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This paper deals with the H∞ stabilization of the spatial distribution of the current profile of tokamak plasmas using a Linear Matrix Inequalities (LMIs) approach. The control design is based on the one dimensional resistive diffusion equation of the magnetic flux that governs the plasma current profile evolution. The feedback control law is derived in the infinite dimensional setting without spatial discretisation. The proposed distributed control is based on a proportional-integral state feedback taking into account both interior and boundary engineering actuators. Supporting numerical simulations are presented and tuning of the controller parameters attenuating uncertain disturbances is discussed.

Introduction

Considering polluting effects, fossil fuel energy cannot be a source of energy capable of satisfying the requirements of industry developments and the needs of the increasing world population. In such a context, nuclear fusion is an attractive alternative since fusion produces neither air pollution nor greenhouse gases: during the reaction two light nuclei (deuterium and tritium) are stuck together to form a heavier nucleus (helium) plus an energetic neutron. Moreover, both elements (deuterium and tritium) are wide spread over the world: deuterium can be extracted from sea water, while lithium, that has to be used to breed tritium, can be found in continental crust. The key goal of the world project ITER (led by seven partners: EU, U S A, Japan, China, India, South Korea, Russia) is to demonstrate the scientific feasibility of thermonuclear fusion [32]. The fusion reaction requires extremely high temperatures (> 50 10 6 Kelvin) for which hydrogen gas, in the plasma state, has to be confined. One of the most used configuration is the socalled torus-like tokamak [START_REF] Wesson | Tokamaks 3rd Edition by John Wesson[END_REF]. Magnetic field (toroidal and poloidal) confinement is obtained by superimposing various electric currents, including a high current, of the MegaAmpere range, within the plasma itself. This plasma current can be produced by non-inductive means through the injection of fast particles and/or waves and by inductive means, in particular at the beginning of the plasma pulses. The 1D radial profile of this plasma current is a key plasma parameter. It plays a crucial role in the global magnetohydrodynamic (MHD) stability of plasma experiments [START_REF] Wesson | Tokamaks 3rd Edition by John Wesson[END_REF] and it has also been observed that some specific profiles may generate enhanced confinement of the plasma energy (internal transport barrier) . The current density profile depends on the spatial derivative of the poloidal flux, whose dynamics is governed by the so-called resistive diffusion of the poloidal flux.

The control of internal plasma radial profiles is still in its infancy, although several studies have been performed on experimental devices like Tore Supra (France), DIII-D (USA), JET (Joint European Torus, UK), or JT-60U (Japan Torus). The closed-loop control of one single shape parameter, based on Single Input -Single Output (SISO) semi-empirical modelling, has been experimentally achieved (e.g control of plasma internal inductance [START_REF] Wijnands | Feedback control of the current profile on Tore Supra[END_REF] or non-inductive current drive profile width [START_REF] Barana | Feedback control of the lower hybrid power deposition profile on Tore Supra[END_REF]). More recently, stationary states of the safety factor profile, defined by their MHD activity, were feedback controlled on Tore Supra [START_REF] Imbeaux | Real-time control of the safety factor profile diagnosed by magneto-hydrodynamic activity on the Tore Supra tokamak[END_REF]. However this is clearly not enough to match the main requirements of MHD stability and/or internal transport barriers issues [START_REF] Challis | The use of internal transport barriers in tokamak plasmas[END_REF]. The control of the safety factor profile in a few number of points, based on a Multi Input Multi Output (MIMO) approach in finite dimensional setting was developed using linear models identified from experimental data [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. The control of coupled magnetic (safety factor) and kinetic (pressure) profiles was experimentally tested in particular on the Joint European Torus (JET) tokamak [START_REF] Moreau | A two-scale dynamic model approach for magnetic and kinetic profile control in advanced tokamak scenarios on jet[END_REF] but showed severe limitations in terms of sensitivity to the operating conditions, given also the lack of power from the actuators. In [START_REF] Xu | Sequential linear quadratic control of bilinear parabolic PDEs based on POD model reduction[END_REF], a proper orthogonal decomposition is proposed in order to consider a low dimensional dynamical system. Then by using model reduction, optimal feedback control of the nonlinear parabolic partial differential equations (PDEs) is connected to iterative optimal control methodologies for finite dimensional systems. Some other recent approaches have been developed on simulations, [START_REF] Bribiesca-Argomedo | Model-based Control of the Magnetic Flux Profile in a Tokamak Plasma[END_REF][START_REF] Bribiesca-Argomedo | Polytopic Control of the Magnetic Flux Profile in a Tokamak Plasma[END_REF][START_REF] Gaye | Sliding mode stabilization of the current profile in tokamak plasmas[END_REF][START_REF] Ou | Receding-horizon optimal control of the current profile evolution during the ramp-up phase of a tokamak discharge[END_REF][START_REF] Ouarit | Validation of plasma current profile model predictive control in tokamaks via simulations[END_REF].

