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aUniversité d’Angers, 62 avenue Notre Dame du Lac, 49000 Angers – France

bCICESE Research Center, Km. 107, Carretera Tijuana-Ensenada, B.C. 22 860 – Mexico
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Abstract

This paper deals with the H∞ stabilization of the spatial distribution of the current profile of tokamak plasmas using a Linear
Matrix Inequalities (LMIs) approach. The control design is based on the one dimensional resistive diffusion equation of the
magnetic flux that governs the plasma current profile evolution. The feedback control law is derived in the infinite dimensional
setting without spatial discretisation. The proposed distributed control is based on a proportional-integral state feedback
taking into account both interior and boundary engineering actuators. Supporting numerical simulations are presented and
tuning of the controller parameters attenuating uncertain disturbances is discussed.
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1 Introduction

Considering polluting effects, fossil fuel energy cannot be
a source of energy capable of satisfying the requirements
of industry developments and the needs of the increas-
ing world population. In such a context, nuclear fusion
is an attractive alternative since fusion produces neither
air pollution nor greenhouse gases: during the reaction
two light nuclei (deuterium and tritium) are stuck to-
gether to form a heavier nucleus (helium) plus an ener-
getic neutron. Moreover, both elements (deuterium and
tritium) are wide spread over the world: deuterium can
be extracted from sea water, while lithium, that has to
be used to breed tritium, can be found in continental
crust. The key goal of the world project ITER (led by
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seven partners: EU, U S A, Japan, China, India, South
Korea, Russia) is to demonstrate the scientific feasibil-
ity of thermonuclear fusion [32]. The fusion reaction re-
quires extremely high temperatures (> 50 106 Kelvin)
for which hydrogen gas, in the plasma state, has to be
confined. One of the most used configuration is the so-
called torus-like tokamak [29]. Magnetic field (toroidal
and poloidal) confinement is obtained by superimpos-
ing various electric currents, including a high current, of
the MegaAmpere range, within the plasma itself. This
plasma current can be produced by non-inductive means
through the injection of fast particles and/or waves and
by inductive means, in particular at the beginning of the
plasma pulses. The 1D radial profile of this plasma cur-
rent is a key plasma parameter. It plays a crucial role
in the global magnetohydrodynamic (MHD) stability of
plasma experiments [29] and it has also been observed
that some specific profiles may generate enhanced con-
finement of the plasma energy (internal transport bar-
rier) . The current density profile depends on the spatial
derivative of the poloidal flux, whose dynamics is gov-
erned by the so-called resistive diffusion of the poloidal
flux.
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The control of internal plasma radial profiles is still in its
infancy, although several studies have been performed
on experimental devices like Tore Supra (France), DIII-
D (USA), JET (Joint European Torus, UK), or JT-60U
(Japan Torus). The closed-loop control of one single
shape parameter, based on Single Input - Single Out-
put (SISO) semi-empirical modelling, has been experi-
mentally achieved (e.g control of plasma internal induc-
tance [30] or non-inductive current drive profile width
[3]). More recently, stationary states of the safety fac-
tor profile, defined by their MHD activity, were feedback
controlled on Tore Supra [17]. However this is clearly not
enough to match the main requirements of MHD sta-
bility and/or internal transport barriers issues [10]. The
control of the safety factor profile in a few number of
points, based on a Multi Input Multi Output (MIMO)
approach in finite dimensional setting was developed us-
ing linear models identified from experimental data [21].
The control of coupled magnetic (safety factor) and ki-
netic (pressure) profiles was experimentally tested in
particular on the Joint European Torus (JET) tokamak
[20] but showed severe limitations in terms of sensitivity
to the operating conditions, given also the lack of power
from the actuators. In [33], a proper orthogonal decom-
position is proposed in order to consider a low dimen-
sional dynamical system. Then by using model reduc-
tion, optimal feedback control of the nonlinear parabolic
partial differential equations (PDEs) is connected to it-
erative optimal control methodologies for finite dimen-
sional systems. Some other recent approaches have been
developed on simulations, [7,8,14,25,26].

In the present work a new approach is proposed for
the control of the investigated parabolic system with
boundary and interior actuation mechanism. The feed-
back control law is defined in the infinite dimensional set-
ting without spatial discretization. For this purpose,H∞
control is developed within the framework of linear ma-
trix inequality (LMI) approach [6], recently extended in
[13] to the PDE setting. Numerical simulations are per-
formed based on the Tore Supra tokamak plant. In fact,
this experimental device is the real engineering plant.
The Tore Supra tokamak is highly relevant in terms of
time scales: most of the previous work targeted tokamak
facilities where steady state of plasma internal profiles,
especially plasma safety factor/current profile is hardly
achievable, at least at the plasma center. With its capa-
bility to run long lasting plasma discharge up to several
minutes (Tore Supra has made a more than 6 minutes
long 1 GJ world record plasma discharge), and to drive
large non inductive current (about 500 kA of lower hy-
brid current have already been driven during more than
one minute long discharges, and the current drive ca-
pabilities will be further increased with the completion
of the on-going lower hybrid system upgrade), the Tore
Supra tokamak offers an unique opportunity to develop
and test plasma safety factor / current profile control
schemes on relevant time scales.

