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ADAPTIVE ESTIMATION FOR HAWKES PROCESSES;

APPLICATION TO GENOME ANALYSIS1

By Patricia Reynaud-Bouret and Sophie Schbath2

CNRS, Université de Nice Sophia-Antipolis and Institut National
de la Recherche Agronomique

The aim of this paper is to provide a new method for the detection
of either favored or avoided distances between genomic events along
DNA sequences. These events are modeled by a Hawkes process. The
biological problem is actually complex enough to need a nonasymp-
totic penalized model selection approach. We provide a theoretical
penalty that satisfies an oracle inequality even for quite complex fam-
ilies of models. The consecutive theoretical estimator is shown to be
adaptive minimax for Hölderian functions with regularity in (1/2,1]:
those aspects have not yet been studied for the Hawkes’ process.
Moreover, we introduce an efficient strategy, named Islands, which is
not classically used in model selection, but that happens to be par-
ticularly relevant to the biological question we want to answer. Since
a multiplicative constant in the theoretical penalty is not computable
in practice, we provide extensive simulations to find a data-driven cal-
ibration of this constant. The results obtained on real genomic data
are coherent with biological knowledge and eventually refine them.

1. Introduction. Modeling the arrival times of a particular event on the
real line is a common problem in time series theory. In this paper, we deal
with a very similar but rarely addressed problem: modeling the process of the
occurrences of a particular event along a discrete sequence, namely a DNA
sequence. Such events could be, for instance, any given DNA patterns, any
genes or any other biological signals occurring along genomes. A huge litera-
ture exists on the statistical properties of pattern occurrences along random
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sequences [18] but our current approach is different. It consists in directly
modeling the point process of the occurrences of any kind of events and it is
not restricted to pattern occurrences. Our aim is to characterize the depen-
dence, if any, between the event occurrences by pointing out either favored
or avoided distances between them, those distances being significantly larger
than the classical memory used in the quite popular Markov chain model for
instance. At this scale, it is more interesting to use a continuous framework
and see occurrences as points. A very interesting model for this purpose is
the Hawkes process [12].

In the most basic self-exciting model, the Hawkes process (Nt)t∈R is de-
fined by its intensity, which satisfies

λ(t) = ν +

∫ t−

−∞
h(t− u)dNu,(1.1)

where ν is a positive parameter, h a nonnegative function with support
on R

+ and
∫

h < 1 and where dNu is the point measure associated to the
process. The interested reader shall find in Daley and Vere-Jones’ book [9]
the main definitions, constructions and models related to point processes in
general and Hawkes processes in particular [see, e.g., Examples 6.3(c) and
7.2(b) therein].

The intensity λ(t) represents the probability to have an occurrence at
position t given all the past. In this sense, (1.1) basically means that there
is a constant rate ν to have a spontaneous occurrence at t but that also
all the previous occurrences influence the apparition of an occurrence at t.
For instance, an occurrence at u increases the intensity by h(t− u). If the
distance d = t− u is favored, it means that h(d) is really large: having an
occurrence at u significantly increases the chance of having an occurrence
at t. The intensity given by (1.1) is the most basic case, but variations of it
enable us to model self-inhibition, which happens when one allows h to take
negative values (see Section 2.4) and, in the most general case, to model
interaction with another type of event. The drawback is that, by definition,
the Hawkes process is defined on an ordered real line (there is a past, a
present and a future). But a strand of DNA itself has a direction, a fact that
makes our approach quite sensible.

The Hawkes model has been widely used to model the occurrences of
earthquake [24]. In this set-up and even for more general counting processes,
the statistical inference usually deals with maximum likelihood estimation
[16, 17]. This approach has been applied to genome analysis: in a previous
work [12], Gusto and Schbath’s method, named FADO, uses maximum like-
lihood estimates of the coefficients of h on a Spline basis coupled with an
AIC criterion to select the set of equally spaced knots.