In the present work a new approach is proposed for the control of the investigated parabolic system with boundary and interior actuation mechanism. The feedback control law is defined in the infinite dimensional setting without spatial discretization. For this purpose, H ∞ control is developed within the framework of linear matrix inequality (LMI) approach [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], recently extended in [START_REF] Fridman | An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems[END_REF] to the PDE setting. Numerical simulations are performed based on the Tore Supra tokamak plant. In fact, this experimental device is the real engineering plant. The Tore Supra tokamak is highly relevant in terms of time scales: most of the previous work targeted tokamak facilities where steady state of plasma internal profiles, especially plasma safety factor/current profile is hardly achievable, at least at the plasma center. With its capability to run long lasting plasma discharge up to several minutes (Tore Supra has made a more than 6 minutes long 1 GJ world record plasma discharge), and to drive large non inductive current (about 500 kA of lower hybrid current have already been driven during more than one minute long discharges, and the current drive capabilities will be further increased with the completion of the on-going lower hybrid system upgrade), the Tore Supra tokamak offers an unique opportunity to develop and test plasma safety factor / current profile control schemes on relevant time scales. The primary concern of the paper is to synthesize proportional and proportional integral H ∞ regulators of tokamak internal plasma profiles in the PDE's setting. A target profile, that should constitute the steady-state of the closed-loop system, is designed a priori, using manipulatable inputs of the system such as the loop voltage, the lower hybrid power, and the wave refractive index. It is worth noticing that while being of a parabolic type, the underlying PDE is not, however, typical in the control of distributed parameter systems as it contains a non self-adjoint infinitesimal operator (the principal higher order differential term) in the state equation. To the best of our knowledge, controlling such a kind of PDE's has not been developed so far and presenting an LMI-based framework for the distributed H ∞ control of such a plant is a clear contribution the paper makes into the existing literature. Once a spatially distributed H ∞ regulator is designed, it is on-line optimally approximated by the best set of real engineering inputs (the loop voltage, the lower hybrid power, and the wave refractive index) which are then applied to the plant. Since it is hardly possible to involve the shape constraints on the engineering inputs into the H ∞ design, these constraints are brought into play while approximating the constructed H ∞ regulator via the constrained optimization procedure. Although the proposed approach to the current profile regulation in tokamak plasmas is developed ad hoc it is then supported by the numerical study made with the tokamak plant simulator METIS (Minute Embedded Tokamak Integrated Simulator) [START_REF] Artaud | Metis User's Guide[END_REF].

The paper is organized as follows. In section 2, the mathematical model is presented. The model is based on the 1D resistive diffusion PDE of the magnetic flux that governs the plasma current profile evolution. In section 3, a basic distributed proportional controller is exposed and exponential stabilization is proved. Section 4 is devoted to the design of a distributed proportional and integral controller. For both control laws, theoretical developments are proposed in order to prove the H ∞ controller efficiency in spite of external disturbances. Finally, simulation results (using the METIS code dedicated to plasma scenario studies) are presented in section 5 and concluding remarks are collected in section 6.

Modeling and problem statement

Provided usual assumptions (axisymetry, MHD equilibrium, averaging over the magnetic surfaces, cylindrical approximation, etc. see [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Physics With Applications to Tokamaks[END_REF][START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF] and Fig. 1), the evolution of the plasma current profile q, being the safety factor to be controlled, can be obtained by solving the following 1D PDE

         ∂ψ ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψ ∂x (t, x) +η || (t, x)R 0 j ni (t, x); ∂ψ ∂x (t, x) x=0 = 0, ∂ψ ∂t (t, 1) = -V 0 (t).
(1) 

In the above relations, x ∈ [0, 1] is the 1D (radial) profile coordinate, t the time, ψ(t, x) the magnetic flux, R 0 and a are respectively the major and minor radius of the plasma boundary (both R 0 and a are controlled with high accuracy to be constant [START_REF] Moreau | Plasma control in Tore Supra[END_REF]), µ 0 > 0 the permeability of vacuum, η || (t, x) the parallel electrical resistivity of the plasma, V 0 (t) the plasma loop voltage, B 0 the toroidal magnetic field at R 0 , and j ni (t, x) the noninductive current density. It is of interest to note that the total current density j T (t, x) is given by

j T (t, x) = - 1 µ 0 R 0 a 2 x ∂ ∂x x ∂ψ ∂x (t, x) (3) 
and it allows one to represent the principal term

η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψ ∂x (t,
x) in the right hand side of the PDE (1) in the form -η || (t, x)R 0 j T (t, x), similar to that of the additive term η || (t, x)R 0 j ni (t, x) in the same. Adequacy of (1) with physically investigated phenomena as well as the solution existence and uniqueness are argued in [START_REF] Bribiesca-Argomedo | A strict control lyapunov function for diffusion equation with time-varying distributed coefficients[END_REF].

Our control objective is to track a desired safety factor profile which does not depend directly on ψ but which depends on its spatial derivative ∂ψ ∂x .

In order to deal with homogeneous boundary conditions, let us introduce the following state transformation

ψ r (t, x) = ψ(t, x) -ψ(t, 1). (4) 
Taking into account (2), we have

ψ r (t, x) = a 2 B 0 1 x r q(t, r)
dr.

The control variables in the infinite dimensional setting are the plasma loop voltage V 0 (t) and the non-inductive current density j ni (t, x). V 0 (t) can basically directly be set using the inner poloidal magnetic field coils voltage whereas j ni (t, x) is manipulated indirectly, using the lower hybrid power P lh and the wave refractive index N lh . The state equation ( 1), rewritten in terms of ψ r , reduces to

         ∂ψr ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψr ∂x (t, x) +η || (t, x)R 0 j ni (t, x) + V 0 (t), ∂ψr ∂x (t, x) x=0 = 0, ψ r (t, 1) = 0 (5)
Then, let us introduce the error variable

φ(t, x) = ψ r (t, x) -ψ target r (x) (6) 
with respect to a target ψ target r (x) which we intend to reach in the inner-product space

W = Ψ ∈ H 2 (0, 1) : ∂Ψ ∂x x=0 = Ψ(1) = 0 (7) 
of differentiable functions equipped with the inner prod-

uct < Ψ 1 , Ψ 2 > L2(0,1) = 1 0 Ψ 1 (x)Ψ 2 (x)xdx, inducing the norm Ψ L2(0,1) = 1 0 |Ψ(x)|
2 xdx (for more information about weighted L 2 spaces see [START_REF] Kufner | Weighted inequalities of Hardy type[END_REF]). As a matter of fact, the target ψ target r (x), designed a priori, using the manipulatable inputs V 0 and j ni = j ni (P lh , N lh ), should meet the same homogeneous boundary conditions