The primary concern of the paper is to synthesize pro-
portional and proportional integral H∞ regulators of
tokamak internal plasma profiles in the PDE’s setting.
A target profile, that should constitute the steady-state
of the closed-loop system, is designed a priori, using ma-
nipulatable inputs of the system such as the loop volt-
age, the lower hybrid power, and the wave refractive in-
dex. It is worth noticing that while being of a parabolic
type, the underlying PDE is not, however, typical in the
control of distributed parameter systems as it contains
a non self-adjoint infinitesimal operator (the principal
higher order differential term) in the state equation. To
the best of our knowledge, controlling such a kind of
PDE’s has not been developed so far and presenting
an LMI-based framework for the distributed H∞ control
of such a plant is a clear contribution the paper makes
into the existing literature. Once a spatially distributed
H∞ regulator is designed, it is on-line optimally approx-
imated by the best set of real engineering inputs (the
loop voltage, the lower hybrid power, and the wave re-
fractive index) which are then applied to the plant. Since
it is hardly possible to involve the shape constraints on
the engineering inputs into the H∞ design, these con-
straints are brought into play while approximating the
constructedH∞ regulator via the constrained optimiza-
tion procedure. Although the proposed approach to the
current profile regulation in tokamak plasmas is devel-
oped ad hoc it is then supported by the numerical study
made with the tokamak plant simulator METIS (Minute
Embedded Tokamak Integrated Simulator) [2].

The paper is organized as follows. In section 2, the math-
ematical model is presented. The model is based on the
1D resistive diffusion PDE of the magnetic flux that
governs the plasma current profile evolution. In section
3, a basic distributed proportional controller is exposed
and exponential stabilization is proved. Section 4 is de-
voted to the design of a distributed proportional and in-
tegral controller. For both control laws, theoretical de-
velopments are proposed in order to prove the H∞ con-
troller efficiency in spite of external disturbances. Fi-
nally, simulation results (using the METIS code dedi-
cated to plasma scenario studies) are presented in sec-
tion 5 and concluding remarks are collected in section 6.

2 Modeling and problem statement

Provided usual assumptions (axisymetry, MHD equilib-
rium, averaging over the magnetic surfaces, cylindrical
approximation, etc. see [5,31] and Fig. 1), the evolution
of the plasma current profile q, being the safety factor to
be controlled, can be obtained by solving the following
1D PDE



















∂ψ
∂t

(t, x) =
η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂ψ
∂x

(t, x)
)

+η||(t, x)R0jni(t, x);
∂ψ
∂x

(t, x)
∣

∣

∣

x=0
= 0, ∂ψ

∂t
(t, 1) = −V0(t).

(1)
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Fig. 1. 1D geometry simplified formulation

and determining it according to

q(t, x) = − a2xB0

∂ψ
∂x

(t, x)
. (2)

In the above relations, x ∈ [0, 1] is the 1D (radial) pro-
file coordinate, t the time, ψ(t, x) the magnetic flux, R0

and a are respectively the major and minor radius of the
plasma boundary (both R0 and a are controlled with
high accuracy to be constant [22]), µ0 > 0 the perme-
ability of vacuum, η||(t, x) the parallel electrical resis-
tivity of the plasma, V0(t) the plasma loop voltage, B0

the toroidal magnetic field at R0, and jni(t, x) the non-
inductive current density. It is of interest to note that
the total current density jT (t, x) is given by

jT (t, x) = − 1

µ0R0a2x

∂

∂x

(

x
∂ψ

∂x
(t, x)

)

(3)

and it allows one to represent the principal term
η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂ψ
∂x

(t, x)
)

in the right hand side of the

PDE (1) in the form −η||(t, x)R0jT (t, x), similar to that
of the additive term η||(t, x)R0jni(t, x) in the same. Ad-
equacy of (1) with physically investigated phenomena
as well as the solution existence and uniqueness are
argued in [9].

Our control objective is to track a desired safety factor
profile which does not depend directly on ψ but which
depends on its spatial derivative ∂ψ

∂x
.

In order to deal with homogeneous boundary conditions,
let us introduce the following state transformation

ψr(t, x) = ψ(t, x)− ψ(t, 1). (4)

Taking into account (2), we have

ψr(t, x) = a2B0

∫ 1

x

r

q(t, r)
dr.

The control variables in the infinite dimensional setting
are the plasma loop voltage V0(t) and the non-inductive
current density jni(t, x). V0(t) can basically directly be
set using the inner poloidal magnetic field coils volt-
age whereas jni(t, x) is manipulated indirectly, using the
lower hybrid power Plh and the wave refractive index

Nlh. The state equation (1), rewritten in terms of ψr,
reduces to



















∂ψr

∂t
(t, x) =

η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂ψr

∂x
(t, x)

)

+η||(t, x)R0jni(t, x) + V0(t),
∂ψr

∂x
(t, x)

∣

∣

∣

x=0
= 0, ψr(t, 1) = 0

(5)

Then, let us introduce the error variable

φ(t, x) = ψr(t, x)− ψtargetr (x) (6)

with respect to a target ψtargetr (x) which we intend to
reach in the inner-product space

W =
{

Ψ ∈ H2(0, 1) : ∂Ψ
∂x

∣

∣

x=0
= Ψ(1) = 0

}

(7)

of differentiable functions equipped with the inner prod-

uct < Ψ1,Ψ2 >L2(0,1)=
∫ 1

0
Ψ1(x)Ψ2(x)xdx, inducing

the norm ‖Ψ‖L2(0,1) =
√

∫ 1

0
|Ψ(x)|2 xdx (for more infor-

mation about weighted L2 spaces see [19]). As a matter
of fact, the target ψtargetr (x), designed a priori, using the
manipulatable inputs V0 and jni = jni(Plh, Nlh), should
meet the same homogeneous boundary conditions

∂ψtargetr

∂x
(x)

∣

∣

∣

∣

x=0

= 0, ψtargetr (1) = 0 (8)

as those in (5). The error variable is then governed by































∂φ
∂t
(t, x) =

η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

+
η||(t,x)

µ0a2
1
x
∂
∂x

(

x
∂ψtarget

r

∂x
(x)

)

+η||(t, x)R0jni(t, x) + V0(t);
∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0.

