
HAL Id: hal-00864184
https://hal.science/hal-00864184

Submitted on 20 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional metamodels for systems and software
Laurent Thiry, Bernard Thirion

To cite this version:
Laurent Thiry, Bernard Thirion. Functional metamodels for systems and software. Journal of Systems
and Software, 2009, 82, pp.1125-1136. �10.1016/j.jss.2009.01.042�. �hal-00864184�

https://hal.science/hal-00864184
https://hal.archives-ouvertes.fr

Functional metamodels for systems and software

Laurent Thiry, Bernard Thirion
ENSISA, 12 rue des frères Lumière - 68093 Mulhouse (France)

Abstract

The modeling, analysis and design of systems is generally based on many formalisms to describe discrete and/or
continuous behaviors, and to map these descriptions into a specific platform. In this context, the article proposes
the concept of functional metamodeling to capture, then to integrate modeling languages. The concept offers an
alternative to standard Model Driven Engineering (MDE) and is well adapted to mathematical descriptions such as
the ones found in system modeling. As an application, a set of functional metamodels is proposed for dataflows (usable
to model continuous behaviors), state-transition systems (usable to model discrete behaviors) and a metamodel for
actions (to model interactions with a target platform and concurrent execution). A model of a control architecture
for a legged robot is proposed as an application of these modeling languages.

Key words: System modeling, functional metamodeling, Model Driven Engineering (MDE)

1. Introduction

The analytical and computational modeling of
systems generally requires the composition of var-
ious models and formalisms for their study, their
analysis or their design, Vangheluwe and de Lara
(2003). For example, dataflows, used to describe
continuous behaviors, must be composed with dis-
crete elements to capture operating modes, and
with more software oriented elements, Henzinger
and Sifakis (2007). Moreover, computational mod-
els can be described using an imperative language,
an object oriented language, a functional language,
etc.

The Model Driven Engineering (MDE) commu-
nity has brought a reflection on what ”models”
of systems, or models of modeling languages also
called metamodels are and what the relations be-
tween models also called model transformations
are, Mellor et al. (2003). MDE is based on three

Email addresses: laurent.thiry@uha.fr (Laurent

Thiry), bernard.thirion@uha.fr (Bernard Thirion).

points of view, Figure 1. The most concrete is the
one of systems experts that model, analyze or de-
sign systems. To do this, they need tools that are
developed by software experts ; the tools have gen-
erally a ”formalism inside” (e.g. matrix algebra
for matlab). At a more generic level, recurrent ele-
ments, on which the preceding tools are based, are
capitalized by models experts ; in particular, the
latter provide concepts and means to manipulate
modeling languages and models that will be used
by software experts to develop more easily/quickly
specific tools, that will be used by systems experts.

As a result, MDE proposes a set of dedicated
languages: Meta Object Facility (MOF) to specify
metamodels, Object Constraint Language (OCL)
to add semantics or constraints on modeling el-
ements, Query/View/Transformation (QVT) to
relate (meta)models, etc. The description of for-
malisms inside MDE is generally object-oriented.
The paper proposes an alternative approach that
is function-oriented and is named functional meta-
modeling. This approach has an impact on the three
layers of Figure 1 and it proposes new means to

Preprint submitted to Journal of Systems and Software 11 December 2008

Manuscript

Click here to view linked References

System Experts Tool designers Generic environment
providersM1 M2 M3

Model, Analyze
& Design
(Systems)

Operationalize
& Integrate

(Formalisms)

Propose
modeling

architectures

<<basedOn>> <<basedOn>>

Fig. 1. Abstraction layers in MDE.

specify and to relate modeling languages ; these
elements will be detailed in part 3. The concept
leads to particular tools ; examples will be given in
part 4. The specificity of the tools leads to another
way of modeling systems ; an illustration will be
presented in part 5.

The advantages of functional descriptions are
their formal/mathematical foundation, and their
ability to describe other formalisms in a compact
and rational manner. Despite these interests, func-
tional models and languages are rarely being con-
sidered in the domains of modeling, simulation,
control, etc. Thus, to facilitate the use of func-
tional languages, the paper proposes a framework
that explains how to describe, then to integrate,
behavioral models (with continuous and discrete
parts) and how to combine them with implemen-
tation models (necessary for the deployment on a
target platform). The work presented also explains
how to profit from the modern functional program-
ming language Haskell, with high level constructs,
to model dynamical systems differently, Thiry and
Thirion (2008).

So, with our proposition, a metamodel will corre-
spond to a set of functions that can be composed to
built expressions that are, de facto, models. Trans-
formations are functions too and are based on the
previous definition. As an application, a set of func-
tional metamodels is proposed for continuous be-
haviors (i.e. dataflow models), for discrete behaviors
(i.e. state-transition models) and for more software
oriented elements (i.e. with concurrent actions). As
a complement, the article explains how to 1) get ei-
ther a numerical representation, or an analytical rep-
resentation, of continuous dataflow models (using
Series, Mc Ilroy (1998)) ; 2) extend discrete behav-
ioral models with temporal logic formulae represent-
ing abstract specifications usable for model check-
ing, Clarke et al. (2000). Described in a compact

and comprehensible way, the elements presented al-
low the study of a wide range of systems such as
the legged robot of part 5. And in contrast to ded-
icated tools like Matlab/Simulink 1 , the framework
proposed can be easily adapted or extended.

The paper is divided into six parts. Part 2 in-
troduces the concepts of systems, models and
metamodels. Part 3 details the main contribu-
tion of the paper with functional modeling ; i.e.
what it is and what the benefits obtained are.
Part 4 proposes an application of the concept to
systems. More precisely, this part describes five
functional metamodels and a set of tools for the
modeling/simulation of continuous, discrete and
concurrent systems. Continuous behaviors can be
modeled using either dataflows (such as the ones
found in Matlab/Simulink), or mathematical series.
Discrete behaviors are modeled by state-transition
systems and logical formula expressing constraints
that have to be satisfied/checked. Part 5 proposes a
use of the framework to model the control architec-
ture of a legged robot. Part 6 concludes by summing
up the main elements of the paper and presents the
perspectives considered.

2. Systems, models and metamodels

2.1. Dynamical systems

From a mathematical point of view, a system is
modeled by a time T , a set of states X, a set of inputs
U , and a transition function F :X×U → X, Lee and
Varaiya (2003). Figure 2 presents a classification of
system models according to T and X, Maler (1998).
A behavior is defined by an initial state x0 ∈ X, an
input u:T → U , a function x:T → X that satisfies
x(0) = x0 and x(i+1) = F (x(i), u(i)) for a discrete
time T , and dx(t)!dt = F (x(t), u(t)) for a contin-
uous time T . The output of a system is given either
by a function y:T ×X ×U → Y , where Y is the set
of outputs, or by completing the transition function
F :X × U → (X × Y). U and Y may be numeri-
cal values (continuous case) and/or symbolic values
called events (discrete case).

The models above are used to describe most dy-
namical systems. However, for the implementation,
other elements have to be considered such as the
model of computation, Jantsch and Sander (2005).
Particularly, most of the time a system is decom-

1 www.mathworks.fr

Continuous (|R)

Differential
Algebraic
Equations

Finite
Difference
Equations

Naive Physics
State-

Transition
Systems

Discrete (|N)

Continuous (|R
|N

)

Discrete

X / T

Fig. 2. Classification of system models.

posed into many sub-systems, whose behavior is
given by one of the previous models, and that have
to evolve concurrently. As a consequence of this
decomposition, it is necessary to precise the model
of computation considered, i.e. how time is shared
between the various sub-systems and how these
latter communicate. For continuous behaviors, a
synchronous model of computation is mostly used
; for discrete behaviors, an asynchronous model of
execution is privileged. In both cases, a scheduler
sets the order of execution for each component. In
the synchronous model, global time T is divided
into instants and each component makes a step in
an instant. In the asynchronous model, each com-
ponent can make many steps during an instant (i.e.
each sub-system has its own time basis Ti). Thus,
in this model, it is necessary to add software ele-
ments such as communicating channels (or shared
variables) to allow data exchanges or to synchronize
the sub-systems.