∂ψ target r ∂x (x) x=0 = 0, ψ target r (1) = 0 (8) 
as those in [START_REF] Blum | Numerical Simulation and Optimal Control in Plasma Physics With Applications to Tokamaks[END_REF]. The error variable is then governed by

               ∂φ ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) + η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψ target r ∂x (x) +η || (t, x)R 0 j ni (t, x) + V 0 (t); ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0. (9) 
In order to deal with the regular additive terms in the right hand side of the PDE (9) we assume that

1 x ∂ ∂x x ∂ψ target r ∂x (x) ∈ W. (10) 
Let us now introduce the following term [START_REF] Coron | Control and Nonlinearity[END_REF] in order to subsequently synthesize a stabilizing control law. The non-inductive current density j ni (t, x) is composed of the bootstrap current density j bs (t, x) (which is self-generated by the plasma, [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF]) and of additional source terms provided by different actuators, namely the Lower Hybrid, Electron Cyclotron or Ion Cyclotron wave systems and/or the Neutral Beam Injection system. The most efficient is the Lower Hybrid Current Drive (LHCD) system that is routinely used on the Tore Supra Tokamak [START_REF] Saoutic | supra : toward steady state in a superconducting tokamak[END_REF], which now has a capability to inject up to around 7 MW in steady state that will allow to sustain plasma currents in the MegaAmpere range on very long pulse [START_REF] Becoulet | Steady state long pulse tokamak operation using lower hybrid current drive[END_REF]. The distributed control law design (proportional and proportional-integral) is generic to all kinds of current drive system. However, in this paper, the numerical simulations will be performed on Tore Supra typical conditions, using mainly Lower Hybrid waves as current drive means, so that in this particular case

η || (t, x)R 0 j control = η || (t, x)R 0 j ni (t, x) + V 0 (t)
j ni (t, x) = j bs (t, x) + j lh (t, x) (12) 
where j bs (t, x) and j lh (t, x) are respectively the bootstrap current density and the current density provided by the LHCD system. The unactuated variable j bs (t, x) can be modelled by a nonlinear function of the flux and pressure [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF] and thus can be estimated on-line, but it cannot be varied according to the control demand. In turn, j lh (t, x) is modelled by Gaussian functions which are controlled by two engineering parameters, the LH power P lh and the wave refractive index N lh (see [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF] for further details). In the simulations of section 5, the variables V 0 , P lh and N lh are viewed as the time-varying control inputs whereas j bs (t, x) as an external disturbance to be attenuated/compensated.

In the present investigation, the resistivity η || (t, x) is assumed to be lower and upper bounded by some positive constants η 1 and η 2 , i.e.

η 1 ≤ η || (t, x) ≤ η 2 (13) 
for all x ∈ [0, 1] and t ≥ 0. Apart from this, we assume that η || (t, x) is differentiable in t for all x ∈ [0, 1] and by taking into account that η || (t, x) depends on the temperature of the plasma, whose time rate of change is rather slow, we also assume that the time derivative of η || (t, x) is uniformly bounded

∂η || (t, x) ∂t < △ (14) 
by some constant ∆ > 0. Moreover, we consider that η || (t, x) is available for feedback purposes through some on-line estimation, basically from electronic temperature measurements (see [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF] for more details). The feedback control strategy adopted in this paper is composed of two steps shown in Fig. 2. The first step is to synthesize the current density j control to be applied to the system. The resulting H ∞ controller is designed in the infinite dimensional setting where a target flux profile ψ target r and current flux profile serve as inputs. The second step consists of an optimization process which finds the best set of engineering inputs P lh (t), N lh (t) and V 0 (t) to fit (as fine as possible) the desired current density control j control generated by the H ∞ control law in the infinite dimensional setting. The optimization algorithm has to minimize the criterion

ε = 1 0 (j control -j engineering (P lh , N lh , V 0 )) 2 dx (15)
under the constraints: V min < V 0 < V max , P min < P lh < P max and N min < N lh < N max . j engineering is the control profile that can actually be generated with the real plant control variables P lh ,N lh and V 0 [START_REF] Ouarit | Validation of plasma current profile model predictive control in tokamaks via simulations[END_REF]. In simulations presented in section 5, minimum/maximum value of engineering inputs are taken from the Tore Supra Tokamak constraints, i.e., -5V < V 0 < 5V , 0M W < P lh < 7M W and 1.43 < N lh < 2.37. In following sections two distributed controllers are presented.

Proportional state feedback synthesis

The main goal of this section is to show that our system is exponentially stabilizable using a proportional feedback. The controller specification [START_REF] Coron | Control and Nonlinearity[END_REF] simplifies [START_REF] Bribiesca-Argomedo | A strict control lyapunov function for diffusion equation with time-varying distributed coefficients[END_REF] to the PDE

               ∂φ ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) + η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψ target r ∂x (x) +η || (t, x)R 0 j control ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0 (16)
with homogeneous boundary conditions. The control objective is to synthesize j control such that the error state φ is exponentially stable.

