〈Ã000(p), x〉/h ψXh (x− p) ∀x ∈ Πx0 .

There holds the following sequence of identities, cf (6.73) for the last one,

qh[Ã,Πx0](ϕ
X

h ) = qh[Ã(·+ p)− Ã000(p),ΠX](ψ
X

h )

= qh[A
♮(·+ p♮)− A♮000(p

♮),R3+](ψ
♮
h)

= qh[A
♮(·+ p♮)− A

♮
000(p

♮)−∇F ♮,R3+](ψh)
and we check that

A♮(·+ p♮)−A♮000(p
♮)−∇F ♮ = A♮(·+ p♮)−A♮000(·+ p♮) + A♮000(·+ p♮)−A♮000(p

♮)−∇F ♮

= A♮(·+ p♮)−A
♮
000(·+ p♮) + A

♮
000 −∇F ♮

= A♮(·+ p♮)−A♮000(·+ p♮) + A .

Then, instead of (6.74)-(6.76) we obtain now that qh[A
♮(·+ p♮)− A

♮
000(p

♮) −∇F ♮,R3+](ψh)
is the sum of the three following terms:

qh[A,R
3
+](ψh)

+ 2Re

∫

R3+

(−ih∇+ A)ψh(x
♮) ·

(
A♮(x♮ + p♮)− A♮000(x

♮ + p♮)
)
ψh(x♮) dx

♮

+ ‖
(
A♮(·+ p♮)−A

♮
000(·+ p♮)

)
ψh‖2.

Since |p| = hδ, the estimates (6.77)-(6.83) of the sitting case are still valid now, replacing
the norm in W ℓ,∞(supp(ψh)) by the norm in W

ℓ,∞(p♮ + supp(ψh)) (for ℓ = 2, 3).

The proof of Theorem 6.3 is now complete since we have explored all possible geometric

situations for (Bx0,ΠX).

6.5. Improvement for a straight polyhedron with constant magnetic field. In this para-

graph we improve Theorem 6.1 for a straight polyhedral domain with constant magnetic field.

Since there is no curvature, we expect smaller remainders in the asymptotics of λh(B,Ω).
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Moreover, in that case, we will see that the function x 7→ E(B,Πx) attains its minimum at

a vertex of Ω.

Theorem 6.13. Let Ω be a straight polyhedron and B be a constant magnetic field with

|B| = 1. Then
E (B,Ω) = min

v∈V
E(B,Πv)

where V denotes the set of the vertices of Ω. We have

λh(B,Ω) ≤ hE (B,Ω) + Ch2 .
If there exists v ∈ V such that E(B,Πv) = E (B,Ω) < E ∗(B,Πv), then there exist positive

constants C, c such that

λh(B,Ω) ≤ hE (B,Ω) + Ce−ch
−1/2
.

Proof. Since the polyhedral domain is assumed to have straight faces and edges and the

magnetic field is constant, the function x 7→ E(B,Πx) is constant on each stratum of Ω.

Let v ∈ V. We apply Theorem 4.7 and relations (4.8) and (4.19) with Π = Πv:

E(B,Πv) ≤ E
∗(B,Πv) = min

e∈Ev

E(B,Πe),

with Ev the subset of E such that for any e ∈ Ev, v ∈ ∂e and Πe the wedge associated with

the edge e. In the same way we prove for each edge e ∈ E:

E(B,Πe) ≤ min
f∈Fe

E(B,Πf) ≤ 1

where Fe denotes the set of the faces adjacent to an edge e. Therefore

min
v∈V

E(B,Πv) = E (B,Ω).

Let v0 be a vertex minimizing x 7→ E(B,Πx). Let ΠX be the tangent cone given by Theorem

4.7. If E(B,Πv0) < E ∗(B,Πv0) then ΠX = Πv0 and we have an (admissible generalized)

eigenfunction on Πv0 associated with E(B,Πv0). If E(B,Πv) = E ∗(B,Πv), then there exists

a stratum t of Ω associated with ΠX such that ΠX is the tangent cone to any point of

t. Moreover for any point x ∈ t we have E(B,Πx) < E ∗(B,Πx) therefore there exists a

generalized eigenfunction on Πx associated to E(B,Πx). In both cases we have found a

point x ∈ Ω such that there exists a generalized eigenfunction on Πx associated to E (B,Ω).

There exists Rx > 0 such that

(6.85) Ω ∩ B(0, 2Rx) = Πx ∩ B(0, 2Rx).