The previous description shows that systems
modeling is based on various kinds of models with
continuous or discrete behaviors on the one hand
and other parts representing implementation de-
tails. These parts are complementary and have
to be integrated. Figure 3 presents an example of
system combining a continuous element (P) and a
discrete element (Q) that have to evolve in parallel
(i.e. P || Q). This example will be used in part 4 to
illustrate the functional metamodels proposed.

(Q)

xn+1 = a.xn + b.un
yn = c.xn + d.un

Up

Down

maxmin
yu

(P)

Fig. 3. Composition of continuous, discrete and concurrent

models.

2.2. Model Driven Engineering (MDE)

Model Driven Engineering (MDE) proposes con-
cepts and tools to capture, then to integrate, mod-

eling languages, Mellor et al. (2003). Each mod-
eling language is defined by a metamodel, gener-
ally a MOF class diagram 2 extended with logical
constraints, Varro and Pataricza (2003). Figure 4
presents the conceptual framework on which MDE
is based on. A system is modeled using a modeling
language ; a model is an element of the modeling
language which is the set of all models conforming
to a metamodel, Favre (2004), and Varro (2002). A
model transformation represents a relation between
two modeling languages and is defined by a set of
mappings between the corresponding metamodels.
As an illustration, the behavior of an oscillator can
be modeled by a regular expression (min.max)*. The
metamodel defines the syntax of regular expressions
using basic elements min/max, sequences (.), repe-
titions (*), etc. The modeling language is then the
set of all valid regular expressions. The translation
from a regular expression into a finite state model
is an example of transformation ; the target meta-
model is defined by states and transitions and the
target model has two states, e.g. 0/1, and two tran-
sitions (0,max,1) and (1,min,0), Figure 3.

Other examples of metamodels for systems are
given by Breton and Bezivin (2001) for Petri nets,
and Denckla and Mosterman (2005) or Mathaikutty
(2005) for block diagrams. Metamodels can also
be defined as a Domain Specific Language (DSL),
Deursen et al. (2000). DSLs can also be embedded in
programming languages ; more precisely, the com-
ponents of a metamodel are mapped into data types
and sets of functions to create and to manipulate
models. For example, Hudak et al. (2003) provide
a DSL embedded into the functional programming
language Haskell and dedicated to robotics and
vision.

Modeling
Language 1

Modeling
Language 2

Metamodel 1Model 1 Metamodel 2 Model 2

conformsTo conformsTo

elementOfelementOf

transformation

mapping
rules

representationOf

Fig. 4. Extract of MDE megamodel.

Metamodels can also be used to configure generic
(meta) modeling environments, proposed by the
MDE community, in order to get tools dedicated
to a specific formalisms (i.e. to create and to ma-

2 www.omg.org/mof/

nipulate models for these formalisms). Examples
of metamodeling tools dedicated to systems are
the Generic Modeling Environment GME, Dubey
(2005), and Atom3, Vangheluwe and de Lara (2003).

To explain the concept of metamodel, Figure 5
specifies an example of a possible metamodel for
block diagrams. Block diagrams are used to model
continuous dynamical systems with signals and
transfer functions on these signals. The diagram of
Figure 3 shows an example of block diagram that
conforms to this metamodel. A transfer function f
is represented graphically by a block with inputs
(corresponding to the arguments of f), and outputs
(corresponding to the results of f). Transfer func-
tion composition is obtained by linking the output
of a block to the entry of another block. Blocks can
be classified into two categories: basic blocks, which
relate entries to outputs with algebraic equations
(Figure 2) and composite blocks whose internal
structure is given by interconnecting more simpler
blocks. Composites are useful to organize models
in a hierarchical way. The concepts that appear in
this description can be represented on a class dia-
gram (Figure 5): modeling elements/concepts are
represented by classes and relationships between
these concepts are represented by associations (be-
tween the corresponding classes), or compositions
(marked by a diamond).

Block

LinkInput Output

Equation

Basic Composite

N

NN
N

Fig. 5. Metamodel for block diagrams.

Well-formed block diagrams are defined by the
previous metamodel plus a set of logical expressions
expressed, for instance, with the Object Constraint
Language (OCL). For instance, a rule saying that an
input can be connected to one, and only one, output
is formalized by the OCL expression:

context i:Input

inv OneConnection: i.link->size()==1

The languages used to specify meta-models (i.e.
here MOF and OCL) are described by reference
documents of a thousand pages ; which makes them
difficult to use in practice. As a consequence, other
languages (such as Essential MOF - EMOF, or
Eclipse Modeling Framework - EMF), based on a

restricted set of concepts, are preferred. Moreover,
all these languages are not sufficient to describe
other parts of MDE such as concrete syntaxes of
the models or means to transform models ; so,
other languages have to be considered (e.g. the
Query/View/Transform - QVT, for model trans-
formations). The use of a restricted set of concepts
to specify models, metamodels and model transfor-
mations will be helpful and is the main concern of
the article. In contrast to classical metamodeling,
which exposes the structure of the abstract syntax
of a modeling language through MOF, EMOF or
UML diagrams, the proposed approach tries: 1 -
to hide the structure following the concept of ab-
stract data types, Guttag (2002), and 2 - to specify
transformation models by sets of equations.

Before presenting the concept of functional meta-
modeling in part 3, part 2.3 describes what is called
functional modeling.

2.3. Functional modeling

As shown in the previous sections, systems and
models can be described in various manners. In par-
ticular, systems and models can be mathematically
specified by sets and relations (or functions) that
can be represented visually by graphs. For instance,
the behavior of a system can be modeled by a set of
states and transitions, and the structure by a set of
objects and links. The functional paradigm, used by
functional programming languages, is based on this
kind of description. More precisely, a function f will
correspond to a particular relation between two sets,
also called data types (A,B) and will be written f :
A → B. A datatype will correspond to a set of func-
tions to build values, to compose values, or to map
values into values of another type. A function is as-
sociated to a definition f(x) = y and to applications
f(z) whose semantics consists in evaluating the ex-
pression y with the occurrences of x replaced with
z. The expression y consists of (constant) values or
other functions. Functions can be composed with a
”dot” operator defined by (f ◦ g)(x) = f(g(x)).

Functional programming languages are based on
the previous elements plus a set of, generally unrec-
ognized, features, Wadler (1996). The most impor-
tant ones are:
– The definition/use of functions, called construc-

tors, that are not necessarily attached to an ex-
pression. In particular, all constants (e.g. 1 : N)
can be modeled by constructors.

– The possibility to pass functions as arguments or
as result of other functions. The derivative opera-
tor is an example of such a function: if f is a func-
tion from R to R (i.e. R → R) then the derivate
is a function derivate : (R → R) → (R → R).

– The capability to evaluate a function partially, i.e.
a function with two arguments f : (A,B) → C
can be replaced by a function with one argument
that returns another function of one parameter,
i.e. f ′ : A → (B → C). Thus, if f requires two
arguments (a, b) then f ′ requires only one argu-
ments a ; the result can be applied to another ar-
gument b when necessary. This property can be
used to define generic functions that can generate
a set of more specific functions.