Disturbance-free stabilization

The control problem of partial differential equations (PDEs) is an active area of research [START_REF] Coron | Control and Nonlinearity[END_REF][START_REF] Komornik | Fourier Series in Control Theory[END_REF][START_REF] Orlov | Discontinuous unit feedback control of uncertain infinite-dimensional systems[END_REF][START_REF] Smyshlyaev | Adaptive Control of Parabolic PDEs[END_REF] , but very few constructive methods are available. For robust stabilization, the H ∞ controller is proposed. We consider the following feedback strategy

η || (t, x)R 0 j control = -kφ(t, x) - η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψ target r ∂x (x) . ( 17 
)
Then the closed-loop system [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF], driven by [START_REF] Imbeaux | Real-time control of the safety factor profile diagnosed by magneto-hydrodynamic activity on the Tore Supra tokamak[END_REF], takes the form

   ∂φ ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) -kφ(t, x); ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0. ( 18 
)
In the following, the proposed controller ( 17) is analyzed in order to prove the exponentially stability of [START_REF] Komornik | Fourier Series in Control Theory[END_REF]. For later use, we need a technical lemma (Poincaré type inequalities).

Lemma 1 Let L(•) ∈ W and let w(•) be a Lebesguemeasurable function on [0, 1] such that the relations w 1 ≤ w(x) ≤ w 2 are satisfied for all x ∈ [0, 1] and some positive constants w 1 , w 2 . Then the inequality

1 0 | L(x) | 2 x w(x) dx ≤ K 1 0 ∂L(x) ∂x 2 x w(x) dx (19) 
holds true with the positive constant K = w2 ew1 .

Proof It is clear that

L(1) -L(x) = 1 x ∂L(s) ∂s ds. (20) 
Since L ∈ W it follows from (7) that L(1) = 0 and hence

-L(x) = 1 x ∂L(s) ∂s ds. (21) 
Then one derives that

|L(x)| 2 = 1 x s w(s) ∂L(s) ∂s √ w(s) √ s ds 2 ≤ 1 x ∂L(s) ∂s 2 s w(s) ds 1 x w(s) s ds ≤ 1 x ∂L(s) ∂s 2 s w(s) ds w 2 (ln(1) -ln x) ≤ 1 x ∂L(s) ∂s 2 s w(s) ds w 2 (-ln x) . (22) 
So, it leads to

x w(x) |L(x)| 2 ≤ 1 x ∂L(s) ∂s 2 s w(s) ds w2 w(x) (-x ln x) ≤ 1 x ∂L(s) ∂s 2 s w(s) ds w2 w1 (-x ln x) ≤ K 1 x ∂L(s) ∂s 2 s w(s) ds (23) with K = w2
w1 sup x∈(0,1) {-x ln x} = w2 w1e . Thus the required inequality [START_REF] Kufner | Weighted inequalities of Hardy type[END_REF] is established. ✷ Theorem 1 Consider the error system [START_REF] Hirshman | Finite-aspect-ratio effects on the bootstrap current in tokamaks[END_REF] with the above assumptions and let (16) be driven by controller [START_REF] Imbeaux | Real-time control of the safety factor profile diagnosed by magneto-hydrodynamic activity on the Tore Supra tokamak[END_REF]. Then the closed-loop system ( 18) is globally exponentially stable with respect to the induced norm . L2(0,1) provided that the controller gain k is tuned according to

k > - η 2 1 e µ 0 a 2 η 2 + △ 2η 1 . ( 24 
)
Proof Consider the following time-varying functional

V (φ(t, •), t) = 1 0 φ(t, x) 2 x η || (t, x) dx (25) 
which is positive definite and radially unbounded

η -1 2 φ 2 L2(0,1) ≤ V (φ(t, •), t) ≤ η -1 1 φ 2 L2(0,1) (26) 
where η 1 and η 2 are the lower and upper bounds in [START_REF] Fridman | An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems[END_REF].

The time derivative of ( 25) is given by

dV (φ(t,•),t) dt = 1 0 ∂ ∂t φ(t, x) 2 x η || (t,x) dx = 2 1 0 ∂φ(t,x) ∂t φ(t, x) x η || (t,x) dx - 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx. ( 27 
)
While being computed along the solutions of ( 18), the time derivative [START_REF] Saoutic | supra : toward steady state in a superconducting tokamak[END_REF] integrates by parts to

dV (φ(t,•),t) dt = 2 1 0 ∂φ(t,x) ∂t φ(t, x) x η || (t,x) dx - 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx = -2k 1 0 φ(t, x) 2 x η || (t,x) dx + 2 µ0a 2 1 0 ∂ ∂x x ∂φ(t,x) ∂x φ(t, x)dx - 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx = -2k 1 0 φ(t, x) 2 x η || (t,x) dx -2 µ0a 2 1 0 ∂φ(t,x) ∂x 2 xdx - 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx (28) 
thereby yielding

dV (φ(t,•),t) dt = -2k 1 0 φ(t, x) 2 x η || (t,x) dx -2 µ0a 2 1 0 η || (t, x) ∂φ(t,x) ∂x 2 x η || (t,x) dx - 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx ≤ -2k 1 0 φ(t, x) 2 x η || (t,x) dx -2η1 µ0a 2 1 0 ∂φ(t,x) ∂x 2 x η || (t,x) dx - 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx. (29) 
Specifying inequality [START_REF] Kufner | Weighted inequalities of Hardy type[END_REF] with w(•) = η || (t, x) and L(•) = φ(t, x) (K = η2 η1e ), the resulting inequality

1 0 | φ(t, x) | 2 x η || (t, x) dx ≤ K 1 0 ∂φ(t, x) ∂x 2 x η || (t, x) dx
(30) allows one to conclude from (29) that

1 2 dV (φ(t,•),t) dt ≤ - η 2 1 e µ0a 2 η2 + k 1 0 φ(t, x) 2 x η || (t,x) dx + 1 2 1 0 φ(t, x) 2 x η || (t,x) ∂η || (t,x) ∂t η || (t,x) dx. (31 
) Taking ( 14) into account, it follows