We define the quasimode ψh as in (6.26) with δ = 0, τ = 0 and R = Rx. We have

ψh ∈ H1(Ω) and qh[A,Πx](ψh) = qh[A,Ω](ψh). Using (6.37) and the fact that A equals its

affine part, we have:

(6.86)
qh[A,Ω](ψh)

‖ψh‖2
= hE(B,Πx) + h

2ρh.
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Applying Lemma 6.7 with χh as defined in (6.23), δ = 0 and R = Rx, we have

(6.87) ρh =

{
O(1) if k < 3,

O(e−ch
−1/2
) if k = 3.

Then, by the min-max principle and (6.86), we deduce when k < 3:

λh(B,Ω) ≤ h inf
x∈Ω

E(B,Πx) +O(h
2) = hE (B,Ω) + Ch2.

If there exists v ∈ V such that E(B,Πv) = E (B,Ω) < E
∗(B,Πv), we use Theorem 4.7,

Proposition 4.15 and there exists an (admissible generalized) eigenfunction with k = 3 of

H(A,Πv) for E(B,Πv). According to (6.86) and (6.87), we have:

(6.88) λh(B,Ω) ≤
qh[A,Ω](ψh)

‖ψh‖2
≤ hE(B,Πv) + Ce

−ch−1/2.

�

7. Lower bound for first eigenvalues

In this section we give a general lower bound on the first eigenvalue, namely:

Theorem 7.1. Let Ω ∈ D(R3) be a polyhedral domain, A ∈ W 2,∞(Ω) be a twice differen-
tiable magnetic potential such that the associated magnetic field B does not vanish on Ω.

Then there exist C(Ω) > 0 and h0 > 0 such that

(7.1) ∀h ∈ (0, h0), λh(B,Ω) ≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))h5/4 .

We recall that the quantity E (B,Ω) is the lowest local energy defined in (1.5).

• Idea of the proof. We first make a partition of the unity of Ω such that on each element
we are able to use the change of variable given in (3.1). The local energy of the associated

tangent model problem with frozen magnetic field is then bounded from below by hE (B,Ω).

As above we then estimate the remainders due to the cut-off effects, the change of variables

and the linearization of the potential.

• IMS localization. Let δ ∈ (0, 1
2
). For h small enough, we denote by {(xj , rj), j ∈ Jh}

a h-dependent finite set of pairs (center, radius) provided by Lemma B.2 for ρ = hδ.

Relying on Lemma B.7, we choose a finite associate partition of the unity (χj)j∈Jh with
χj ∈ C∞0 (B(xj , 2rj)) satisfying ∑

j∈Jh

χ2j = 1 on Ω

and the uniform estimate of gradients

(7.2) ∃C > 0, ∀h ∈ (0, h0), ∀j ∈ Jh, ‖∇χj‖2L∞(Ω) ≤ Ch−2δ .
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The IMS formula (see Lemma A.7) provides for all f ∈ H1(Ω)
qh[A,Ω](f ) =

∑

j∈Jh

qh[A,Ω](χj f )− h2
∑

j∈Jh

‖∇χj f ‖2L2(Ω)

and using (7.2) we get C(Ω) > 0 such that

(7.3) qh[A,Ω](f ) ≥
∑

j∈Jh

qh[A,Ω](fj)− C(Ω)h2−2δ‖f ‖2L2(Ω) .

where fj denotes the localized function χj f .

• Local control of the energy. For each j ∈ Jh, we estimate the term qh[A,Ω](fj) appearing

in (7.3). By construction supp(fj) ⊂ Uxj . Let Ãj defined as in (6.7) with xj playing the same
role as x0. Lemma 6.5 applied with r = 2rj ≤ Chδ provides C(Ω) > 0 such that

(7.4)
qh[A,Ω](fj)

‖fj‖2
≥ (1− C(Ω)hδ)

qh[Ã
j ,Πxj ](ψj)

‖ψj‖2

where we have denoted ψj = fj ◦ (Uxj )−1. Let Ãj000 be the linear part of Ã
j at the origin 000 of

Πxj . We use (A.7) with ψ = ψj and O = Πxj :

(7.5) qh[Ã
j ,Πxj ](ψj) = qh[Ã

j
000,Πxj ](ψj)

+ 2Re
〈
(−ih∇+ Ãj000)ψj , (Ã

j − Ãj000)ψj
〉
+ ‖(Ãj − Ãj000)ψ‖2.

