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Active Learning of Causal Bayesian Networks Using Ontologies: a
Case Study.

Montassar Ben Messaoud Philippe Leray Nahla Ben Amor

Abstract— Within the last years, probabilistic causality has
become a very active research topic in artificial intelligence
and statistics communities. Due to its high impact in various
applications involving reasoning tasks, machine learning re-
searchers have proposed a number of techniques to learn Causal
Bayesian Networks. Within the existing works in this direction,
few studies have explicitly considered the role that decisional
guidance might play to alternate between observational and
experimental data processing. In this paper, we spread our
previous works which foster greater collaboration between
causal discovery and ontology evolution so as to evaluate them
on real case study.

I. INTRODUCTION

A directed acyclic graph (DAG) (also called a Bayesian
network (BN) [10]) is a powerful tool for representing
domains with inherent uncertainty. Due to the Markov equiv-
alence property [30], when learning the Completed Partially
Directed Acyclic Graph (CPDAG) from observational data
and randomly choosing one possible complete instantiation in
the equivalence space, we are left with an unresolved causal
structure. In order to provide a causal interpretation for BNs,
an extension, called Causal Bayesian networks (CBNs), is
introduced with the goal to provide a convenient framework
for causal modeling and reasoning.

Contrary to the non-Gaussian learning methods (also
called LiNGAM [29]) which use pure observational data
(Dobs), the active learning for CBN structure often requires
interventional data (Dint). In this work, we don’t make use
of LiNGAM methods since no suitable parametrization of
the joint distribution can be established when working under
the non-gaussianity assumption. This is the key reason for
restricting our approach to only CBNs.

This paper provides a continuation as well as an extension
of our previous works [1][2][3] in which we introduce an
algorithm that actively chooses the experiments to perform
based on the semantic distance calculus. Further develop-
ments along this direction have been made in order to design
the experimental work appropriately.

The remainder of this paper is arranged as follows: Sec-
tion 2 gives the necessary background for both CBNs and
ontologies. In Section 3, we discuss some related works that
have addressed the problem of active causal discovery and in
Section 4 we present a case study to demonstrate the practical
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application of our active learning design in real biological
system. Concluding remarks are given in Section 5.

II. BASIC CONCEPTS & BACKGROUND

A. Causal Bayesian Networks

A Causal Bayesian network (CBN), also known as a
Markovian model, is represented by a tuple (G,P), where: (i)
G is a DAG, called a causal graph, over a set X={X1, X2,..,
Xn} of vertices, and (ii) a probability distribution P(v), over
the set X of discrete variables that correspond to the vertices
in G.

The probabilistic interpretation views G as representing
conditional independence restrictions on P: Each variable is
independent of all its non-descendants given its direct parents
in the graph. This leads to express a global factorization
of the joint probability distribution over the set of random
variables in the graph.

In addition to the usual conditional independence inter-
pretation, the CBN is also given a causal interpretation since
each arc is identified as a direct causal influence between
a parent and a child node [11]. For this reason, CBNs are
considered as proper bayesian networks (BNs) but the reverse
is not necessarily true.

The main difference between the two formalisms lies in
the nature of the data needed to learn the structure. Due
to nonidentifiability, when building our model from pure
observational data, we may not have enough information to
discover the true structure of the graph and the causal model
will be restricted to the Completed Partially Directed Acyclic
Graph (CPDAG) [30].

However, if we are able to intervene on the system, that
is, to set some of its variables to user-specified values, we
can infer the directions of arcs which are not specified in the
particular Markov equivalence class. At this point, we should
note that intervening on a system may be very expensive,
time-consuming or even impossible to perform. This implies
that the choice of variables to experiment on can be vital
when the number of interventions is restricted.

B. Ontologies

There are different definitions in the literature of what
should be an ontology. The most notorious was given by
Tom Gruber [18], stipulating that an ontology is an explicit
specification of a conceptualization. The ”conceptualization”,
here, refers to an abstract model of some phenomenon having
real by identifying its relevant concepts. The word ”explicit”
means that all concepts used and the constraints on their use
are explicitly defined.



