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EXACT BOUNDARY CONTROLLABILITY OF A SYSTEM OF

MIXED ORDER WITH ESSENTIAL SPECTRUM∗

F. AMMAR KHODJA† , K. MAUFFREY† , AND A. MÜNCH‡

Abstract. We address in this work the exact boundary controllability of a linear hyperbolic
system of the form u′′+Au = 0 with u = (u1, u2)

T posed in (0, T )× (0, 1)2. A denotes a self-adjoint
operator of mixed order that usually appears in the modelization of a linear elastic membrane shell.
The operator A possesses an essential spectrum which prevents the exact controllability from holding
uniformly with respect to the initial data

(

u0, u1
)

. We show that the exact controllability holds by

one Dirichlet control acting on the first variable u1 for any initial data
(

u0, u1
)

generated by the
eigenfunctions corresponding to the discrete part of the spectrum of A. The proof relies on a suitable
observability inequality obtained by way of a full spectral analysis and the adaptation of an Ingham-
type inequality for the Laplacian in two spatial dimensions. This work provides a nontrivial example
of a system controlled by a number of controls strictly lower than the number of components. Some
numerical experiments illustrate our study.

Key words. boundary controllability, essential spectrum, Ingham inequality, mixed order
operator
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1. Introduction and problem statement. Let Ω = (0, 1)2 and Γ be the part
of ∂Ω defined by Γ = {(x, y) ∈ ∂Ω, xy = 0}. Let T be a positive real number and a, α
be two real numbers such that a > α2 > 0 and

√
a− α2/π /∈ N

∗. We analyze in this
work the exact boundary controllability of the following system in u = (u1, u2)

T :

(1.1)

⎧
⎪⎨
⎪⎩

u′′ +Au = 0 in QT = Ω× (0, T ),

u1 = v 1Γ on ΣT = ∂Ω× (0, T ),

(u(·, 0), u′(·, 0)) =
(
u0, u1

)
in Ω,

where

A =

(
−∆ −α∂x
α∂x a

)
.

The study of this system is motivated by the following in u = (u1, u2, u3)
T :

⎧
⎪⎨
⎪⎩

u′′ +Au = 0 in QT ,

(u1, u2) = (v1, v2) 1Γ on ΣT ,

(u(·, 0), u′(·, 0)) =
(
u0, u1

)
in Ω,
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Comte, 16 route de Gray, 25030 Besançon Cedex, France (farid.ammar-khodja@univ-fcomte.fr,
karine.mauffrey@univ-fcomte.fr). The work of the second author was partially supported by grants
ANR-07-JCJC-0139-01 (Agence nationale de la recherche, France) and by Région de Franche-Comté
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where the operator

A =

⎛
⎜⎝

−a∂2
xx − c∂2

yy −(b+ c)∂2
xy −ar−1∂x

−(b+ c)∂2
xy −c∂2

xx − a∂2
yy −br−1∂y

r−1a∂x r−1b∂y r−2a

⎞
⎟⎠

is used to model a cylindrical membrane elastic shell (see [20]). Here a = 8µ(λ +
µ)/(λ + 2µ), b = 4λµ/(λ + 2µ) and c = 2µ, where λ, µ > 0 denote the Lamé coef-
ficients and r−1 > 0—the coupling parameter between the tangential displacement
(u1, u2) and the normal displacement u3 of the shell—denotes the curvature of the
cylinder. This mixed order and formally self-adjoint operator, when associated with
homogeneous Dirichlet boundary conditions on the first two components, enters in the
framework of [6]. It possesses an essential spectrum σess(A) that can be computed
using [7]: precisely, σess(A) =

[
0, 2r−2(3λ+ 2µ)/ (λ+ µ)

]
. Therefore, the spectrum

of A is composed of two distinct parts, the essential spectrum plus a discrete spectrum
with asymptotic behavior equal, up to some constant, to the spectrum of −∆. The
difficulty here is that the discrete spectrum is not known explicitly. In this paper,
instead of A we consider the operator A which presents the same structure yet is
simpler and has a spectrum that can be explicitly computed.

We set H = L2 (Ω) × L2 (Ω) (equipped with the natural scalar product 〈·, ·〉H)
and H1/2 = H1

0 (Ω)× L2 (Ω). Let H−1/2 denote the dual of H1/2 with respect to the
pivot space H . System (1.1) is said to be exactly controllable at time T > 0 if for any
initial data

(
u0, u1

)
∈ H ×H−1/2 and any target

(
u0
T , u

1
T

)
∈ H ×H−1/2 there exists

a control function v in a suitable space, such that the unique solution u = (u1, u2)
T

of system (1.1) satisfies

(u(·, T ), u′(·, T )) =
(
u0
T , u

1
T

)
in Ω.

We point out that the variable u2 in system (1.1) is free of any condition on the
boundary ∂Ω. In particular, system (1.1) provides a nontrivial example for which
the number of controls is strictly lower than the number of components (for other
examples, see, for instance, [22] and [11]).

As usual, the controllability issue is equivalent to an observability inequality that
we will rigorously prove to be

(1.2)
∥∥(Φ0,Φ1

)∥∥2
H1/2×H

≤ C

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt

(ν = (ν1, ν2) denotes the unit outward normal to Γ) for any initial data
(
Φ0,Φ1

)

belonging to H1/2×H , for the following homogeneous adjoint system in Φ = (ϕ, ψ)T :

(1.3)

⎧
⎪⎨
⎪⎩

Φ′′ +AΦ = 0 in QT ,

ϕ = 0 on ΣT ,

(Φ(·, 0),Φ′(·, 0)) =
(
Φ0,Φ1

)
in Ω.

The observation zone Γ is defined so that the triplet (Ω,Γ, T ) satisfies the geometric
optic condition.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT BOUNDARY CONTROLLABILITY 1859

The originality and difficulty of the—apparently simple—system (1.3) are related
to the fact that A is a mixed order operator and, therefore, possesses a nonempty
essential spectrum σess(A), as shown in [6] in a general situation. As a consequence,
the observability does not hold uniformly with respect to the data

(
Φ0,Φ1

)
. Precisely,

in [10] the authors exhibit Weil sequences, associated with some elements of σess(A)
for which the observability inequality (1.2) is not true. The observability is there-
fore expected only, roughly speaking, in the orthogonal of some space related to the
essential spectrum. To our knowledge, up to now the only way to address this kind
of problem is based on spectral analysis and an Ingham-type approach and can be
used to prove the observability for the discrete part of the spectrum, provided some
spectral gap conditions (see [12]). In that framework, the existing literature mainly
concerns the controllability of dynamical systems modeling the vibrations of an elastic
membrane shell, where precisely mixed order and self-adjoint operators appear (we
refer to [20] for a detailed spectral analysis). We also mention [8, 9], where the con-
trollability of a hemispherical cap is studied using a nonharmonic spectral analysis.
The analysis, reduced to the one spatial dimension by axial symmetry, exhibits the
loss of uniform observability due to the essential spectrum composed of a single pos-
itive element. A similar study is performed in [2] for a nonuniform elliptic operator
A for which 0 ∈ σess(A). We also refer the reader to Chapter 5 of [13] for results
based on some recent extensions of Ingham-type inequalities. For systems of this kind,
the uniform partial controllability, which consists of driving to rest only a restricted
number of components, is proved in [14]. The observability is obtained by a so-called
spectral compensation argument, which states that the bad behavior of the part of
the spectrum which accumulates to σess(A) is somehow compensated by the suitable
gap of the discrete part. In a different context, we also mention [3, 17, 19] for the
controllability of systems with spectral accumulation point.

The paper is organized as follows. In section 2, after introducing some spaces in
connection with spectral properties of the operator A, we set our main results. In
section 3, we establish the well-posedness of (1.1) for v and initial data

(
u0, u1

)
in

suitable spaces. We divide section 4 into three parts. The first is devoted to the
analysis of the adjoint system and to the formulation of the observability inequality
as (1.2). In the second part, we prove the observability for any initial data

(
Φ0,Φ1

)

belonging to a closed subspace of H1/2×H spanned by eigenfunctions of A associated
with the isolated eigenvalues of A with finite multiplicity. The key point is that these
eigenvalues enjoy gap properties similar to those of the eigenvalues of −∆ with the
Dirichlet boundary condition used in [18]. On the contrary, the third part of section 4
exhibits the lack of observability in spaces related to the essential spectrum. In
particular, by numerical approximation, we check that the corresponding observability
constant is not uniformly bounded with respect to

(
Φ0,Φ1

)
. Section 5 concludes this

work with some remarks and open problems.

2. Preliminaries and main results. We recall that the eigenvalues and nor-
malized eigenfunctions of the operator −∆ with domain H2 (Ω) ∩ H1

0 (Ω) are given
by µpq =

(
p2 + q2

)
π2 and ϕpq(x, y) = 2 sin(pπx) sin(qπy) (for (p, q) in N

∗ × N
∗ and

(x, y) ∈ Ω = (0, 1)2).