Therefore using the Cauchy-Schwarz inequality:

qh[Ã
j ,Πxj ](ψj) ≥ qh[Ãj000,Πxj ](ψj)− 2

(
qh[Ã

j
000,Πxj ](ψj)

)1/2
‖(Ãj − Ã

j
000)ψj‖ .

We cannot conclude like in (6.38) because we do not have any a priori upper bound on

qh[Ã
j
000,Πxj ](ψj). That is why we use the parametric estimate

∀η > 0, qh[Ã
j ,Πxj ](ψj) ≥ (1− η)qh[Ãj000,Πxj ](ψj)− η−1‖(Ãj − Ã

j
000)ψj‖2

based on the simple inequality 2ab ≤ ηa2 + η−1b2. Since curl Ãj000 = Bxj we have

qh[Ã
j
000,Πxj ](ψj) ≥ hE(Bxj ,Πxj )‖ψj‖2 .

Moreover using (6.39) and the same arguments as in Section 6.3.2 we get

‖(Ãj − Ãj000)ψj‖2 ≤ C(Ω)(1 + ‖A‖2W 2,∞(Ω))h4δ‖ψj‖2 .
We deduce for all η > 0:

qh[Ã
j ,Πxj ](ψj) ≥ (1− η)hE(Bxj ,Πxj )‖ψj‖2 − η−1C(Ω)(1 + ‖A‖2W 2,∞(Ω))h4δ‖ψj‖2.

Choosing η = h2δ−
1
2 we get

qh[Ã
j ,Πxj ](ψj)

‖ψj‖2
≥ hE(Bxj ,Πxj )− C(Ω)(1 + ‖A‖2W 2,∞(Ω))h2δ+

1
2(7.6)

≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))h2δ+
1
2 .



GROUND ENERGY OF THE MAGNETIC LAPLACIAN IN POLYHEDRAL BODIES 49

• Conclusion. Combining the previous localized estimate (7.6) with (7.4) we deduce:
qh[A,Ω](fj)

‖fj‖2
≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2δ+

1
2 + h1+δ).

Summing up in j ∈ Jh and using that
∑

j∈Jh ‖fj‖
2 = ‖f ‖2 we obtain

(7.7)

∑
j∈Jh qh[A,Ω](fj)

‖f ‖2 ≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))(h2δ+
1
2 + h1+δ),

and combining (7.7) with (7.3) we get C(Ω) > 0 such that

(7.8) ∀f ∈ H1(Ω),
qh[A,Ω](f )

‖f ‖2 ≥ hE (B,Ω)− C(Ω)(1 + ‖A‖2W 2,∞(Ω))
(
h2δ+

1
2 + h1+δ + h2−2δ

)
.

We optimize this by taking δ = 3
8
and we deduce Theorem 6.1 from the min-max principle.

Like in the last section, we have a result using only a Hölder norm of the magnetic field:

Corollary 7.2. Let Ω ∈ D(R3) be a polyhedral domain, B ∈ W 1+α,∞(Ω) be a non-vanishing
Hölder continuous magnetic field of order 1 + α with some α ∈ (0, 1). Then there exist
C(Ω) > 0 and h0 > 0 such that

(7.9) ∀h ∈ (0, h0), λh(B,Ω) ≥ hE (B,Ω)− C(Ω)(1 + ‖B‖2W 1+α,∞(Ω))h5/4 .

Appendix A. Technical lemmas

A.1. Gauge transform.

Lemma A.1. Let O ⊂ R3 be a domain and let ϑ be a regular function on O. Let A be a
regular potential. Then

∀ψ ∈ Dom(qh[A,O]), qh[A+∇ϑ,O](e−iϑ/hψ) = qh[A,O](ψ).

Furthermore a function ψ is an eigenfunction for the operator Hh(A,O) if an only if e−iϑ/hψ
is an eigenfunction for Hh(A+∇ϑ,O) associated with the same eigenvalue.

Proof. The commutation formula

(−ih∇+A+∇ϑ)
(
e−iϑ/hψ

)
= e−iϑ/h(−ih∇+ A)ψ

yields the result. �

For the sake of completeness we provide the following standard lemma describing the effect

of a translation when the potential is affine:
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Lemma A.2 (Translation). Let O ⊂ R3 be a domain and A be an affine magnetic potential.
Let d ∈ R3 be a vector and Od := O+d be the translated domain. For ψ ∈ Dom(Hh(A,O)),
we define the translated function on Od by

ψd : x 7→ e−i〈A(d)−A(000),x〉/hψ(x− d) .