In the simplest case, an ontology describes a hierarchy of
concepts (i.e. classes) related by taxonomic relationships (is-
a, part-of). In more sophisticated cases, an ontology describes
domain classes, properties (or attributes) for each class, class
instances (or individuals) and also the relationships that hold
between class instances. It is also possible to add some
logical axioms to constrain concept interpretation and express
complex relationships between concepts.

Hence, more formally, an ontology can be defined as a
set of labeled classes C={C1, ..., Cn}, hierarchically ordered
by the subclass relations (i.e. is-a, part-of relations). For each
concept Ci we identify k meaningful properties pj , where j ∈
[1, k]. We use Hi to denote the finite domain of instance (i.e.
concretizing the ontology concepts by setting their properties
values) candidates with each concept Ci and ci to denote
any instance of Ci. We also use R to represent the set of
semantical (i.e non-hierarchical) relations between concepts
and Rc to represent the subset of causal ones. Finally, formal
axioms or structural assertions <ci, cj , s> can be included,
where s ∈ S is a constraint-relationship like ”must, must
not, should, should not, etc”.
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Fig. 1. An illustrative example of Risk & Catastrophe Ontology

All of these components are shown schematically in Figure
1, where concepts are tagged by yellow circles and instances
are marked with blue rhombus. The is-a relations concern
inter-related concepts and the non-labeled ones indicate in-
stantiation relationships. We distinguish between two types
of causal relations in the ontology. The first ones which are
indicated in solid lines build causal connections between the
ontology concepts. The other type in dashed lines consider
more specific causal relations that exist between concept
instances. We restrict the use of semantic relations to only
causal ones between concepts since they are the main rela-
tions recovered in our approach.

Practically speaking, the ontologies are often a very large
and complex structure, requiring a great deal of effort and
expertise to maintain and upgrade the existing knowledge.
Such proposals can take several different forms such as a

change in the domain, the diffusion of new discoveries or
just an information received by some external source [23].

There are many ways to change the ontology in response
to the fast-changing environment. One possible direction is
the ontology evolution which consists in taking the ontology
from one consistent state to another by updating (adding or
modifying) the concepts, their properties and the associated
relations [24].

The ontology evolution can be of two types [24]:
• Ontology population: When new concept instances are

added, the ontology is said to be populated.
• Ontology enrichment: Which consists in updating

(adding or modifying) concepts, properties and relations
in a given ontology.

In order to establish the context in which the ontology
evolution takes place, the principle of ontology continuity
should be fulfilled [26]. It supposes that the ontology evolu-
tion should not make false an axiom that was previously true.
When changes do not fulfill the requirement of ontological
continuity, it is not any more an evolution, it is rather an
ontology revolution.

III. ACTIVE CAUSAL DISCOVERY: STATE OF THE ART

The main purpose of causal discovery with active learning
is to derive meaningful patterns from a limited data. Funda-
mentally, active learning methods are designed to guide the
learning process through the most informative interventions
and maximally reduce the variance in the model. Several
approaches for actively learning CBNs have been proposed
during the last decade.

[14] studied a Bayesian scoring metric that can incorporate
both observational and experimental data. Using a similar
metric [12] designed an algorithm to select experiments that
minimizes an expected loss. A similar but more general algo-
rithm has been proposed in [19] to learn BN structures using
posterior distributions of structures based on decision theory.
[21] investigates the performance of another active learning
approach that is more suitable for modeling continuous data.
The method employs an expected loss function that should
be expressed in terms of the size of transition sequence
equivalence classes [22].

In some recent works, [13] developed a framework for
active learning of causal structures via interventions in which
two optimal designs of batch and sequential interventions
were proposed. [20] presented a theoretic approach in which
the causal discovery is considered as a two person game be-
tween Nature and Scientist. The scientist attempts to discover
the true causal structure and Nature tries to make discovery as
difficult as possible. [4][6] have also proposed the MyCaDo
(My Causal Discovery) algorithm for learning CBNs from
perfect observational data and experiments. Using traditional
structure learning techniques, they learn a CPDAG from
observational data and then try to discover the directions of
the remaining edges by means of experiments. To choose
the best ones, they proposed a utility function reflecting
the gain (i.e. the number of undirected edges and those



susceptible to be inferred) and costs of the experiments.
We now outline our general approach to actively learning
CBNs using ontologies in which MyCaDo has been a key
component. The original character of SemCaDo (Semantical
Causal Discovery) algorithm [1][2][3] is essentially its ability
to discover and reuse the capitalized knowledge in CBNs.
As inputs, SemCaDo needs an observational dataset and a
corresponding domain ontology. Then it will proceed through
three consecutive phases:

• During the first, we will try to fully exploit the semantic
causal relations encoded in the ontology by injecting
them in the structure learning process. Our main ob-
jective is to narrow the corresponding search space by
introducing some restrictions that all elements in this
space must satisfy. In our context, the only constraint
that will be defined is edge existence.

• The second phase will then tackle the problem of
consistently orienting the rest of undirected edges in the
CPDAG. It seems obvious that the gained information
of the utility function employed in MyCaDo is essen-
tially the node connectivity which serves to orient the
maximal number of edges but not necessary the most in-
formative ones. To cope with this limitation, the strategy
we propose in our approach makes use of a semantic
distance calculus provided by the ontology structure.
So, for each node in the graph, SemCaDo gives a
generalization of the node connectivity by introducing
the semantic inertia. By this way, we will accentuate
the serendipitous aspect of the proposed strategy and
investigate new and unexpected causal relations on the
graph.

• In the third step, we follow the same edge orientation
strategy as in MyCaDo. So if there are still some
non-directed edges in the PDAG, we re-iterate over
the second phase and so on, until no more causal
discoveries can be made. The causal discoveries will
be then extracted and interpreted for an eventual on-
tology evolution. In this way, the causal relations will
be traduced as semantic causal relations between the
corresponding ontology concepts.

In previous works [2][3], we resort to simulations to give
accurate results on the performance of SemCaDo compared
to MyCaDo in various situations (i.e. MyCaDo serves as
comparison reference to SemCaDo since both of them share
the same assumptions and use the same input data). In the
next section, we present an experimental evaluation using
real cellular network to confirm the effectiveness of the
proposed technique.

IV. VALIDATION ON S. CEREVISIAE CELL CYCLE
MICROARRAY DATA

Discovering and modeling gene regulatory circuitry from
both observational and experimental data is one of the
most challenging problems facing biologists today. This
is essentially due to the non negligible number, duration
and cost of experiments [5] and the lack of facilities for

conducting genetic 1 (resp. environmental 2) perturbations.
In such circumstances, it would be far better to propose an
experimental design to cope with the lack of data and provide
maximal expected information. In this context, we propose
to validate our approach using Sacharomyces cerevisiae cell
cycle microarray data and the corresponding Gene Ontology
annotations.

1) Data description: The experimentation using real bio-
logical systems requires the use of gene-expression microar-
ray data, the Gene Ontology and causal pathway repositories.
� Gene expression dataset: We consider the Yeast Sac-

charomyces cerevisiae cell cycle microarray data since
the Yeast genome is relatively small compared to more
complex eukaryote organisms and highly annotated with
Gene Ontology functions. In this dataset, the mRNA
concentrations of nearly 6178 genes were measured
with three independent fluorescence measurement meth-
ods. Overall, the data set contains 73 sampling points for
all genes. Each of them is measured in different phases
of the yeast cell cycle. According to [8], about 800 of
these genes have been reported with varying transcripts
over the cell cycle stages.

� Gene ontology: Most of the Saccharomyces cerevisiae
genes are annotated with specific biological functions
from the Gene Ontology (GO) [27], which remains the
most popular initiative aiming at providing a structured,
precisely defined, and dynamic controlled vocabulary
to facilitate the description of gene roles and gene
product attributes in the eukaryotic genome. The GO
structure is in the form of a rooted DAG where nearly
30000 concepts are formalized into three related (sub-
)ontologies, referred to as molecular function, cellular
component and biological process. According to the GO
consortium, these GO domains represent three separate
ontologies which are unrelated by a common parent
node.
The directed edges between concept nodes represent
either subsumption links (”is-a”) or composition re-
lationships (”part of”). The GO concepts are given
a unique ID number in the form of GO:N (where
N is a natural number) to identify and characterize
some biological properties. This GO structure (concepts
+ relationships) reflects the current representation of
biological knowledge as well as serving as a guide for
classifying new data.
According to the existing biomedical literature’s asser-
tions, the gene products may be annotated to as many
GO concepts as needed, at the most specific levels
possible. For instance, as shown in Figure 2, the gene
CLB6 is involved in:

– the regulation of cyclin-dependent protein kinase
activity (GO:0000079),

1Gene knockout (deletion of the gene), or overexpression (setting the
expression level higher than its usual level).

