
HAL Id: hal-00864204
https://hal.science/hal-00864204

Submitted on 24 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Damage and permeability in quasi-brittle materials:
from diffuse to localized properties

Gilles Pijaudier-Cabot, Frédéric Dufour, Marta Choinska

To cite this version:
Gilles Pijaudier-Cabot, Frédéric Dufour, Marta Choinska. Damage and permeability in quasi-brittle
materials: from diffuse to localized properties. 1st US-France Symposium on multiscale modeling,
Mar 2007, Shalimar, United States. �10.1002/9780470611364.ch15�. �hal-00864204�

https://hal.science/hal-00864204
https://hal.archives-ouvertes.fr


Damage and Permeability in Quasi-brittle 
Materials: from Diffuse to  

Localized Properties  

15.1. Introduction 

Transport properties of concrete, like permeability or diffusivity, are particularly 
important in the case of structures for which tightness is important, for instance for 
pre-stressed concrete containment vessels in nuclear power plants. For such 
sensitive nuclear vessels, tightness to gas is critical during their service life, where 
concrete remains at most micro-cracked, but also upon minor accidents, when 
macro-cracks may appear locally. Thus, it is important to provide relationships 
between the amount of cracking and damage in concrete and its intrinsic 
permeability.  

Experimental test data (Choinska et al. 2007) performed on hollow concrete 
cylinders subjected to compressive loading and at the same time gas flow through 
their thickness exhibit three regimes of growth of permeability. In a simple 
compression test, the first regime ranges almost up to the peak stress. It exhibits a 
slow increase of permeability due to the increase of the density of diffuse micro-
cracks. Due to strain localization (transition between diffuse micro-cracking and 
macro-crack formation), a second regime of permeability growth with a fast increase 
is observed experimentally, close to the peak stress/peak strain. Finally, and for an 
applied strain which is larger than several times the peak strain, a third regime is 
reached. It is characterized by a slower rate of growth of permeability that is 
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consistent with Poiseuille flow as we will see further. Figure 15.1 shows these 
regimes as measured by Choinska et al. (2007) in compression. 

0.1

1

10

100

0 0.5 1 1.5 2 2.5 3

Pe
rm

ea
bi

lit
y/

In
iti

al
pe

rm
ea

bi
lit

y

Strain/Peak Strain

1

2
3

1,000

Unloaded
Loaded

Figure 15.1. Evolution of the permeability as a function of the applied strain  

in a compression test on a hollow cylinder with a radial gas flow 

Relationships between permeability and diffuse micro-cracking, described by a 
damage variable, have already been derived theoretically (Dormieux and Kondo, 
2004 and Chatzigeorgiou et al. 2005) and investigated experimentally (Picandet 
et al. 2001). This case corresponds to the first regime of the above figure. When 
macro-cracks have completely formed, it seems consistent to assume that the 
apparent permeability of the specimen should be governed by the crack opening. We 
expect that this case corresponds to regime 3 in Figure 15.1.  

Between these two extreme cases, there is a transition regime that needs to be 
properly captured. This is the purpose of the present contribution, where we 
introduce a law governing the growth of intrinsic permeability of a quasi-brittle 
material (concrete) as a function of damage. In doing so, we are going to define a 
consistent matching relationship between the two above extreme regimes. 

The equations that describe the mechanical problem are briefly recalled in 
section 15.2. The basic reasoning for establishing the matching law is provided in 
section 15.3. Section 15.4 is devoted to the calculation of the estimate of the crack 
opening needed in the localized damage regime. Finally, section 15.5 discusses 
numerical results and comparisons with existing test data in the literature. 
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15.2. Mechanical problem – continuum damage modeling 

Fracture and damage mechanics are two correlated theories (Mazars and 
Pijaudier-Cabot 1996). In a computational setting, it is still more convenient to deal 
with continuum damage instead of having to describe the shape, length and 
orientation of cracks (including their interaction). For this reason, we are going to 
use a continuum damage approach. The scalar damage model developed by Mazars 
(1984) enriched by a non-local approach to strain softening has been selected 
because it offers a robust and quite simple set of constitutive relations. The same 
developments could be performed on the basis of a more complex description of 
damage, anisotropic damage, without major difficulties. It would provide some 
information about the anisotropy of the permeability that is embedded into the 
description of the Poiseuille flow between the two faces of a macro-crack. Here, 
directionality of damage and permeability are not considered for simplicity, but the 
permeability corresponds to fluid flow parallel to possible (micro) crack faces, in a 
plane normal to the applied tensile stresses.  

