
HAL Id: hal-00864209
https://hal.science/hal-00864209v2

Submitted on 14 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling Widgets with One Power-up Button
Daniel Spelmezan, Caroline Appert, Olivier Chapuis, Emmanuel Pietriga

To cite this version:
Daniel Spelmezan, Caroline Appert, Olivier Chapuis, Emmanuel Pietriga. Controlling Widgets with
One Power-up Button. Proceedings of the 26th ACM Symposium on User Interface Software and
Technology, Oct 2013, Saint Andrews, United Kingdom. pp.71-74, �10.1145/2501988.2502025�. �hal-
00864209v2�

https://hal.science/hal-00864209v2
https://hal.archives-ouvertes.fr


Controlling Widgets with One Power-up Button
Daniel Spelmezan1,2 Caroline Appert2,1 Olivier Chapuis2,1 Emmanuel Pietriga1,3

1 INRIA 2 Univ Paris-Sud & CNRS (LRI) 3 INRIA Chile (CIRIC)
91405 Orsay, France 91405 Orsay, France 7561211 Santiago, Chile

(a) (b) (c) (d) (e) (f)

EVENTS initial discreteDown discreteUp continuousDown continuousUp click quickRelease
(proximity) (proximity) (pressure) (proximity) (pressure) (proximity)

Figure 1. Gestures performed on and around the Power-up Button.

ABSTRACT
The Power-up Button is a physical button that combines pres-
sure and proximity sensing to enable gestural interaction with
one thumb. Combined with a gesture recognizer that takes the
hand’s anatomy into account, the Power-up Button can recog-
nize six different mid-air gestures performed on the side of a
mobile device. This gives it, for instance, enough expressive
power to provide full one-handed control of interface wid-
gets displayed on screen. This technology can complement
touch input, and can be particularly useful when interacting
eyes-free. It also opens up a larger design space for widget
organization on screen: the button enables a more compact
layout of interface components than what touch input alone
would allow. This can be useful when, e.g., filling the numer-
ous fields of a long Web form, or for very small devices.

Author Keywords
Mobile device; Proximity input; Pressure input

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces - Input devices and strategies (e.g., mouse, touchscreen)

INTRODUCTION
Touch input enables users to interact with display surfaces in
a straightforward manner, by directly manipulating content
and controlling widgets with their fingers. This simple inter-
action paradigm has favored the wide adoption of touch input
on mobile devices. However, it has some limitations. First,
accommodating control widgets reduces the area dedicated to
the display of actual content, a resource that is already scarce

D. Spelmezan, C. Appert, O. Chapuis, and E. Pietriga. Controlling Widgets with One
Power-up Button. In UIST ’13: Proceedings of the 26th ACM Symposium on User
Interface Software and Technology, 71-74, ACM, 2013.

c© ACM, 2013. This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version will be published in UIST ’13, October 8–11, 2013, St. Andrews, United
Kingdom. http://doi.acm.org/10.1145/2501988.2502025

on small devices. Second, users face occlusion and precision
issues inherent to direct finger input [9]. This makes touch
input inadequate in some contexts. For instance, users can-
not operate their device eyes-free even for simple operations.
Browsing songs in a music player, discarding an incoming
phone call, or using the device as a remote controller to per-
form basic actions on a public display, requires taking the
device out of one’s pocket and looking at it.

A number of alternatives to touch input have been investi-
gated, that expand interaction to the back of the device [1,
5, 9], to its sides [6, 10], and to the space above and around
it [2, 4, 7, 8]. Many of these alternatives, however, are not
very practical, no matter how interesting they might be. In-
strumenting the finger with additional hardware [4] is incon-
venient; around-the-device interaction [2, 7] does not allow
users to both hold and operate the device with a single hand.
Introducing physical buttons on the device’s sides does not
cause such issues, but their limited expressive power makes
them better at complementing touch input rather than at pro-
viding full interface control [6]. One option would be to in-
crease the number of such buttons, but this approach is im-
practical for small devices [5]. Another option is to extend
the expressive power of those buttons.

