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Abstract: 
A promising method to measure velocity fields in complex two-phase flows such us cavitating flows is 
presented. Dynamics of the liquid phase and the bubbles are both investigated. The measurements are based 
on ultra fast X-ray imaging performed at the APS (Advanced Photon Source) of the Argonne National 
Laboratory. The experimental device consists of a millimetric Venturi test section associated with a 
transportable hydraulic loop. Various configurations of velocity, pressure, and temperature have been 
investigated. Radio-opaque particles are used as tracers for the liquid phase, in association with a multipixel 
sensor to record the successive positions of the particles. The use of X-rays instead of light solves the 
problems related to light reflection and dispersion on phase boundaries, since X-rays penetrate a gas/liquid 
flow in straight lines. Images contain simultaneously the information related to the particles (for PIV 
analysis in the liquid), to the vapour bubbles (for PIV in the gas). The slip velocity between vapour and 
liquid is calculated. 

Résumé : 
Le présent papier illustre une méthode expérimentale non-intrusive permettant de mesurer les champs de 
vitesses dans des écoulements diphasiques complexes tels que les écoulements cavitants. Basée sur 
l’imagerie par rayons X, cette technique permet d’obtenir simultanément et instantanément la dynamique 
des deux phases respectives (liquide et vapeur) ainsi que le taux de vide dans l’écoulement. Les expériences 
ont été conduites au synchrotron de l’APS (Illinois-USA). Le banc d’essais consiste en une boucle 
hydraulique transportable comportant un venturi millimétrique dans lequel une poche de cavitation est créée. 
Des particules radio-opaques sont utilisées comme traceurs dans le liquide. L’utilisation de cette technique 
pour de tels écoulements comporte un avantage considérable par rapport aux techniques classiques car elle 
permet de résoudre les problèmes de réflexion et de dispersion de la lumière sur les différentes interfaces. 
Les images obtenues contiennent à la fois les particules et les bulles et nécessite un traitement avant de 
calculer les champs de vitesses des deux phases et les vitesses de glissements entre ces dernières. 
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1 Introduction 
Cavitation in rotating machinery leads to considerable difficulties in both design and maintenance 
operations. Indeed, it is associated with performance drop, blade erosion, vibrations that may lead to damage, 
and noise due to vapour collapse close to the solid walls. Therefore, a general understanding of the physics 
that governs flow vaporisation and condensation is required to remove or at least to reduce these effects. A 
special attention is paid to the mechanisms of generation of instabilities involved in cavitating flows. The 
understanding of the flow dynamics and structure is of prime importance for the understanding and the 
control of such mechanisms. However, velocity measurements within cavitating flows encounter strong 
difficulties. Only a few results have thus been obtained nowadays, although such experiments may be 
decisive for the physical modelling of cavitation. Let us briefly recall the double optical probe measurements 
performed in the LEGI laboratory (France) by Stutz and Reboud [12], which have enabled the measurement 
of time-averaged and phase-averaged velocities in the main flow direction, with an uncertainty close to 20%. 
PIV measurements have also been performed in USA by the teams of J. Katz [7] and R. Arndt [14] in the 
wake of sheet cavities, and more recently in Germany by Dular et al. [3, 4]. In this last study, nice results 
have been obtained by using a Laser Induced Fluorescence (LIF) technique coupled with measurements very 
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close to one vertical side wall of the test section. This position of the laser light sheet is imposed by the 
opacity of the sheet cavity when the void fraction is higher than 10 or 20%, which makes hazardous the 
detection of the particles with a camera located outside from the test section. In the present study, this issue 
was addressed with an original technique based on ultra fast X-ray imaging, in collaboration with the LIST 
laboratory of CEA (French Atomic Commission). High-frequency measurements of the local volume 
fraction of vapour were already performed a few years ago [2] in the scope of such collaboration. The 
present work consists of an extension of this method to the measurement of the velocities in the gaseous and 
liquid phases. Ultra fast X-ray imaging has been applied to situations of cavitating flows on a 2D Venturi 
type section. The flow is seeded with radio-opaque particles that can be detected by X-ray absorption and/or 
phase contrast enhancement. The vapour bubbles are detected also by this second method. So, such 
technique enables to obtain by image processing derived from PIV analysis i) the liquid velocity field (from 
the motion of the particles), ii) the vapour velocity field (from the motion of the bubbles), and the 
distribution of the vapour volume fraction (from the difference of X-ray absorption in gas and liquid, see 
[2]). The present paper focuses on the experimental setup and the process of image analysis. Both the 
hydraulic test rig and the X-ray fast imaging device are presented, several techniques of image analysis are 
discussed, and first results are presented. Note that this work has been performed in the scope of an original 
collaboration between researchers in fluid mechanics from LML laboratory and Ljubljana Univ., and 
specialists of X-ray imaging from the CEA-LIST and the APS of the Argonne National Laboratory. 