The natural operator that occurs when we transform (1.3) into a second order
differential equation is A =

( −∆ −α∂x
α∂x a

)
in H = L2 (Ω) × L2 (Ω) with domain

D (A) =
(
H2 (Ω) ∩H1

0 (Ω)
)
×D (∂x). Here ∂x is considered an unbounded operator

in L2 (Ω). We can prove that this operator A is not closed in H . Therefore we have
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to consider its closure, which is still denoted by A and defined by (see [1])

(2.1)
A

(
ϕ
ψ

)
=

(
−∆

(
ϕ+ α∆−1∂xψ

)
α∂xϕ+ aψ

)
,

D (A) =
{
(ϕ, ψ)T ∈ H1

0 (Ω)× L2 (Ω) /ϕ+ α∆−1∂xψ ∈ H2 (Ω)
}
.

We introduce the following notation.

Notation 2.1. For p, q ≥ 1, we set

λ±
p,q = 1

2

(
µpq + a±

√
(µpq − a)

2
+ 4α2p2π2

)
, µpq =

(
p2 + q2

)
π2,

ϕpq (x, y) = 2 sin(pπx) sin(qπy), ψpq (x, y) = 2 cos(pπx) sin(qπy),

e±p,q =

(
(λ±

p,q−a)
√

(λ±
p,q−a)2+α2p2π2

ϕpq,
αpπ

√

(λ±
p,q−a)2+α2p2π2

ψpq

)T

,

eq(x, y) =
(
0,
√
2 sin (qπy)

)T
.

Straightforward computations show that for every (p, q) ∈ N
∗ × N

∗, we have
Ae±p,q = λ±

p,qe
±
p,q, Aeq = aeq, and for each λ /∈ {a} ∪ {λ+

p,q}p,q≥1 ∪ {λ−
p,q}p,q≥1,

Ker (A− λI) = {0}. In other words, the sets of eigenvalues and associated eigenfunc-
tions of A are {a}∪{λ+

p,q}p,q≥1 ∪{λ−
p,q}p,q≥1 and {eq}q≥1 ∪

{
e+p,q
}
p,q≥1

∪
{
e−p,q
}
p,q≥1

,

respectively. It is also easy to check that λ+
p,q ∼‖(p,q)‖→+∞ µpq (the order of approxi-

mation is λ+
p,q = µpq +

α2p2π2

µpq−a + O( p4

µ3
pq
)), and λ−

p,q ≤ a < λ+
1,1 ≤ λ+

p,q for all p, q ≥ 1.

Thus all the λ+
p,q are isolated eigenvalues (of finite multiplicity). Using the fact that

the families {ϕpq}p,q≥1 and {ψpq}p≥0,q≥1 are two orthonormal bases of L2 (Ω), we

can easily check that the family B = {eq}q≥1 ∪
{
e+p,q
}
p,q≥1

∪
{
e−p,q
}
p,q≥1

forms an

orthonormal basis of H = L2 (Ω)× L2 (Ω).

We refer to [5] for the definition of the essential spectrum σess(A) of A. As a
consequence of the results in [6], we have σess(A) =

[
a− α2, a

]
. Besides, we can

check that the set of accumulation points of the sequence
(
λ−
p,q

)
p,q

is exactly σess(A).

Figure 2.1 summarizes these properties.

Remark 2.2. The asymptotic behavior of
(
λ+
p,q

)
p,q

is in agreement with [7], where

it is shown that the asymptotic behavior of σ(A) is related to the spectrum of the
principal part of A, which in our case is −∆.

The operator A defined in (2.1) is self-adjoint in H and positive; this last assertion

�

0

�

min(a−α2,π2)

�

a−α2

�

a

�

λ+
1,1

λ−
p,q

set of the accumulation

points of (λ−
p,q)p,q

λ+
p,q

λ+
p,q∼µpq

Fig. 2.1. Distribution of the spectrum of A along R.
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comes from the formula

〈Au, u〉H =

∫

Ω

[
(∂xu1 + αu2)

2
+
(
a− α2

)
u2
2 + (∂yu1)

2
]
dx dy

(for u = (u1, u2)
T ∈ D (A)) and the assumption a > α2.

For any δ ∈ R+, we recall that the operator Aδ is defined by

Aδ=
∑

p,q≥1

(
λ+
p,q

)δ 〈·, e+p,q
〉
H
e+p,q +

∑

p,q≥1

(
λ−
p,q

)δ 〈·, e−p,q
〉
H
e−p,q + aδ

∑

q≥1

〈·, eq〉H eq,

D
(
Aδ
)
=

{
φ ∈ H,

∑

p,q≥1

(
λ+
p,q

)2δ〈
φ, e+p,q

〉2
H
+
∑

p,q≥1

(
λ−
p,q

)2δ〈
φ, e−p,q

〉2
H
+ a2δ

∑

q≥1

〈φ, eq〉2H<∞
}
.

Since
(
λ−
p,q

)
p,q

is bounded, D
(
Aδ
)
= {φ ∈ H,

∑
p,q≥1

(
λ+
p,q

)2δ〈
φ, e+p,q

〉2
H

<∞}. In what

follows, we will set

Hδ = D
(
Aδ
)
, δ ≥ 0.

The operator A is a bounded operator from D(A), equipped with the graph norm, to
H. It is well known that A can be extended to a bounded operator from H to D(A)′,
the dual space of D(A) with respect to the pivot space H. We continue to denote this
extension by A, and, thus, A can be seen as an unbounded self-adjoint operator on
D(A)′ with domain H. A is also a unitary operator from D(A) to H and from H to
D(A)′. In what follows we will set

H−1 = D(A)′.

The other extension of A that we will use later is the following. A can also be extended
to a unitary operator from D(A1/2), equipped with the graph norm, to D(A1/2)′, the
dual space of D(A1/2) with respect to the pivot space H. We will set

H1/2 = D
(
A1/2

)
, H−1/2 = D

(
A1/2

)′
.

For details on these extensions, see, for instance, [21]. The last notation we will need
is the following:

H± = span
({

e±p,q, p, q ≥ 1
})

, Ha = span ({eq, q ≥ 1}) ,

and for δ ∈ R,

H±
δ = Hδ ∩H±, Ha

δ = Hδ ∩Ha.

We are now ready to set our main result.

Theorem 2.3. Let γ = π
√
π

4
√

2π+|α|
and T0 = 2π

γ

√
1 + 2

(λ+
1,1−a+α2)

2

(λ+
1,1−a)

2 . Assume that

a ≤ 2π2. For any T > T0, any initial data
(
u0, u1

)
∈ H+ ×H+

−1/2, and any target(
u0
T , u

1
T

)
∈ H+ × H+

−1/2, there exist control functions v ∈ L2 (Γ× (0, T )) such that

the unique solution u of system (1.1) satisfies u(·, T ) = u0
T and u′(·, T ) = u1

T in Ω.
The significant novelty of this result with respect to the literature mentioned in

the introduction is that it concerns two spatial dimensions. The proof of this theorem
is much less straightforward (than for the one-dimensional situation). It relies on the
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adaptation to our problem of a recent Ingham-type theorem due to Mehrenberger for
the wave equation (see [18]). The restriction to the closed subspace H+ × H+

−1/2 is

justified by the following proposition.
Proposition 2.4. For any T > 0 and any ǫ > 0, there exist initial data(

Φ0,Φ1
)
∈ H−

1/2 ×H− for which the solution Φ = (ϕ, ψ)T of (1.3) satisfies

(2.2)
∥∥(Φ0,Φ1)

∥∥−2

X1

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt < ǫ.

This result means that the observability inequality (1.2) does not hold on H−
1/2×

H− (and thus on the whole space H1/2 × H). This is in agreement with the result
in [10], where it is shown that the lack of observability is related to the essential
spectrum.

Before proving these results, we establish that the exact controllability of (1.1)
is equivalent to the observability inequality (1.2). Actually, the control operator
associated with system (1.1) is not bounded from the space of controls L2 (Γ× (0, T ))
to the state space X−1 (the dual of X1 = H1/2 ×H with respect to the pivot space
X = H ×H−1/2). Section 3 is devoted to the study of this control operator and the
formulation of the observability inequality.

3. Well-posedness of the controlled system.

3.1. A Dirichlet map. In this section, we introduce and analyze the Dirichlet
map D : D (D) ⊂ L2 (Γ) → H corresponding to system (1.1) defined as follows:
D (D) =

{
v ∈ L2 (Γ) ,Dv ∈ H

}
, and for v ∈ L2 (Γ), we denote by Dv the solution

θ = (θ1, θ2)
T
of the abstract elliptic problem

(3.1)

{
Λθ = 0 in Ω,

θ1 = v 1Γ on ∂Ω,
Λ =

(
−∆ −α∂x
α∂x a

)
.