Our Power-up Button enables users to perform numerous ac-
tions using a single controller located on the side of the de-
vice adjacent to the thumb. The controller does not occupy
more space than a regular button would, yet provides a much
higher level of expressive power compared to scroll wheels
and joysticks that were used in some commercial devices.
The Power-up Button consists of one proximity sensor super-
imposed on one continuous pressure sensor. Combined with
the gesture recognizer we developed, it allows users to trig-
ger a set of four discrete events and two continuous events
using simple gestures performed on and around the button
while operating the device with a single-hand (Figure 1). A
single Power-up Button enables users to control, e.g., a music
player eyes-free: pause and resume playback, adjust volume
settings, and navigate both within and across songs.

http://doi.acm.org/10.1145/2501988.2502025


We first give descriptions of our hardware prototype and event
recognizer, that enables the Power-up Button to discriminate
2D gestures even though the underlying technology is based
on one-dimensional sensing capabilities. We then explain
how events were consistently mapped to actions that allow
users to control all widgets of an application, providing an al-
ternative to touch input when the latter is not practical; and
conclude with directions for future work.

HARDWARE PROTOTYPE
Figure 2 shows the hardware prototype. The sensing hard-
ware comprises four components: a force-sensitive resistor
(Interlink Electronics FSR400 Short), an infrared proximity
sensor (Vishay VCNL4000) that is mounted on a Sparkfun
breakout board, an Arduino Pro Mini, and a custom-designed
printed circuit board. Our sensor layering is similar to that of
[3, 8], with one significant difference: our hardware detects
continuous pressure input instead of switch-on/off events, and
continuous proximity input instead of hovering.

The casing for the pressure sensor was produced by a 3D
printer (Figure 2-a). This casing has a gap of 2 mm where
the sensor and a thin piece of rubber are inserted. The rub-
ber uniformly translates the applied pressure to the sensor’s
active area, which has a diameter of 5 mm.

The proximity sensor has an integrated ambient light sensor
and signal processing circuit for suppressing ambient light by
signal modulation. Its nominal sensing range is 200 mm. This
sensor is placed inside a casing that was produced by a laser
cutter. At the top of the casing is a small window (5×5 mm),
which is centered above the proximity sensor at a distance of
2 mm (Figure 2-b). The window constrains the sensor’s cone-
shaped detection zone to an angle of ∼ ±20◦, and decreases
the detection range to ∼50 mm for the user’s thumb.

The printed circuit board (Figure 2-c) is powered by an iPod
touch 4G (iOS 5.0). This board has an op-amp based circuit
that linearizes the output of the pressure sensor. The Arduino
samples sensor data at 25 Hz and sends the measurements to
the iPod over the serial port. The iPod applies a low-pass filter
and normalizes the output from both sensors.

The output of the proximity sensor depends on the proper-
ties of the sensed object, including reflectivity, size, material,
color, and inclination inside the detection zone. To calibrate
the sensor for our setup we measured the actual distance to
one of the author’s thumb at intervals of 5 mm, and linearly
interpolated between the sensor readings.

The dimensions of the prototype button is 20 × 16 × 11 mm
(L ×W ×H), which matches the size of the large breakout
board where the proximity sensor is mounted. It could actu-
ally be made much smaller in more advanced prototypes, as
the sensing unit is tiny (3.95× 3.95× 0.75 mm).