1 2 dV (φ(t,•),t) dt ≤ - η 2 1 e µ0a 2 η2 + k -△ 2η1 1 0 φ(t, x) 2 x η || (t,x) dx = - η 2 1 e µ0a 2 η2 + k -△ 2η1 V (φ(t, •), t). (32) Then V (φ(t, •), t) ≤ V (φ(0, •), 0)e -2ct (33) 
with c = η 2 1 e µ0a 2 η2 + k -△ 2η1 > 0 du to [START_REF] Ou | Optimal tracking control of current profile in tokamaks[END_REF]. By virtue of (26), the global exponential stability of the closed-loop system ( 18) is then concluded in the state space W. ✷

Disturbance attenuation

The goal of this subsection is to show that the controller defined by [START_REF] Imbeaux | Real-time control of the safety factor profile diagnosed by magneto-hydrodynamic activity on the Tore Supra tokamak[END_REF] solves an H ∞ control problem with a disturbance attenuation γ (see [START_REF] Du | H∞ Control and Filtering of Twodimensional Systems[END_REF]). Let us consider some perturbations occurring on system (18)

         ∂φ ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) -kφ(t, x) +h(t, x) ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0 (34)
where h ∈ L 2 (0, ∞; W) is the external disturbance, L 2 (0, ∞; W) is the Hilbert space of square integrable Hilbert space-valued functions h(•, x) ∈ L 2 (0, ∞) with values h(t, •) ∈ W for almost all t ∈ [0, ∞). We seek a condition on the controller gain k that ensures the global asymptotic stability of the unperturbed process [START_REF] Komornik | Fourier Series in Control Theory[END_REF], and yields the negative definite performance index (see [START_REF] Du | H∞ Control and Filtering of Twodimensional Systems[END_REF] for more details)

J = ∞ 0 [ φ(t, •) 2 L2(0,1) -γ 2 h(t, •) 2 L2(0,1) ]dt -γ 2 φ(0, •) 2 L2(0,1) < 0 (35)
on the solutions of the perturbed system (34) for any h ∈ L 2 (0, ∞; W) and some constant γ. For solving the problem we follow an idea, proposed in [START_REF] Fridman | An LMI approach to H∞ boundary control of semilinear parabolic and hyperbolic systems[END_REF], and carry out conditions that guarantee the negative definiteness of the form

W(φ(t, •), h(t, •)) := η 1 γ 2 dV (φ(t,•)) dt + φ(t, •) 2 L2(0,1) -γ 2 h(t, •) 2 L2(0,1) < 0 (36)
computed on the solutions of the perturbed system (34) with V (φ(t, •)) given by [START_REF] Ou | Receding-horizon optimal control of the current profile evolution during the ramp-up phase of a tokamak discharge[END_REF]. Once (36) is guaranteed, integrating W(φ(t, •), h(t, •)) in t from 0 to ∞ and taking into account that lim sup t→∞ V (φ(t, •)) ≥ 0 result in (35). Indeed, (36) ensures that

-η 1 γ 2 1 0 φ(0, x) 2 x η || (0, x) dx + ∞ 0 [ φ(t, •) 2 L2(0,1) -γ 2 h(t, •) 2 L2(0,1) ]dt < 0 ( 37 
)
and due to (13), the negative definiteness of (35) follows. In order to ensure (36

) let us set ζ(t, x) = (|φ(t, x)|, |h(t, x)|)
T and compute the time derivative of (25) along the solutions of the perturbed system (34). Similar to [START_REF] Witrant | A control-oriented model of the current profile in tokamak plasma[END_REF], we obtain that

W ≤ 1 -2 η1 η2 γ 2 η 2 1 e µ0a 2 η2 + k -△ 2η1 1 0 φ(t, x) 2 xdx +2γ 2 1 0 |h(t, x)| |φ(t, x)|xdx -γ 2 1 0 h(t, x) 2 xdx ≤ 1 0 ζ T (t, x)Φ γ ζ(t, x)xdx (38) where Φ 
γ :=     1 -2 η1 η2 γ 2 η 2 1 e µ0a 2 η2 + k -△ 2η1 γ 2 γ 2 -γ 2     . ( 39 
)
If Φ γ < 0 then W < 0. In turn, due to the Schur compliments formula (see, e.g., [6, pp. 7-8] for details), the LMI Φ γ < 0 is satisfied if

1 - 2η 1 γ 2 η 2 η 2 1 e µ 0 a 2 η 2 + k - △ 2η 1 + γ 2 < 0.
Thus, the tuning rule

k > (1 + γ 2 )η 2 2γ 2 η 1 - eη 2 1 µ 0 a 2 η 2 + △ 2η 1 , (40) 
imposed on the parameter k, ensures the negative definiteness of Φ γ . Summarizing, we arrive at the following.

Theorem 2 Let the conditions of Theorem 1 be satisfied and let the tuning rule (40) be additionally imposed on the controller gain k. Then the uncertain system (34) is internally (under h ≡ 0) globally exponen-tially stable. Moreover, the admissible external disturbances h ∈ L 2 (0, ∞; W) are attenuated in the sense of (35).