For simplicity of notation, we set

(3.2) α±
p,q =

π
(
λ±
p,q − a+ α2

)
√(

λ±
p,q − a

)2
+ α2p2π2

, β±
p,q =

π
(
λ±
p,q − a

)
√(

λ±
p,q − a

)2
+ α2p2π2

.

The map D satisfies the following continuity property.
Proposition 3.1. For every ǫ ∈ (1/2, 1], D ∈ L (Hǫ (Γ) , H). Moreover for every

v ∈ D (D), we have

(3.3)
〈
Dv, e±p,q

〉
H

= p
α±
p,q

λ±
p,q

v2,q + q
β±
p,q

λ±
p,q

v1,p, 〈Dv, eq〉H =
α

a
√
2
v2,q

with v1,p = 2
∫ 1

0
v(x, 0) sin (pπx) dx and v2,q = 2

∫ 1

0
v(0, y) sin (qπy) dy.

Proof. Let ǫ ∈ (1/2, 1] and v ∈ Hǫ (Γ). Suppose that (3.1) has a solution θ ∈ H .
Using integrations by parts, we have

0 =
〈
Λθ, e±p,q

〉
H

=
〈
θ, Ae±p,q

〉
H
+

∫

Γ

(
∂ϕ±

p,q

∂ν
+ αψ±

p,qν1

)
v dσdt,

where e±p,q =
(
ϕ±
p,q, ψ

±
p,q

)T
. Since Ae±p,q = λ±

p,qe
±
p,q, this yields

(3.4)
〈
θ, e±p,q

〉
H

= p
α±
p,q

λ±
p,q

v2,q + q
β±
p,q

λ±
p,q

v1,p.
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By the same arguments, we obtain

(3.5) 〈θ, eq〉H =
α

a
√
2
v2,q.

This proves that if (3.1) has a solution θ, then this solution is unique and is written
as

θ =
∑

p,q≥1

〈
θ, e+p,q

〉
H
e+p,q +

∑

p,q≥1

〈
θ, e−p,q

〉
H
e−p,q +

∑

q≥1

〈θ, eq〉H eq,

with
〈
θ, e±p,q

〉
H

and 〈θ, eq〉H as given by (3.4) and (3.5), respectively. Now, we have
to check that such a θ is an element of H . Formula (3.4) gives

(3.6)
∣∣∣
〈
θ, e+p,q

〉
H

∣∣∣ ≤ pǫ+1
α+
p,q

λ+
p,q

|v2,q|
pǫ

+ qǫ+1
β+
p,q

λ+
p,q

|v1,p|
qǫ

.

From the asymptotic property λ+
p,q∼‖(p,q)‖→+∞µpq, we have (see (3.2))

α+
p,q

λ+
p,q

∼
β+
p,q

λ+
p,q

∼ π

µpq
as ‖(p, q)‖ → +∞.

Consequently, there exists a positive constant c1 such that for all (p, q) ∈ N
∗ × N

∗,

α+
p,q

λ+
p,q

≤ c1
µpq

and
β+
p,q

λ+
p,q

≤ c1
µpq

.

Using 0 ≤ ǫ ≤ 1 and the definition of µpq (see Notation 2.1), we immediately obtain

pǫ+1
α+
p,q

λ+
p,q

≤ c1
π2

and qǫ+1
β+
p,q

λ+
p,q

≤ c1
π2

.

From (3.6) we deduce that

∣∣∣
〈
θ, e+p,q

〉
H

∣∣∣ ≤ c1
π2

( |v2,q|
pǫ

+
|v1,p|
qǫ

)
.

This gives

(3.7)
∑

p,q≥1

(〈
θ, e+p,q

〉
H

)2
≤ 2

( c1
π2

)2∑

r≥1

1

r2ǫ

(
∑

q≥1

(v2,q)
2
+
∑

p≥1

(v1,p)
2

)
= C1(ǫ) ‖v‖2L2(Γ) ,

where C1(ǫ) = 4
c21
π4

∑
r≥1

1
r2ǫ .

Using the definition of λ−
p,q and (3.2), we can prove that as ‖(p, q)‖ → +∞,

∣∣α−
p,q

∣∣∼ |α| q2

p (p2+q2)
,

∣∣β−
p,q

∣∣∼− |α| p

p2+q2
.

Since
(
λ−
p,q

)
p,q

is bounded away from 0, there exists a constant c2 > 0 such that for

every (p, q) ∈ N
∗ × N

∗,
∣∣α−

p,q

∣∣
λ−
p,q

≤ c2
q2

p (p2+q2)
,

∣∣β−
p,q

∣∣
λ−
p,q

≤ c2
p

p2+q2
.
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Since 0 ≤ ǫ ≤ 1, this implies that

pǫ+1
∣∣α−

p,q

∣∣
qǫλ−

p,q
≤ c2

pǫq2−ǫ

p2+q2
≤ c2 and

qǫ+1
∣∣β−

p,q

∣∣
pǫλ−

p,q
≤ c2

p1−ǫqǫ+1

p2+q2
≤ c2.

Using (3.4), we deduce that

∣∣∣
〈
θ,e−p,q

〉
H

∣∣∣ ≤
pǫ+1

∣∣α−
p,q

∣∣
qǫλ−

p,q

qǫ |v2,q|
pǫ

+
qǫ+1

∣∣β−
p,q

∣∣
pǫλ−

p,q

pǫ |v1,p|
qǫ

≤ c2

(
qǫ |v2,q|

pǫ
+

pǫ |v1,p|
qǫ

)
.

Since v ∈ Hǫ (Γ), we can write from this inequality

(3.8)
∑

p,q≥1

(〈
θ, e−p,q

〉
H

)2
≤ 2c2

2
∑

r≥1

1

r2ǫ

(
∑

q≥1

(qǫv2,q)
2
+
∑

p≥1

(pǫv1,p)
2

)
≤ C2(ǫ) ‖v‖2Hǫ(Γ) ,

where C2(ǫ) = 4c2
2
∑

r≥1
1
r2ǫ .

Besides, formula (3.5) clearly gives
(
〈θ, eq〉H

)
q≥1

∈ ℓ2, with

(3.9)
∑

q≥1

(
〈θ, eq〉H

)2
=

α2

2a2

∑

q≥1

(v2,q)
2 ≤ α2

a2
‖v‖2L2(Γ) .

Combining (3.7), (3.8), and (3.9), we obtain θ ∈ H , with ‖θ‖H ≤ C(ǫ) ‖v‖Hǫ(Γ) and

C(ǫ) = max(C1(ǫ), C2(ǫ),
|α|
a ).

Proposition 3.1 gives that Hǫ (Γ) ⊂ D (D) for every ǫ ∈ (1/2, 1]. This implies
that D : D (D) ⊂ L2 (Γ) → H is an unbounded operator with dense domain in L2 (Γ).
Consequently, the adjoint operator D∗ of D is well-defined as an unbounded operator
D∗ : D (D∗) ⊂ H → L2 (Γ).

Proposition 3.2. D∗ is given by

D (D∗) =
{
g ∈ H,

∫
Γ

(
∂(A−1g)

1

∂ν + α
(
A−1g

)
2
ν1

)2
dσ < +∞

}
,

D∗g =
(

∂(A−1g)
1

∂ν + α
(
A−1g

)
2
ν1

)
|Γ
, where A−1g =

( (
A−1g

)
1(

A−1g
)
2

)
.

Proof. Let v ∈ D (D) and g ∈ H . By the definition of the adjoint of an unbounded
operator, D (D∗) is the set of the elements g ∈ H such that v �→ 〈Dv, g〉H is a
continuous linear form on L2 (Γ). By (3.3), we have

〈Dv,g〉H =
∑

p≥1

v1,p
∑

q≥1

(
q
β+
p,q

λ+
p,q

〈
g,e+p,q

〉
H
+ q

β−
p,q

λ−
p,q

〈
g,e−p,q

〉
H

)

+
∑

q≥1

v2,q

(
∑

p≥1

(
p
α+
p,q

λ+
p,q

〈
g,e+p,q

〉
H
+ p

α−
p,q

λ−
p,q

〈
g,e−p,q

〉
H

)
+

α

a
√
2
〈g, eq〉H

)
.(3.10)

This implies that D (D∗) is the set of the elements g ∈ H such that the two following
sequences are in ℓ2:

(
xp =

∑

q≥1

(
q
β+
p,q

λ+
p,q

〈
g,e+p,q

〉
H
+ q

β−
p,q

λ−
p,q

〈
g,e−p,q

〉
H

))

p≥1

,

(
yq =

∑

p≥1

(
p
α+
p,q

λ+
p,q

〈
g,e+p,q

〉
H
+ p

α−
p,q

λ−
p,q

〈
g,e−p,q

〉
H

)
+

α

a
√
2
〈g, eq〉H

)

q≥1

.
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It is also easily seen that
∥∥∥∥
∂
(
A−1g

)
1

∂ν
+α
(
A−1g

)
2
ν1

∥∥∥∥
2

L2(Γ)

=
∥∥∥(xp)p

∥∥∥
2

ℓ2
+
∥∥∥(yq)q

∥∥∥
2

ℓ2
.

