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Development of algorithm based on the fractional me
step for the simulation of cavitation.

R. CHEBLI *°, O. COUTIER -DELGOSAH?, B. AUDEBERT"

a.Laboratoire de Mécanique de Lille (LML) / Artshéétiers PariTech, 8 Boulevard Louis XIV, 59046
Lille, France.
b. EDF R&D, Département Mécanique des Fluides Eiesrgt Environnement, 6, quai Waiter, PB 49,
78401 Chatou, France.

Résumé:

La cavitation est 'un des phénomenes physiqueplisscontraignants influencant les performances
des machines hydrauliques. Il est donc primordi@ shvoir prédire son apparition et son
développement, et de quantifier les pertes de pedioces qui lui sont associées. L'objectif des
simulations numériques est de prédire les insti#igiliées a la présence de la cavitation. Le butale
travail est de développer un algorithme semi-comsgitde cavitant basé sur la méthode de pas
fractionnaire dans le Code_saturne. Un solveur igii@ en pression, basé sur une équation de
transport d’'un taux de vapeur couplée avec les tgnga de Navier-Stokes est proposé. Un traitement
spécifigue aux termes sources de cavitation pedioditenir des valeurs physiques du taux de vide
(entre 0 et 1) sans les limiter numériguement. fluence de la turbulence est également étudiée.
Pour cela, plusieurs modeéles de turbulence soriedest comparés. On cherche en particulier a
analyser les effets tridimensionnels intervenamisdies mécanismes d’instabilité. Ce travail nous
permet d’aboutir & un outil numérique, validé suesdconfigurations d’écoulements cavitants
complexes, afin d'améliorer la compréhension desamémes physiques qui contrblent les effets
instationnaires tridimensionnels intervenants dEssmécanismes d'instabilité.

Abstract:

Cavitation is one of the most demanding physicatnpimena influencing the performance of
hydraulic machines. It is therefore important toegict correctly its inception and development
appearance, and quantify the performance lossescaed with it. The objective of the simulatioss i
to predict the instabilities associated with theeggnce of cavitation. The aim of this work is to
develop a semi-compressible cavitating algorithmsdoh on the fractional step method in
Code_saturne. An implicit solver, based on a transgquation of void fraction coupled with the
Navier-Stokes equations is proposed. Specificrtieat of cavitation source terms provides physical
values of the void fraction (between 0 and 1) witheny numerical limitation. The influence of the
turbulence models is also studied. To do this, re¢werbulence models are tested and compared. The
instabilities due to three-dimensional effects pagticularly analyzed. This work allows obtaining a
numerical tool, validated for complex cavitatingpvfls configurations, in order to improve the
understanding of the physical mechanisms that obtite three-dimensional unsteady effects involved
in the mechanisms of instability.

1 Introduction:

Cavitation is a phenomenon that is responsibleéhferappearance of vapour in a liquid subjected to a
depression. A semi-compressible cavitating algorjtbased on fractional step method implemented
in Code_saturne, is presented in the present pApemplicit solver, based on a transport equabbn
void fraction coupled with the Navier-Stokes eqoiagi, is proposed. Specific treatment of cavitation
source terms provides physical values of the vmdtion (between 0 and 1) without any numerical
limitation. The influence of the turbulence modelsilso studied. For that purpose, several turlwalen
models are tested and compared.
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2 Cavitation modelling:

The internal structure of the two-phase flow igextely complex and variable, particularly in theea

of cavitation. The precise motion and size of snmibbles are often unknown. In addition, the
computational resources do not enable to captlifeulble interfaces, because this would require a
huge number of cells. This is why the structuréath phases is considered at a macroscopic scale.
(COUTIER-DELGOSHA et al, 2007). It means that eeelh contains a portion of liquid and a portion

of vapour. The proportion of liquid and vapour Imstcell is defined macroscopically by defining a
void fraction:

Vapour volume

Total volume (2.1)

We may define physically here a ‘two-phase fluidtiske’ which volume V is much larger than the
thickness of the liquid/vapour interfaces, but atsach smaller than the characteristic scales of the
flow. It is assumed that there is no slip betweapour and liquid phases. The flow is considered as
homogeneous fluid that is modelled across the ocbmtdume V. The mixture densipy, is given by:

Pm = ap,+ (1—a)p (2.2)
p, andp; are densities of vapour and liquid phases resfyti

The system to solve is:

a — —
R4 T (pmU) = 0 (23
ot
a — — el —
5 (pm U) + V(pm V%) = Vi (2.4)

Jdo -, —
T V(aUpy,) = (2.5)

?|-

Pm IS the mixture densityl,l—m’ is the mixture velocityl" is the cavitation source term armgl,is the
tensor for the external forces.