Then qh[A,Od](ψd) = qh[A,O](ψ) and ψ is an eigenfunction of Hh(A,O) if and only if ψd

is an eigenfunction of Hh(A,Od).

Lemma A.3. Let O be a bounded domain such that 000 ∈ O. Let A ∈ W 3,∞(O) be a magnetic
potential such that A(000) = 0. Let A000 denote the linear part of A at 000. Let ℓ be an index in

{1, 2, 3}.
(a) There exists a change of gauge ∇F where F is a polynomial function of degree 3, so
that

(1) The linear part of A−∇F at 000 is still A000,
(2) The second derivative of A−∇F with respect to uℓ cancels at 000:

∂2uℓ(A−∇F )(000) = 0.
(3) The coefficients of F are bounded by ‖A‖W 2,∞(O).

(b) Let us choose ℓ = 1 for instance. We have the estimate

(A.1) |A(u)−A000(u)−∇F (u)| ≤ C(O) ‖A‖W 3,∞(O)
(
|u1|3+ |u1u2|+ |u1u3|+ |u2|2+ |u3|2

)
,

where the constant C(O) depends only on the outer diameter of O.

Proof. The Taylor expansion of A at 000 takes the form

A = A000 + A(2) +A(rem,3),

where A(2) is a homogeneous polynomial of degree 2 with 3 components and A(rem,3) is a

remainder:

(A.2) |A(rem,3)(u)| ≤ ‖A‖W 3,∞(O)|u|3 for u ∈ O.

Let us write the m-th component A
(2)
m of A

(2) as

A(2)m (u) =
∑

|α|=2
am,αu

α1
1 u

α2
2 u

α3
3 for u = (u1, u2, u3) ∈ O.

(a) Now, the polynomial F can be explicitly determined. It suffices to take

F (u) = u2ℓ
(
a1,α∗u1 + a2,α∗u2 + a3,α∗u3 − 2

3
aℓ,α∗uℓ

)
,

where α∗ is such that α∗ℓ = 2 (and the other components are 0). Then

∇F (u) = u2ℓ



a1,α∗

a2,α∗

a3,α∗



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and point (a) of the lemma is proved.

(b) Choosing ℓ = 1, we see that the m-th components of A(2) −∇F is

A(2)m (u)− (∇F )m(u)
= am,(1,1,0)u1u2 + am,(1,0,1)u1u3 + am,(0,1,1)u2u3 + am,(0,2,0)u

2
2 + am,(0,0,2)u

2
3 .

Hence A(2) −∇F satisfies the estimate
|(A(2)(u)−∇F (u)| ≤ ‖A‖W 2,∞(O)

(
|u1u2|+ |u1u3|+ |u2|2 + |u3|2

)
.

But

A−A000 −∇F = A(2) −∇F + A(rem,3).

Therefore, with (A.2)

|A(u)− A000(u)−∇F (u)| ≤ ‖A‖W 2,∞(O)
(
|u1u2|+ |u1u3|+ |u2|2 + |u3|2

)
+ ‖A‖W 3,∞(O)|u|3.

Using finally that |u|3 ≤ 12(|u1|3 + |u2|3 + |u3|3) ≤ C(O)(|u1|3 + |u2|2 + |u3|2), we conclude
the proof of estimate (A.1). �

A.2. Change of variables. Let G be a metric of R3, that is a 3 × 3 positive symmetric
matrix with regular coefficients. For a smooth magnetic potential, the quadratic form of the

associated magnetic Laplacian with the metric G is denoted by qh[A,O,G] and is defined
in (1.15). The following lemma describes how this quadratic form is involved when using a

change of variables:

Lemma A.4. Let U : O → O′, u 7→ v be a diffeomorphism with O,O′ domains. We denote
by

J := d(U−1)

the jacobian matrix of the inverse of U. Let A be a smooth magnetic potential and B = curlA

the associated magnetic field. Let f be a function of Dom(qh[A,O]) and ψ := f ◦U−1 defined
in O′. For any h > 0 we have
(A.3) qh[A,O](f ) = qh[Ã,O′,G](ψ) and ‖f ‖L2(O) = ‖ψ‖L2G(O′)
where the new magnetic potential and the metric are respectively given by

(A.4) Ã := J⊤
(
A ◦ U−1

)
and G := J−1(J−1)⊤ .