This allows us to conclude that

D (D∗)=
{
g ∈ H,

∥∥∥
∂
(
A−1g

)
1

∂ν
+α

(
A−1g

)
2
ν1

∥∥∥
L2(Γ)

<∞
}
.

Now we suppose that g ∈ D (D∗). Then we can easily check that (3.10) leads to

〈Dv,g〉H =

∫

Γ

v
(∂
(
A−1g

)
1

∂ν
+α

(
A−1g

)
2
ν1

)
dσ.

This gives the formula for D∗g.
Proposition 3.3. D : D (D) ⊂ L2 (Γ) → H is a closed operator on L2 (Γ).
Proof. Let (vn)n∈N

be a sequence in D (D) which converges to a certain v in
L2 (Γ) and such that (Dvn)n∈N

converges in H to an element θ. Let vn1,p and vn2,q
denote

vn1,p = 2

∫ 1

0

vn(x, 0) sin (pπx) dx, vn2,q = 2

∫ 1

0

vn(0, y) sin (qπy) dy.

From the convergence of vn to v in L2 (Γ), we deduce that vn1,p→n→+∞v1,p for
any p ∈ N

∗ and vn2,q→n→+∞v2,q for any q ∈ N
∗. Using (3.3) we conclude that

〈
Dvn, e

±
p,q

〉
H
→n→+∞p

α±
p,q

λ±
p,q

v2,q + q
β±
p,q

λ±
p,q

v1,p and 〈Dvn, eq〉H →n→+∞
α

a
√
2
v2,q for every

(p, q) ∈ N
∗ × N

∗.
Besides, the convergence of Dvn to θ in H implies the convergence of

〈
Dvn, e

±
p,q

〉
H

(resp., 〈Dvn, eq〉H) to
〈
θ, e±p,q

〉
H

(resp., 〈θ, eq〉H) for every (p, q) ∈ N
∗×N

∗. Therefore,

∀(p, q) ∈ N
∗ × N

∗

⎧
⎨
⎩

〈
θ, e±p,q

〉
H

= p
α±

p,q

λ±
p,q

v2,q + q
β±
p,q

λ±
p,q

v1,p,

〈θ, eq〉H = α
a
√
2
v2,q.

From Proposition 3.1, this implies that θ = Dv. It follows that v ∈ D (D), since
θ ∈ H .

3.2. Toward an internal control problem. We introduce the following nota-
tion:

X = H ×H−1/2, X−1 = H−1/2 ×H−1, X1 = H1/2 ×H

and

L : D (L) ⊂ X−1 → X−1, L =

(
0 I

−A 0

)
, D (L) = X.

Note that the operator occurring in the definition of L is the extension of A from H
to H−1.

In this section we transform the boundary control problem (1.1) into the familiar
form of an internal control problem:

(3.11)

{
U ′ = LU +Bv in QT ,

U(0) =
(
u0, u1

)T
in Ω,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1866 F. AMMAR KHODJA, K. MAUFFREY, AND A. MÜNCH

where B is an unbounded control operator from L2 (Γ) to X−1.
Assume that v is an element of H1 ([0, T ], D (D)). For the moment let Z denote

the vector Z = (u, u′)T − (Dv, 0)T , where u is the solution of (1.1). Then Z is a
solution of

Z ′ =

(
0 I
−Λ 0

)
Z −

(
Dv′
0

)
.

Since v ∈ H1 ([0, T ], D (D)), we have (Dv′, 0)T ∈ L2 ([0, T ], D (L)). Therefore, Z is a

solution of Z ′ = LZ − (Dv′, 0)T in X−1, and the semigroup theory gives

(3.12) Z(t) = S(t)Z(0)−
∫ t

0

S(t− s)

(
Dv′(s)

0

)
ds,

where (S(t))t≥0 is the C0-semigroup associated with the maximal and dissipative

operator L. Integrating by parts in (3.12) and using (Dv(s), 0)
T ∈ D (L), we obtain

Z(t) = S(t)Z(0)−
(
Dv(t)
0

)
+ S(t)

(
Dv(0)

0

)
−
∫ t

0

S(t− s)L

(
Dv(s)

0

)
ds.

Replacing Z(t) by its definition, we obtain the following expression for (u(t), u′(t))T :

(3.13)

(
u(t)
u′(t)

)
= S(t)

(
u0

u1

)
+

∫ t

0

S(t− s)Bv(s)ds,

where

(3.14) B =

(
0

AD
)

: D(B) ⊂ L2 (Γ) → X−1

is an unbounded operator with dense domain D(B) = D (D). Formula (3.13) means

that (u, u′)T is the mild solution U of the internal control system (3.11).
Theorem 3.4. For any

(
u0, u1

)
∈ X and any v ∈ H1 ([0, T ], D (D)), system (1.1)

has a unique solution u in H−1/2. Moreover u ∈ C ([0, T ], H) ∩ C1
(
[0, T ], H−1/2

)
∩

C2 ([0, T ], H−1).
Proof. The proof is a straightforward consequence of the semigroup theory (see,

for instance, [21, Thm. 4.1.6, p. 113]). The main argument is thatBv ∈ H1 ([0, T ], X−1)
(since v ∈ H1 ([0, T ], D (D))).

4. Controllability and observability.

4.1. Formulation of the observability inequality. We introduce the control
operator LT : D (LT ) ⊂ L2 (Γ× (0, T )) → X defined by

(4.1) LT v =

∫ T

0

S(T − t)Bv(t)dt,

with domain D (LT ) =
{
v ∈ L2 (Γ× (0, T )) , LT v ∈ X

}
. The exact boundary control-

lability problem for system (1.1) is the following: given T > 0 large enough, initial
data

(
u0, u1

)
∈ X , and final data

(
u0
T , u

1
T

)
∈ X , find a control function v in D (LT )

such that the solution u of system (1.1) satisfies (u(., T ), u′(., T )) = (u0
T , u

1
T ) in Ω.

Therefore, system (1.1) is exactly controllable at time T if and only if the control
operator LT is onto.
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By Theorem 3.4, D(LT ) containsH
1([0, T ],D(D)), which is dense in L2(Γ×(0, T ))

since D(D) is dense in L2 (Γ). Hence D(LT ) is dense in L2 (Γ× (0, T )). This allows
us to compute the adjoint L∗

T of LT . Using arguments similar to those in the proof
of Proposition 3.3, we can prove that LT : D (LT ) ⊂ L2 (Γ× (0, T )) → X is a closed
operator. Consequently, the surjectivity of LT is equivalent (see, for instance, [4,
Thm. II.19, p. 29]) to the existence of a positive constant c such that

∥∥∥∥L
∗
T

(
Ψ0

Ψ1

)∥∥∥∥
2

L2(ΣT )

≥ c

∥∥∥∥
(

Ψ0

Ψ1

)∥∥∥∥
2

X

∀
(

Ψ0

Ψ1

)
∈ D (L∗

T ) .

This last inequality is also equivalent to

(4.2)

∥∥∥∥L
∗
TL

(
Φ0

Φ1

)∥∥∥∥
2

L2(ΣT )

≥ c

∥∥∥∥
(

Φ0

Φ1

)∥∥∥∥
2

X1

∀
(

Φ0

Φ1

)
∈ D (L∗

TL) .

Therefore, the exact controllability problem for system (1.1) relies on the “observabil-
ity inequality” (4.2).

In what follows, we compute L∗
TL to translate (4.2) in terms of the adjoint system

(1.3) of system (1.1). By the definition of LT in (4.1), we have L∗
T = B∗S(T − ·)∗ so

that it remains to compute the adjoint of B.
Lemma 4.1. B∗ : D (B∗) ⊂ X1 → L2 (Γ) is given by

(4.3)

D (B∗) =
{(

Φ0,Φ1
)T ∈ X1 / Φ1 ∈ D (D∗)

}
,

B∗
(

Φ0

Φ1

)
= D∗Φ1.

Moreover for every
(
Φ0,Φ1

)T ∈ D (B∗L), we have

(4.4) B∗L

(
Φ0

Φ1

)
= −

(
∂Φ0

1

∂ν
+ αΦ0

2ν1

)

|Γ
, where Φ0 =

(
Φ0

1,Φ
0
2

)T
.

Proof. Let v ∈ D (B) = D (D) and
(
Φ0,Φ1

)T ∈ X1. We recall that since A is
self-adjoint in H , L is skew-adjoint in X−1 (i.e., L∗ = −L). This allows us to write

〈(
Φ0

Φ1

)
, Bv

〉

X1,X−1

=

〈
−L

(
Φ0

Φ1

)
, L−1Bv

〉

X

=

〈(
−Φ1

AΦ0

)
, L−1Bv

〉

X

.