2 Experimental set-up 
Measurements are based on the X-ray absorption technique presented previously by Coutier-Delgosha et al. 
[2]. Basically, an X-ray source is located on one side of the test section, and a detector on the other side. 
Radio-opaque particle are injected in the flow. Each time a particle crosses the X-ray beam, local absorption 
is increased, so intensity received by the detector decreases. To detect this phenomenon, a detector with high 
spatial resolution must be used. It is composed here of the X-ray sensor, a crystal that converts X-ray into 
visible light, and a high speed camera that record this information. To detect very small particles that move 
very fast (the order of magnitude of the velocity is 10 m/s), the X-ray beam must be of very high intensity. 
Feasibility studies have shown that no portable X-ray source available at the CEA was appropriate, so the 
APS (Advanced Photon Source) of the Argonne National Laboratory (USA) was used.    

2.1 Hydraulic test rig  

Using the APS beam has resulted in severe requirements for the hydraulic experimental setup that generates 
the studied 2D sheet cavity. First of all, the whole installation should be portable in order to travel by plane, 
and also the test section should be designed with small dimensions, since all material and water thickness 
crossed by the beam must be reduced as much as possible to ensure a satisfactory ratio signal/noise. A small 
size test rig has thus been realized. Cavitation is obtained downstream from a 2D Venturi profile which 
shape is identical to the one used previously by Stutz and Reboud [11]. Its definition can be found in 
Coutier-Delgosha et al. [1]. It is characterized by an 18° convergence angle and an 8° divergence one. 

2.2 Design of the test section 
The test section, which is about 30 cm long, is composed of several parts manufactured in Plexiglas. As it 
can be seen in FIG. 1, the main part (in blue), and the upper part (in brown) forms the top of the test section. 
Supplementary inserts (in pink) on the vertical and bottom faces of the main part constitute the side walls 
and the floor (Convergent/divergent) of the test section, respectively, in the cavitation area. 
Indeed, to reduce as much as possible the Plexiglas width crossed by the X-ray beam, a 0.5 mm thickness is 
applied (see FIG. 1). Moreover, the water width is l = 4 mm only, and the height of the test section maximum 
5 mm. Thus, two passages for the X-ray beam are available: a horizontal one and a vertical one. This enables 
to obtain side views and top views of the sheet cavity. 

 
FIG.1 – Test section 
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2.3 X-ray imaging 
X-ray techniques available at the APS of the Argonne Synchrotron have been applied previously to the 
measurement of velocities in low-speed flows, which requires low frequency acquisition only [9]. 
Observations of rapid liquid flows in micro-channels have been also conducted recently by Vabre et al. [13]. 
The challenge of the present work is to perform velocity measurements in configurations of high speed 
cavitating flows, with velocity varying between 10 and 20 m/s. For that purpose, high frequency data 
acquisition is necessary, in order to detect the sheet cavity fluctuations. The maximal energy during 
experiments was 30 keV white beam, and average 13 keV. The x-ray beam size was approximately 1.7 x 1.3 
mm2, and the total number of incident photons on the sample was about 1012 ph/s. The source-to-sample 
distance was about 60 m, and the sample-to-detector distance was about 50 cm. A 400 �m thick CdWO4 
crystal was used to convert X-rays to visible light. The image was magnified using a microscope lens (x5) 
and recorded with a high-speed camera APX-RS Photron. A 10000 fps frequency was applied, which enables 
a resolution of 512x512 pixels where the pixel size is 3.7 �m. The beam is equipped with two shutters: i) a 
slow one (1Hz) opened 30 ms every second, which limits the dose delivered to the sample and the detector, 
ii) a fast one, which drives time-resolved experiments [8]. The main issue related to ultra-fast acquisition is 
synchronization of the X-ray flashes, the opening of the fast shutter, and the camera frames, in order to 
obtain appropriate pairs of images for PIV analysis. Two X-ray flashes are separated by 3.6 �s, and their 
duration is 500 ns. 

  
FIG.2 – X-Ray imaging experiment 

2.4 Radio-opaque particles 
Radio-opaque particles are used as tracers for the liquid phase, in association with a multi-pixels sensor to 
record the successive positions of the particles. Then, nearly standard PIV treatments are applied to derive 
the velocity fields from the positions of the tracers. The use of X-rays instead of light solves the problem of 
light reflection and dispersion on phase boundaries, since X-rays penetrate a gas/liquid flow in straight lines. 
For the vapour phase, a similar image processing is performed, but it applies on bubble interfaces, not on 
tracers. Silver coated hollow glass spheres of diameter 17 �m were found to be appropriate. Images contain 
simultaneously the information related to the particles (for PIV analysis in the liquid), to the vapour bubbles 
(for PIV in the gas). Several successive acquisitions at different positions are necessary to obtain the 
complete X-ray image of the whole sheet cavity. For that purpose, the test section is moved in front of the X-
ray beam. 