2change in one or more non-genetic factors, such as a change in
environment, nutrition, pressure or temperature.
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– the regulation of S phase of mitotic cell cycle
(GO:0007090),

– the G1/S transition of mitotic cell cycle
(GO:0000082).

Such a classification will provide a higher-level under-
standing of how tissue-specific genes are regulated and
expressed.
Given two other genes NPL3 and UFE1 which
are respectively annotated with the cell nucleus
(GO:0005634) and the SNARE complex (GO:0031201),
we show in Figure 3 the multiple paths that can be found
between them. Using our simple path based method, we
set the cell part term (colored in red) as the most specific
common subsumer (mscs) of the two studied concepts.
If there are multiple paths between any two concepts
and their mscs, only the shortest one is considered. The
red dashed lines indicate in our case the optimal path
according to the GO structure. We note that the best

GO-distance between two genes can be equal to 0 when
both of them are annotated to the same GO concept.

� Causal pathway repositories: However, since the GO
structure consists essentially of hierarchical classifica-
tion, we will be unable to extract or enrich the GO
with regulatory pathways. An alternative way to identify
causal relations is to use the so-called Biochemical Path-
way Repositories where regulatory information could be
available. Fueled by the availability of experimentally
determined pairwise gene interactions, different datasets
for delineating the biochemical pathways and reactions
have been merged. Most of these scientific databases
such as, Data Repository of Yeast Genetic Interactions
(DRYGIN) 3 [25], enable a convenient access to genes
in terms of the biological pathways in which they
intervene (See the DRYGIN screen capture for the top
regulatory pathways involving the gene CLB6 in Figure
4).

Fig. 4. Screen capture of the top DRYGIN regulatory pathways involving
the gene CLB6.

2) Experimental design: When applying our approach in
the context of biological field, we were forced to change
some of the initial CBN-ontology correspondences that we
provide in [2][3]. According to Table I, the GRN nodes
which correspond to genes will be assigned to the most
specific level of the Gene Ontology using term annotations
(i.e. instances). Then there would no longer be any need
to use the observational and experimental data since we
dispose of an appropriate causal model based on we simulate
experimental treatments. The rest of the correspondences
remain unchanged.

TABLE I
THE SET OF ALL POSSIBLE CORRESPONDENCES BETWEEN THE GRN

AND THE GENE ONTOLOGY.

Gene Regulatory Network Gene Ontology
Nodes Concept instances (i.e. GO annotations)

Causal dependencies Semantic causal relations
Causal inference Logic rule reasoning

To make a meaningful performance comparison between

3http://drygin.ccbr.utoronto.ca/



MyCaDo and SemCaDo algorithms, we will detail the three
main blocs of our experimental strategy:

  

Fig. 5. Graphical representation of the entire GRN employed for the
experimentations

• Structure learning: Our alternative way for implement-
ing the MyCaDo (resp. SemCaDo) approaches is to
use the Gene Regulatory Network (GRN) of [7] as a
starting causal model and the GO structure as a source
for calculating semantic distances between genes. From
a modelling standpoint, a GRN can be thought as a
DAG G = {V , E} where V is the set of n gene nodes
(resp. protein concentrations and other experimental
conditions) and E is the set of directed edges among the
nodes belonging to V . Such models are well suited for
representing cellular processes (i.e. metabolism, signal
transduction and transport).
Using the Yeast Sacharomyces cerevisiae cell cycle mi-
croarray data, [7] proved that they were able to extract a
finer structure of regulatory interactions between genes.
Their heuristic approach was aimed at focusing on a pair
of features that are common to high-scoring networks.
The first type of features they identified is the high
confidence Markov relations which assumes that a gene
interaction exists between two genes if no variable in
the model mediates the dependence between them. The
second feature is synonymous of causality in the model
since, out of all 800 genes they treat, only a few seem
to dominate the order (i.e., appear before many other
genes) in the overall networks of a given equivalence
class . The intuition is that precedence over the ordering
is indicative of potential cause-to-effect relationships on
the cell-cycle process. Using the Tulip Software [28], a
screen capture of the considered causal graph is shown
in Figure 5.
The main reason for choosing the GRN of [7] as starting
model is that it is free from assumptions and don’t
reuse any prior knowledge. We also note that interac-
tions between genes other than causal relationships (i.e.