– If data types can be composed (e.g. with the
cartesian product A × B, or (A,B)), then func-
tions can be composed too ; e.g. if f, g are func-
tion then (f, g) is also a function and (f, g)(x) =
(f(x), g(x)). This possibility is interesting to
realize parallel computations, Harisson (2006).
As a consequence of these powerful capabilities,

most functional programming languages are based
on a few constructs (to define new functions or to
use previously defined functions) plus a library of
generic functions. All the possibilities offered by the
functional paradigm will be used in the rest of the
paper to describe (and to integrate) modeling ele-
ments and will be called functional (meta)modeling.
The advantage of the approach is to be based on a
small number of concepts and to be well adapted
to formalisms based on mathematical descriptions
(like the ones found in system modeling (2.1)).

Another advantage of the concept is to be nat-
urally supported by functional programming lan-
guages. In particular, the functional models (and
metamodels) presented can be translated into the
modern functional programming language Haskell,
Hudak et al. (2007). Haskell is based on very few
constructs, Bird (1998). A data type corresponds to
a set of constructor functions and functions on this
data type are defined by pattern matching, i.e. one
rule for each constructor.

As an illustration, basic arithmetic expressions
(Exp) can be specified following the principle of
abstract data types, Guttag (2002). V alue lifts
Integers into Exp, and plus/mult composes two
expressions.

value : Integer → Exp

plus : Exp × Exp → Exp

mult : Exp × Exp → Exp

Expressions are defined using function applications.
For example, a model of e = 1+(2×3) will be simply:

e = plus(value(1),mult(value(2), value(3)))

Figure 6 shows a possible object-oriented model for
the example. The type Exp and the three construc-
tors are mapped into classes ; the values used by the
constructors are mapped to attributes or composi-
tions (e.g. left/right expressions for binary opera-
tors Plus/Mult). The figure also presents an asso-
ciation (f) to model a transformation (and a func-
tion) from expressions to any type T .

Plus
(idem Mult)

Exp

Value

T
f left, right

2

1:Value

3:Value2:Value

:Plus

:Mult

1+(2x3)

Fig. 6. Models of arithmetic expressions.

The example can be translated into Haskell us-
ing a type definition (with the keyword data) that
groups together the three constructors (constructors
have a name followed by a set of parameters ; the
result is to the left side of =, here Exp):

data Exp = Value Integer

| Plus Exp Exp

| Mult Exp Exp

-- This definition is equivalent to

-- Value :: Integer -> Exp

-- Plus :: Exp ->(Exp -> Exp)

-- Mult :: Exp ->(Exp -> Exp)

e = Plus (Value 1) (Mult (Value 2) (Value 3))

Notes. First, as a convention, mathematical mod-
els will be in italics (e.g. value, plus, Exp, etc.) and
Haskell programs will be written using monospace
font as above. Second, parenthesis will be used to
avoid ambiguities and f(x) ≡ f x ≡ (f x).

Now, with this model, all functions on arithmetic
expressions, i.e. f : Exp → T , can be defined by
three equations (i.e. one for each constructor) and
three parameters : g : N → T (used to transform
V alue) and h, i : T ×T → T (to transform Plus and
Mult). As an example, the evaluation of arithmetic

expressions can be specified by the function eval :
Exp → N :

eval (Value v) = id v = v

eval (Plus x y)= (eval x) + (eval y)

eval (Mult x y)= (eval x) * (eval y)

The function lifts the three constructors into the
three functions (g = id, h = (+); i = (×)). So, eval
is a particular case of the more generic function f
defined by:

f g h i (Value v) = g v

f g h i (Plus x y) = h (f g h i x) (f g h i y)

f g h i (Mult x y) = i (f g h i x) (f g h i y)

eval = f id (+) (*)

Figure 7 presents a graphical representation for
these equations. Now, choosing other particular val-
ues for (g,h,i) allows the definition of most functions
on expressions. For instance, the code generation for
a stack machine can be defined by:

generate = f (\v->"PUSH "+v)

(\x y->x+y+" ADD")

(\x y->x+y+" MULT")

generate e == "PUSH 1 PUSH 2 PUSH 3 MULT ADD"

Thus, the functional model for arithmetic expres-
sions is defined in a compact and formal manner
by four elements: value/plus/mult to build expres-
sions, and f to transform expressions ; to do this, f
is parameterized by three functions (g, h, i) and all
functions on expressions can be defined by choosing
specific values for these parameters.

Despite their interest, researches using functional
paradigm in Model Driven Engineering for systems
are not numerous. Among the latter, Mathaikutty
(2005) proposes a set of (meta)models for the mod-
eling and simulation of hybrid systems and Uustalu
and Vene (2006) describe a framework for the mod-
eling and analysis of continuous systems. The pro-
posed functional metamodeling paradigm, based on
the previous concepts, tries to be more general by
describing how functions can capture modeling lan-
guages, metamodels, models and model transforma-
tions.

3. Functional metamodeling

3.1. Presentation

Functional metamodeling is based on a general-
ization of the approach used to specify arithmetic
expressions. More precisely, modeling languages will
be captured by sets of functions mi to construct
models ; in the MDE context these sets will be con-
sidered to be functional metamodels. The relations,
or transformations, between metamodels will be de-
fined in a way similar to the function f for the arith-
metic expressions: i.e. a generic model of transfor-
mation will correspond to another set of functions
fi plus a set of equations (one for each function mi).

Theses sets of functions can be represented on
a graph: types correspond to the nodes, and the
functions to the edges. For instance, Figure 7 pro-
poses another representation for arithmetic expres-
sions ; the dotted parts represent the model Exp =
value, plus,mult, and the grey parts represent the
transformation f = g, h, i. The equations of the
transformation represent the equalities between the
paths on these graphs (i.e. f ◦ value = g and f ◦
plus = h◦(f×f), that also corresponds to the equa-
tions of the preceding section f(value(v)) = g(v)
and f(plus(x, y)) = h(f(x), f(y))).

Integer

Exp

Exp x Exp

T T

T x T

Exp

value plus
/ mult

g

f f

f x f

! h
/ i

Fig. 7. Graphical representation for expressions.

Remark. From a more formal point of view, the el-
ements presented can be explained in the context of
category theory, Walter (1992). However, an under-
standing of the theory is not necessary to apprehend
the elements proposed. The only thing to remember
is that diagrams correspond to equations and, with
the proposition, to models, metamodels and trans-
formations. The language used to describe equations
is defined by elementary functions f, g : T → T ′,
applications f(g), compositions f ◦ g, and products
f × g.

As an illustration, a UML object diagram can
be built using three functions: to create a new
empty diagram, to add an object to a diagram, and
to add a link between two objects. The functions
New,AddObject, AddLink will be defined in the

functional language Haskell by a type Diagram
and three constructors:

data Diagram = New

| AddObject String Diagram

| AddLink String String Diagram

-- This definition is equivalent to

-- New :: Diagram

-- AddObject:: String->(Diagram->Diagram)

-- AddLink :: String->(String->(Diagram->Diagram))

Every sequence of actions to create a particular di-
agram can be modeled using partial evaluation (e.g.
AddObject o : Diagram → Diagram) and function
composition (◦). For instance, the following model
has two objects Producer/Consumer and a link be-
tween these objects ; model′ extends model with a
Consumer object.

actions = AddLink "Producer" "Consumer"

. AddObject "Consumer"

. AddObject "Producer"

model = actions(New)

model’ = AddObject "Consumer" model

Functions on diagrams, and model transforma-
tions, will be defined by following the approach pre-
sented, with three equations (one for each construc-
tion). For instance, the function check returns True
if a sequence of actions is consistent ; i.e. the addi-
tion of a new object into a diagram requires that this
object does not already exist, and the addition of a
link requires that the extremities exist. The function
contains tests if an object belongs to a diagram.

contains :: Diagram -> String -> Bool

check :: Diagram -> Bool

check (New) = True

check (AddObject o d) = not (contains d o)

&& (check d)

check (AddLink o o’ d)= (contains d o)

&& (contains d o’)

-- check(model) == True

-- check(model’)== False , Consumer already exist !