It is easily seen that L−1 = ( 0 −A−1

I 0 ) so that L−1Bv = ( −Dv
0 ). This gives

〈(
Φ0

Φ1

)
, Bv

〉

X1,X−1

=
〈
Φ1,Dv

〉
H
,

which leads to (4.3).

Now, if
(
Φ0,Φ1

)T ∈ D (B∗L), then B∗L(Φ
0

Φ1 ) = B∗( Φ1

−AΦ0 ) = −D∗ (AΦ0
)
, and

Proposition 3.2 gives (4.4).
A direct consequence of Lemma 4.1 is the following.
Proposition 4.2. L∗

TL : D (L∗
TL) ⊂ X1 → L2 (Γ× (0, T )) is given by

D (L∗
TL) =

{(
Φ0,Φ1

)T ∈ X1

/
∂ϕ

∂ν
+ αψν1 ∈ L2 (Γ× (0, T ))

}
,

L∗
TL

(
Φ0

Φ1

)
= −

(
∂ϕ

∂ν
+ αψν1

)

|Γ
,
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where Φ = (ϕ, ψ)
T
is the solution of the following backward adjoint system of (1.1):

(4.5)

{
Φ′′ +AΦ = 0 in QT ,

Φ(., T ) = Φ0,Φ′(., T ) = Φ1 in Ω.

Thanks to Proposition 4.2, the observability inequality (4.2) consists of the fol-
lowing inequality:

∀
(

Φ0

Φ1

)
∈ D (L∗

TL) ,

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt ≥ c

∥∥∥∥
(

Φ0

Φ1

)∥∥∥∥
2

X1

,

where Φ = (ϕ, ψ)
T
is the solution of the backward adjoint system (4.5). Consequently,

we have the following characterization of the controllability.
Corollary 4.3. System (1.1) is exactly controllable at time T if and only if

there exists a constant C(T ) > 0 such that for all initial data
(
Φ0,Φ1

)T ∈ D (L∗
TL),

the solution Φ = (ϕ, ψ)
T
of the adjoint system (1.3) with initial data

(
Φ0,Φ1

)
satisfies

the following observability inequality:

(4.6)
∥∥(Φ0,Φ1

)∥∥2
X1

≤ C(T )

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt.

4.2. Observability inequality in H
+

1/2 × H
+: Proof of Theorem 2.3. In

view of Corollary 4.3, Theorem 2.3 is proved if we prove the following result.

Theorem 4.4. Let γ = π
√
π

4
√

2π+|α|
and T0 = 2π

γ

√
1 + 2

(λ+
1,1−a+α2)2

(λ+
1,1−a)2

. If a ≤ 2π2,

then for any T > T0 there exists a positive constant C+(T ) such that for all initial

data
(
Φ0,Φ1

)T
in D (L∗

TL)∩ (H+
1/2×H+), the solution of (1.3) satisfies the following

observability inequality:

(4.7)
∥∥(Φ0,Φ1

)∥∥2
X1

≤ C+(T )

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt.

We detail the proof of Theorem 4.4 in three steps.

4.2.1. First step: The observability inequality in terms of Fourier se-

ries. From now on, we assume that a ≤ 2π2 and T > T0. Fix
(
Φ0,Φ1

)T ∈
D (L∗

TL) ∩ (H+
1/2 × H+). By the definitions of H+

1/2 and H+, Φ0 and Φ1 may be
written as

Φ0 =
∑

p,q≥1

Φ0
p,qe

+
p,q, Φ1 =

∑

p,q≥1

Φ1
p,qe

+
p,q,

with
∑

p,q≥1
λ+
p,q

(
Φ0

p,q

)2
< +∞ and

∑
p,q≥1

(
Φ1

p,q

)2
< +∞. The solution Φ = (ϕ, ψ)

T

of system (1.3) with initial data
(
Φ0,Φ1

)
is given by

Φ(t) =
1

2

∑

p,q≥1

[
ap,qe

i
√

λ+
p,qt + ap,qe

−i
√

λ+
p,qt
]
e+p,q

with the notation

(4.8) ∀(p, q) ∈ N
∗ × N

∗, ap,q = Φ0
p,q − i

Φ1
p,q√
λ+
p,q

.
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Using the definition of e+p,q, the definition of α+
p,q and β+

p,q in (3.2), and the Parseval
equality, we can easily prove that

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2
dσdt =

1

2

∑

q≥1

∫ T

0

∣∣∣∣∣
∑

p≥1

pα+
p,q

(
ap,qe

i
√
λ+
p,qt+ap,qe

−i
√

λ+
p,qt
)∣∣∣∣∣

2

dt

+
1

2

∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q≥1

qβ+
p,q

(
ap,qe

i
√
λ+
p,qt+ap,qe

−i
√

λ+
p,qt
)∣∣∣∣∣

2

dt.(4.9)

The left-hand side of (4.7) is given by

∥∥(Φ0,Φ1
)∥∥2

X1
=
∑

p,q≥1

(
λ+
p,q

(
Φ0

p,q

)2
+
(
Φ1

p,q

)2)
=
∑

p,q≥1

λ+
p,q |ap,q|2 .

Consequently, the observability inequality (4.7) is equivalent to the inequality

C(T )
∑

p,q≥1

λ+
p,q |ap,q|2 ≤

∑

q≥1

∫ T

0

∣∣∣∣∣
∑

p≥1

pα+
p,q

(
ap,qe

i
√

λ+
p,qt+ap,qe

−i
√

λ+
p,qt
)∣∣∣∣∣

2

dt

+
∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q≥1

qβ+
p,q

(
ap,qe

i
√

λ+
p,qt+ap,qe

−i
√

λ+
p,qt
)∣∣∣∣∣

2

dt,(4.10)

where C(T ) is a positive constant which does not depend on (ap,q)p,q. We recall

below the main theorem of [18] for the observability of the wave equation in two
spatial dimensions.

Theorem 4.5 (Mehrenberger [18]). Let (λpq)p,q be a sequence of real numbers.

If there exist γ1 > 0 and γ2 > 0 such that for every p, p′, q, and q′ in N
∗,

(4.11)
p ≤ max (q, q′) ⇒ |λpq ± λpq′ | ≥ γ1 |q ± q′| ,
q ≤ max (p, p′) ⇒ |λpq ± λp′q| ≥ γ2 |p± p′| ,

then for any T > 2π
√

1
γ2
1

+ 1
γ2
2

, there exists a positive constant C(T ) such that

C(T )
∑

p,q≥1

(
p2+q2

)
|zp,q|2 ≤

∑

q≥1

∫ T

0

∣∣∣∣∣
∑

p≥1

p
(
zp,qe

iλpqt+zp,qe
−iλpqt

)
∣∣∣∣∣

2

dt

+
∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q≥1

q
(
zp,qe

iλpqt+zp,qe
−iλpqt

)
∣∣∣∣∣

2

dt(4.12)

for every complex sequence (zp,q)p,q such that the sums involved are finite.

The use of Ingham-type methods (see [12, 13]) is based on some gap properties
(here given by (4.11)). In [18], to obtain the observability inequality for the wave
equation, the author applies this theorem to the sequence λpq =

√
µpq. In this case,

our observability inequality (4.10) is similar to (4.12) since λ+
p,q ∼ µpq as ‖(p, q)‖ tends

to +∞. The only dissimilarity is that we have two different sequences xp,q = α+
p,qap,q

and yp,q = β+
p,qap,q instead of one sequence zp,q. Consequently, we cannot apply

directly Theorem 4.5 with λpq =
√
λ+
p,q to obtain the observability inequality (4.10).

However, from the asymptotic property λ+
p,q ∼ µpq and the definition of α+

p,q and β+
p,q
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(see (3.2)) we can prove that both xp,q and yp,q are equivalent to the same term πap,q.
This allows us to adapt the proof of Theorem 4.5. The key point is to prove that we
have some good gap properties. To this end, we introduce the following notation.

Notation 4.6.
1. We denote by (Λp,q)(p,q)∈Z∗×Z∗ a sequence defined by

Λp,q =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

√
λ+
p,q if p ≥ 1 and q ≥ 1,

−
√
λ+
p,−q if p ≥ 1 and q ≤ −1,

−
√
λ+
−p,q if p ≤ −1 and q ≥ 1.

2. For p ∈ Z
∗ and q ∈ N

∗ we write

xp,q =

{
α+
p,qap,q if p ≥ 1,

−x−p,q if p ≤ −1.

3. For p ∈ N
∗ and q ∈ Z

∗ we define

yp,q =

{
β+
p,qap,q if q ≥ 1,

−yp,−q if q ≤ −1.

With Notation 4.6 we deduce from (4.9) that

2

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2
dσdt =

∑

q≥1

∫ T

0

∣∣∣∣∣
∑

p∈Z
∗

pxp,qe
iΛp,qt

∣∣∣∣∣

2

dt+
∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q∈Z
∗

qyp,qe
iΛp,qt

∣∣∣∣∣

2

dt.