directed edges with sufficiently high confidence in the
order between genes) are not considered.
We initially need this causal graph to sample normally
distributed data that will be fed to the Greedy search
(GS) algorithm [15] in order to re-discover the
original network. Here we consider the BIC as our
model selection criterion since this provides a good
approximation to the full posterior (BDe) score and
is faster to compute with large amounts of data.
Simultaneously, we slightly modify GS in order to
permit the experimenter to integrate prior knowledge
about the direction of some edges in the final graph.
These ”hard” restrictions are assumed to be true for
the resulting BN, and therefore all the candidate BNs
must satisfy them. Three cases were considered in
which we incorporate 20 % (resp. 40 and 60 %) of
the edges being present in the initial graph. For proper
sampling, we have chosen the causal priors uniformly
at random from the set of all edges. Then, once the BN
is constructed, we need to execute the DAG-to-CPDAG
algorithm [9].

• Causal discovery process:
As we do not dispose of a real system to intervene upon,
we decide to simulate the experimentations directly in
the previously generated CBNs as in [4][6] and choose
equal measures of importance when calculating the
expected utilities (i.e. α=β=1).
To perform the experimentation on the best node,
we have to mutilate (i.e. disconnect) the node Xbest

from Pa(Xbest) in the DAG such that the manipulated
variable become totally independent of its parents in
the post-intervention distribution [16]. We force Xbest

to take on random values and then sample the post-
intervention distribution to get our experimental data.
The obtained dataset as well as the initially supplied
observations will be transferred to the conditional inde-
pendence χ2 test in order to determine if the variable
experimented on is the cause or the effect of its neigh-
boring variables.
Another point to consider in our experimental study
concerns the calculation of the semantic gain:

Semantic Gain(Xi) =
∑

Xj∈O(Xi)

distSem(mscs(O
∗
(Xi)), X

∗
j )

(1)

where O∗ represents the set of concepts relative to the
set of nodes O that become linked by oriented edges
after performing an experiment on Xi, mscs(O∗) is the
most specific common subsumer of the set of concepts
O∗ and distSem(Ci, Cj) is the minimal distance, in
separating edges, between Ci and Cj .
Throughout our simulation phase, we measured the sum
of Rada’s distances [17] relative to the new directed
edges in the graph and update a semantic cumulus after
each SemCaDo (resp. MyCaDo) iteration.
When calculating the SemCaDo utilities, we were also



forced to add a ”fake” term (GO root) as a parent of
the three existing root nodes in the GO (i.e. molecular
function, cellular component and biological process) to
perform semantic distance calculations on one unique
ontology. This GO root will be then associated with a
dozen of S. cerevisiae gene products which are not yet
annotated with any GO term.

• Pathway repository evolution: Although, to make the
experimental design more realistic in the context of
biological resource management, we need to modify the
third phase of our algorithm by updating the biologi-
cal pathway datasets (e.g. DRYGIN repository) instead
of making the GO enrichment. Metabolic pathways
in such databases are computationally predicted using
automated literature mining and then manually reviewed
to ensure higher accuracy. This new dimension en-
sures optimal reuse of causal discoveries obtained from
experimentations by submitting missing gene pairwise
interactions. Unfortunately, since we are not interven-
ing on a real system, we are unable to provide the
dataset curators with any suggestions or corrections. We
therefore content ourselves with a brief outline of the
principle.