(9)

In order to deal with the regular additive terms in the
right hand side of the PDE (9) we assume that

1

x

∂

∂x

(

x
∂ψtargetr

∂x
(x)

)

∈ W. (10)

Let us now introduce the following term

η||(t, x)R0jcontrol = η||(t, x)R0jni(t, x) + V0(t) (11)

in order to subsequently synthesize a stabilizing control
law. The non-inductive current density jni(t, x) is com-
posed of the bootstrap current density jbs(t, x) (which
is self-generated by the plasma, [16]) and of additional
source terms provided by different actuators, namely
the Lower Hybrid, Electron Cyclotron or Ion Cyclotron
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Fig. 2. Control scheme of the system

wave systems and/or the Neutral Beam Injection sys-
tem. The most efficient is the Lower Hybrid Current
Drive (LHCD) system that is routinely used on the Tore
Supra Tokamak [27], which now has a capability to in-
ject up to around 7 MW in steady state that will allow
to sustain plasma currents in the MegaAmpere range on
very long pulse [4]. The distributed control law design
(proportional and proportional-integral) is generic to all
kinds of current drive system. However, in this paper, the
numerical simulations will be performed on Tore Supra
typical conditions, using mainly Lower Hybrid waves as
current drive means, so that in this particular case

jni(t, x) = jbs(t, x) + jlh(t, x) (12)

where jbs(t, x) and jlh(t, x) are respectively the boot-
strap current density and the current density provided
by the LHCD system. The unactuated variable jbs(t, x)
can be modelled by a nonlinear function of the flux and
pressure [16] and thus can be estimated on-line, but it
cannot be varied according to the control demand. In
turn, jlh(t, x) is modelled by Gaussian functions which
are controlled by two engineering parameters, the LH
power Plh and the wave refractive index Nlh (see [31] for
further details). In the simulations of section 5, the vari-
ables V0, Plh andNlh are viewed as the time-varying con-
trol inputs whereas jbs(t, x) as an external disturbance
to be attenuated/compensated.

In the present investigation, the resistivity η||(t, x) is
assumed to be lower and upper bounded by some positive
constants η1 and η2, i.e.

η1 ≤ η||(t, x) ≤ η2 (13)

for all x ∈ [0, 1] and t ≥ 0. Apart from this, we assume
that η||(t, x) is differentiable in t for all x ∈ [0, 1] and by
taking into account that η||(t, x) depends on the temper-
ature of the plasma, whose time rate of change is rather
slow, we also assume that the time derivative of η||(t, x)
is uniformly bounded

∣

∣

∣

∣

∂η||(t, x)

∂t

∣

∣

∣

∣

< △ (14)

by some constant ∆ > 0. Moreover, we consider that
η||(t, x) is available for feedback purposes through some

on-line estimation, basically from electronic tempera-
ture measurements (see [31] for more details). The feed-
back control strategy adopted in this paper is composed
of two steps shown in Fig. 2. The first step is to synthesize
the current density jcontrol to be applied to the system.
The resulting H∞ controller is designed in the infinite
dimensional setting where a target flux profile ψtargetr

and current flux profile serve as inputs. The second step
consists of an optimization process which finds the best
set of engineering inputs Plh(t), Nlh(t) and V0(t) to fit
(as fine as possible) the desired current density control
jcontrol generated by the H∞ control law in the infinite
dimensional setting. The optimization algorithm has to
minimize the criterion

ε =

∫ 1

0

(jcontrol − jengineering (Plh, Nlh, V0))
2
dx (15)

under the constraints: Vmin < V0 < Vmax, Pmin < Plh <
Pmax andNmin < Nlh < Nmax. jengineering is the control
profile that can actually be generated with the real plant
control variables Plh ,Nlh and V0 [26]. In simulations pre-
sented in section 5, minimum/maximum value of engi-
neering inputs are taken from the Tore Supra Tokamak
constraints, i.e.,−5V < V0 < 5V , 0MW < Plh < 7MW
and 1.43 < Nlh < 2.37. In following sections two dis-
tributed controllers are presented.

3 Proportional state feedback synthesis

The main goal of this section is to show that our system
is exponentially stabilizable using a proportional feed-
back. The controller specification (11) simplifies (9) to
the PDE































∂φ
∂t
(t, x) =

η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

+
η||(t,x)

µ0a2
1
x
∂
∂x

(

x
∂ψtarget

r

∂x
(x)

)

+η||(t, x)R0jcontrol
∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0

(16)

with homogeneous boundary conditions. The control ob-
jective is to synthesize jcontrol such that the error state
φ is exponentially stable.

3.1 Disturbance-free stabilization

The control problem of partial differential equations
(PDEs) is an active area of research [11,18,23,28] , but
very few constructive methods are available. For ro-
bust stabilization, the H∞ controller is proposed. We
consider the following feedback strategy

η||(t, x)R0jcontrol = −kφ(t, x)
−η||(t,x)

µ0a2
1
x
∂
∂x

(

x
∂ψtarget

r

∂x
(x)

)

.

(17)
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Then the closed-loop system (16), driven by (17), takes
the form







∂φ
∂t
(t, x) =

η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

− kφ(t, x);

∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0.

(18)

In the following, the proposed controller (17) is analyzed
in order to prove the exponentially stability of (18). For
later use, we need a technical lemma (Poincaré type in-
equalities).