Thus the observability inequality (4.7) that we have to prove is the inequality

(4.13) C(T )
∑

p,q≥1

λ+
p,q|ap,q|2 ≤

∑

q≥1

∫ T

0

∣∣∣∣∣
∑

p∈Z
∗

pxp,qe
iΛp,qt

∣∣∣∣∣

2

dt+
∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q∈Z
∗

qyp,qe
iΛp,qt

∣∣∣∣∣

2

dt,

where C(T ) is a positive constant which does not depend on the sequence (ap,q)p,q.

4.2.2. Second step: Some gap properties. We prove the following gap prop-
erties for the sequence (Λp,q)(p,q)∈Z∗×Z∗ .

Proposition 4.7. Let γ be as in Theorem 4.4.
1. For all p ∈ N

∗ and all (q, q′) ∈ Z
∗ × Z

∗ such that p ≤ max (q, q′),

|Λp,q − Λp,q′ | ≥ γ |q − q′| .

2. For all q ∈ N
∗ and all (p, p′) ∈ Z

∗ × Z
∗ such that q ≤ max (p, p′),

|Λp,q − Λp′,q| ≥ γ |p− p′| .

Proof. We give only the proof of the first assertion. The second can be proved in
the same way by interchanging (p, p′) and (q, q′). According to the definition of Λp,q,
it is sufficient to show that

• for all p ∈ N
∗ and all (q, q′) ∈ N

∗ × N
∗ such that p ≤ max (q, q′), we have

|
√
λ+
p,q −

√
λ+
p,q′ | ≥ γ |q − q′|,

• for all p, q, and q′ in N
∗, we have

√
λ+
p,q +

√
λ+
p,q′ ≥ γ (q + q′).
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Let us first consider p ∈ N
∗ and (q, q′) ∈ N

∗×N
∗ such that p ≤ max (q, q′). Using

the definition of λ+
p,q (see Notation 2.1), we can easily check that

∣∣∣λ+
p,q − λ+

p,q′

∣∣∣ = 1

2

∣∣q2 − q′2
∣∣ π2

(
1 +

(
p2 + q2

)
π2 − a+

(
p2 + q′2

)
π2 − a√

δp,q +
√
δp,q′

)

with δp,q =
((
p2 + q2

)
π2 − a

)2
+ 4α2p2π2. From the assumption a ≤ 2π2, we have(

p2 + q2
)
π2 − a ≥ 2π2 − a ≥ 0. Therefore, |λ+

p,q − λ+
p,q′ | ≥ π2

2

∣∣q2 − q′2
∣∣ and

(4.14)

∣∣∣∣
√
λ+
p,q −

√
λ+
p,q′

∣∣∣∣ =

∣∣∣λ+
p,q − λ+

p,q′

∣∣∣
√
λ+
p,q +

√
λ+
p,q′

≥ π2

2

q + q′√
λ+
p,q +

√
λ+
p,q′

|q − q′| .

Consequently, we are reduced to bounding from below the quantity q+q′√
λ+
p,q+

√

λ+

p,q′

.

The inequality
√
x1 + x2 ≤ √

x1 +
√
x2 easily gives λ+

p,q ≤
(
p2 + q2

)
π2 + |α| pπ so

that

(4.15)
q + q′√

λ+
p,q +

√
λ+
p,q′

≥ 1√
π

q + q′√
(p2 + q2)π + |α| p+

√
(p2 + q′2) π + |α| p

.

By assumption, p ≤ max(q, q′). Without loss of generality, we can assume that q ≤ q′.
From (4.15) it follows that

q + q′√
λ+
p,q+

√
λ+
p,q′

≥ 1√
π

1 + q
q′√(

p2

q′2 +
q2

q′2

)
π+|α| p

q′2 +

√(
p2

q′2 +1
)
π+|α| p

q′2

≥ 1√
π

1

2
√
2π+|α|

.

Combining this inequality with (4.14), we conclude that

∣∣∣∣
√
λ+
p,q −

√
λ+
p,q′

∣∣∣∣ ≥
π
√
π

4
√
2π + |α|

|q − q′| = γ |q − q′| .

Now, consider any p, q, and q′ in N
∗. By the definition of λ+

p,q (see Notation 2.1), it

is clear that λ+
p,q ≥ 1

2µpq ≥ π2

2 q2, so that

√
λ+
p,q +

√
λ+
p,q′ ≥

π√
2
(q + q′) ≥ γ (q + q′) .

This ends the proof of item 1.

4.2.3. Third step: Proof of the observability inequality.

Notation 4.8. Given T > T0, we denote by k the function

k(t) :=

{
sin
(
πt
T

)
if 0 ≤ t ≤ T,

0 else,
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and we define the following quantities:

I1 :=
∑

p≥1

∫ T

0

k(t)

∣∣∣∣∣
∑

q≥p

qyp,qe
iΛp,qt

∣∣∣∣∣

2

dt, I2 :=
∑

q≥1

∫ T

0

k(t)

∣∣∣∣∣
∑

p≥q

pxp,qe
iΛp,qt

∣∣∣∣∣

2

dt,

I3 :=

∣∣∣∣∣∣∣

∑

p≥1

∫ T

0

k(t)

⎛
⎜⎝
∑

q∈Z
⋆

q<p

qyp,qe
iΛp,qt

⎞
⎟⎠

⎛
⎜⎝
∑

q∈Z
⋆

q≥p

qyp,qe
−iΛp,qt

⎞
⎟⎠ dt

∣∣∣∣∣∣∣
,

I4 :=

∣∣∣∣∣∣∣

∑

q≥1

∫ T

0

k(t)

⎛
⎜⎝
∑

p∈Z
⋆

p<q

pxp,qe
iΛp,qt

⎞
⎟⎠

⎛
⎜⎝
∑

p∈Z
⋆

p≥q

pxp,qe
−iΛp,qt

⎞
⎟⎠ dt

∣∣∣∣∣∣∣
.

It is easily seen that the Fourier transform of k is given by

(4.16) k̂(ξ) = e−i ξT
2 T

√
2π

cos( ξT2 )

π2 − T 2ξ2
∀ξ ∈ R.

In particular,
∣∣k̂
∣∣ is an even function, and k̂(0) = T

π

√
2
π is real. In the following lemma

we bound from below the right-hand side of the observability inequality (4.13), using
the quantities Ij for j = 1, . . . , 4.

Lemma 4.9.

∑

q≥1

∫ T

0

∣∣∣∣∣
∑

p∈Z
∗

pxp,qe
iΛp,qt

∣∣∣∣∣

2

dt+
∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q∈Z
∗

qyp,qe
iΛp,qt

∣∣∣∣∣

2

dt ≥ I1 + I2 − 2 (I3 + I4) .

Proof. If we prove that
∑

p≥1

∫ T

0 |
∑

q∈Z
⋆qyp,qe

iΛp,qt|2 dt ≥ I1−2I3, then, replacing

p by q and yp,q by xp,q, we deduce that
∑

q≥1

∫ T

0
|∑

p∈Z
⋆pxp,qe

iΛp,qt|2 dt ≥ I2 − 2I4.
Since 0 ≤ k(t) ≤ 1 for all t ∈ [0, T ], it follows that

∑

p≥1

∫ T

0

∣∣∣∣∣
∑

q∈Z
⋆

qyp,qe
iΛp,qt

∣∣∣∣∣

2

dt ≥
∑

p≥1

∫ T

0

k(t)

∣∣∣∣∣
∑

q∈Z
⋆

qyp,qe
iΛp,qt

∣∣∣∣∣

2

dt

=
∑

p≥1

∫ T

0

k(t)

∣∣∣∣∣∣∣

∑

q∈Z
⋆

q≥p

qyp,qe
iΛp,qt +

∑

q∈Z
⋆

q<p

qyp,qe
iΛp,qt

∣∣∣∣∣∣∣

2

dt

≥ I1 +
∑

p≥1

∫ T

0

k(t)

∣∣∣∣∣∣∣

∑

q∈Z
⋆

q<p

qyp,qe
iΛp,qt

∣∣∣∣∣∣∣

2

dt− 2I3

≥ I1 − 2I3.

As a consequence of Lemma 4.9, the observability inequality (4.13) will be estab-
lished if we bound from below I1 and I2 and bound from above I3 and I4.

Lemma 4.10.

I1 ≥ 2T

π

(
1−

(
2π

γT

)2
)
∑

p≥1

∑

q≥p

q2 |yp,q|2 .
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Proof. By the definition of I1 and simple computations, we have

I1 =
√
2π
∑

p≥1

∑

q≥p

∑

q′≥p

qyp,qq
′yp,q′ k̂ (Λp,q′ − Λp,q) .