3) Results & interpretation: The present experimental
study employed a two key steps to evaluate our strategy,
in both a quantitative and qualitative way. In the first one,
we evaluate the SemCaDo performance in terms of both
the recovering of the expected structure and the total time
required for execution. In the second context of analy-
sis, we will proceed through a comprehensive comparison
between the SemCaDo and MyCaDo algorithm. The goal
of this experimental study is to assess the quality of the
two algorithms, and, more importantly, to understand how
theoretically predicted properties manifest themselves in a
practical setting.

? Quantitative comparison between SemCaDo and My-
CaDo: Four scenarios have been analyzed, as shown
in the two plots in figures 6 and 7. First, we apply
the structure learning algorithm without considering
any prior knowledge. Then we proceed through three
series of tests with varying degrees of prior knowledge
(20%, 40% and 60% of the edges contained in the
initial graph). After each test run, we counted the
number of correctly (resp. inversely) directed edges and
non-existent edges obtained with SemCaDo (Refer to
Figure 6) and measure the time execution needed to
reconstruct the full structure using GS (resp. MyCaDo
and SemCaDo) algorithm (Refer to Figure 7). In order to
properly compare and contrast the empirical results, the
above-mentioned algorithms must be simulated on the
same initial network and test conditions. Accordingly, it
was so reasonable that the MyCaDo also integrates the
same causal prior knowledge in a way to not penalize
its performance when compared to SemCaDo.
We first set out to investigate the impact of injecting
causal prior knowledge on the quality of the learning

Fig. 6. Enhancing the structure learning performance of SemCaDo (resp.
MyCaDo) by exploiting causal prior knowledge

Fig. 7. Computational time for SemCaDo (resp. MyCaDo and GS)
algorithms

reconstruction. Figure 6 illustrates the averaged results
obtained with both SemCaDo (solid lines) and MyCaDo
(dashed lines). We also plotted the proportion of edge
orientation relative to applying MyCaDo without in-
tegrating priors in dashed horizontal line so that we
could compare the SemCaDo results to those obtained
with the original (resp. modified) version of MyCaDo.
Our results for the first scenario will serve as the
reference standard to evaluate the impact of injecting
causal priors. With the introduction of causal priors
in the next three scenarios, we realize a progressive
improvement in the accuracy and efficiency of the
learning process. For example, when proceeding with
SemCaDo, the integration of 20% of the initial causal
edges has adjusted the total number of correctly directed
ones by about 10%. This leads to a relative decrease of
both inversely and non-existent edges. We note that all
the associated means and standard deviations are equals
when dealing with MyCaDo and SemCaDo, indicating
the close correlation between the studied curves. Thus,
it appears that, while MyCaDo is powered by causal
priors, there was no significant improvement over the
SemCaDo strategy.
Let’s now reexamine the same four scenarios from the
perspective of time execution. As we stated earlier, the
integration of the priors is restricted to the initial step



of SemCaDo (resp. MyCaDo). This implies that GS is
intended to be the first to benefit from this external
guidance. So, as shown in Figure 7, the green line in
the plot corresponds to the time execution of GS. The
other curves in red and blue displayed the runtimes
relative to both SemCaDo and MyCaDo. For expository
ease, we normalize the time execution of each algorithm
by the GS (without priors) runtime, so the normalized
runtimes will be values between 0 and 2. Here, without
priors, we can depict that MyCaDo+priors needed three
quarters of the time that the SemCaDo used. Simi-
larly as in Figure 6, we plotted the execution time
relative to applying MyCaDo without integrating priors
in dotted horizontal line. Under the same parameter
setting, SemCaDo requires the integration of 13 % of
causal prior knowledge to yield the same execution time
as MyCaDo. This decreasing trend continues with the
further introduction of causal priors. For example, with
the injection of 20% of causal priors, we improve the
SemCaDo runtime by about 14 %. Similarly, we gain
further improvement reducing overall execution time by
about 24% (resp. 30%) when integrating 40% (resp.
60%) of causal priors.
Overall, the SemCaDo significantly outperforms
MyCaDo for all the tested graphs but it appears to
be more complex and time consuming compared to
MyCaDo + priors. This is essentially due to the fact
that SemCaDo returned each time to the ontology
to perform the required distance calculations and
determine which variable to alter next. However,
further improvements can be achieved through the use
of cache system performance.