GESTURES AND INTERACTION EVENTS
To demonstrate the potential of the Power-up Button, we de-
signed a set of gestures that can be discriminated using the
technology described above when the button is operated us-
ing the thumb of the hand that holds the device (Figure 2). We
considered both motor and physiological aspects, ending up

Figure 2. Our prototype, equipped with a button for sensing pressure
and proximity. The sensors are placed inside custom-built plastic cas-
ings. (a) Side view of the pressure and proximity sensors. (b) Front view
of the window above the proximity sensor. (c) Circuit board.

with a set of gestures that are easy to perform and that will not
cause too much fatigue even when performed in sequence. To
control the Power-up Button, users move their thumb within
the device’s plane towards or away from the button (Figure 1-
(c,d,e)), and out of the device’s plane towards either the front
or the rear of the device (Figure 1-(a,b,f)). We implemented
a recognizer to discriminate between these two-dimensional
gestures with one-dimensional sensing capabilities only.

Gesture Recognizer
Our recognizer is implemented as a finite state machine in
which final states are one of the following interaction events:
discreteDown, discreteUp, click, quickRelease, continuous-
Down and continuousUp. Transitions are triggered by input
variations on the pressure and proximity sensors. For the two
continuous events, a first-order control is initiated as soon as
the corresponding state is reached, letting users adjust the rate
by varying the pressure intensity or the distance to the button.

Events and Pressure
To recognize click and continuousDown events, the Power-up
Button analyzes the profile of the normalized pressure inten-
sity that the thumb applies to the device. When the user starts
pressing the force sensor, the state machine waits for a short
amount of time (500 ms)1 to decide if the pressure is released
or sustained. Releasing the pressure before the timeout oc-
curs triggers a click event if the initial force exceeded 1N. If
1This value minimizes accidental activation of rate-based control.



distanceNormalized

distanceNormalized vs. timestamp

time

di
st
an
ce

0.0
0.2

0.4

0.6

0.8

1.0

Graph Builder

distanceNormalized

distanceNormalized vs. timestamp

time

di
st
an
ce

0.0
0.2

0.4

0.6

0.8

1.0

Graph Builder

distanceNormalized

distanceNormalized vs. timestamp

time

di
st
an
ce

0.0
0.2

0.4

0.6

0.8

1.0

Graph Builder

distanceNormalized

distanceNormalized vs. timestamp

time

di
st
an
ce

0.0
0.2

0.4

0.6

0.8

1.0

Graph Builder

distanceNormalized

distanceNormalized vs. timestamp

time

di
st
an
ce

0.0
0.2

0.4

0.6

0.8

1.0

Graph Builder

(a) discreteDown (b) discreteUp (c) discreteDown+ (d) discreteUp+ (e) quickRelease

Figure 3. Proximity profiles for discrete events (time scale = 1 sec). discreteDown+ and discreteUp+ show two consecutive gestures (time scale = 1.5 sec).

the pressure is sustained, the state machine triggers continu-
ousDown, enabling pressure-dependent continuous control.

Events and Proximity
The Power-up Button analyzes the profile of the normalized
distance between the device and the thumb. The distance is
d = 1 if the thumb is too far away from the sensor’s detection
zone (OutOfRange), d = 0 if the sensor is occluded (Touch),
and d ∈ ]0..1[ if the thumb is close to the button (Prox). In
addition, our algorithm examines how the distance changes
over time (∆d = dt − dt−1, uniform sampling frequency) to
detect changes in direction (∆d > 0 and ∆d < 0) and gesture
speed.

This low-level input allows our recognizer to identify the dis-
creteDown, discreteUp, quickRelease and continuousUp ges-
tures. The main challenge lies in discriminating orthogonal
gestures discreteDown and discreteUp, as the proximity sen-
sor only captures the orthogonal distance between the thumb
and the edge of the device. We call these gestures orthog-
onal because the thumb is leaving the device’s plane either
towards the front of the device (discreteDown) or towards the
rear of the device (discreteUp). Figure 3-(a,b) shows typical
sensor readings for these gestures. Both gestures must begin
in the proximity range (Prox), touch the button (Touch) and
leave the device’s plane in one direction or the other. This
final part of the movement can be discriminated because of
the anatomy of the hand, that makes moving the thumb away
from the user (adduction) harder than moving it towards her
(abduction). This results in sensing OutOfRange for discrete-
Down gestures and Prox for discreteUp gestures.