Then, using the inequality |z1z2| ≤ |z1|2+|z2|2
2 , we deduce that

(4.17) I1 ≥
√
2π
∑

p≥1

(
k̂(0)

∑

q≥p

q2|yp,q|2−
∑

q≥p

∑

q′≥p

q′ �=q

q2|yp,q|2+q′2|yp,q′ |2
2

∣∣∣k̂ (Λp,q′−Λp,q)
∣∣∣
)
.

Fix p ∈ N
∗. From parity of

∣∣k̂
∣∣ it follows that

∑

q≥p

∑

q′≥p

q′ �=q

q2|yp,q|2 +q′2|yp,q′ |2
2

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣

=
∑

q≥p

q2|yp,q|2

⎛
⎜⎜⎝
∑

q′≥p

q′ �=q

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣

⎞
⎟⎟⎠ .(4.18)

Now, consider q ∈ Z
∗ and q′ ∈ Z

∗ such that q ≥ p, q′ ≥ p, and q′ �= q. Proposition 4.7
yields

(4.19) |Λp,q′ − Λp,q| ≥ γ |q − q′| > γ.

Since T > T0 = 2π
γ

√
1 + 2

(λ+
1,1−a+α2)

2

(λ+
1,1−a)

2 > π
γ , we obtain |Λp,q′ − Λp,q| > γ > π

T . Using

(4.16) and then (4.19), we deduce from this inequality that

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ ≤ T

√
2π

T 2 (Λp,q′ − Λp,q)
2 − π2

= k̂(0)

(
2π

γT

)2
1

4
(

Λp,q′−Λp,q

γ

)2
−
(

2π
γT

)2

≤ k̂(0)

(
2π

γT

)2
1

4 (q − q′)2 − 1
.

Summing over q′, we obtain

∑

q′≥p

q′ �=q

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ ≤ k̂(0)

(
2π

γT

)2∑

r∈Z
∗

1

4r2 − 1
= k̂(0)

(
2π

γT

)2

.

Combining this inequality with (4.18) and (4.17), we conclude that

I1 ≥
√
2πk̂(0)

(
1−

(
2π

γT

)2
)
∑

q≥p

p≥1

q2 |yp,q|2 =
2T

π

(
1−

(
2π

γT

)2
)
∑

q≥p

p≥1

q2 |yp,q|2 ,

which proves the lemma.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1874 F. AMMAR KHODJA, K. MAUFFREY, AND A. MÜNCH

Interchanging p and q and replacing yp,q by xp,q, we also get

I2 ≥ 2T

π

(
1−

(
2π

γT

)2
)
∑

q≥1

∑

p≥q

p2 |xp,q|2 .

Since λ+
p,q > a, it is easily seen that |xp,q| ≥ |yp,q| (see Notation 4.6). It follows that

I2 ≥ 2T

π

(
1−

(
2π

γT

)2
)
∑

q≥1

∑

p≥q

p2 |yp,q|2 .

Adding this inequality to that of Lemma 4.10, we obtain

I1 + I2 ≥ 2T

π

(
1−

(
2π

γT

)2
)(

∑

p≥1

∑

q≥p

q2 |yp,q|2 +
∑

q≥1

∑

p≥q

p2 |yp,q|2
)

≥ T

π

(
1−

(
2π

γT

)2
)
∑

p,q≥1

(
p2 + q2

)
|yp,q|2 .

Replacing yp,q by its definition gives

(4.20) I1 + I2 ≥ T

π

(
1−

(
2π

γT

)2
)
∑

p,q≥1

(
p2 + q2

)
|ap,q|2

(
β+
p,q

)2
.

Now, let us bound from above I3.
Lemma 4.11.

(4.21) I3 ≤ T

π

(
2π

γT

)2∑

p≥1

∑

q≥1

q2 |ap,q|2
(
β+
p,q

)2
.

Proof. By the definition of I3 (see Notation 4.8), we have

I3 =
√
2π

∣∣∣∣∣∣∣

∑

p≥1

∑

q∈Z
⋆

q<p

∑

q′≥p

qyp,qq
′yp,q′ k̂ (Λp,q′ − Λp,q)

∣∣∣∣∣∣∣

≤
√
2π

2

∑

p≥1

∑

q∈Z
⋆

q<p

∑

q′≥p

(
q2 |yp,q|2 + q′2 |yp,q′ |2

) ∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ .

Analysis similar to that in the proof of Lemma 4.10 shows that for all p ∈ N
∗ and all

q ∈ Z
∗ such that q < p, we have

∑

q′≥p

∣∣∣k̂ (Λp,q′ − Λp,q)
∣∣∣ ≤ k̂(0)

(
2π

γT

)2∑

q′≥p

1

4 (q − q′)2 − 1
≤ k̂(0)

2

(
2π

γT

)2

.

Therefore,

∑

q∈Z
⋆

q<p

∑

q′≥p

q2 |yp,q|2
∣∣∣k̂ (Λp,q′ − Λp,q)

∣∣∣ ≤ k̂(0)

2

(
2π

γT

)2∑

q∈Z
⋆

q<p

q2 |yp,q|2 .
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Similarly, we can prove that

∑

q′≥p

∑

q∈Z
⋆

q<p

q′2 |yp,q′ |2
∣∣∣k̂ (Λp,q′ − Λp,q)

∣∣∣ ≤ k̂(0)

2

(
2π

γT

)2∑

q′≥p

q′2 |yp,q′ |2 .

Adding these last two inequalities, we obtain

I3 ≤
√
2π

4
k̂(0)

(
2π

γT

)2∑

p≥1

∑

q∈Z
⋆

q2 |yp,q|2 ,

which gives the desired inequality after replacing yp,q by its definition.
Similarly,

(4.22) I4 ≤ T

π

(
2π

γT

)2 ∑

p,q≥1

p2 |ap,q|2
(
α+
p,q

)2
.

Adding (4.21) and (4.22) leads to the following inequality (since 0 ≤ β+
p,q ≤ α+

p,q):

(4.23) I3 + I4 ≤ T

π

(
2π

γT

)2 ∑

p,q≥1

(
p2 + q2

)
|ap,q|2

(
α+
p,q

)2
.

From (4.20) and (4.23) it follows that

(4.24) I1 + I2 − 2 (I3 + I4) ≥
T

π

∑

p,q≥1

(
p2 + q2

)
|ap,q|2 bp,q,

where (bp,q)p,q is defined by bp,q =
(
1 −

(
2π
γT

)2)(
β+
p,q

)2 − 2
(
2π
γT

)2 (
α+
p,q

)2
. To bound

from below I1 + I2 − 2 (I3 + I4) by
∑

p,q≥1
λ+
p,q |ap,q|

2
, it suffices to prove that the

sequence (
(p2+q2)bp,q

λ+
p,q

)p,q is bounded from below. Actually,

bp,q =
1

T 2
β+
p,q

(
T 2 −

(
2π

γ

)2
(
1 + 2

(
λ+
p,q − a+ α2

)2
(
λ+
p,q − a

)2

))
,

and it is easy to check that

sup
(p,q)∈N∗×N∗

(
λ+
p,q − a+ α2

)2
(
λ+
p,q − a

)2 =

(
λ+
1,1 − a+ α2

)2
(
λ+
1,1 − a

)2 .

Since T > T0 = 2π
γ

√
1 + 2

(λ+
1,1−a+α2)

2

(λ+
1,1−a)

2 , this implies that bp,q > 0 for any (p, q) in

N
∗ × N

∗. Besides, from the asymptotic property λ+
p,q∼‖(p,q)‖→+∞µpq =

(
p2 + q2

)
π2

we deduce that
(
p2 + q2

)
bp,q

λ+
p,q

∼
‖(p,q)‖→+∞

1

π2
bp,q.

It is easily seen that lim‖(p,q)‖→+∞bp,q = π(1 − 3( 2π
γT )

2). Since T > T0 >
√
3 2π

γ , it

follows that lim‖(p,q)‖→+∞bp,q > 0. Summarizing, we have proved that (
(p2+q2)bp,q

λ+
p,q

)p,q
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is a positive sequence which admits a positive limit. Consequently, this sequence is
uniformly bounded from below by a positive constant, denoted by c. It follows from
(4.24) that

I1 + I2 − 2 (I3 + I4) ≥ πcT
∑

p,q≥1

λ+
p,q |ap,q|

2
,

which gives inequality (4.13) (according to Lemma 4.9) and ends the proof of Theo-
rem 4.4.

4.3. Lack of controllability in H
−
× H

−

−1/2.