? Qualitative comparison between SemCaDo and My-
CaDo:
Given the above parameter settings, our analysis here
will focus on a qualitative comparison between My-
CaDo and SemCaDo. The corresponding results are
reported in Figure 8 under the same four test conditions
as in the previous analysis except that now we will
display the evolution of the semantic cumulus along the
experimental process for both MyCaDo (resp. MyCaDo
+ priors) and SemCaDo. Here we would like to propose
a different approach whose aim is to promote the
experimentation on the more distant genes according
to the GO. We also continue to assume the use of
Rada distance [18]. Table II can be used in conjunction
with Figure 8 to obtain additional statistical information
relative to the gain in cumulus margin, the difference
between the curves areas and the number of experiments
that we saved when applying SemCaDo instead of
MyCaDo.
For ease of interpretation, the curves analysis would be
relatively more straightforward if we compare them in
pairs. We thus need to shift the focus of our study in
comparing SemCaDo to the original version of MyCaDo
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Fig. 8. Comparison between MyCaDo (resp. MyCaDo+Priors) and Sem-
CaDo without any prior knowledge (A) and after integrating 20 %, resp.
40% and 60% (B, C, D).

(solid curve) and then move to a comparison with the
adapted version (dashed curve).
First of all, we apply both MyCaDo and SemCaDo
without any prior knowledge (See Figure 8.A). The dif-
ference in areas between the two curves was about 10%
and around one hundred experiments have been realized
with the two algorithms. When we integrate 20% of
the initial causal relations before starting the learning
process (Figure 8.B) , we earned a cumulus margin
of about 22% from the beginning. The difference in
areas pass to 29% and we save nearly ten experiments.
This increasing trend continues when incorporating 40%
of the initial causal relations (Figure 8.C) to obtain
37% as a cumulus margin, 38% as total difference in
areas between the two curves and 19 less experiments.
We finish with the integration of 60% of the initial
causal relations (Figure 8.D) to reach a cumulus margin
of about 51%, a total difference in areas between the
two curves exceeding the 44% and save more than 30
unnecessary experiments.

TABLE II
NUMERICAL COMPARISON BETWEEN SEMCADO AND MYCADO

CURVES IN FIGURE 8.

Causal Cumulus Difference between SemCaDo Saved
integration margin gain and MyCaDo curves areas experiments

Fig 7.A 0% 0% 10% 0
Fig 7.B 20% 22% 29% 10
Fig 7.C 40% 38% 37% 19
Fig 7.D 60% 51% 44% 31

Nevertheless, there is no obvious disparity among the
curve of SemCaDo and that of MyCaDO + priors
since the two curves were highly promoted from the
beginning. Additionally, it is noteworthy that regulatory



relations between ”semantically” adjacent genes are
much more widespread in GRNs. Finally, we note that a
lot of experiments and efforts have been saved compared
to MyCaDo and the most informative interventions have
been reported earlier in the experimental process. This
allows a significant gain in term of relevant experimen-
tations especially when there is not enough budget to
cover all the required interventions. Our belief is that
SemCaDo top-ranked genes can be targets for medical
treatment of genetic diseases and opportunities to obtain
further knowledge about the biological mechanisms that
underly their gene expression. Potentially, this gives
us scope to explore virgin areas when developing our
knowledge-base on pathway modeling.

V. CONCLUSIONS

In this paper, we emphasize the potential application of
our active learning approach on real biological system design
using S. Cerevisiae cell cycle microarray data and Gene On-
tology. Based on the experimental results, we provided solid
evidence that SemCaDo achieves better performance than
MyCaDo, its competing algorithm. Our quantitative analysis
outlined the SemCaDo ability to completely recover the true
causal structure and reduce the learning task complexity.
On the other hand, the qualitative analysis also showed the
role of our active design to identify the most serendipitous
experiments and move away from what it is usually proposed
by the research community. Nevertheless, the main problem
is that there is no commonly accepted benchmark to help us
to go further towards developing experimental tests that can
lead to more rigorous results.
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