The magnetic field B̃ = curl Ã in the new variables is given by

(A.5) B̃ := | det J| J−1
(
B ◦ U−1

)
.

Let ρ > 0, using the previous Lemma with the scaling Uρ := x 7→ √ρ x we get
Lemma A.5. Let O ⊂ R3 be a domain and for r > 0, we denote by rO the domain
{x ∈ R3, x = rx′ with x′ ∈ O}. Let B be a constant magnetic field. Then

∀ρ > 0, E(B,O) = ρE
(B
ρ
,
√
ρO

)
.
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A.3. Miscellaneous.

• Orientation of the magnetic field. Let B be a magnetic field. It is known that changing B
into −B does not affect the spectrum of the associated magnetic Laplacian. More precisely
we have:

Lemma A.6. Let O ⊂ R3 be a domain, B be a magnetic field and A an associated potential.
Then Hh(−A,O) and Hh(A,O) are unitary equivalent. We have

∀ψ ∈ Dom(qh[A,O]), qh[−A,O](ψ) = qh[A,O](ψ)
and ψ is an eigenfunction of Hh(A,O) if and only if ψ is an eigenfunction of Hh(−A,O).

• Model linear potential. Let us remark that if B is a constant magnetic field, an associated
magnetic potential is given by

(A.6) AS(x) :=
1

3
B ∧ x .

Indeed we have

curlAS =
1

3
∇∧ (B ∧ x) =

1

3
((∇ · x)B− (∇ · B)x) = B .

• Comparison between two potentials. Let O ⊂ R3 be a domain and let A and A′ be two
magnetic potentials. Then, for any function ψ of Dom(qh[A,O])∩Dom(qh[A′,O]), we have:
(A.7)

qh[A,O](ψ) = qh[A′,O](ψ)+2Re
∫

O
(−ih∇+A′)ψ(x) ·(A−A′)(x)ψ(x) dx+‖(A−A′)ψ‖2 .

A.4. Cut-off effect. In this section we recall standard IMS8 formulas. This kind of formulas

appear for Schrödinger operators in [9], but they can also be found in older works like [26].

In this section A denotes a regular magnetic potential and O a generic domain of R3.
The first formula describes the effect of a partition of the unity on the energy of a function

which is in the form domain, see for example [40, Lemma 3.1]:

Lemma A.7 (IMS formula). Assume that χ1, . . . , χL ∈ C∞(O) are such that
L∑

ℓ=1

χ2ℓ ≡ 1 on O.

Then, for any ψ ∈ Dom(qh[A,O])

qh[A,O](ψ) =
L∑

ℓ=1

qh[A,O](χℓψ)− h2
L∑

ℓ=1

‖ψ∇χℓ‖2L2(O)

8IMS stands for Ismagilov-Morgan-Sigal (or Simon)
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Recall that Dom loc(Hh(A,O)) denotes the functions that are locally in the domain of the
operator, see (1.17). In particular they satisfy the Neumann boundary condition. The second

formula describes the energy of such a function when applying a cut-off function, see for

example [18, (6.11)]:

Lemma A.8. Let χ ∈ C∞0 (O) a real smooth function. Then for any ψ ∈ Dom loc(Hh(A,O))

(A.8) qh[A,O](χψ) = Re
∫

O
χ(x)2Hh(A,O)ψ(x) ψ(x) dx+ h2‖∇χψ‖2L2(O) .

Appendix B. Partition of unity suitable for IMS formulas

We need a preliminary definition.

Definition B.1. Let Ω ∈ D(M) with M = Rn or M = Sn. Let x ∈ Ω and U be an open
neighborhood of x in M. We say that U is a map-neighborhood of x for Ω if there exists a
local smooth diffeomorphism Ux which maps the neighborhood U onto a neighborhood V of
0 in Rn and such that

(B.1) Ux(U ∩Ω) = V ∩ Πx and Ux(U ∩ ∂Ω) = V ∩ ∂Πx ,

where Πx is the tangent cone to Ω at x (compare with (3.1)).