The recognizer for discreteDown and discreteUp accepts sev-
eral profiles for a single gesture, making the repetition of such
gestures in clockwise and counter-clockwise directions easier
to perform. The initial position for both gestures becomes op-
tional, allowing users to start their gesture either in proximity
range Prox (Figure 3-(a,b)) or OutOfRange (Figure 3-(c,d).
For discreteDown, users can either touch the button or pass
close enough to it in mid-air (Figure 3-(c)). Below are typical
sequences of low-level events that trigger discrete navigation
events (↗) in our state machine:

Two discreteDown performed in a row (Figure 3-(c)):
OutOfRange→ Touch→ OutOfRange ↗

→ Prox(∆d 6=0)→ OutOfRange ↗

Two discreteUp performed in a row (Figure 3-(d)):
OutOfRange→ Touch→ Prox(∆d>0) → Prox(∆d≤0)

↗

→ Touch→ Prox(∆d>0) → Prox(∆d≤0)
↗

Figure 3-e shows that the quickRelease gesture is easily rec-
ognized based on a speed threshold at which the thumb must
leave the Prox(∆d=0) without touching the button (∆d > s
with s = 0.5 · (1−dtinitial )). Finally, the continuousUp gesture
is recognized when the thumb remains in the detection zone
for more than 500 ms.

Controlling Widgets
To evaluate the expressive power of our button, we demon-
strate how the set of interaction events it generates can be
used to control any widget of an existing graphical applica-
tion. Table 1 lists the set of widgets commonly available on
small devices2 and how we can use Power-up Button events
to fully control them. As we do not rely on touch input to
detect which widget owns the focus, interaction events must
also be dedicated to navigation in the widget hierarchy.

• click selects a widget. For a group of widgets, this event
drills down to widgets that are located one level deeper in
the widget hierarchy (navigation from parent to child).

• discreteUp and discreteDown increase and decrease the
current value of a widget by one unit. For a group of wid-
gets, these events move the input focus to the previous or
next widget that are located at the same level in the widget
hierarchy (navigation between siblings).

• continuousUp and continuousDown increase and decrease
the current value of a widget using rate-based control.

• quickRelease moves up to widgets located one level up in
the widget hierarchy (navigation from child to parent).

Figure 4 illustrates a scenario in which a user sets the value
of a radio button that is not visible in the current viewport,
which is scrollable. At the beginning, the viewport is outlined
in blue to indicate that the input focus is set to the scrollbar.
A click turns the outline of the viewport red (scrolling en-
abled) so that the user can bring the set of radio buttons in the
viewport through the use of continuousUp and continuous-
Down events. She then clicks to move the input focus from
the scrollbar to the first widget that is visible in the viewport
(i.e., the group of radio buttons) and clicks again to access the
level where she can control the set of individual buttons. She
then navigates to the second radio button with a discreteDown
event and clicks to select it. Finally, quickRelease commits
the button selection and brings the input focus back to the
group of radio buttons.
2Our implementation uses the iOS widget set. A stepper is an iOS
widget that contains plus and minus buttons to set a discrete value.



EVENTS BUTTON STEPPER
CHECK BOXES AND
RADIO BUTTONS

COMBO BOX SLIDER SCROLLBAR

click invoke select option show list box begin tracking begin scrolling
quickRelease dismiss list box end tracking end scrolling
discreteUp increase value highlight prev. option highlight prev. list item

discreteDown decrease value highlight next option highlight next list item
continuousUp increase value∗ scroll upward∗

continuousDown decrease value∗ scroll downward∗
∗

(rate-based, speed depends on pressure level / proximity)

Table 1. Interaction events and their mappings to navigation actions for widget control.

click continousDown discreteDown click click quickRelease

Figure 4. Selecting radio button Non-Member.