Proof The first assertion is established by Theorem 1. Since relation ( 40) is in force it follows that (39) is negative definite and by means of (38) it results in (36). Then integrating (36) in t from zero to infinity and employing that V is positive definite yield (37) thereby concluding (35). The second assertion is thus established that completes the proof of Theorem 2. ✷

Proportional integral state feedback synthesis

The main goal of this section is to design a controller that would completely reject time-invariant disturbances by using proportional integral feedback. For this purpose, we need to additionally assume that plasma resistivity is representable in the form

η || (t, x) = f (t)g(x) (41) subject to the constraints 0 < f 1 ≤ f (t) ≤ f 2 , 0 < g 1 ≤ g(x) ≤ g 2 (42) 
with some constants f 1 , f 2 , g 1 , g 2 . Such a realistic assumption is justified in [START_REF] Ou | Optimal tracking control of current profile in tokamaks[END_REF][START_REF] Ou | Receding-horizon optimal control of the current profile evolution during the ramp-up phase of a tokamak discharge[END_REF][START_REF] Xu | Sequential linear quadratic control of bilinear parabolic PDEs based on POD model reduction[END_REF]. Then, let us define the inner-product space

W g = Ψ ∈ H 2 (0, 1) : ∂Ψ ∂x x=0 = Ψ(1) = 0 ( 43 
)
of differentiable functions equipped with the inner product space

< Ψ 1 , Ψ 2 > L2(0,1) = 1 0 Ψ 1 (x)Ψ 2 (x) x g(x) dx and the induced norm Ψ L2(0,1) = 1 0 |Ψ(x)| 2 x g(x) dx.
It is clear that the space W g is nothing else than the aforegiven space W equipped with an equivalent norm.

Stabilization under time-invariant disturbances

Let us consider the following distributed (proportional integral feedback) control

η || (t, x)R 0 j control (t, x) = -kφ(t, x) -k 1 t 0 φ(s, x)ds - η || (t,x) µ0a 2 1 x ∂ ∂x x ∂ψ target r ∂x (x) ( 44 
)
where k and k 1 are weight parameters (to be defined) and j control is given by [START_REF] Coron | Control and Nonlinearity[END_REF]. Then the error state equation ( 16), driven by the proportional integral feedback (44) and additionally affected by a time-invariant external disturbance h(x) ∈ W g , is specified to

         ∂φ ∂t (t, x) = η || (t,x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) -kφ(t, x) -k 1 t 0 φ(s, x)ds + h(x) ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0. (45)
In the subsequent analysis, the closed-loop system is shown to be globally asymptotically stable under an arbitrary h(x) ∈ W g . Theorem 3 Let the controller gains are tuned according to

k > - f 1 g 2 1 e µ 0 a 2 g 2 , k 1 > 0. ( 46 
)
Then the closed-loop system (45) is globally asymptotically stable in the state space W g regardless of whichever external disturbance h(x) ∈ W g affects the system and hence φ steady state = 0.

Proof For later use, let us introduce an auxiliary variable I(t, x) governed by

∂I ∂t (t, x) = φ(t, x), I(t = 0, x) = 0. ( 47 
)
While being coupled to (47), system (45) under assumption (41) is augmented to

             ∂φ ∂t (t, x) = f (t)g(x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) -kφ(t, x) -k 1 I(t, x) + h(x) ∂I ∂t (t, x) = φ(t, x) ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0. ( 48 
)
The steady state (φ ss , I ss ) of system (48) is clearly defined by ∂φss(t,x) ∂t = 0, ∂Iss(t,x) ∂t = 0 that results in φ ss (x) = 0, I ss (x) = h(x) k1 On the solutions of (48), consider the functional

V (φ(t, •), I(t, •)) := 1 2 1 0 φ(t, x) 2 x g(x) dx + k1 2 1 0 I(t, x) -h(x) k1 2 x g(x) dx := V 1 (t) + V 2 (t)
(49) which proves to be positive definite and radially unbounded. Indeed,

V (φ ss , I ss ) = 0, V (φ, I) > 0 ∀ (φ, I) = (φ ss , I ss ) (50) and V (φ, I) → ∞ as φ L2(0,1) + I L2(0,1) → ∞. Computing the time derivative dV1(t) dt = 1 2 1 0 ∂ ∂t φ(t, x) 2 x g(x) dx = 1 0 ∂φ(t,x) ∂t φ(t, x) x g(x) dx (51) 
of (49) on the solutions of (48) and employing the integration by parts yield

dV1(t) dt = f (t) µ0a 2 1 0 ∂ ∂x x ∂φ(t,x) ∂x φ(t, x)dx -k 1 0 φ(t, x) 2 x g(x) dx -k 1 1 0 I (t, x) φ(t, x) x g(x) dx + 1 0 h(x)φ(t, x) x g(x) dx; = -f (t) µ0a 2 1 0 ∂φ(t,x) ∂x 2 xdx -k 1 0 φ(t, x) 2 x g(x) dx -dV2(t) dt . (52) 
It follows that

dV1(t) dt = -f (t) µ0a 2 1 0 g(x) ∂φ(t,x) ∂x 2 x g(x) dx -k 1 0 φ(t, x) 2 x g(x) dx -dV2(t) dt < -f1g1 µ0a 2 1 0 ∂φ(t,x) ∂x 2 x g(x) dx -k 1 0 φ(t, x) 2 x g(x) dx -dV2(t) dt . (53) 
Taking into account that Lemma 1, being specified with w(•) = g(x) and L(•) = φ(t, x), results in