Lemma B.2. Let n ≥ 1 be the space dimension. M denotes Rn or Sn. Let Ω ∈ D(M) and

K > 1. There exist a positive integer L and two positive constants ρmax and κ ≤ 1 (depending
on Ω and K) such that for all ρ ∈ (0, ρmax], there exists a (finite) set Z ⊂ Ω × [κρ, ρ]
satisfying the following three properties

(1) We have the inclusion Ω ⊂ ∪(x,r)∈Z B(x, r)
(2) For any (x, r) ∈ Z , the ball B(x, Kr) is a map-neighborhood of x for Ω
(3) Each point x0 of Ω belongs to at most L different balls B(x, Kr).

Here are preparatory notations and lemmas.

Let Ω ∈ D(M) and K > 1. If the assertions of Lemma B.2 are true for this Ω and this K, we

say that Property P(Ω, K) holds. We may also specify that the assertion by the sentence

Property P(Ω, K) holds with parameters (L, ρmax, κ).

Let U∗ ⊂⊂ U be two nested open sets. We say that the property P(Ω, K;U∗,U) holds9
if the assertions of Lemma B.2 are true for this Ω and this K, with discrete sets Z ⊂
(U∗ ∩Ω)× [κΩρ, ρ] and with (1)-(3) replaced by

(1) We have the inclusion U∗ ∩Ω ⊂ ∪(x,r)∈Z B(x, r)
(2) For any (x, r) ∈ Z , the ball B(x, Kr) is included in U and is a map-neighborhood of

x for Ω

9This is the localized version of property P(Ω, K).



54 VIRGINIE BONNAILLIE-NOËL, MONIQUE DAUGE, NICOLAS POPOFF

(3) Each point x0 of U ∩Ω belongs to at most L different balls B(x, Kr).

Like above the specification is

Property P(Ω, K;U∗,U) holds with parameters (L, ρmax, κ).
In the process of proof, we will construct coverings which are not exactly balls, but domains

uniformly comparable to balls. Let us introduce the local version of this new assertion. For

0 < a ≤ a′ we say that
Property P[a, a′](Ω, K;U∗,U) holds with parameters (L, ρmax, κ)

if for all ρ ∈ (0, ρmax], there exists a finite set Z ⊂ (U∗∩Ω)× [κΩρ, ρ] and open sets D(x, r)
satisfying the following four properties

(1) We have the inclusion U∗ ∩Ω ⊂ ∪(x,r)∈Z D(x, r)
(2) For any (x, r) ∈ Z , the set10 D(x, Kr) is included in U and is a map-neighborhood
of x for Ω

(3) Each point x0 of U ∩Ω belongs to at most L different sets D(x, Kr)
(4) For any (x, r) ∈ Z , we have the inclusions B(x, ar) ⊂ D(x, r) ⊂ B(x, a′r).

Note that P[1, 1](Ω, K;U∗,U) =P(Ω, K;U∗,U).
Lemma B.3. If Property P[a, a′](Ω, K;U∗,U) holds with parameters (L, ρmax, κ), then

Property P(Ω, a
a′K;U∗,U) holds with parameters (L, a′ρmax, κ).

Proof. Starting from the covering of U∗ ∩Ω by the sets D(x, r) and using condition (4), we
can consider the covering of U∗ ∩ Ω by the balls B(x, a′r). Then r ′ := a′r ∈ [κa′ρ, a′ρ] =
[κρ′, ρ′] with ρ′ < a′ρmax.

Concerning conditions (2) and (3), it suffices to note the inclusions

B(x, a
a′
Kr ′) ⊂ D(x, 1

a′
r ′K) = D(x, rK) .

The lemma is proved. �

Proof. of Lemma B.2. The principle of the proof is a recursion on the dimension n.

Step 1. Explicit construction when n = 1.

The domain Ω and the localizing open sets U∗ and U are then open intervals. Let us assume
for example that U∗ = (−ℓ, ℓ), U = (−ℓ − δ, ℓ + δ) and Ω = (0, ℓ + δ′) with ℓ, δ > 0 and
δ′ > δ. Let K ≥ 1. We can take

ρmax = min
{ ℓ
K
, δ
}

and for any ρ ≤ ρmax the following set of couples (xj , rj), j = 0, 1, . . . , J

x0 = 0, r0 = ρ and xj = ρ+
2j − 1
K

ρ, rj =
ρ

K
for j = 1, . . . , J

10Here D(x, Kr ) is the set of y such that x+ (y − x)/K ∈ D(x, r ).
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with J such that xJ < ℓ and ρ+
2J+1
K
ρ ≥ ℓ. If xJ < ℓ− ρ

K
, we add the point xJ+1 = ρ+

2J
K
ρ.