Lemma 1 Let L(·) ∈ W and let w(·) be a Lebesgue-
measurable function on [0, 1] such that the relations w1 ≤
w(x) ≤ w2 are satisfied for all x ∈ [0, 1] and some positive
constants w1, w2. Then the inequality

∫ 1

0

| L(x) |2 x

w(x)
dx ≤ K

∫ 1

0

∣

∣

∣

∣

∂L(x)

∂x

∣

∣

∣

∣

2
x

w(x)
dx (19)

holds true with the positive constant K = w2

ew1
.

Proof It is clear that

L(1)− L(x) =

∫ 1

x

∂L(s)

∂s
ds. (20)

Since L ∈ W it follows from (7) that L(1) = 0 and hence

−L(x) =
∫ 1

x

∂L(s)

∂s
ds. (21)

Then one derives that

|L(x)|2 =

∣

∣

∣

∣

∫ 1

x

√

s
w(s)

∂L(s)
∂s

√
w(s)√
s
ds

∣

∣

∣

∣

2

≤
(

∫ 1

x

∣

∣

∣

∂L(s)
∂s

∣

∣

∣

2
s

w(s)ds

)

∫ 1

x

w(s)
s
ds

≤
(

∫ 1

x

∣

∣

∣

∂L(s)
∂s

∣

∣

∣

2
s

w(s)ds

)

w2 (ln(1)− lnx)

≤
(

∫ 1

x

∣

∣

∣

∂L(s)
∂s

∣

∣

∣

2
s

w(s)ds

)

w2 (− lnx) .

(22)

So, it leads to

x
w(x) |L(x)|

2 ≤
(

∫ 1

x

∣

∣

∣

∂L(s)
∂s

∣

∣

∣

2
s

w(s)ds

)

w2

w(x) (−x lnx)

≤
(

∫ 1

x

∣

∣

∣

∂L(s)
∂s

∣

∣

∣

2
s

w(s)ds

)

w2

w1
(−x lnx)

≤ K
∫ 1

x

∣

∣

∣

∂L(s)
∂s

∣

∣

∣

2
s

w(s)ds

(23)
with K = w2

w1
supx∈(0,1){−x lnx} = w2

w1e
. Thus the re-

quired inequality (19) is established. ✷

Theorem 1 Consider the error system (16) with the
above assumptions and let (16) be driven by controller
(17). Then the closed-loop system (18) is globally expo-
nentially stable with respect to the induced norm ‖.‖L2(0,1)

provided that the controller gain k is tuned according to

k > − η21e

µ0a2η2
+

△
2η1

. (24)

Proof Consider the following time-varying functional

V (φ(t, ·), t) =
∫ 1

0

φ(t, x)2
x

η||(t, x)
dx (25)

which is positive definite and radially unbounded

η−1
2 ‖φ‖2L2(0,1)

≤ V (φ(t, ·), t) ≤ η−1
1 ‖φ‖2L2(0,1)

(26)

where η1 and η2 are the lower and upper bounds in (13).
The time derivative of (25) is given by

dV (φ(t,·),t)
dt

=
∫ 1

0
∂
∂t

(

φ(t, x)2 x
η||(t,x)

)

dx

= 2
∫ 1

0
∂φ(t,x)
∂t

φ(t, x) x
η||(t,x)

dx

−
∫ 1

0
φ(t, x)2 x

η||(t,x)

∂η||(t,x)

∂t

η||(t,x)
dx.

(27)

While being computed along the solutions of (18), the
time derivative (27) integrates by parts to

dV (φ(t,·),t)
dt

= 2
∫ 1

0
∂φ(t,x)
∂t

φ(t, x) x
η||(t,x)

dx

−
∫ 1

0
φ(t, x)2 x

η||(t,x)

∂η||(t,x)

∂t

η||(t,x)
dx

= −2k
∫ 1

0
φ(t, x)2 x

η||(t,x)
dx

+ 2
µ0a2

∫ 1

0
∂
∂x

(

x∂φ(t,x)
∂x

)

φ(t, x)dx

−
∫ 1

0
φ(t, x)2 x

η||(t,x)

∂η||(t,x)

∂t

η||(t,x)
dx

= −2k
∫ 1

0
φ(t, x)2 x

η||(t,x)
dx

− 2
µ0a2

∫ 1

0

∣

∣

∣

∂φ(t,x)
∂x

∣

∣

∣

2

xdx

−
∫ 1

0
φ(t, x)2 x

η||(t,x)

∂η||(t,x)

∂t

η||(t,x)
dx

(28)

thereby yielding

dV (φ(t,·),t)
dt

= −2k
∫ 1

0
φ(t, x)2 x

η||(t,x)
dx

− 2
µ0a2

∫ 1

0
η||(t, x)

∣

∣

∣

∂φ(t,x)
∂x

∣

∣

∣

2
x

η||(t,x)
dx

−
∫ 1

0
φ(t, x)2 x

η||(t,x)

∂η||(t,x)

∂t

η||(t,x)
dx

≤ −2k
∫ 1

0
φ(t, x)2 x

η||(t,x)
dx

− 2η1
µ0a2

∫ 1

0

∣

∣

∣

∂φ(t,x)
∂x

∣

∣

∣

2
x

η||(t,x)
dx

−
∫ 1

0
φ(t, x)2 x

η||(t,x)

∂η||(t,x)

∂t

η||(t,x)
dx.

(29)
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Specifying inequality (19) with w(·) = η||(t, x) and
L(·) = φ(t, x) (K = η2

η1e
), the resulting inequality

∫ 1

0

| φ(t, x) |2 x

η||(t, x)
dx ≤ K

∫ 1

0

∣

∣

∣

∣

∂φ(t, x)

∂x

∣

∣

∣

∣

2
x

η||(t, x)
dx

(30)
allows one to conclude from (29) that

1
2
dV (φ(t,·),t)

dt
≤ −

(

η21e

µ0a2η2
+ k

)

∫ 1

0
φ(t, x)2 x

η||(t,x)
dx

+ 1
2

∫ 1

0
φ(t, x)2 x

η||(t,x)

∣

∣

∣

∂η||(t,x)

∂t

∣

∣

∣

η||(t,x)
dx.