Damage is assumed to be isotropic and it produces a degradation of the elastic 
stiffness of the material through a variation of the Young’s modulus: 

(1 )D Cσ ε= − [15.1]

where σ and ε are the Cauchy stress tensor and the strain tensor respectively. C is 
the fourth order tensor of elastic moduli. The damage variable D ranges from 0 for 
virgin material to 1 for completely damaged material with a zero stiffness and 
depends on state variable Y: 

( )D F Y= [15.2]

The state variable Y reaches a maximal value during loading history between the 
damage threshold YD0 and the equivalent strain εeq: 

/ 0max ( , )t eq DY Yε= [15.3]

The equivalent strain εeq is defined as follows (Mazars 1984): 

( )
23

1
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ε ε
+

=

= ∑ [15.4]
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Damage follows a damage evolution law which distinguishes tensile damage Dt 
and compressive damage Dc (Mazars 1984): 

t t c cD D Dα α= + [15.5]

where αt and αc are the weights calculated from the strain tensor. In the present case, 
only damage due to tension is considered and αt = 1 and αc = 0. Therefore, the 
damage model used hereafter is based on the following evolution damage law: 

[ ]0

0
( )

(1 )
1

t D

D t t

t B Y Y

Y A A
D D

Y e
−

−
= = − − [15.6]

where At and Bt are the model parameters. In this formulation, damage is defined 
locally. This local formulation exhibits spurious strain localization (like any other 
strain softening local formulation). Consequently, numerical simulations yield a 
pathological mesh dependency and physically unrealistic results are obtained 
(Bazant and Planas 1998).  

One possible remedy consists of reformulating the constitutive model in a non-
local approach, with damage at each material point depending on the strain not only 
at this point, but also in its neighborhood. This non-local model was developed by 
Pijaudier-Cabot and Bazant (1987). In this model, a non-local equivalent strain is the 
weighted average of the local strains over the representative volume Ω surrounding 
each point x in the material: 

( ) ( )
( )

( )

eq

eq

x s s d

x
x s d

φ ε
ε

φ
Ω

Ω

− Ω
=

− Ω

∫

∫ [15.7]

( )x sφ −  is the usual weight function defined as: 

2

2( ) c

x s

l
x s eφ

−⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠− = [15.8]

lc, the internal length of the material, is related to the material heterogenity 
parameter quantifying the non-local interactions.  
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15.3. Permeability matching law  

We are going to focus on the intrinsic permeability of the material free of any 
stress and we will disregard the reversible stress effect on the permeability. Before 
describing how the permeability can be defined over the entire range of variation of 
damage, let us first discuss the two extreme cases of diffuse and localized damage. 

15.3.1. Diffuse damage  

In order to represent the interaction between diffuse damage and permeability at 
material level, the phenomenological relation established by Picandet et al. (2001) 
for damage lower than 0.15 is retained. The intrinsic material permeability of the 
stress free material is an exponential function of damage: 

0 exp[( ) ]Dk k D βα= [15.9]

where kD and k0 are respectively the current and the initial material permeability. α 
and β are the parameters fitted by the author to 11.3 and 1.64 respectively. This 
relationship has been fitted in the case of compression damage. It is assumed that it 
holds similarly in the case of tension damage too. As reported by Picandet and co-
workers, equation [15.9] with the reported values of the material parameters holds 
for a variety of concretes (ordinary, high performance, fiber reinforced) and it has 
been selected so that for standard concrete mixes, it can be implemented without any 
determination of material parameters, as a first approximation.  