The exercise that consists of controlling all widgets is a
demonstration of what the Power-up Button could do, pushed
to the extreme. The more relevant use cases we envision in-
volve a smaller set of controls like, e.g., discarding phone
calls or controlling a music player. The latter basically con-
sists of a slider for setting the volume, and a few buttons for
navigating across and within songs. Considering only ges-
tures relevant to the application or widget in focus can also
help increase the recognizer’s accuracy.

CONCLUSION AND FUTURE WORK
The Power-up Button is a physical button that combines pres-
sure and proximity sensing to complement touch input on a
mobile device for, e.g., controlling an application eyes-free.
We present a set of simple gestures and a recognizer that let
users manipulate an application on their mobile phone by
moving the thumb of the hand that holds the device. We
demonstrate that such a button alone can provide users with
an expressive power high enough to control all usual widgets.

However, the Power-up Button has a few limitations.
First, this technology captures mid-air gestures with one-
dimensional sensing capabilities only. While it is an im-
portant advantage to be pluggable on any small device, it
also means that the recognizer is potentially more permis-
sive. Second, as with any gesture-based interaction, users
must have clues to discover and learn possible gestures. This
requires adding feedback to guide and assist novice users.
However, informal testing with colleagues revealed that a
short initial training period makes users both able to control
the Power-up Button without triggering accidental events and
to get a clear understanding about how to control a collection
of widgets.

As future work, we plan to conduct controlled empirical stud-
ies to formally evaluate the two aspects mentioned above. We
also plan to explore other gesture sets and other physical con-
figurations for the button. For instance, the Power-up Button

could be positioned on the back side of a mobile device to per-
form gestures with the index finger. It could also be placed on
one of the sides of a mouse to enable users to operate it with
the thumb while operating all over controls as usual.

REFERENCES
1. Baudisch, P., and Chu, G. Back-of-device interaction allows

creating very small touch devices. In Proc. CHI ’09, ACM
(2009), 1923–1932.

2. Butler, A., Izadi, S., and Hodges, S. Sidesight: multi-“touch”
interaction around small devices. In Proc. UIST ’08, ACM
(2008), 201–204.

3. Choi, S., Han, J., Lee, G., Lee, N., and Lee, W. Remotetouch:
touch-screen-like interaction in the tv viewing environment. In
Proc. CHI ’11, ACM (2011), 393–402.

4. Harrison, C., and Hudson, S. E. Abracadabra: wireless,
high-precision, and unpowered finger input for very small
mobile devices. In Proc. UIST ’09, ACM (2009), 121–124.

5. Harrison, C., and Hudson, S. E. Minput: enabling interaction
on small mobile devices with high-precision, low-cost,
multipoint optical tracking. In Proc. CHI ’10, ACM (2010),
1661–1664.

6. Holman, D., Banerjee, A., Hollatz, A., and Vertegaal, R.
Unifone: Designing for auxiliary finger input in one-handed
mobile interactions. In Proc. TEI ’13, ACM (2013).

7. Kim, J., He, J., Lyons, K., and Starner, T. The gesture watch: A
wireless contact-free gesture based wrist interface. In Proc.
ISWC ’07, IEEE Computer Society (2007), 1–8.

8. Rekimoto, J., Ishizawa, T., Schwesig, C., and Oba, H.
Presense: interaction techniques for finger sensing input
devices. In Proc. UIST ’03, ACM (2003), 203–212.

9. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and Shen,
C. Lucid touch: a see-through mobile device. In Proc. UIST
’07, ACM (2007), 269–278.

10. Wilson, G., Brewster, S. A., Halvey, M., Crossan, A., and
Stewart, C. The effects of walking, feedback and control
method on pressure-based interaction. In Proc. MobileHCI ’11,
ACM (2011), 147–156.


	INTRODUCTION
	HARDWARE PROTOTYPE
	GESTURES AND INTERACTION EVENTS
	Gesture Recognizer
	Events and Pressure
	Events and Proximity

	Controlling Widgets

	CONCLUSION AND FUTURE WORK
	REFERENCES 