(31)
Taking (14) into account, it follows

1
2
dV (φ(t,·),t)

dt
≤ −

(

η21e

µ0a2η2
+ k − △

2η1

)

∫ 1

0
φ(t, x)2 x

η||(t,x)
dx

= −
(

η21e

µ0a2η2
+ k − △

2η1

)

V (φ(t, ·), t).
(32)

Then
V (φ(t, ·), t) ≤ V (φ(0, ·), 0)e−2ct (33)

with c =
(

η21e

µ0a2η2
+ k − △

2η1

)

> 0 du to (24). By virtue of

(26), the global exponential stability of the closed-loop
system (18) is then concluded in the state space W. ✷

3.2 Disturbance attenuation

The goal of this subsection is to show that the controller
defined by (17) solves anH∞ control problem with a dis-
turbance attenuation γ (see [12]). Let us consider some
perturbations occurring on system (18)



















∂φ
∂t
(t, x) =

η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

− kφ(t, x)

+h(t, x)
∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0

(34)

where h ∈ L2(0,∞;W) is the external disturbance,
L2(0,∞;W) is the Hilbert space of square integrable
Hilbert space-valued functions h(·, x) ∈ L2(0,∞) with
values h(t, ·) ∈ W for almost all t ∈ [0,∞). We seek
a condition on the controller gain k that ensures the
global asymptotic stability of the unperturbed process
(18), and yields the negative definite performance index
(see [12] for more details)

J =
∫∞
0

[‖φ(t, ·)‖2L2(0,1)
− γ2‖h(t, ·)‖2L2(0,1)

]dt

−γ2‖φ(0, ·)‖2L2(0,1)
< 0

(35)

on the solutions of the perturbed system (34) for any
h ∈ L2(0,∞;W) and some constant γ. For solving the
problem we follow an idea, proposed in [13], and carry

out conditions that guarantee the negative definiteness
of the form

W(φ(t, ·), h(t, ·)) := η1γ
2 dV (φ(t,·))

dt

+‖φ(t, ·)‖2L2(0,1)
− γ2‖h(t, ·)‖2L2(0,1)

< 0
(36)

computed on the solutions of the perturbed system (34)
with V (φ(t, ·)) given by (25). Once (36) is guaranteed,
integratingW(φ(t, ·), h(t, ·)) in t from 0 to∞ and taking
into account that lim supt→∞ V (φ(t, ·)) ≥ 0 result in
(35). Indeed, (36) ensures that

−η1γ2
∫ 1

0

φ(0, x)2
x

η||(0, x)
dx+

∫ ∞

0

[‖φ(t, ·)‖2L2(0,1)
− γ2‖h(t, ·)‖2L2(0,1)

]dt < 0 (37)

and due to (13), the negative definiteness of (35)
follows. In order to ensure (36) let us set ζ(t, x) =

(|φ(t, x)|, |h(t, x)|)T and compute the time derivative of
(25) along the solutions of the perturbed system (34).
Similar to (31), we obtain that

W ≤
[

1− 2η1
η2
γ2

(

η21e

µ0a2η2
+ k − △

2η1

)]

∫ 1

0
φ(t, x)2xdx

+2γ2
∫ 1

0
|h(t, x)| |φ(t, x)|xdx

−γ2
∫ 1

0
h(t, x)2xdx ≤

∫ 1

0
ζT (t, x)Φγζ(t, x)xdx

(38)
where

Φγ :=









1− 2η1
η2
γ2

(

η21e

µ0a2η2
+ k − △

2η1

)

γ2

γ2 −γ2









. (39)

If Φγ < 0 then W < 0. In turn, due to the Schur com-
pliments formula (see, e.g., [6, pp. 7-8] for details), the
LMI Φγ < 0 is satisfied if

1− 2η1γ
2

η2

(

η21e

µ0a2η2
+ k − △

2η1

)

+ γ2 < 0.

Thus, the tuning rule

k >
(1 + γ2)η2

2γ2η1
− eη21
µ0a2η2

+
△
2η1

, (40)

imposed on the parameter k, ensures the negative defi-
niteness of Φγ . Summarizing, we arrive at the following.

Theorem 2 Let the conditions of Theorem 1 be sat-
isfied and let the tuning rule (40) be additionally im-
posed on the controller gain k. Then the uncertain sys-
tem (34) is internally (under h ≡ 0) globally exponen-
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tially stable. Moreover, the admissible external distur-
bances h ∈ L2(0,∞;W) are attenuated in the sense of
(35).

Proof The first assertion is established by Theorem 1.
Since relation (40) is in force it follows that (39) is nega-
tive definite and by means of (38) it results in (36). Then
integrating (36) in t from zero to infinity and employing
that V is positive definite yield (37) thereby concluding
(35). The second assertion is thus established that com-
pletes the proof of Theorem 2. ✷

4 Proportional integral state feedback synthesis

Themain goal of this section is to design a controller that
would completely reject time-invariant disturbances by
using proportional integral feedback. For this purpose,
we need to additionally assume that plasma resistivity
is representable in the form

η||(t, x) = f(t)g(x) (41)

subject to the constraints

0 < f1 ≤ f(t) ≤ f2, 0 < g1 ≤ g(x) ≤ g2 (42)

with some constants f1, f2, g1, g2. Such a realistic as-
sumption is justified in [24,25,33]. Then, let us define the
inner-product space

Wg =
{

Ψ ∈ H2(0, 1) : ∂Ψ
∂x

∣

∣

x=0
= Ψ(1) = 0

}

(43)

of differentiable functions equipped with the inner prod-

uct space< Ψ1,Ψ2 >L2(0,1)=
∫ 1

0
Ψ1(x)Ψ2(x)

x
g(x)dx and

the induced norm ‖Ψ‖L2(0,1) =
√

∫ 1

0
|Ψ(x)|2 x

g(x)dx. It

is clear that the spaceWg is nothing else than the afore-
given space W equipped with an equivalent norm.