Rather than defining specific metamodels (such
as the one of object diagrams), the paper will fo-
cus on two fundamental (meta)models for lists and
graphs. Indeed, most modeling languages used to
describe systems are based on these two concepts.
For instance, behaviors are generally represented by
sequences (of states), block diagrams used for mod-
eling the structure of systems or state-transition
diagrams used for modeling discrete behaviors are
graphs, etc. The models for lists and graphs are pre-

sented in the following sections and will be applied
in part 4 to a set of modeling languages for systems.

3.2. Model for generic lists

The behavior of a discrete time system can be
described in various ways like, for instance, a se-
quence of values (xi) representing the state x at
each instant i, or a sequence of values (ai) such
as x(n) ≈ Σk

i=0ai.n
i (for any instant n). Possi-

ble transformations between these models are in-
terpolation and sampling. The previous models
(that will be detailed in part 4.1) are based on
a common model (ai), also written A∗. A func-
tional description of lists consists of two elements:
empty : ∅ → A∗, to create an empty list, and
add : A × A∗ → A∗, to add an element to a list of
As. From a MDE point of view, {emty, add} corre-
sponds to the metamodel for lists and a model for
a particular list will be specified by a composition
of these functions. For instance, one = add 1 one =
add 1 (add 1 one) = · · · will be interpreted as an
infinite sequence of ”1”. The modeling language
captured by this metamodel will be the set of terms
{empty, add a1 empty, add a2 (add a3 empty), · · ·},
for any ai in A, and will serve, for instance, to
model behaviors. A graphical representation of the
functional metamodel is presented on the left part
of Figure 8 (with πi the projections of the cartesian
product, e.g. π1 : A × B → A) ; the right part
corresponds to an equivalent class diagram.

AxA*

A*

A

!

empty add

!1

!2

List<A>

Empty Add

tail

A

head

Fig. 8. Representation of generic lists A∗.

As explained, functions can be used to define
generic transformations. More precisely, the func-
tion f : A∗ → T , defined by a couple (v, g), such
as f(empty) = v and f(add(h, t)) = g(h, f(t)),
will model all common transformations on lists.
Figure 9 presents a representation of this trans-
formation (and of the previous equations). Sam-
ple transformations are: map(l) : A∗ → B∗

with v = empty and g(h, t) = add(l(h), t), and
select(p) : A∗ → A∗ with v = empty and g(h, t) =

if p(h) then add(h, t) else t. The function map
applies a function l to each element of a list and
select extracts the elements of a list that satisfy a
property p.

Remark. The composition of the preceding func-
tions, i.e. (map(f).select(p))(xs), can be used to
model sets such as {f(x)◦x ∈ xs∧p(x)}. In Haskell,
these expressions are encoded by the syntactic sugar
[f(x) | x < − xs, p(x)] and are commonly used to
express more easily some transformations on lists.

AxA*

A*

A

!

empty add

!1

!2

T

!

T

AxT

v g

f f

id id x f

f o empty = v o id = v
f o add(h,t) = g (h, f(t))

Fig. 9. Generic transformation on lists f : A∗
→ T .

The equations used to formalize f can be used to
prove properties attached to a particular transfor-
mation ; for instance, it can be proved that map(f)◦
map(g) = map(f ◦ g). Some interesting properties
offered by f are the possibility to lift functions A →
B into functions A∗ → B∗ (with map), or the capa-
bility to generalize binary functions A×A → A into
n-ary functions A∗ → A (e.g. a Σ expression will be
modeled by sum = f 0 (+)). These capabilities will
be used by the functional metamodel proposed in
the next part for dataflow and block diagram meta-
models.

The functional metamodel proposed for lists (and
more generally for all functional metamodels pre-
sented in the paper) is: 1) compact - here, there
are only three elements to know: empty/add and f ,
2) formal - the equations for f can serve to prove
properties of transformations, Doets and van Eijck
(2004), and 3) attached to a visual representation,
Figure 9. The metamodel can be encoded directly
into Haskell and can serve to capitalize mathemati-
cal models based on sets or sequences 3 .

The following code gives an interpretation of the
preceding equations into Haskell ; the reader will
note the similitude with the metamodel for arith-
metic expressions.

data List a = Empty

| Add a (List a)

-- or equivalently

3 These elements are lists with extra properties

-- Empty :: (List a)

-- Add :: a -> (List a -> List a)

f v g Empty = v

f v g (Add h t) = g h (f v g t)

map l = f Empty (\h t -> Add (l h) t)

select p = f Empty (\h t -> if (p h) then Add h t

else t)

model :: List Integer

model = Add 1 (Add 2 Empty)

map (+1) model == Add 2 (Add 3 Nil)

map odd model == Add 3 Empty

3.3. Model for graphs

The second metamodel used by the article, and
more generally in MDE and systems modeling, is
the one of graphs. Indeed, most visual models can
be represented by a graph. For instance, MOF class
diagrams are graphs whose nodes correspond to
classes, and edges to relations between classes (i.e.
inheritance, association, composition, etc.), state-
transition diagrams are graphs whose nodes are
states and edges are transitions, etc.

In practice, a graph can be specified by a list of
nodes A∗, a list of edges B∗, and a list of relations
between nodes and edges (A × B × A)∗. Figure 10
presents a graphical representation of this functional
metamodel and the code below proposes a Haskell
implementation.

data Graph a b = Graph (List a)

(List b)

(List (a,b,a))

An example of graph is the model on the left part
of Figure 8 that can be translated to 4 :

type Model = Graph Type Function

type Type = String

type Function = String

fig1 :: Model

fig1 = Graph ["{}" , "A" ,"A*" ,"AxA*"]

["empty", "add" ,"pi1","pi2"]

[("{}" , "empty","A*")

, ("AxA*", "add" , "A*")

, ("AxA*", "pi1" , "A")

, ("AxA*", "pi2" , "A*")

]

4 The notation [a, b, ...] is a syntactic sugar for

add(a, add(b, ...)).

As for lists, there is a generic transformation f
defined by a couple of functions: f1 : A → A′ and
f2 : B → B′, Figure 10. Using the function map,
this transformation becomes:

f :: (a->a’)->(b->b’)->(Graph a b)->(Graph a’ b’)

f f1 f2 (Graph as bs rs) = Graph as’ bs’ rs’

where as’ = map f1 as

bs’ = map f2 bs

rs’ = map f3 rs

f3 (x,y,z) = (f1 x, f2 y, f1 z)

An application of this transformation can be
found in the domain of concurrent processes, to
express specific operators such as relabeling or par-
allel composition, Winskel and Nielsen (1995). The
second part of Figure 10 presents an application of
graph transformation for the relabeling operator.

(AxBxA)*

(A'xB'xA')*A'*

A*

B'*

B*

a

map f2

map !1 map !2

map !3

0

1

2b

c

f1(0)=2, f1(1)=2
f2(a)=c, f2(b)=c

Graph

map f1

nodes edges

Graph'

f

relations

Fig. 10. Representation of graphs (gray part), graph trans-

formations f , and an example.

The next part presents a family of functional
metamodels dedicated to system modeling. These
metamodels are similar to (and are based on) the
ones presented for lists and graphs. Next, the result-
ing framework is used in part 5 to model a control
architecture for a legged robot.

4. Functional metamodels for systems

The models of systems presented in part (2.1) can
be formalized by metamodels (2.2) that can be spec-
ified by sets of functions (2.3). This proposition has
lead to the concept of functional metamodeling de-
tailed in part 3.