3 Resolution method:

The proposed algorithm is based on the fractiotesd smethod. This is one of the methods that allow
numerical resolution of the Navier-Stokes equationslecomposing their operators into less complex
ones using sub-intermediate steps in the same $imp (Guermond, 2006).Two sub-steps are
performed: the first one treats the convective diftusive parts as well as source terms of the
momentum equation. It constitutes the velocity jmtamh step. The second sub-step, known as
pressure correction or velocity projection stepphees the mass equation.

3.1 Velocity prediction step:

The first step is to solve the momentum equatidrift&dl discretization with a first-order temporal
scheme is applied to the unsteady term and theymess treated explicitly.
1< |
At

(prU*, — pr~tum) + Z [ (U™ U™ ;5 Sy

j e neighbours(I)

- 2 [ngradU” ];; S;; = — (grad P"); + ST
j e neighbours(I)

(3.1)
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1, is the volume of the cell (IJ* is the predicted velocitys,;; is the common surface between cells

() and (J),u is the dynamic viscosity, is the pressuréit is the time step and ST is the source term.
The index (n) refers to the previous time step.

3.2 Pressure correction step:

The equation for pressure correction is obtainedstytracting the equation of velocity prediction,
already resolved at previous step, from the mommemgquation written with an implicit pressure.

div _At grad (6P)| = divU™?, — div U*, (3.2)
12, pi* '

A pressure incrementl), which is equal to the pressure difference betwbe time n+1 and n, is

obtained at the end of this step.

Under the assumption of non-compressibility of puapour and pure liquid phasgs &ndp  are

considered as constants), the velocity divergereg e written as a function of the cavitation seurc
term.

div(Up) = T (-~ ) (3.3)

A Rhie & Chow filter is applied here to avoid theadupling of even and odd cells on a Cartesian
grid, which is due to the cell pressure gradiemspnted in the predicted mass flow and which is
inherited from the prediction velocity step (C. 8h1983.).

At
[ — (grad 8P)¢, | S

j e neighbours(I) I

At
= z [ U" + aarak (F grad P™") ey | Sij

1 (3.4)

j e neighbours(I)

At ) 11
— Oarak z [ — (grad P™)g, ] Sy + Ty o 1]

j e neighbours() ' 1 v 1

aarak IS the Arakawa coefficient arfg is the face between cells (I) and (J) through whie gradient
is calculated.

Discretization of the cavitation source termlIy :

In most works (R. F. Kunz, 1999), (I. Senocak, 20@de cavitation source terinis expressed in
vaporisation and condensation termis,and m~ respectively. These terms are obtained either from
the dynamic interface between the two phases on fioderived form of Rayleigh-Plesset equation
describing the dynamics of bubbles in a two-phése. fTherefore, they often depend on the pressure
and void fractionu.

'=m" + m* = f(a,P) (3.5)

Temporal discretization of the source teimhas a major role in the convergence and stahility
calculation. An explicit treatment of the presswgenerates intense instabilities which lead to
divergence of the calculation. To avoid these mwid, the pressure is treated implicitly using the
Taylor expansion. The aim of this treatment isamg the instabilities observed during the resatutio
of the pressure correction equation.
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T (P", o™)
opP

A new term containing the pressure increméAtappeared then in the right hand side of the pressu

equation, this term will be added to the resolutigatrix diagonal. The equation can finally be sdlve

implicitly. FIG. 1 displays the instabilities obtad when an explicit algorithm is applied (leftesid

figure), and the decrease of these instabilitieerthe implicit algorithm is used (right side figlr

FI = FIn (Pn,(ln ) + SPI (36)

Cavitation source term / Pressure evolution with explicit algorithm Cavitation source term / Pressure evolution with implicit algorithm
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FIG. 1: - Cavitation source term and pressureutiasl using explicit or implicit algorithm.