4.1 Stabilization under time-invariant disturbances

Let us consider the following distributed (proportional
integral feedback) control

η||(t, x)R0jcontrol(t, x) = −kφ(t, x)
−k1

∫ t

0
φ(s, x)ds− η||(t,x)

µ0a2
1
x
∂
∂x

(

x
∂ψtarget

r

∂x
(x)

) (44)

where k and k1 are weight parameters (to be defined) and
jcontrol is given by (11). Then the error state equation
(16), driven by the proportional integral feedback (44)
and additionally affected by a time-invariant external

disturbance h(x) ∈ Wg, is specified to



















∂φ
∂t
(t, x) =

η||(t,x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

− kφ(t, x)

−k1
∫ t

0
φ(s, x)ds+ h(x)

∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0.

(45)

In the subsequent analysis, the closed-loop system is
shown to be globally asymptotically stable under an ar-
bitrary h(x) ∈ Wg.

Theorem 3 Let the controller gains are tuned according
to

k > − f1g
2
1e

µ0a2g2
, k1 > 0. (46)

Then the closed-loop system (45) is globally asymptoti-
cally stable in the state spaceWg regardless of whichever
external disturbance h(x) ∈ Wg affects the system and
hence φsteady state = 0.

Proof For later use, let us introduce an auxiliary vari-
able I(t, x) governed by

∂I

∂t
(t, x) = φ(t, x), I(t = 0, x) = 0. (47)

While being coupled to (47), system (45) under assump-
tion (41) is augmented to



























∂φ
∂t
(t, x) = f(t)g(x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

− kφ(t, x)

−k1I(t, x) + h(x)

∂I
∂t
(t, x) = φ(t, x)

∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0.

(48)

The steady state (φss, Iss) of system (48) is clearly de-

fined by ∂φss(t,x)
∂t

= 0, ∂Iss(t,x)
∂t

= 0 that results in

φss(x) = 0, Iss(x) =
h(x)
k1

On the solutions of (48), con-
sider the functional

V (φ(t, ·), I(t, ·)) := 1
2

∫ 1

0
φ(t, x)2 x

g(x)dx

+k1
2

∫ 1

0

(

I(t, x)− h(x)
k1

)2
x
g(x)dx

:= V1(t) + V2(t)

(49)
which proves to be positive definite and radially un-
bounded. Indeed,

V (φss, Iss) = 0, V (φ, I) > 0 ∀ (φ, I) 6= (φss, Iss) (50)

and V (φ, I) → ∞ as ‖ φ ‖L2(0,1) + ‖ I ‖L2(0,1)→ ∞.
Computing the time derivative

dV1(t)
dt

= 1
2

∫ 1

0
∂
∂t

(

φ(t, x)2 x
g(x)

)

dx

=
∫ 1

0
∂φ(t,x)
∂t

φ(t, x) x
g(x)dx

(51)
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of (49) on the solutions of (48) and employing the inte-
gration by parts yield

dV1(t)
dt

= f(t)
µ0a2

∫ 1

0
∂
∂x

(

x∂φ(t,x)
∂x

)

φ(t, x)dx

−k
∫ 1

0
φ(t, x)2 x

g(x)dx

−k1
∫ 1

0
I (t, x)φ(t, x) x

g(x)dx

+
∫ 1

0
h(x)φ(t, x) x

g(x)dx;

= − f(t)
µ0a2

∫ 1

0

∣

∣

∣

∂φ(t,x)
∂x

∣

∣

∣

2

xdx

−k
∫ 1

0
φ(t, x)2 x

g(x)dx− dV2(t)
dt

.

(52)

It follows that

dV1(t)
dt

= − f(t)
µ0a2

∫ 1

0
g(x)

∣

∣

∣

∂φ(t,x)
∂x

∣

∣

∣

2
x
g(x)dx

−k
∫ 1

0
φ(t, x)2 x

g(x)dx− dV2(t)
dt

< − f1g1
µ0a2

∫ 1

0

∣

∣

∣

∂φ(t,x)
∂x

∣

∣

∣

2
x
g(x)dx

−k
∫ 1

0
φ(t, x)2 x

g(x)dx− dV2(t)
dt

.

(53)

Taking into account that Lemma 1, being specified with
w(·) = g(x) and L(·) = φ(t, x), results in

∫ 1

0

| φ(t, x) |2 x

g(x)
dx ≤ g2e

−1

g1

∫ 1

0

∣

∣

∣

∣

∂φ(t, x)

∂x

∣

∣

∣

∣

2
x

g(x)
dx

(54)
one then arrives at

dV (φ(t,·))
dt

= dV1(t)
dt

+ dV2(t)
dt

< −
(

f1g
2
1e

µ0a2g2
+ k

)

∫ 1

0
φ(t, x)2 x

g(x)dx.
(55)