As an application of the proposition, this part
presents a framework (i.e. a set of concepts and
tools) for dataflow models used to represent contin-
uous behaviors, for state-transition systems used to

represent discrete behaviors, and for actions to rep-
resent interactions and concurrent executions. Con-
tinuous behaviors can be described numerically (4.1)
or analytically (4.2). Discrete behaviors can be de-
scribed from an implementation point of view using
state-transition systems (4.3) or from a specification
point of view using linear temporal logic formulae
(4.4). Section 4.5 proposes an implementation model
that facilitates the deployment of the previous spec-
ification models onto a target platform.

4.1. Dataflows

Dataflows are a standard in the context of discrete
time dynamical systems, Thielemann (2004). This
kind of model specifies a set of relations between
sequences of elements called ”flows” or ”signals” ;
a sequence is defined by a list (3.2). As explained
in part 3, sequences can be defined by a functional
metamodel (i.e. a set of functions to build and to
transform sequences). Then, this metamodel can be
implemented into the functional language Haskell
and used to model continuous behaviors/systems.
More precisely, a flow is either a sequence of ele-
ments (e.g. numerical values), or a function that
computes an element depending on time, Lee and
Varaiya (2003). For example, a flow representing a
unit step can be described either by the sequence
step = add 1 step, or by the function step (time) =
1. To get the numerical value of this flow (or signal)
at an instant t, it is possible to use a get operator
(!!), i.e. step !! t for the first representation, or the
function application step (t) for the second repre-
sentation. As a remark, the first representation cor-
responds to an infinite flow: reducing step leads to
step = add 1 (add 1 ...). In standard Haskell, the
previous function will be written step = 1 : step 5

and can be generalized by a function that lifts any
value into a flow, i.e. lift0 x = x : (lift0 x). Higher-
order functions, i.e. functions taking other functions
as argument or as result (e.g. f or map), are used
to lift operators and functions on values into func-
tions on flows. The application of these higher-order
functions to a particular function will be used to
model basic blocks found in dataflow models. As an
illustration, a model for a block that computes the
absolute value (abs) of a flow whose first value is x
and following values are given by another flow xs,

5 For readability reasons, the operator (:) will be preferred

to the binary function and constructor add, i.e. x : xs ≡

add x xs.

is abs (x : xs) = |x| : abs xs, what can be general-
ized with abs = lift1 (||) where lift1 f (x : xs) =
(f x) : (lift1 f xs). The function lift1 is similar to
the function map defined in part 3.2 and any unary
function on a value can be lifted using lift1. In a
similar manner, a function lift2 is defined for binary
functions or operators (with lift2 f (x : xs) (y :
ys) = (f x y) : (lift2 f xs ys)), a function lift3 for
ternary operators, etc.

In dataflow models, flows can be composed or
transformed using blocks. A block is either a primi-
tive ”function” (e.g. add, integrate, multiply or gain,
delay, etc.), either a ”composition” of more simple
blocks. Figure 11 presents an example of a dataflow
model for a first-order system.

order1

step 1 gain b add delay 0

gain a

u xx' y
gain c

Fig. 11. Example of a dataflow model.

The previous description is fundamentally ”func-
tional” in the sense that flows are functions from in-
stants to values, and blocs are functions from flows
to flows. By considering discrete time, a flow will be
simply modeled by a list of values A∗, and blocks
by functions A∗ → B∗, A∗ × B∗ → C∗, etc. For
instance, a step generator that returns a constant
value will be modeled by step : R → R, a delay
whose initial value is z0 by delay z0 : R → R, an
adder by add : R × R → R, etc. A graphical repre-
sentation of the functional metamodel is presented
on Figure 12.

2

Flow

Step Add Delay

value():A
next():Flow

...

Fig. 12. Metamodel for dataflows.

More precisely, the functional metamodel pro-
posed for dataflows is based on the one of list (3.2).
The difference between lists and flows is that the
latter are not necessarily of finite length (i.e. flows
do not have the possibility to be empty). To make
this distinction, the functional metamodel of flows is
restricted to one constructor F that plays the same
role as add. As a consequence, functions on flows

(i.e. transformations on flows such as lifti, and
blocks) are now defined by a single rule/equation as
illustrated by the functions delay x0 or gain k below.

-- specification of Flow and Block

data Flow a = F a (Flow a)

-- i.e. F :: a -> (Flow a -> Flow a)

type Block a b = Flow a -> Flow b

-- examples of basic blocks

delay, gain :: a -> Block a a

delay x0 = F x0

gain k = lift1 (*k)

lift1 f (F x xs) = F (f x) (lift1 f xs)

add :: Block (a,a) a

add = lift2 (+)

lift2 f (F x xs) (F y ys) = F (f x y)

(lift2 f xs ys)

-- example of composite block

firstOrder a b c u = y

where x = delay 0 x’

x’ = add (gain a x) (gain b u)

y = gain c x

Despite its simplicity, this functional metamodel
allows the modeling and the simulation of most of
discrete time systems. As an illustration, the follow-
ing model describes how to get the first values of
the response of a first order system to a unit step.
These values can be saved into a file and then edited
using a spreadsheet to draw the systems’ behavior ;
figures 14 and 19 have been obtained in this way.

system :: Block Float Float

system = firstOrder 0.9 0.1 1.0

u, y :: Flow Float

u = step

where step = lift0 1.0

lift0 v = F v (lift0 v)

y = system u

y == [0, 0.1, 0.19, 0.27, 0.34,

Thus, the definition of a modeling language ded-
icated to discrete time systems leads to a set of
functions {step, gain, delay, add etc.}, that can
be composed and then evaluated to get the behav-
iors of these systems. All the functions are based on
generic functions lifti that model transformations
on flows. A change on the equation of lifti leads to
other semantics and other possible metamodels. In
particular, the function lift0 : A → List(A) can be
defined by lift0 v = v : (lift0 v) or by lift0 v = v :

(lift0 0). The first equation is used in this section
for numerical models of behaviors, and the second
equation is used in the next section for analytical
models of behaviors.

4.2. Analytical models of continuous behaviors

A dataflow model is generally a graphical repre-
sentation of a finite difference equation or of a differ-
ential algebraic equation (see 2.1) ; the basic blocks
correspond to the mathematical operators used in
this equation. The semantics used in the previous
section consists in computing the successive values
of a flow using other flows or using the preceding val-
ues of the considered flow. The trajectory/behavior
of a system corresponds to these successive values.

Another approach to compute the behavior is to
use mathematical series. This change in the interpre-
tation of dataflow models lies essentially in the man-
ner a value is lifted: in dataflow model, a constant
value v is transformed into a constant flow [v, v, v, ...]
; in series based models, a value v is transformed
into a list of coefficients for the series, i.e. [v, 0, 0, ...].
More precisely, a behavior is derived from a sequence
of values (vi) ; the state at the instant n is then vn

with the dataflow interpretation, and
∑

∞

i=1
vi × ni

with series. As for flows, series can be described us-
ing the lists’ metamodel (3.2): a list (add x xs), also
written (x : xs) in Haskell, will correspond to a poly-
nomial p(n) = v0 + n × vs where vs is another se-
ries (and another polynomial). Operators on series
are expressed in the same way as basic blocks in the
functional metamodel for dataflows. As an illustra-
tion, the integration of a behavior (vi) defined by∫

(vi) = [0, v0, v1/2, v2/3, ...] will be modeled by the
following function:

integral (vs) = 0:(integral’ vs 1)

integral’ (v0:vs) n = (v0/n):(integral’ vs (n+1))

As an application, a first order system modeled
by the differential equation (E0) p′ + p = 0 with
an initial condition p(0) = 1 can be represented
by p(n) = p(0) +

∫
p.dn ; and this expression can

be modeled with the preceding function by : p =
add (value 0) (integral p). The function value is
then based on a new interpretation of lift0, i.e. value
v = v:(lift0 0). The function add is based on the ex-
pression lift2 used for dataflows. As a result, the
successive values returned by the Haskell interpreter
is then [1,−1, 1/2,−1/6, ...] that correspond to the

analytical solution of the differential equation (E0)
: p(n) =

∑
i(−n)i/i!).