15.3.2. Localized damage – crack opening versus permeability 

At complete rupture, a macro-crack (or several macro-cracks) is expected. 
Hence, fluid flow will be governed by these cracks and Poiseuille’s law may be 
considered. For a fluid flowing between two parallel (rough) plates, the permeability 
is provided by the expression: 

2[ ]
12p

u
k ζ= [15.10]

[u] is the crack opening and ζ  is the roughness of the crack. Accordingly, and if we 
consider a crack of length L in a specimen of cross-section S exposed to fluid flow, 
the total flux per unit thickness of specimen provides by adding the fluid flow 
through the crack and the fluid flow through the undamaged material around the 
crack, the apparent permeability apk : 
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[ ]
2

0
[ ]. .
12ap

u
k S u L k Sζ= + [15.11]

Outside the crack, the permeability is assumed to remain equal to the initial one. 
It is as if we were looking at the material permeability outside the fracture process 
zone and it is also a standard assumption in double porosity models. The “crack 
permeability”, called kf, is: 

3[ ] .
12f

u L
k

S
ζ= [15.12]

This permeability is the second asymptotic case. It is the material permeability 
that should be reached when damage is close to 1, at material failure. The difficulty 
is that it is a geometry dependent parameter. It contains the crack length and the 
cross-section of the material exposed to fluid flow. Within a continuum description 
of damage, the above expression of the permeability requires the knowledge of the 
crack location, its length and the possible crack spacing in addition to the crack 
opening. A more convenient formulation of the contribution of the crack to the 
apparent permeability can be derived assuming that the crack is replaced by a band 
of intense damage. 

Let us call clλ the width of this band. It is proportional to the internal length 
since the width of the fracture process zone in a non-local damage model is indeed a 
linear function of the internal length. The apparent permeability now derives from 
the flux in the band with material permeability lk (where damage is assumed to be 
constant for simplicity): 

0. .ap c lk S l k L k Sλ= + [15.13]

We may now equate equations [15.11] and [15.13] and the material permeability 
lk  is: 

[ ]3

12l

c

u
k

l

ζ
λ

= [15.14]

The local – point-wise – permeability in equation [15.14] does not depend on the 
geometry of the considered specimen. It may readily be used in a continuum model. 
If we consider a crack of length L in a specimen of cross-section S exposed to fluid 
flow, equation [15.13] will be recovered at the structural level (apparent average 
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permeability). The remaining difficulty is the calculation of the crack opening. This 
point will be discussed in section 15.4. 

15.3.3. Matching law  

As two permeability evolution laws, kD (equation [15.9]) and kl (equation 
[15.14]), have already been formulated using the damage variable only, we associate 
them by means of a simple matching law based on logarithm of the permeability:  

log( ) (1 ) log( ) log( )D lk D k D k= − + [15.15]

In addition, there is an obstacle concerning application of Picandet’s exponential 
relation in the proposed matching law. Picandet’s relation, valid for diffuse and 
moderate damage ranging between 0 and 0.15, quickly tends towards infinite values 
when damage increases. Thus, we use the Taylor expansion of Picandet’s relation 
for small damage in order to avoid a spurious exponential increase of permeability 
for high values of damage: 

2 3

0
( ) ( )1 ( )

2 6
P

D

D D
k k D

β β
β α αα⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

[15.16]

15.4. Calculation of a crack opening in continuum damage calculations 

The derivation of a crack opening as a result of a continuum damage mechanics 
calculation is a major challenge. In fact, once a continuum damage model has been 
selected in order to model discontinuous failure, it is not easy to proceed in the 
reverse direction. According to damage modeling, there is no such thing as a 
displacement discontinuity. In most recent papers, this problem is tackled by the 
assumption that above a given critical value of damage, a displacement discontinuity 
exists and it should be incorporated in the structural model. From this starting point 
onwards, advanced computational models e.g. based on X-FEM kinematics provide 
sound techniques for calculating a displacement discontinuity.  
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(a)                                                                        (b) 

Figure 15.2. (a) Cracked domain (discrete case); (b) damaged domain (continuous case) 

In a more recent proposal, Dufour et al. (2008) have devised a technique for 
extracting a discontinuity of displacement from a continuum damage FE calculation 
without the need for enhancing the kinematics with displacement discontinuities. 
This technique also provides an indicator of the quality of the displacement 
discontinuity estimate. It should be possible to implement the above techniques in 
order to calculate the displacement discontinuity at each point of the crack (intense 
damage zone), but in a first step, we shall devise a simpler and more straightforward 
approximation of the displacement jump [ ]u .