3.3 Solving of void fraction transport equation step:

The final step is the resolution of the void fragttransport equation. First, a special treatrfarthe
cavitation source term is proposed. This treatradlitws obtaining physical values of the void
fraction (between 0 and 1) without forcing numeiycéheir limits (maximum/minimum principle of
the void fraction). The idea is to multiply the @ation source term blyo x (1 — a)]. This treatment
leads to constraints on the time step to meet ghirsciple. Application of an upwind convection
scheme results in the following two conditions be time step:

o ;" (P™, o

1+At(1—a)[l“1n+% §P| =0 (3.7)
d L™ (P™, an

1—At(x% r{‘+% 5P]zo (3.8)

The equation to solve is as follow:

lQIl (an+1

0
AL ,—at)+ [ a1 ]; S = [T + T " 8P] 1€y

9
j € neighbours(I) (3 )
4 Boundary conditions and turbulence modelling:
Two types of geometry are tested: A 2D Venturi tgeetion and a 2D foil section. The Venturi is
1.272 m long, its inlet section is 0.044 m wide &@bm high, and its divergence angle is 8°. Tlie fo
is a NACA66 with a chord length of 0.150 m, a smdr0.191 m, and the incidence angle is 8°.
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Validation of the results is based on the oscdlatirequency and the mean attached cavity measured
in previous experiments in both configurations. Tifkience of the mesh size on the Strouhal number
has been studied to perform mesh-independent atilmus. 2D and 3D simulations were performed.
The 2D mesh of the Venturi contains 99000 elemé&f@800 elements for the foil), whereas the 3D
mesh has 3400000 (the foil has 5200000). For thedeary conditions, we assume that no cavitation

appears in the inlet and the outlet areas. An wééadcity U;,,;.c = 7.2 m/s and an outlet cavitation
P—Pyq
vapour pressure at 20°C. Several turbulence mobatsd on the Reynolds-Averaged Navier-Stokes
equations (RANS), are tested to study the influesfcthis parameter on the results. The first model
tested is the two-equatidn— ¢ model. This model does not lead to good resultsas been modified
using the correction of Reboud (J.-L. Reboud etl888), which consists in reducing the turbulent
viscosity often overestimated in the mixture. Kre o SST Model is also tested and modified. Other

models which are based on the Reynolds stress®lJR& also tested.

numberc = 2.6 are imposed. The cavitation number is definedras: , WhereP,,, is the

5 Results and discussion:

5.1 Venturi case :

In this case, the time stéyx = 10~°s satisfies the two conditions shown at section)(ar&l allows
obtaining physical values of void fraction [0 1]l Aested turbulent models give an unsteady
behaviour and an approximate frequency of 20 Hzdpithe standarlt — ¢ model which gives a
steady behaviour). In comparison with experimentswhich 45 Hz is observed and therefore a
Strouhal number of 0.3, the simulations give a venyw Strouhal number (of 0.13). Only the
modified k — ¢ model is able to reproduce the observed experahdreéquency with a Strouhal
number of 0.3.
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O —
0 0.9944

1500000 2500000
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0 500000
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(a) (b)

FIG. 2 —Cavitating flow simulationg,,get = 2.6 ,Uinjer = 7.2 m/s, modified k — € turbulence model.
(a) Fast Fourier transform applied to the input pressignal, (b): void fraction.

FIG. 3 — Cavitating flow cycley,ytiet = 2.6 , Uintet = 7.2 m/s , modified k — € turbulence model.
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5.2 Foll case:

In this case, all tested turbulent models give asteady behaviour and seem to agree with
experiments, with a slight advantage for the medik — ¢ model. This model gives a Strouhal
number of 0.3 (13.88 Hz and 0.12 m of the meartla¢ta cavity), whereas experiments give 9.8 Hz of
frequency and 0.12 m of mean attached cavity.
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FIG. 4 — Cavitating flow simulatiom,,,ye; = 1.3, Ujner = 5.3 m/s, modified k — € turbulent model.
(c) Fast Fourier transform applied to the inpusptee signal, (d): void fraction.

6 Conclusion:

A numerical model based on fractional step methasl Ibeen developed for the simulation of the
cavitating flows. The originality of the presentnkas the application of two conditions on the time
step in order to limit variations on the void friact in the physical range [0 1]. The results ol#din
various RANS turbulence models confirm the capgbitif the modified k-epsilon model initially
proposed by Reboud et al (1998) to reproduce umhgtpariodical behaviour of the sheet cavity, as
well in the Venturi section as on the foil section.
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