1 0 | φ(t, x) | 2 x g(x) dx ≤ g 2 e -1 g 1 1 0 ∂φ(t, x) ∂x 2 x g(x) dx 
(54) one then arrives at

dV (φ(t,•)) dt = dV1(t) dt + dV2(t) dt < - f1g 2 1 e µ0a 2 g2 + k 1 0 φ(t, x) 2 x g(x) dx. (55) 
Due to (46), one concludes that dV (φ(t,•)) dt ≤ 0 and

dV (φ(t, •)) dt = 0 ⇒ 1 0 φ(t, x) 2 x g(x) dx = 0 (56) 
i.e., φ(t, x) = 0 = φ ss once dV (φ(t,•)) dt = 0. Moreover, relation φ(t, x) = 0 = φ ss , coupled to (47), ensures that I(t, x) = h(x) k1 = I ss , thereby concluding that the maximal invariant manifold of dV (φ(t,•)) dt = 0 coincides with (φ, I) = (φ ss , I ss ). Thus, by applying the LaSalle invariance principle to the parabolic system (48) (see [START_REF] Henry | Geometric Theory of Semilinear Parabolic Equations[END_REF] for the invariance principle extension to parabolic systems), the desired global asymptotic stability is established. Hence, system (45) is globally asymptotically stable in W under an arbitrary h(x) ∈ W g . ✷

H ∞ design

The objective of this subsection is to show that in addition to the rejection of time-invariant external disturbances, the proposed controller (44) attenuates timevarying disturbances with a certain level γ > 0. Let us suppose that the disturbance h affecting system (45) varies in time, thus resulting in the state equation

         ∂φ ∂t (t, x) = f (t)g(x) µ0a 2 1 x ∂ ∂x x ∂φ ∂x (t, x) -kφ(t, x) -k 1 t 0 φ(s, x)ds + h(t, x) ∂φ ∂x (t, x) x=0 = 0, φ(t, 1) = 0 (57)
where h(t, •) ∈ L 2 (0, ∞; W g ) is an external disturbance of cumulative finite energy. We seek an additional condition on the proportional integral controller gain k that would ensure the negative performance index

J g = ∞ 0 [ φ(t, •) 2 L2(0,1) -γ 2 h(t, •) 2 L2(0,1) ]dt -γ 2 φ(0, •) 2 L2(0,1) < 0 (58)
on the solutions of (57) for all time-varying disturbances h(t, •) ∈ L 2 (0, ∞; W g ) with a constant attenuation level γ > 0. As before, L 2 (0, ∞; W g ) stands for the Hilbert space of square integrable Hilbert space-valued functions h(•, x) ∈ L 2 (0, ∞) with values h(t, •) ∈ W g for almost all t ∈ [0, ∞). For establishing (58), it suffices to demonstrate that

W g (φ(t, •)) := 2γ 2 d dt V g (φ(t, •)) + 1 0 φ(t, x) 2 -γ 2 h(t, x) 2 x g(x) dx < 0 (59) where V g (φ(t, •)) = 1 2 1 0 φ(t, x) 2 x g(x) dx+ k 1 2 1 0 I(t, x) 2 x g(x) dx
(60) Indeed, integrating W g (φ(t, •)) in t from 0 to ∞ and taking into account that lim sup t→∞ V g (φ(∞, •)) ≥ 0 result in (58). Let us now compute the time derivative of functional (60) on the solutions of (57):

dVg(φ(t,•)) dt ≤ - f1g 2 1 e µ0a 2 g2 + k 1 0 φ(t, x) 2 x g(x) dx + 1 0 h(t, x)φ(t, x) x g(x) dx. ( 61 
) Setting ζ = (|φ(t, x)| |h(t, x)|) T , it follows W g ≤ 1 -2γ 2 f1g 2 1 e µ0a 2 g2 + k 1 0 φ(t, x) 2 x g(x) dx +2γ 2 1 0 |h(t, x)||φ(t, x)| x g(x) dx -γ 2 1 0 |h ( t, x)| 2 x g(x) dx ≤ 1 0 ζ T Ψ γ ζ x g(x) dx (62) 
where

Ψ γ :=   1 -2γ 2 f1g 2 1 e µ0a 2 g2 + k γ 2 γ 2 -γ 2   . ( 63 
)
If Ψ γ < 0 then W g < 0. By Schur's Lemma, the LMI condition Ψ γ < 0 is satisfied if

k > - f 1 g 2 1 e µ 0 a 2 g 2 + 1 2γ 2 + γ 2 .
(64)

Hence, W g < 0 provided that k is chosen according to (64) and ( 58) is then guaranteed. Thus, the following result is in order.

Theorem 4 Let the conditions of Theorem 3 be satisfied and let the tuning rule (64) be additionally imposed on the gain k of the proportional integral feedback (44). Then while being affected by a time-invariant external disturbance h(x) ∈ W g , the closed-loop system (57) is globally asymptotically stable in the state space W g . Moreover, all time-varying external disturbances h(t, •) ∈ L 2 (0, ∞; W g ) are attenuated in the sense of (58).

Proof The first assertion is established by Theorem 3. By virtue of (64), matrix (63) is negative definite. Coupled to (62), this results in (59). Now to justify (58) it suffices to integrate (59) in t from zero to infinity and in the resulting inequality

∞ 0 [ φ(t, •) 2 L2(0,1) -γ 2 h(t, •) 2 L2(0,1) ]dt +2γ 2 V g (φ(∞)) -2γ 2 V g (φ(0)) < 0, (65) 
to omit the positive definite term 2γ 2 V g (φ(∞, •)) and to note that 2γ 2 V g (φ(0, •)) = γ 2 φ(0, •) 2 L2(0,1) due to (60), initialized in accordance with (47). Theorem 4 is thus proved. ✷ 