The covering condition (1) is obvious.

Concerning condition (2), we note that the bound ρmax ≤ ℓ
K
implies that [0, Kr0) = [0, Kρ)

is a map-neighborhood for the boundary of Ω, and the bound ρmax ≤ δ implies that when

j ≥ 1, the “balls” (xj−Krj , xj+Krj) = (xj−ρ, xj+ρ) are map-neighborhoods for the interior
of Ω.

Concerning condition (3), we can check that L = K + 2 is suitable.

Step 2. Localization.

Let Ω ∈ D(Rn) or Ω ∈ D(Sn). For any x ∈ Ω, there exists a ball B(x, rx) with positive
radius rx that is a map-neighborhood for Ω. We extract a finite covering of Ω by open sets

B(x(ℓ), 1
2
r (ℓ)). We set

U∗ℓ = B(x(ℓ),
1

2
r (ℓ)) and Uℓ = B(x(ℓ), r (ℓ)).

The map Uℓ := Ux(ℓ) transforms U∗ℓ and Uℓ into neighborhoods V∗ℓ and Vℓ of 0 in the tangent
cone Πℓ := Πx(ℓ). Thus we are reduced to prove the local property P(Πℓ, K;V∗ℓ ,Vℓ) for any
ℓ. Indeed

• The local diffeomorphism Uℓ allows to deduce Property P(Ω, K;U∗ℓ ,Uℓ) from Prop-
ertyP(Πℓ, K

′;V∗ℓ ,Vℓ) for a ratio K ′/K that only depends on Uℓ (this relies on Lemma
B.3).

• Properties P(Ω, K;U∗ℓ ,Uℓ) imply Property P(Ω, K;∪ℓ U∗ℓ ,∪ℓ Uℓ) = P(Ω, K) (it

suffices to merge the (finite) union of the sets Z corresponding to each Uℓ).

Step 3. Core recursive argument: If Ω0 is the section of the cone Π, Property P(Ω0, K)

implies Property P(Π, K ′;B(0, 1),B(0, 2)) for a suitable ratio K ′/K. We are going to
prove this separately in several lemmas (B.4 to B.6). Then the proof Lemma B.2 will be

complete. �

Lemma B.4. Let Γ be a cone in Pn−1. For ℓ = 1, 2, let Bℓ and Iℓ be the ball B(0, ℓ) of
Rn−1 and the interval (−ℓ, ℓ), respectively. We assume that Property P(Γ, K;B1,B2) holds
(with parameters (L, ρmax, κ)). Then Property P[1,

√
2](Γ× R, K;B1 × I1,B2 × I2) holds.

Proof. Let us denote by y and z coordinates in Γ and R, respectively. For ρ ≤ ρmax, let ZΓ

be an associate set of couples (y, ry). For each y we consider the unique set of equidistant

points Zy = {zj ∈ [−1, 1], j = 1, . . . , Jy} such that

zj − zj−1 = 2ry and z1 + 1 = 1− zJy < ry .

Then we define

(B.2) Z
(ρ) =

{
(x, rx), for x = (y, z) with (y, ry) ∈ ZΓ, z ∈ Zy and rx = ry

}
.
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The associate open set D(x, rx) is the product
D(x, rx) = B(y, ry)× (z − ry, z + ry) .

We have the inclusions B(x, rx) ⊂ D(x, rx) ⊂ B(x,
√
2 rx) and it is easy to check that Property

P[1,
√
2](Γ×R, K;B(0, 1)×I1,B(0, 2)×I2) holds with parameters (L′, ρmax, κ) with L′ =

LK. �

Lemma B.5. Let Ω be a section in D(Sn−1), let Π be the corresponding cone, and let Iℓ be
the interval (2−ℓ, 2ℓ) for ℓ = 1, 2. We define the annuli

Aℓ =
{
x ∈ Π, |x| ∈ Iℓ and

x

|x| ∈ Ω
}
.

We assume that Property P(Ω, K) holds (with parameters (L, ρmax, κ)). Then Property

P[a, a′](Π, K;A1,A2) holds for suitable constants a and a′ (independent of Ω and K).