4.3.1. Proof of Proposition 2.4. We consider the two sequences (pn)n∈N∗

and (qn)n∈N∗ of positive integers given by pn = n(n + 1)/2 and qn = n. We de-

note by Φn = (ϕn, ψn)
T

the solution of the adjoint system (1.3) with initial data(
Φ0

n,Φ
1
n

)
=
(
e−pn,qn , 0

)
∈ H−

1/2 ×H−. The idea is to write (pn, qn) in the polar coor-

dinates (pn, qn) = rn(cos(θn), sin(θn)). It is easily seen that limn→+∞rn = +∞ and

limn→+∞θn = 0. This leads to limn→+∞λ−
pn,qn = a − α2. Since

∥∥(Φ0
n,Φ

1
n

)∥∥2
X1

=
∥∥e−pn,qn

∥∥2
H1/2

= λ−
pn,qn and a > α2, it follows that limn→+∞

∥∥(Φ0
n,Φ

1
n

)∥∥2
X1

= a −
α2 > 0. Besides, by simple computations we can prove that the solution Φn(t) =

cos
(√

λ−
pn,qnt

)
e−pn,qn of (1.3) associated with

(
Φ0

n,Φ
1
n

)
satisfies limn→+∞

∫ T

0

∫
Γ
(∂ϕn

∂ν +

αψnν1)
2dσdt = 0. This contradicts the uniform observability and proves Proposi-

tion 2.4.

4.3.2. Numerical experiments. Note that the counterexample is obtained for
(Φ0,Φ1) composed of only one eigenfunction, for which the limit of the associated
eigenvalue is λ = a − α2. This value is very particular because any other datum
(Φ0,Φ1) composed of one eigenfunction associated with λ ∈ (a − α2, a] does not
contradict the observability. The loss of observability may be exhibited by considering
a (nontrivial) combination of such modes (as done in [10] using Weil sequences) in
order to enhance the lack of spectral gap. Simply put, this phenomenon may be
observed numerically as follows. Let H±

N be the space of the initial data
(
Φ0,Φ1

)
in

H±
1/2 ×H± spanned by {e±p,q}1≤p,q≤N . If we denote by Φ± ∈ R

2N2

the components

of
(
Φ0,Φ1

)T
in the basis {e±p,q}1≤p,q≤N , then we can write, for every

(
Φ0,Φ1

)
in H

±
N ,

∥∥(Φ0,Φ1
)∥∥2

X1
= (A±Φ±,Φ±)

R2N2 ,

∫ T

0

∫

Γ

(
∂ϕ

∂ν
+ αψν1

)2

dσdt = (B±Φ±,Φ±)
R2N2 ,

where A
±,B± ∈ R

2N2×2N2

denote real symmetric matrices (A± is diagonal) and

(·, ·)
R2N2 denotes the scalar product in R

2N2

. On H
±
N , the observability inequality is

formally written as

(A±Φ±,Φ±)
R2N2 ≤ C±

N (T )(B±Φ±,Φ±)
R2N2 .

The observability constant C±
N (T ), whose behavior allows us to detect the lack of

observability, is the solution of the generalized eigenvalue problem

(4.25) C±
N (T ) = max{λ > 0, A±Φ = λB±Φ, Φ ∈ R

2N2 \ {0}}.
In practice, since A

± is diagonal, it is easier to evaluate (C±
N )−1 equal to the lowest

eigenvalue of B±(A±)−1. Table 4.1 gives the value of C−
N (T ) for various values of

N and clearly exhibits the nonuniform boundedness with respect to N , in contrast to
C+

N (T ). This is in agreement with Theorem 2.3 and Proposition 2.4.
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Table 4.1
Evolution of the observability constant C±

N
(T ) vs. N for (a, α, T ) = (4, 1, 3).

N = 5 N = 10 N = 20 N = 40 N = 80

C+
N
(T ) 5.01× 10−1 5.43× 10−1 5.71× 10−1 5.95× 10−1 6.02× 10−1

C−
N
(T ) 2.42× 101 4.41× 102 3.24× 103 8.6× 104 1.01× 106

5. Concluding remarks and comments.

5.1. A refined controllability result. We can prove that the observability
inequality (4.6) remains true if we consider initial data

(
Φ0,Φ1

)
, which are spanned

by all the e+p,q, all the eq, and a finite number of e−p,q. More precisely, for every

N ∈ N
∗ let us denote by HN−

(resp., HN−

−1/2, H
N−

1/2 ) the Hilbert subspace of H (resp.,

H−1/2, H1/2) spanned by {e−p,q}1≤p,q≤N . By using Proposition 4.7, we can prove that

if a ≤ 2π2, then the new sequences (Λp,q)(p,q)∈Z∗×N∗ and (Λ̃p,q)(p,q)∈N∗×Z∗ defined by

Λp,q =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
a if p = 1,√
λ+
p−1,q if 2 ≤ p ≤ N + 1 and 1 ≤ q ≤ N,√

λ−
p−N−1,q if N + 2 ≤ p ≤ 2N + 1 and 1 ≤ q ≤ N,√

λ+
p−N−1,q if p ≥ 2N + 2 and 1 ≤ q ≤ N,√

λ+
p−1,q if p ≥ 2 and q ≥ N + 1,

−Λ−p,q if p ≤ −1 and q ≥ 1,

Λ̃p,q =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
a if q = 1,√
λ+
p,q−1 if 1 ≤ p ≤ N and 2 ≤ q ≤ N + 1,√

λ−
p,q−N−1 if 1 ≤ p ≤ N and N + 2 ≤ q ≤ 2N + 1,√

λ+
p,q−N−1 if 1 ≤ p ≤ N and q ≥ 2N + 2,√

λ+
p−1,q if p ≥ N + 1 and q ≥ 2,

−Λ̃p,−q if p ≥ 1 and q ≤ −1

satisfy the following gap properties:
• For all p ∈ N

∗ and all (q, q′) ∈ Z
∗ × Z

∗ such that p ≤ max (q, q′),

∣∣∣Λ̃p,q − Λ̃p,q′

∣∣∣ ≥ γN |q − q′| ;

• for all q ∈ N
∗ and all (p, p′) ∈ Z

∗ × Z
∗ such that q ≤ max (p, p′),

|Λp,q − Λp′,q| ≥ γN |p− p′| ,

with a gap γN which tends to 0 as N tends to +∞. Using the same methods as in
section 4.2.3, we can prove that there exists a time TN > 0 (which tends to +∞ with
N) such that for every T > TN and every initial data

(
Φ0,Φ1

)
in D (L∗

TL)∩ ((Ha
1/2 ⊕

H+
1/2 ⊕ HN−

1/2 ) × (Ha ⊕ H+ ⊕ HN−

)), the observability inequality (4.6) is satisfied.

This leads to the following controllability result.
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Theorem 5.1. If a ≤ 2π2, then there exists TN > 0 such that for any T > TN ,

any initial data
(
u0, u1

)
, and final data

(
u0
T , u

1
T

)
belonging to (Ha ⊕H+ ⊕HN−

) ×
(Ha

−1/2 ⊕H+
−1/2 ⊕HN−

−1/2), there exists a control function v in D (LT ) such that the

solution u of (1.1) satisfies (u(·, T ), u′(·, T )) = (u0
T , u

1
T ) in Ω.

Remark 5.2. As a consequence of Theorem 5.1, ∪T>0R(LT ) = X (where R (LT )
denotes the range of LT ). However, the problem of approximate controllability at a
fixed time T (which consists of R (LT ) = X) is still open.

5.2. Controllability with respect to T . The eigenvalue problem (4.25) allows
us to estimate numerically the minimal controllability time for any a, α,N fixed.
Figure 5.1 depicts the evolution of C+

N (T ) with respect to T for (a, α,N) = (4, 1, 50)
and suggests that the minimal controllability time is about 2.5. The lower bound
time T0 in Theorem 2.3 leading to T0 ≈ 21.96 in the case of (a, α,N) = (4, 1, 50) is
thus not sharp.

2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

T

Fig. 5.1. Evolution of C+
N
(T ) with respect to T for (a, α,N) = (4, 1, 50).

5.3. Partial controllability. Following [14], one may analyze the uniform par-
tial controllability, which consists of driving to rest only the first component u1 of
system (1.1). This weaker controllability problem is equivalent to proving observ-
ability inequality (4.6) for initial data

(
Φ0,Φ1

)
of the adjoint system (1.3) such that

Φ0
2 = Φ1

2 = 0. From the second equation of (1.3) with Φ0
2 = Φ1

2 = 0, we express ψ in

terms of ϕ as follows: ψ(·, t) = −α
∫ t

0 ∂xϕ(·, s) sin(
√
a(t − s))ds in QT . The variable

ϕ is then the solution of

⎧
⎪⎨
⎪⎩

ϕ′′ = ∆ϕ− α2
∫ t

0 ∂xxϕ(·, s) sin(
√
a(t− s))ds in QT ,

ϕ = 0 on ΣT ,

(ϕ(·, 0), ϕ′(·, 0)) =
(
Φ0

1,Φ
1
1

)
in Ω.

The difference, with respect to the full controllability problem, is that the Fourier
coefficients in ϕ are all connected to each other. This should allow a compensation
of the modes {e−p,q}p,q by the modes {e+p,q}p,q (we refer to [14] for the analysis on a
similar system). Thus the partial controllability should be uniform with respect to
the data

(
u0, u1

)
. The analysis remains to be fully written.
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