In order to calculate a crack opening from a damage field, we assume again that 
the crack, according to the damage model, is described as a band of intense damage 
of width λlc. An equivalence between two domains is then considered: a cracked one 
with a discontinuous crack opening [u] (see Figure 15.2(a)) and a damaged one with 
a damaged zone of width λlc (see Figure 15.2(b)). This equivalence states that the 
displacement across the crack is described as the integral of the strain across the 
damage band. Subsequently, we assume that the loading is monotonically increasing 
and we relate the strain inside the band to the variable that controls damage equation 
[15.3]. In the present case and according to Mazars’ model, the two quantities are 
similar and the crack opening is now expressed as: 

0
0

[ ] ( )
cl

Du Y Y dx

λ

= −∫ [15.17]

Assuming that the damage distribution in the damaged zone is uniform, we 
obtain the crack opening as: 

0[ ] ( )D cu Y Y lλ= − [15.18]
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To substitute this crack opening with a damage field, we relate the state variable 
with the damage using the inverse of the damage evolution law (see equation 
[15.2]): 

1( )Y F D−= [15.19]

Finally, by substitution of equation [15.19] in equation [15.18], the crack 
opening may be represented as a function of the damage: 

1
0[ ] ( ( ) )D cu F D Y lλ−= − [15.20]

This equation may now be substituted in equation [15.14], and further in 
equation [15.15] in order to assign local values of the permeability point-wise. It 
should be recalled that this derivation remains based on simple – not to say 
simplistic – assumptions. Again, it may be improved by considering variation of the 
state variable in the damage band or by application of the method presented by 
Dufour et al. (2008). 

For the sake of illustration, let us consider the material parameters given in Table 
15.1 and let us calculate the evolution of material permeability as described by the 
matching law in equation [15.15]. 

E 37.7 GPa

ν 0.2

YD0 1.10-4

At 1.0

Bt 15,600

Table 15.1. Parameters of Mazars’ damage model 

The internal length lc is arbitrarily chosen equal to 0.02 m, while the parameter λ, 
which influences the width of a damaged band, is chosen equal to 2. The initial 
permeability 0k  considered in simulations is taken equal to 21710 m−  and ζ = 1. 

Evolutions of permeability, according to the proposed matching laws (equations 
[15.15] and [15.16]) with damage and with state variable are shown in Figure 15.3. 
The matching law provides a correct representation of the permeability for small 
damage, as well as for intense damage where it tends towards the permeability given 
by Poiseuille’s law.  

9



0

2

4

6

8

10

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

Non-local strain

L
o

g
(K

/K
0

) Matching law

Poiseuille

Picandet
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for the retained matching permeability law 

15.5. Structural simulations 

In order to illustrate the influence of the matching permeability law on a 
structural test, we consider concrete disks loaded either according to the splitting test 
configuration or to the “Bipede” configuration (Gérard, 1996). In this latter 
configuration, a disk made of mortar is glued to steel plates (Figure 15.4). Tension is 
applied to the plates and it is transmitted to the disk in which one or two cracks 
appear. At the same time, water flows through holes in the steel plates and through 
the disk. The apparent permeability (to water) is measured in the course of loading 
and cracking of the disk.  

Figure 15.4. Bipede test geometry (after Gérard, 1996) 
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In the present comparisons, we shall consider the tests in which a single crack 
developed. Note that in the splitting test and in the Bipede test, the two distributions 
of damage are quite similar.  

15.5.1. Mechanical problem – Brazilian splitting test 

The Brazilian splitting test is used as a standard measure of tensile strength of 
concrete, rocks and other geomaterials. The cylindrical specimen is loaded along a 
diametral plane by means of steel bearing plates, as shown in Figure 15.5(a). The 
steel bearing plates are arbitrarily modeled with rigid plates, with high Young’s 
modulus (E = 300 GPa) and Poisson’s ratio ν of concrete in order to avoid a 
confinement effect on concrete. The set of parameters of the integral non-local 
damage model (see Table 15.1) represents ordinary concrete behavior. The internal 
length is equal to 0.02 m.  