Due to (46), one concludes that dV (φ(t,·))
dt

≤ 0 and

dV (φ(t, ·))
dt

= 0 ⇒
∫ 1

0

φ(t, x)2
x

g(x)
dx = 0 (56)

i.e., φ(t, x) = 0 = φss once
dV (φ(t,·))

dt
= 0. Moreover, re-

lation φ(t, x) = 0 = φss, coupled to (47), ensures that

I(t, x) = h(x)
k1

= Iss, thereby concluding that the max-

imal invariant manifold of dV (φ(t,·))
dt

= 0 coincides with
(φ, I) = (φss, Iss). Thus, by applying the LaSalle invari-
ance principle to the parabolic system (48) (see [15] for
the invariance principle extension to parabolic systems),
the desired global asymptotic stability is established.
Hence, system (45) is globally asymptotically stable in
W under an arbitrary h(x) ∈ Wg. ✷

4.2 H∞ design

The objective of this subsection is to show that in ad-
dition to the rejection of time-invariant external distur-
bances, the proposed controller (44) attenuates time-
varying disturbances with a certain level γ > 0. Let

us suppose that the disturbance h affecting system (45)
varies in time, thus resulting in the state equation



















∂φ
∂t
(t, x) = f(t)g(x)

µ0a2
1
x
∂
∂x

(

x∂φ
∂x

(t, x)
)

− kφ(t, x)

−k1
∫ t

0
φ(s, x)ds+ h(t, x)

∂φ
∂x

(t, x)
∣

∣

∣

x=0
= 0, φ(t, 1) = 0

(57)

where h(t, ·) ∈ L2(0,∞;Wg) is an external disturbance
of cumulative finite energy. We seek an additional con-
dition on the proportional integral controller gain k that
would ensure the negative performance index

Jg =
∫∞
0

[‖φ(t, ·)‖2L2(0,1)
− γ2‖h(t, ·)‖2L2(0,1)

]dt

−γ2‖φ(0, ·)‖2L2(0,1)
< 0

(58)

on the solutions of (57) for all time-varying disturbances
h(t, ·) ∈ L2(0,∞;Wg) with a constant attenuation level
γ > 0. As before, L2(0,∞;Wg) stands for the Hilbert
space of square integrable Hilbert space-valued functions
h(·, x) ∈ L2(0,∞) with values h(t, ·) ∈ Wg for almost
all t ∈ [0,∞). For establishing (58), it suffices to demon-
strate that

Wg(φ(t, ·)) := 2γ2 d
dt
Vg(φ(t, ·))

+
∫ 1

0

(

φ(t, x)2 − γ2h(t, x)2
)

x
g(x)dx < 0

(59)
where

Vg(φ(t, ·)) =
1

2

∫ 1

0

φ(t, x)2
x

g(x)
dx+

k1
2

∫ 1

0

I(t, x)2
x

g(x)
dx

(60)
Indeed, integrating Wg(φ(t, ·)) in t from 0 to ∞ and
taking into account that lim supt→∞ Vg(φ(∞, ·)) ≥ 0
result in (58). Let us now compute the time derivative
of functional (60) on the solutions of (57):

dVg(φ(t,·))
dt

≤ −
(

f1g
2
1e

µ0a2g2
+ k

)

∫ 1

0
φ(t, x)2 x

g(x)dx

+
∫ 1

0
h(t, x)φ(t, x) x

g(x)dx.
(61)

Setting ζ = (|φ(t, x)| |h(t, x)|)T , it follows

Wg ≤
(

1− 2γ2
(

f1g
2
1e

µ0a2g2
+ k

))

∫ 1

0
φ(t, x)2 x

g(x)dx

+2γ2
∫ 1

0
|h(t, x)||φ(t, x)| x

g(x)dx

−γ2
∫ 1

0
|h(t, x)|2 x

g(x)dx ≤
∫ 1

0
ζTΨγζ

x
g(x)dx

(62)

where

Ψγ :=





1− 2γ2
(

f1g
2
1e

µ0a2g2
+ k

)

γ2

γ2 −γ2



 . (63)
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If Ψγ < 0 then Wg < 0. By Schur’s Lemma, the LMI
condition Ψγ < 0 is satisfied if

k > − f1g
2
1e

µ0a2g2
+

1

2γ2
+ γ2. (64)

Hence, Wg < 0 provided that k is chosen according to
(64) and (58) is then guaranteed. Thus, the following
result is in order.

Theorem 4 Let the conditions of Theorem 3 be sat-
isfied and let the tuning rule (64) be additionally im-
posed on the gain k of the proportional integral feedback
(44). Then while being affected by a time-invariant ex-
ternal disturbance h(x) ∈ Wg, the closed-loop system
(57) is globally asymptotically stable in the state space
Wg. Moreover, all time-varying external disturbances
h(t, ·) ∈ L2(0,∞;Wg) are attenuated in the sense of
(58).

Proof The first assertion is established by Theorem
3. By virtue of (64), matrix (63) is negative definite.
Coupled to (62), this results in (59). Now to justify (58)
it suffices to integrate (59) in t from zero to infinity and
in the resulting inequality

∫∞
0

[‖φ(t, ·)‖2L2(0,1)
− γ2‖h(t, ·)‖2L2(0,1)

]dt

+2γ2Vg(φ(∞))− 2γ2Vg(φ(0)) < 0,
(65)

to omit the positive definite term 2γ2Vg(φ(∞, ·)) and to
note that 2γ2Vg(φ(0, ·)) = γ2‖φ(0, ·)‖2L2(0,1)

due to (60),

initialized in accordance with (47). Theorem 4 is thus
proved. ✷
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Fig. 3. Initial profile value ψr(0, x) (dashed line) versus the
target profile ψtarget

r (x) (solid line)

5 Simulation results

We consider the relevant test where we want to con-
trol the evolution of the magnetic flux ψr from an ini-
tial profile to a target profile (see Fig. 3). To begin with,