The approach followed for continuous systems
with the definition of a modeling language and a
functional metamodel will be considered for discrete
state behaviors in the next section.

4.3. State-Transition Systems

Discrete behaviors are generally represented by
State-Transition Systems (STS). An sts can be mod-
eled by a graph (3.3) on which a node corresponds to
a configuration (or State) of a system at a given in-
stant, and a transition to a change of this configura-
tion when an event occurs. Block Q on Figure 3 gives
an example of sts with two States Q = {Up,Down}
and two events E = {min,max}. To be able to inte-
grate discrete behaviors with continuous behaviors,
an sts is modeled by a block with an input flow for
events and an output flow for values generated by
the sts. In the previous example, the input is y and
the events are {min = y < 0.1, max = y > 0.9}
; the output is a continuous value u such as u = 1
when the current state is Up, and u = 0 when the
state is Down.

With the proposition, a functional metamodel for
this definition of STSs will correspond mainly to a
current state s and a transition function t : State×
Event → State×V alue ; i.e. considering the current
state s and an input event e, t(s, e) will return a
couple (s′, v) where s′ is the next state and v the
output value. This model has to be completed by a
semantic function sem describing how the values of
the input/output flows and the evolution of the sts
can be linked together. The functional metamodel
proposed for STS is then defined in Haskell by the
following code and a graphical representation of the
functional metamodel is proposed on Figure 13.

data STS = STS State Transition

type Transition = (State,Event) -> (State,Value)

sem :: STS -> Flow a -> Flow b

sem (STS s t (F i is)) = F o os

where (s’,o) = t (s,i)

os = sem (STS s’ t is)

As an illustration, the model below describes how
the process Q of Figure 3 can be modeled with this
new metamodel : t corresponds to the transition
function, q to the sts with an input flow y, and u to
the output flow that will be connected to the first
order system presented in 4.1.

Flow STS

State Transition Event

s

t

e

N
N

N

input

sem

Fig. 13. Metamodel for state-transitions systems.

t :: Transition

t (0,y) = if y>0.9 then (1,0) else (0,1)

t (1,y) = if y<O.1 then (0,1) else (1,0)

q :: STS 0 t y

u = sem q

Putting together the previous model and the first
order system, i.e. ”u=step” is simply replaced by
”sem q”, will return the behavior of Figure 14.

0

0,25

0,50

0,75

1,00

n

40 80

Fig. 14. Output y(n) for the example.

4.4. Specification of temporal properties

As a complement to the previous section, and to
show the benefit brought by the concept of func-
tional metamodeling, this part proposes a modeling
language dedicated to requirements. Indeed, the de-
velopment process for software is generally based on
successive steps beginning with requirements (or ex-
pression of what a system must do/be), followed by
design and tests (or formal proofs), and terminated
by implementation and deployment on a target ar-
chitecture.

Properties found in requirements can be formal-
ized with temporal logic formulae (Form) - Clarke
et al. (2000), and the following metamodel specifies
a subset of the language used to express these for-
mulae with: constant (FTrue), atomic propositions
(FProp), classical operators (Not, Or) and tem-
poral operators (neXt, Until). These elements are
modeled by functions (e.g. Not : Form → Form)
that are defined in Haskell by the following code. As

an example of transformation, the function (sat p) :
Form → Bool checks if a path p satisfies a formula.
A path models a particular behavior and is repre-
sented here by a sequence (3.2) of states where each
state is labeled by a set of properties (represented
here by strings). This model also describes how to
build syntactic sugars (globally and imply) on the
top of the previous elements.

type Property = String

type State = List Property

type Path = List State

data Form = FTrue | FProp Property

| Not Form

| Or Form Form

| X Form

| U Form Form

sat::Path -> Form -> Bool

sat p FTrue = True

sat (ps:pss) (FProp p) = contains p ps

sat p (Not f) = not (sat p f)

sat p (Or f f’) =(sat p f)||(sat p f’)

sat (ps:pss) (X f) = sat pss f

sat p@(ps:pss) g@(U f f’) = ((sat p f) &&

(sat pss g)) || (sat p f’)

sat _ _ = False

globally f = U f FTrue

imply f g = Or (Not f) g

Figure 15 presents a graphical view of this meta-
model. Form becomes a class with an operation
sat(t : Trace) : Boolean and FTrue, Property,
Not, etc. become subclasses ; the implementa-
tion of sat is then described by the previous
code/equations. This kind of diagrams establishes
a bridge between the elements proposed and the
standard MDE approach. As an application of this
metamodel, the following model gives an example of
test for the expression (Push ⇒ X Move) U Stop).

path = [["Push"],["Move"],["Stop"]]

form = U (imply (FProp Push)

(X (FProp Move)))

(FProp Stop)

sat path form == True

FTrue FProp Not Until

Form

sat(path):Boolean

...

2

Fig. 15. Metamodel for LTL Formulae.

Thus, the functional metamodels proposed can
be used to model and to simulate either contin-
uous behaviors, or discrete behaviors, or continu-
ous+discrete behaviors. However, these metamod-
els do not take into account implementation details
such as the interactions with an environment or a
target platform on which models will have to be de-
ployed. To go beyond this limitation, the following
section presents a functional metamodel for actions
and interactions.

4.5. Actions and concurrency

The concept of action, found in imperative pro-
gramming languages, can be modeled by functions
transforming a state, i.e. the execution environment
at a given instant, into another state plus a result.
An operator called bind is then defined to compose
actions sequentially and to retrieve a result ; bind is
similar to the operator (◦) used for function compo-
sition. Basic (and concrete) actions are defined: get
the value of a variable from the execution context,
and put of a value into an execution context. These
elements are represented by the following functional
metamodel where an execution context corresponds
to a state defined as a list of couples (V ariable,
V alue) and an action is a function returning a value
of type a and a new state.

type State = List (Variable,Value)

type Action = State -> (Value,State)

get v vs = (findIn v vs,vs)

put v e vs = ((),insert (v,e) vs)

bind p f c = let (r,c’)=p c in f r c’

From now, the blocks presented on sections
4.1 and/or 4.3 can be interpreted as (concurrent)
processes ; a process being defined by a sequence
of actions. These processes use the global state
and shared variables to communicate and to syn-
chronize. Indeed, grouping together two processes,
where (put v chan) is defined on the first and
(get v) is defined on the second, can be interpreted
by a sending of the value v into the communication
channel chan. For instance, the processes P and Q
shown on Figure 3 communicate by the way of two
shared variables u and y. As another example, the
producer-consumer model below describes a pro-
cess prod (and a block which generates a ramp, i.e.
a flow: v=1:2:3:...) that emits values on chan, and a
process cons which reads these values and displays
them.

type Process = List Action

prod,cons :: Process

prod chan = p 0

where p v = (put chan v) : (p (v+1))

cons chan = display : cons

where display = bind (get chan) (put output)

The formalization of processes by the way of ac-
tions makes it possible to define a particular exe-
cution models such as interleaving ; and a function
par below proposes an implementation of this ba-
sic model of concurrency. The function sequence ex-
ecutes a sequence of actions (i.e. a single process)
and the function run is a particular use of sequence
that executes n actions of a process. The function
main is an implementation model for the system
producer||consumer: this function corresponds to
the interleaving of two concurrent processes/blocks
that exchange values by the way of channels (and
shared variables) u and y. Calling ”run 10 main”
on an initial state ([]) returns the new state [(out-
put,012345),(chan,5)] after executing 10 actions.

parallel :: Process -> Process -> Process

parallel (x:xs) ys = x:(parallel ys xs)

sequence :: Process -> Action

run :: Integer -> Process -> Action

run n p = (sequence (take n p)) []

main :: Process

main = parallel prod cons

run 10 main == [(output,012345), (chan,5)]

With the various functional metamodels, a soft-
ware system would be defined by a set of processes
that are modeled at a logical level by continuous
or discrete blocks and flows (of values or events),
and at an implementation level by actions and
processes. Figure 16 presents a graphical repre-
sentation of the functional metamodel usable to
describe implementation models (i.e. models that
facilitate the deployment of the elements of parts
4.1 and 4.3 into a target architecture).