3. PIV analysis 
Images acquired by X-ray imaging are processed to obtain the velocity field in the liquid and vapour phases. 
For both cases, a PIV treatment based on cross correlation of successive images obtained from two 
consecutive X-ray flashes is applied. However, both particles and bubbles are visualized on the images, as 
can be seen for example in FIG. 3. Complex image processing is thus required to eliminate bubbles (to 
obtain liquid velocities) or particles (for vapour velocities). 

 
FIG. 3- Image processing for PIV in the liquid 
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3.1    PIV in liquid phase 
Figure 4 and 5 show the successive treatments applied to the initial recorded image to obtain the image of 
particles that enables to perform PIV in the liquid phase : i) image crop and several brightness 
homogenizations, ii) multi-parameter interface and vapour detection for suppression of bubbles, iii) 
background suppression. The process of bubbles elimination is described in a previous paper [10] 

3.2   PIV in the vapour phase 
For vapour phase treatment, particle images obtained for PIV in liquid phase are used. In fact, the previous 
treatment enables to localise the particles in each images. Thus, they could be deleted from the initial images. 
These particles are then replaced by the average of the local grey level intensity. 

 
FIG. 6- (a) Initial image, (b) particle detection, (c) image of bubbles only 

4. Results 
The reference hydraulic conditions in the experiments were set to a temperature T = 20°C, a mass flow rate 
Q = 10 l/min, and a mean sheet cavity size Lcav = 9-10 mm. Other values of mass flow rate, sheet cavity 
length and temperature have been investigated, but the discussion in the present paper will focus on the 
reference conditions only. Image processing detailed in the previous section has been applied to obtain the 
velocity fields in the liquid phase and in the vapour phase. At reference flow conditions, images were 
recorded for seven contiguous positions of the test section in front of the X-ray beam, in order to scan the 
whole sheet cavity. Position 1 corresponds to the upstream end of the cavitation area, at the Venturi throat, 
while position 7 is located at the rear part of the sheet cavity (see examples of positions 1 and 2 in FIG. 3). 
The sheet cavity on the considered Venturi was systematically unsteady in the experiments performed in the 
past at large scale [14]: periodical fluctuations of the cavity including large scale vapour cloud shedding was 
obtained. The major role played by the re-entrant jet mechanism in such behaviour was demonstrated in the 
last two decades by many authors: when this jet reaches the cavitation sheet interface, the cavity breaks off 
and its downstream part is convected by the main flow until it collapses. This process, initially evocated by 
Furness and Hutton [6], was later confirmed by measurements performed with electrical impedance probes 
[11] and double optical probes [13, 14]. These experiments have clearly shown that the periodic cycle of the 
cavity is strongly correlated with the progression of the re-entrant jet. 
However, in the present case such behaviour is not obtained: only small scale fluctuations of the cavity 
length are observed, without any shedding. This has been suggested first by FFT performed on the signals of 
pressure sensors located downstream from the sheet cavity, and confirmed by the visualization of high speed 
videos. The reason for this flow stabilization at small scale has been analyzed in detail [5], and it has been 
found that the small height of the test section is the most influent parameter: reducing drastically the height 
down to a few millimetres leads to a strong modification of the shedding process: vapour cloud detachment 

  
FIG. 4- Image processing for PIV in the liquid FIG. 5- (a) before detection, (b) interface detection 

(pixels coloured in black), (c) vapour detection 
(pixels in white), (d) final image of particles 
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Different tests of validation have been carried out. They all show that the errors in both phases are very small 
(less than one pixel) and are much lower than the observed differences between the two phases. 

5. Conclusion 
In this paper, an original experiment based on X-ray imaging has been presented. The objective is the 
simultaneous determination of the liquid and vapour velocities in a cavitating flow. Only conditions of small 
scale fluctuations of a 2D sheet cavity, without vapour shedding, were considered here. Images of radio-
opaque particles and vapour bubbles have been recorded at high frequency, and post-processing has enabled 
to obtain images of particles only or bubbles only, for the purpose of PIV treatment. Velocity fields have 
been obtained at reference flow condition in both phases, which enables to determine the slip velocity 
between phases. Significant magnitude of time-averaged slip velocity has been obtained in the sheet cavity 
wake and in the area of re-entrant jet inception, which suggests that this phenomenon should be included in 
numerical simulations. 
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