Proof. Let us consider the diffeomorphism

(B.3)
T : Ω× (−2, 2) −→ A2

x = (y, z) 7−→ x̆ = 2zy

in view of proving Property P[a, a′](Π, K;A1,A2), for a given ρ ≤ ρmax, we define a suitable
set Z̆ (ρ) using the set Z (ρ) introduced in (B.2)

(B.4) Z̆
(ρ) =

{
(x̆, rx), for x̆ = Tx with (x, rx) ∈ Z

(ρ)
}
,

and the associated open sets

D̆(x̆, rx) = T
(
D(x, rx)

)
.

We can check that

B(x̆, arx) ⊂ D̆(x̆, rx) ⊂ B(x̆, a′rx)
with a = 1

8
log 2 and a′ = 8

√
2 log 2 and that Property P[a, a′](Π, K;A1,A2) holds with

parameters (L′, ρmax, κ) for L
′ = NLK with an integer N independent of L and K. �

Lemma B.6. Let Ω be a section in D(Sn−1), let Π be the corresponding cone, and let Bℓ be
the balls B(0, ℓ) of Rn for ℓ = 1, 2. We assume that PropertyP(Ω, K) holds with parameters

(L, ρmax, κ) for a ρmax ≤ 1. Then PropertyP[a, a′](Π, K;B1,B2) holds for suitable constants
a and a′ (independent of Ω and K) and with parameters (L′, 1, κρmax).

Proof. Let ρ ≤ 1 and let M be the natural number such that
2−M−1 < ρ ≤ 2−M .

On the model of (B.3)-(B.4), we set

Z̆
m =

{
(2−mTx, 2−mrx), with (x, rx) ∈ Z

(2mρmaxρ)
}
, m = 0, . . . ,M,

and the associated open sets are

(B.5) 2−mT
(
D(x, rx)

)
with (x, rx) ∈ Z

(2mρmaxρ).
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The set Z̆ associated with the cone Π in the ball B1 is

{(0, ρ)} ∪
M⋃

m=0

Z̆
m

and the associated open sets are the reunion of the sets (B.5) for m = 0, . . . ,M and of the

ball B(0, ρ). As the radii rx belong to [κ2mρmaxρ, 2mρmaxρ], we have 2−mrx ∈ [κρmaxρ, ρmaxρ].
Since ρ itself belongs to the full collection of radii r , we finally find r ∈ [κρmaxρ, ρ]. The
finite covering holds with L′ = 3NLK + 1 for the same integer N appearing at the end of
the proof of Lemma B.5. �

Lemma B.7. Let Ω ∈ D(Rn). Let (L, ρmax, κ) be the parameters provided by Lemma B.2,

for the Property P(Ω, 2) to hold. For any ρ ∈ (0, ρmax] let Z ⊂ Ω× [κρ, ρ] be an associate
set of pairs (center, radius). Then there exists a collection of smooth functions (χ(x,r))(x,r)∈Z

with χ(x,r) ∈ C∞0 (B(x, 2r)) satisfying the identity (partition of unity)∑

(x,r)∈Z

χ2(x,r) = 1 on Ω

and the uniform estimate of gradients

∃C > 0, ∀(x, r) ∈ Z , ‖∇χ(x,r)‖L∞(Ω) ≤ Cρ−1 ,
where C only depends on Ω. By construction any ball B(x, 2r) is a map-neighborhood of x
for Ω.

Proof. Let ξ(x,r) ∈ C
∞
0 (B(x, 2r)), with the property that ξ(x,r) ≡ 1 in B(x, r), and satisfying

‖∇ξ(x,r)‖L∞(R3) ≤ Cr−1

where C is a universal constant. Then we set for each (x0, r0) ∈ Z

χ(x0,r0) =
ξ(x0,r0)

(
∑
(x,r)∈Z

ξ2(x,r))
1/2

.

Due to property (1) in Lemma B.2,
∑
(x,r)∈Z

ξ2(x,r) ≥ 1 and due to property (3),

‖
∑

(x,r)∈Z

∇ξ2(x,r)‖L∞(R3) ≤ CLΩ .

We deduce the lemma. �
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2. Ann. Henri Poincaré 10(1) (2009) 95–122.

[35] N. Raymond. On the semi-classical 3D Neumann Laplacian with variable magnetic field. Asymptotic

Analysis 68(1-2) (2010) 1– 40.

[36] N. Raymond. Semiclassical 3D Neumann Laplacian with variable magnetic field: a toy model. Comm.

Partial Differential Equations 37(9) (2012) 1528–1552.

[37] N. Raymond. From the Laplacian with variable magnetic field to the electric Laplacian in the semiclassical

limit. Analysis and PDE to appear (2013).
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