At this point, the article has proposed the concept
of functional metamodeling that is detailed in part
3 and that corresponds to the right part of Figure 1.
The concept has been applied in this part to specify
and to integrate modeling languages used in systems
and software ; this corresponds to the middle part
of Figure 1. The next part will use these functional

State Action Process

Put Get Bind

Sequence ParallelVar

2N

N

Fig. 16. Functional metamodel for actions/processes.

metamodels in a more complete example and will
corresponds to the left part of Figure 1.

5. Application to a legged robot

5.1. Description of the system

The functional metamodels are used to describe
the control of the locomotion of a legged robot (fig-
ure 17), Thirion and Thiry (2002). The main blocks
used to control this system are given by Figure 18.
The displacement of each leg i (represented by dxi)
is computed using the geometric and kinetic mod-
els fi and the global speed vectors of the platform
("v, "̟). This displacement is used by the leg con-
troller ai, which provides the position xi of a leg.
The position depends on the operating mode: a leg
can be on ground and push the platform, a leg can
be up and move, or a leg can wait to move. Indeed, a
control signal si is used to synchronize the legs and
to keep the platform stable. More precisely, a leg i
can move if, and only if, the legs (i ± 1) mod 6 are
not moving.

Fig. 17. Legged robot.

5.2. Functional model

A leg is defined by a continuous state correspond-
ing to the position P = R3, and by a discrete state
E = {Push, Wait, Move}. The synchronization

between the legs is done using a signal S defined by
two values : if leg i emits the event Can (resp. Cant)
then leg (i+1) mod 6 can do the transition Wait →
Move (resp. can not do the transition). The state-
transition model describing the discrete behavior is
represented on the upper part of Figure 18. The ini-
tial state is Push and the transitions have three el-
ements (in1, in2)/out where in2 is the signal com-
ing from leg i − 1, and out is the signal emitted to
leg i + 1. In1 is used to control the position x and
can take three values: min when a leg can not push
anymore (i.e. min = reachMin x), max when a leg
can not move anymore (i.e. max = reachMax x),
and = not (min or max). Using the functional
metamodel for STS (4.3), the discrete behavior of a
leg is represented by an sts composed by the initial
state Push and the transition function t (see Haskell
model below). Let’s keep in mind that a transition
function takes two parameters (:the current state
and the input event - here (x,Can/Cant)), and re-
turns two elements: the new state and the output
values - here (Can/Cant,kx). The values kx are used
to control the trajectory of a leg (i.e. to compute
new value of x for each leg i) ; they are detailed with
the dataflow model in the next section.

-- States

type P = (Float,Float,Float) -- Continuous

data E = Push | Wait | Move -- Discrete

-- Events

data S = Can | Cant

reachMin, reachMax :: P -> Bool

-- State-transition model

t :: Transition

t Push (x,_) = if reachMax x then (Wait,(Can,k1))

else (Push,(Can,k2))

t Wait (x,Can) = (Move ,(Cant,k3)

t Wait (x,Cant) = (Wait,(Can ,k1)

t Move (x,_)= if reachMin x then (Push,(Can,k2))

else (Move,(Cant,k3))

sts = STS Push t

At this point, the function sem (4.3) is used to
transform STSs into blocks (4.1) and to compute
the synchronization signals si (see below). The only
thing that remains to be done is to precise how con-
tinuous state xi is computed and what the use of
the parameters kx is. The trajectory of a leg can
be split into three equations xi+1 = fk(xi), i.e. one
equation for each discrete state, and these equa-
tions can be merged with f(x) = kp.fPush(x) +
kw.fWait(x) + km.fMove(x) with kx ∈ {0, 1}. Thus,

the values kx computed by each sts correspond to
k1 = (kp, kw, km) = (0, 1, 0), k2 = (1, 0, 0) and
k3 = (0, 0, 1). Using the function map on lists (3.2),
it is possible to extract these values from the flow
ki = (kp, kw, km)∗ returned by each sts, e.g. k∗

p =
map π1 ki with π1 : (A,B,C) → A. Finally, the
computation of the flow x is realized by a dataflow
model composed with Gain, Add and Delay. The
functions fPush and fMove correspond to geomet-
ric transformations and are not detailed here ; the
function fWait shows that when a leg is waiting, its
position p = (x, y, z) does not change.

-- Dataflow model

-- Transformation of STSs into blocks

(s1,k1) = sem sts (x1,s6) -- leg 1

(s2,k2) = sem sts (x2,s1) -- leg 2

(s3,k3) = sem sts (x3,s2) -- leg 3

...

(s6,k6) = sem sts (x6,s5) -- leg 6

-- Extraction of the control flows

k1p = map pi1 k1

k1w = map pi2 k1

k1m = map pi3 k1 -- same thing for k2,k3,...,k6

-- Continuous behavior and dataflow model

x1 = Delay x0 x1’

x1’ = Add (Gain kp (map fPush x1))

(Add (Gain kw (map fWait x))

(Gain km (map fMove x)))

fPush, fWait, fMove :: P -> P

fWait p = p

From now, the continuous state, i.e. the position
x of each leg i at the instant n, can be obtained with
(xi !! n). The discrete state can be obtained in a
similar manner with (ki !! n) and using the preceding
rules (i.e. if the value is kp=(0,1,0) then the leg is
pushing, kw then the leg is waiting, km then the leg
is moving).

5.3. Results

Figure 19 presents the behavior of the robot and
the discrete state of the legs. A low level corresponds
to Push, a middle level to Wait and a high level
to Move. At the origin, all legs push to their poste-
rior extreme position (xmax on the Haskell model).
Reaching xmax, the legs 1-3-5 go into Wait mode
while the legs 2-4-6 go into Move mode. Legs 2-4-
6 move to their anterior extreme position (xmin on
the Haskell model). Reaching xmin, the legs 2-4-6 go
into Push mode, while the legs 1-3-5 go into Move

(v,!)

f1

a1 x1

dx1
s1

f6

f5

f4 f3

f2

a6

a5

a4 a3

a2

x6

x5

x4 x3

x2

s6

s5

s4

s3

s2

bloc continu

bloc discret

flot continu

flot discret

Push

Move Await

(max,_)/can(min,_)/cant

(_,_)/can

(_,cant)/can(_,_)/cant

(_,can)

/cant

continous behavior

discrete behavior

continous flow

event flow

Wait

Fig. 18. Model of the control architecture.

mode. At this point, the system has a characteristic
behavior (called tripod walking) where each group
of legs (i.e. 1-3-5 and 2-4-6) alternates between Push
and Move.

Patte 1

Patte 2

Patte 3

Patte 4

Patte 5

Patte 6

t (ms)100 200 300 400

leg1

leg6

leg5

leg4

leg3

leg2

Fig. 19. Behavior of the legged robot.