On one hand, the FADO procedure is quite effective—it can manage in-
teractions between two types of events and self excitation or inhibition, that



ADAPTIVE ESTIMATION FOR HAWKES’ PROCESSES 3

is, it works in the most general Hawkes process framework and produces
smooth estimates. However, there are several drawbacks. From a theoretical
point of view, AIC criterion is proved to select the right set of knots if first,
there exists a true set of knots, and then if the family of possible knots is held
fixed whereas the length of the observed sequence of DNA tends to infinity.
Moreover, from a practical point of view, the criterion seems to behave very
poorly when a lot of possible sets of knots with the same cardinality are in
competition [11]. FADO has been implemented with equally spaced knots
for this reason. Finally, it heavily depends on an extra knowledge of the
support of the function h. In practice, we have to input the maximal size
of the support, say 10,000 bases, in the FADO procedure. Consequently the
FADO estimate is a spline function based on knots that are equally spaced
on [0,10,000]. If this maximal size is too large, the estimate of h will proba-
bly be small with some fluctuations but not null until the end of the interval,
whereas it should be null before (see Figure 12 in Section 5).

On the other hand, our feeling is that if interaction exists, say around the
distance d = 500 bases, the function h to estimate should be really large,
around d= 500, and if there is no biological reason for any other interaction,
then h should be null anywhere else.

One way to solve this problem of estimation is to use model selection but
in its nonasymptotic version. Ideally, if the work of Birgé and Massart in
[5] was not restricted to the Gaussian case but if it also provides results
for the Hawkes model then it should enable us to find a way of selecting
an irregular set of knots with complexity that may grow if the length of
the observed sequence becomes larger. The question of the knowledge of the
support never appears in Birgé and Massart’s work because there is not such
a question in a Gaussian model, but one could imagine that their way of
selecting sparse models should enable us to select a sparse support too.

However, we are not in an ideal world where a white noise model and
Hawkes model are equivalent (even heuristically), so there is no way to guess
the right way of penalizing in our situation. So the purpose of this article
is to provide a first attempt at constructing a penalized model selection in
a nonasymptotic way for the Hawkes model. This paper consists in both
practical methods for estimating h that lie on theoretical evidences and also
in new theoretical results such as oracle inequalities or adaptivity in the
minimax sense. Note that, to our knowledge, the minimax aspects of the
Hawkes model have not yet been considered.

Accordingly, we restrict ourselves to a simpler case than the FADO proce-
dure. First, we focus on the self-exciting model [i.e., the one given by (1.1),
where h is assumed to be nonnegative], but we would at least like that the
final estimator remains computable in case of self-inhibition. Then we do
not use maximum likelihood estimators since they are not easily handled by
model selection procedures, at least from a theoretical point of view. So we



4 P. REYNAUD-BOURET AND S. SCHBATH

provide in this paper theoretical results for penalized projection estimators
(i.e., least square estimators) and not for penalized maximum likelihood es-
timators (see Chapter 7 of [15] for a complete comparison of both contrasts
in the density setting from a model selection point of view). Finally, for
technical reasons, we only deal with piecewise constant estimators. Once all
those restrictions are done, the gap between the theoretical procedure and
the practical procedure is consequently reduced to a practical calibration
problem of the multiplicative constants.

Since the Hawkes processes are quite popular for modeling earthquakes,
financial, or economical data, we try to keep a general formalism in most
of the sequel (except in the biological applications part). Consequently, our
method could be applied to many other type of data.

In Section 2, we define the notation and the different families of models.
Section 3 states first a nonasymptotic result for the projection estimators,
since up to our knowledge, these estimators were not yet studied. Then Sec-
tion 3 gives a theoretical penalty that enables us to select a good estimator
in a family of projection estimators. Indeed, we prove that our penalized pro-
jection estimator satisfies an oracle inequality, hence proving by that result
that our estimator is as good as the best projection estimator in the family
up to some multiplicative term. However, the multiplicative constant in the
theoretical penalty is not computable in practice. As a consequence, Sec-
tion 4 provides simulations which validate a calibration method that seems
to work well from a practical point of view. Then in Section 5 we apply
this method to DNA data. The results match biological evidences and refine
them. Section 6 details the adaptive and minimax properties of our estima-
tors. Section 7 is dedicated to more technical results that are at the origin
of the ones stated in Section 3. Sketch of proofs can be found in Section 8:
the interested reader shall find details of those proofs in [23].