Numerical simulations are performed with 4-node quadrangle elements. Due to 
double symmetry, the computational domain consists of one quarter of a specimen. 
A plane stress calculation is carried out. 

Figure 15.5. Brazilian splitting test: (a) problem statement; (b) FE mesh 

This non-linear problem is solved incrementally by crack opening displacement 
(COD) control, i.e. the horizontal displacement of point P. The plot of the applied 
load versus COD is shown in Figure 15.6. 
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Figure 15.6. Force versus crack opening displacement in the Brazilian splitting test 

Damage distributions at peak and at the last loading step are depicted in Figures 
15.7(a) and (b). Maximal damage is initially located in some places along the 
vertical symmetry axis and then it translates downwards to the center as the loading 
increases. We can observe that damage develops in a band of a limited width 
(governed by the internal length). In addition, the height of the damage band at 
failure is the diameter. 

Figure 15.7. Damage distributions at (a) peak and (b) at the last loading step 
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15.5.2. Evolution of apparent permeability 

For each damage state, a local permeability is calculated according to the 
matching law at each Gauss point of a discretised structure. The expression of the 
crack opening displacement is taken from equation [15.20] under the assumption 
that strain and damage are constant within the damage band. This is not exactly true. 
It requires that the crack band width be small compared to the size of the structure so 
that variations within the band may be neglected. Then, a structural permeability is 
determined by a standard averaging of the local permeabilities. Results are plotted in 
Figure 15.8 which shows the evolution of the average permeability with the COD to 
peak COD ratio. We can observe that the shape of the curve is similar to that in 
Figure 15.1. Initially, the permeability increases very quickly and at failure the rate 
of growth decreases. The first regime covers a small range but the two subsequent 
regimes are quite well represented. 
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Figure 15.8. Evolution of logarithm of structural relative permeability  

with COD to peak COD ratio 

Quantitative comparisons with experiments can be provided from the data 
obtained in the “Bipede” configuration. We consider first the results reported by 
Jason et al. (2007). In Figure 15.9, the comparison between the predictions of 
average permeability calculated by considering that locally the permeability follows 
the diffuse damage equation (Picandet’s relationship) and the test data is presented. 
This comparison is very weak, which justifies the need for a permeability law that 
matches properly the two extreme cases of diffuse and localized damage. The 
second one cannot be obtained as a consequence of localization of damage, with the 
permeability law corresponding locally to diffuse damage. 
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Figure 15.9. Evolution of the permeability with damage. Comparison of Picandet’s 

relationship (denoted as equation [15.14]) and a power law for damage  

(denoted as equation [15.15]) with experimental data 

It is not possible to capture the evolution of the apparent permeability with the 
diffuse damage case alone. This relationship overestimates the variation of 
permeability locally and it is not because such an overestimation occurs in a very 
small region of the structure (damage localization band) that it can be neglected. 
Figure 15.10 shows the comparison between the same test data and the present 
matching law. In the comparison, we have entered in our formula the same physical 
constants as those in Gérard (1996): the parameters of the damage model, the crack 
roughness and the dynamic viscosity of water. We have kept the same coordinate 
system which relates the applied strain to the water permeability of the cracked 
specimens. 

Figure 15.10. Evolution of the permeability to water with the strain in the “Bipede” test 
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15.6. Conclusions 

In this contribution, a formula describing the evolution of permeability with 
damage has been proposed. It matches consistently two extreme cases: in the first 
case, permeability is an exponential function of distributed damage, while in the 
second case it is governed by crack opening. By analytical variable substitution we 
have associated the crack opening with the variable that governs damage in a non-
local integral damage model and afterwards we have related this state variable with 
damage in order to arrive at an expression where the permeability is controlled 
solely by the variation of material damage.  

An extensive comparison of the predictions of permeability with experimental 
data on split cylinders is in progress, but initial comparisons provide qualitative and 
quantitative results that are quite consistent. 
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