Thus, the functional metamodels defined in part
3, and the modeling languages captured in part 4,
are well adapted to model/simulate systems that can
have a complex behavior or structure.

6. Conclusion

This paper has proposed the concept of ”func-
tional metamodeling” and its application to a set of
modeling languages for systems and software. As a
final result, these languages have been used to model
a control architecture for a legged robot with contin-
uous and discrete behaviors that are implemented

as concurrent processes. More precisely, with the
concept, modeling elements are described by sets of
functions to create models, and a model of generic
transformation that is also a function. Thus, for-
malisms and their relations can be specified using
a single but formal concept: the one of ”function”.
This offers many advantages that are generally un-
known. For instance, functions can be composed and
passed as parameters of other functions (2.3). So,
the paper has explained how these capabilities can
be used to capture and to integrate modeling lan-
guages (3) also called metamodels in MDE.

In the context of systems where various points
of view have to be considered, functional metamod-
els are proposed to allow the description and the
composition of continuous behaviors (with numer-
ical and analytical models), of discrete behaviors
(with state-transition models and a model of tem-
poral logic used for specifications) and of concurrent
behaviors (with models of actions and processes).
An other advantage of the concept is to be supported
by functional programming languages. In particu-
lar, the elements proposed have been implemented
into Haskell. To show the benefits of the resulting
framework, the example of a control software sys-
tem is developed in part 5. Thus, as summarized on
Figure 1, functional metamodeling is used at three
levels with the systems, the languages and tools used
to model systems, and the means to specify these
languages and tools.

Functional metamodeling offers an alternative to
the standards proposed by the MDE community
that is better adapted to mathematical descriptions.
In particular, functional metamodeling makes equa-
tional reasoning possible and the first perspective
considered now will consist in studying how this ca-
pability can be used to prove model equivalences or
how properties of a model can be preserved by a
transformation, for instance. As a second perspec-
tive, studying how functional metamodeling can be
applied to more software-oriented elements is con-
sidered. In particular, MDE adds concrete syntaxes
to models, metamodels and models of transforma-
tions. The use of functional metamodels to spec-
ify textual and/or visual views as a front end to
the (meta)models presented here will give a better
understanding of the advantages/limitations of the
concepts.

References

Bird, R., 1998. Introduction to Functional Program-
ming using Haskell, 2nd Edition. Prentice Hall
PTR.

Breton, E., Bezivin, J., 2001. Towards an under-
standing of model executability. In: International
Conference on Formal Ontology in Information
Systems. pp. 70–80.

Clarke, E., Grumberg, O., Peled, D., 2000. Model
Checking. The MIT Press.

Denckla, B., Mosterman, P., 2005. Formalizing
causal block diagrams for modeling a class of hy-
brid dynamic systems. In: IEEE Conference on
Decision and Control.

Deursen, A., Klint, P., Visser, J., 2000. Domain-
specific languages: an annoted bibliography. In:
SIGPLAN Notices. Vol. 35. pp. 26–36.

Doets, K., van Eijck, J., 2004. The Haskell Road to
Logic, Maths and Programming. College Publica-
tions.

Dubey, A., 2005. Metamodel based language and
computation platform for algorithmic analysis of
hybrid systems. Ph.D. thesis, Faculty of the Grad-
uate School of Vanderbilt University.

Favre, J.-M., 2004. Towards a basic theory to model
driven engineering. In: Workshop on Software
Model Engineering, WISME 2004, joint event
with UML2004.

Guttag, J. V., 2002. Abstract data types and the de-
velopment of data structures. Software pioneers:
contributions to software engineering, 453–479.

Harisson, W., 2006. The essence of multitasking. In:
Springer (Ed.), Lecture Notes on Computer Sci-
ence. Vol. 4019. pp. 158–172.

Henzinger, T. A., Sifakis, J., 2007. The discipline of
embedded systems design. Computer 40 (10), 32–
40.

Hudak, P., Courtney, A., Nilsson, H., Peterson, J.,
2003. Arrows, robots and functional reactive pro-
gramming. In: Springer (Ed.), Lecture Notes on
Computer Science. Vol. 2638. pp. 158–172.

Hudak, P., Hughes, J., S., P.-J., P.A., W., 2007. His-
tory of haskell: Being lazy with class. In: 3rd ACM
Sigplan History of Programming Language. pp.
1–55.

Jantsch, A., Sander, I., 2005. Model of computation
and languages for embedded systems design. In:
Computer and Digital Techniques. Vol. 152. pp.
114–129.

Lee, E., Varaiya, P., 2003. Structure and Interpre-

tation of Signals and Systems. Addison Wesley.
Maler, O., 1998. A unified approach for studying

discrete and continuous dynamical systems. In:
37th IEEE Conference on Decision and Control.
Vol. 2. pp. 2083–2088.

Mathaikutty, D., 2005. Functional programming
and metamodeling frameworks for system design.
Ph.D. thesis, Faculty of Virginia Polytechnic In-
stitute and State University.

Mc Ilroy, M., 1998. Functional pearls: Power series,
power serious. Journal of Functional Program-
ming 1 (1), 1–13.

Mellor, S., Clark, A., Futagami, T., 2003. Guest edi-
tors introduction: Model-driven development. In:
IEEE Software. Vol. 20. pp. 14–18.

Thielemann, H., 2004. Audio processing using
haskell. In: 7th International Conference on Dig-
ital Audio Effects.

Thirion, B., Thiry, L., 2002. Concurrent program-
ming for the control of hexapod walking. ACM
Ada Letters 22 (1), 17–28.

Thiry, L., Thirion, B., 2008. Functional
(meta)models for the development of control soft-
ware. In: International Federation of Automatic
Control, IFAC’08, Seoul.

Uustalu, T., Vene, V., 2006. The essence of dataflow
programming. In: Springer (Ed.), Lecture Notes
on Computer Science. Vol. 4164. pp. 135–167.

Vangheluwe, H., de Lara, J., 2003. Foundations of
multi-paradigm modeling and simulation: com-
puter automated multi-paradigm modelling. In:
35th conference on Winter simulation: driving in-
novation. pp. 593–603.

Varro, D., 2002. Towards symbolic analysis of visual
modelling languages. In: International Workshop
on Graph Transformation and Visual Modelling
Techniques. pp. 57–70.

Varro, D., Pataricza, A., 2003. Vpm: Mathematics
of metamodeling is metamodeling mathematic.
Journal of Software and Systems Modelling, 1–24.

Wadler, P., 1996. The essence of functional program-
ming. In: 19th Symposium on Principles of Pro-
gramming Languages.

Walter, R., 1992. Categories and Computer Science.
Cambridge University Press.

Winskel, G., Nielsen, M., 1995. Models for concur-
rency. In: Press, O. U. (Ed.), Handbook of Logic
in Computer Science. pp. 1–148.

Laurent Thiry is an assistant professor at the
Université de Haute Alsace (Mulhouse, France). He
passed his PhD in software engineering, entitled

”Models, metamodels and behavioral objects for
complex dynamical systems”, at the Université de
Haute Alsace in 2002. His research interests include
software engineering, model driven engineering, and
formal methods applied to control.

Bernard Thirion is a professor of software en-
gineering at the Université de Haute Alsace (Mul-
house, France). He passed his Ph.D. (1980) in elec-
tronics and instrumentation at the Université de
Haute Alsace, France. In 1993 he received a French
Habilitation for supervising research activities in
software engineering at the Université de Haute Al-
sace, France. His current research interests include
software engineering and software architectures,
UML and object-oriented modeling and metamod-
eling, design patterns, design of concurrent and
real-time systems.