Fig. 4. Time evolution of φ profile at x = 0.4: solid line is for
the gain values (k = 1, k1 = 0), dashed line is for (k = 80,
k1 = 0), and dotted line is for (k = 1, k1 = 20)

we performed a set of simulations on the infinite dimen-
sional plant model, depicted in Fig. 2, to tune the pro-
portional (k) and integral (k1) gains. In these simula-
tions, we did not use the engineering parameters opti-
mization procedure, corresponding to the block ”Model-
based Optimization Algorithm” in Fig. 2. Instead, the
H∞ controller jcontrol was straightforwardly applied to
the plant. We then also checked the effect of the distur-
bance

h(t, x) =







0, 0s ≤ t < 10s

− 1
5µ0R0a2

1
x
∂
∂x

(

x
∂ψtarget

r

∂x

)

, 10s ≤ t ≤ 30s

(66)

added at the time instant t = 10s and representing 20%
of the target total current density jtargetT (t, x), given by
(3). The behavior of the closed loop system is illustrated
by the time evolution of φ at point x = 0.4, given in Fig.
4 (a similar behavior was also obtained at other points
x). As expected from theoretical results, obtained in sec-
tion 3 and 4, (i) the closed loop system is asymptotically
stable and the applied disturbance is additionally atten-
uated provided that the tuning rule of Theorem 1 and,
respectively, that of Theorem 2 are satisfied; (ii) if con-
fined to the proportional feedback only, the larger the
proportional gain is applied the smaller the steady state
error, resulting from a disturbance, is obtained; (iii) the
time response can be speeded up by using a higher pro-
portional gain but at the expense of possibly a higher
overshoot; (iv) the integral gain allows one to cancel
the steady state error resulting from the applied distur-
bance, higher values of the integral gain can speed up the
attenuation of the applied disturbance at the expense of
induced steady state oscillations.

In order to further validate the proposed control ap-
proach, the tokamak plant simulator METIS is used [2].
METIS is a simplified version of the CRONOS suite of
codes [1] well suited to the final simulation test of toka-
mak control algorithms on physics relevant model, as
simulating typical 20s long Tore Supra tokamak plasma
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discharges takes typically 3 hours. The METIS code in-
cludes a full fast current diffusion solver and takes into
account various nonlinear couplings between physical
quantities. In the following, METIS was used jointly
with theMatlab/SimulinkTM toolbox to simulate Tore
Supra plasma discharges. Preliminary METIS open loop
simulation based on real pulse engineering inputs (V0 =
0V , Plh = 4.8MW and Nlh = 1.7) were performed
in order to find a reachable target profile. The propor-
tional integral feedback was then implemented using val-
ues of k and k1 resulting from the previously mentioned
tuning process where reasonably low values k = 1s−1

and k1 = 0.8s−2 were chosen to avoid deal with high
overshooting and induced steady state oscillations. At
t = 10.1s, the controller was activated in order to force
the magnetic flux profile to reach the target profile. The
target profile was basically reached in 5.8s. As in the
preliminary infinite dimensional simulations, made with-
out engineering parameter optimization, the disturbance
h̃(t, x) = h(t − 6, x), specified with (66), was added at
t = 16s. Simulation results are presented in Figs. 5–8.

The time evolutions of the magnetic flux ψr(t, x) ver-
sus the target profile ψtargetr (x) at the points x = 0.2,
x = 0.4 and x = 0.6, and that of the their integral dis-
crepancy are shown in Fig. 5 and Fig. 6, respectively.
Proportional integral feedback acts satisfactorily: a gen-
tle dynamic behavior is observed and the stationary dis-
turbance is properly attenuated on a sensible time scale.
The time evolution of the engineering plant inputs is
plotted in Fig. 7. The time evolutions of the relevant con-

trol deviation εrel(t, x) =
jcontrol(t,x)−jengineering(t,x)

jcontrol(t,x)
at

the points x = 0.1 and x = 0.5 are shown in Fig. 8. It is
concluded from Figs. 5–8 that due to the H∞ approach
used, the essential discrepancy between jengineering(t, x)
and jcontrol(t, x) is properly attenuated along with the

applied disturbance h̃, so that the target profile is ap-
proached in an appropriate time less than 6s.
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Fig. 5. Time evolution of ψr (solid line) versus the target
ψtarget

r (dashed line) at x = 0.2 (the upper plot), at x = 0.4
(the middle plot), and at x = 0.6 (the lower plot)
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Fig. 6. Time evolution of
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0

[

ψr(t, x)− ψtarget
r (x)

]2
dx
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Fig. 7. Time evolution of the engineering inputs versus
their nominal values, used for producing the target profile
ψtarget

r (x): the upper plot is for PLH in megaWatt, the mid-
dle plot is for NLH , the lower plot is for V0 in Volt
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Fig. 8. Time evolutions of the relevant deviation

εrel(t, x) =
jcontrol(t,x)−jengineering(t,x)

jcontrol(t,x)
, computed at

x = 0.1 (solid line), and that computed at x = 0.5 (dashed
line)

6 Concluding remarks

In this paper, a H∞ control has been designed in the in-
finite dimensional setting for the tokamak plasmas cur-
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rent profile using 1D resistive diffusion PDE of the mag-
netic flux. The investigated PDE system was reformu-
lated so as to carry out a Lyapunov functional of the
resulting system. Then an LMI based approach was ap-
plied toH∞ control design in infinite dimensional setting
in order to propose two controllers (proportional state
feedback for stabilization and disturbance attenuation
and proportional integral controller for stabilization and
attenuation of time-invariant disturbances). A model-
based optimization procedure was used in the simula-
tions to derive the engineering plant inputs related to
both inductive and non-inductive current drive means.
The numerical simulations were performed using typical
Tore Supra values that yield quite positive results with
promising robustness properties.
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