Simulation results

We consider the relevant test where we want to control the evolution of the magnetic flux ψ r from an initial profile to a target profile (see Fig. 3). To begin with, we performed a set of simulations on the infinite dimensional plant model, depicted in Fig. 2, to tune the proportional (k) and integral (k 1 ) gains. In these simulations, we did not use the engineering parameters optimization procedure, corresponding to the block "Modelbased Optimization Algorithm" in Fig. 2. Instead, the H ∞ controller j control was straightforwardly applied to the plant. We then also checked the effect of the disturbance

h(t, x) =    0, 0s ≤ t < 10s -1 5µ0R0a 2 1 x ∂ ∂x x ∂ψ target r ∂x , 10s ≤ t ≤ 30s (66) 
added at the time instant t = 10s and representing 20% of the target total current density j target T (t, x), given by (3). The behavior of the closed loop system is illustrated by the time evolution of φ at point x = 0.4, given in Fig. 4 (a similar behavior was also obtained at other points x). As expected from theoretical results, obtained in section 3 and 4, (i) the closed loop system is asymptotically stable and the applied disturbance is additionally attenuated provided that the tuning rule of Theorem 1 and, respectively, that of Theorem 2 are satisfied; (ii) if confined to the proportional feedback only, the larger the proportional gain is applied the smaller the steady state error, resulting from a disturbance, is obtained; (iii) the time response can be speeded up by using a higher proportional gain but at the expense of possibly a higher overshoot; (iv) the integral gain allows one to cancel the steady state error resulting from the applied disturbance, higher values of the integral gain can speed up the attenuation of the applied disturbance at the expense of induced steady state oscillations.

In order to further validate the proposed control approach, the tokamak plant simulator METIS is used [START_REF] Artaud | Metis User's Guide[END_REF]. METIS is a simplified version of the CRONOS suite of codes [START_REF] Artaud | The cronos suite of codes for integrated tokamak modeling[END_REF] well suited to the final simulation test of tokamak control algorithms on physics relevant model, as simulating typical 20s long Tore Supra tokamak plasma discharges takes typically 3 hours. The METIS code includes a full fast current diffusion solver and takes into account various nonlinear couplings between physical quantities. In the following, METIS was used jointly with the M atlab/Simulink T M toolbox to simulate Tore Supra plasma discharges. Preliminary METIS open loop simulation based on real pulse engineering inputs (V 0 = 0V , P lh = 4.8M W and N lh = 1.7) were performed in order to find a reachable target profile. The proportional integral feedback was then implemented using values of k and k 1 resulting from the previously mentioned tuning process where reasonably low values k = 1s -1 and k 1 = 0.8s -2 were chosen to avoid deal with high overshooting and induced steady state oscillations. At t = 10.1s, the controller was activated in order to force the magnetic flux profile to reach the target profile. The target profile was basically reached in 5.8s. As in the preliminary infinite dimensional simulations, made without engineering parameter optimization, the disturbance h(t, x) = h(t -6, x), specified with (66), was added at t = 16s. Simulation results are presented in Figs. 5678.

The time evolutions of the magnetic flux ψ r (t, x) versus the target profile ψ target r (x) at the points x = 0.2, x = 0.4 and x = 0.6, and that of the their integral discrepancy are shown in Fig. 5 and Fig. 6, respectively. Proportional integral feedback acts satisfactorily: a gentle dynamic behavior is observed and the stationary disturbance is properly attenuated on a sensible time scale. The time evolution of the engineering plant inputs is plotted in Fig. 7. The time evolutions of the relevant control deviation ε rel (t, x) = j control (t,x)-jengineering(t,x) j control (t,x) at the points x = 0.1 and x = 0.5 are shown in Fig. 8. It is concluded from Figs. 5-8 that due to the H ∞ approach used, the essential discrepancy between j engineering (t, x) and j control (t, x) is properly attenuated along with the applied disturbance h, so that the target profile is approached in an appropriate time less than 6s. , computed at x = 0.1 (solid line), and that computed at x = 0.5 (dashed line)

Concluding remarks

In this paper, a H ∞ control has been designed in the infinite dimensional setting for the tokamak plasmas cur-rent profile using 1D resistive diffusion PDE of the magnetic flux. The investigated PDE system was reformulated so as to carry out a Lyapunov functional of the resulting system. Then an LMI based approach was applied to H ∞ control design in infinite dimensional setting in order to propose two controllers (proportional state feedback for stabilization and disturbance attenuation and proportional integral controller for stabilization and attenuation of time-invariant disturbances). A modelbased optimization procedure was used in the simulations to derive the engineering plant inputs related to both inductive and non-inductive current drive means. The numerical simulations were performed using typical Tore Supra values that yield quite positive results with promising robustness properties.
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 1 Fig. 1. 1D geometry simplified formulation and determining it according to q(t, x) = -a 2 xB 0 ∂ψ ∂x (t, x) .(2)

Fig. 2 .

 2 Fig. 2. Control scheme of the system

Fig. 3 .

 3 Fig. 3. Initial profile value ψr(0, x) (dashed line) versus the target profile ψ target r

Fig. 4 .

 4 Fig. 4. Time evolution of φ profile at x = 0.4: solid line is for the gain values (k = 1, k1 = 0), dashed line is for (k = 80, k1 = 0), and dotted line is for (k = 1, k1 = 20)

Fig. 5 .Fig. 6 .evolution of 1 0

 561 Fig. 5. Time evolution of ψr (solid line) versus the target ψ target r (dashed line) at x = 0.2 (the upper plot), at x = 0.4 (the middle plot), and at x = 0.6 (the lower plot)

Fig. 7 .

 7 Fig. 7. Time evolution of the engineering inputs versus their nominal values, used for producing the target profile ψ target r (x): the upper plot is for PLH in megaWatt, the middle plot is for NLH , the lower plot is for V0 in Volt

Fig. 8 .

 8 Fig.8. Time evolutions of the relevant deviation ε rel (t, x) = j control (t,x)-j engineering (t,x) j control (t,x)
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