2. Framework. Let (Nt)t be a stationnary Hawkes process on the real
line satisfying (1.1). We assume that h has a bounded support included in
(0,A] where A is a known positive real number and that

p :=

∫ A

0
h(u)du(2.1)

satisfies p < 1. This condition guarantees the existence of a stationary version
of the process (see [13]). Let us remark that, for the DNA applications
we have in mind, A is quite known because it corresponds to a maximal
distance from which it is no longer reasonable to consider a linear interaction
between two genomic locations. If there may exist some interaction at longer
distances, then it should certainly imply the 3D structure of DNA.
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We observe the stationary Hawkes process (Nt)t on an interval [−A,T ],
where T is a positive real number. Typically T should be significantly larger
than A. Using this observation, we want to estimate

s= (ν,h),(2.2)

assumed to be in

L
2 =

{

f = (µ, g) :g with support in (0,A],

(2.3)

‖f‖2 = µ2 +

∫ A

0
g2(x)dx <+∞

}

.

The introduction of this Hilbert space is related to the fact that we want to
use least square estimators.

With these constraints on h, we can note that (1.1) is equivalent to

λ(t) = ν +

∫ t−

t−A
h(t− u)dNu.(2.4)

Now, we can introduce intensity candidates: for all f = (µ, g) in L
2, we define

Ψf (t) := µ+

∫ t−

t−A
g(t− u)dNu.(2.5)

In particular, note that Ψs(t) = λ(t). A good intensity candidate should be a
Ψf (·) that is close to Ψs(·). The least-square contrast is consequently defined
for all f in L

2 by

γT (f) :=− 2

T

∫ T

0
Ψf (t)dNt +

1

T

∫ T

0
Ψf (t)

2 dt.(2.6)

As we will see in Lemma 3, this really defines a contrast, in the statistical
sense. Indeed, taking the compensator of the previous formula leads to

− 2

T

∫ T

0
Ψf (t)Ψs(t)dt+

1

T

∫ T

0
Ψf (t)

2 dt.

Let us consider the last integral in the previous equation:

D2
T (f) :=

1

T

∫ T

0
Ψf (t)

2 dt.(2.7)

Lemma 2 proves that D2
T (·) defines a quadratic form on L

2 such that

‖f‖D :=
√

E(D2
T (f))(2.8)

is a quadratic norm on L
2, equivalent to ‖f‖ [see (2.3)]. In this sense, we

can see γT (f) as an empirical version of ‖f − s‖2D − ‖s‖2D, which is quite
classical for a least-square contrast (see the density set-up, e.g., in [15]).
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2.1. Projection estimator. Let m be a set of disjoint intervals of (0,A].
In the sequel, m is called a model and |m| denotes the number of intervals in
m. One can think of m as a partition of (0,A] but there are other interesting
cases as we will see later. Let Sm be the vectorial space of L2 defined by

Sm =

{

f = (µ, g) ∈ L
2 such that g =

∑

I∈m

aI
I

√

ℓ(I)
with (aI)I∈m ∈R

m

}

,(2.9)

where ℓ(I) =
∫

I dt. We say that g in the above equation is constructed
on the model m. Conversely, if g is a piecewise constant function, remark
that we can define a resulting model m by the set of intervals where g is
constant but nonzero and a resulting partition by the set of intervals where
g is constant. The projection estimator, ŝm, is the least square estimator of
s defined by

ŝm := argmin
f∈Sm

γT (f).(2.10)

Of course the estimator ŝm heavily depends on the choice of the model m.
That is the main reason for trying to select it in a data driven way. Model
selection intuition usually relies on a bias-variance decomposition of the risk
of ŝm. So let us define sm as the orthogonal projection for ‖ · ‖ of s on Sm.
Then ŝm is a “good” estimate of sm, since γT (f) is an approximation of
‖f − s‖2D −‖s‖D . We cannot prove that it is an unbiased estimate, but the
intuition applies. So the bias can be more or less identified as ‖s − sm‖2.
This is the approximation error of the model m with respect to s. As we will
see in Proposition 1 and the consecutive comments, one can actually prove
that

E(‖s− ŝm‖2)%CT

[

‖s− sm‖2 + |m|
T

]

,

where CT is a positive quantity that slowly varies with T . So the variance
or stochastic error may be identified as |m|/T . We recover a bias-variance
decomposition where the bias decreases and the variance increases. Finding
a model m in a data driven way that almost minimizes the previous equation
is the main goal of model selection. However, there is no precise shape for
the quantity CT . We consequently use the most general form of penalization
in the sequel.

2.2. Penalized projection estimator. Let MT be a family of sets of dis-
joint intervals of (0,A] (i.e., a family of possible models). We denote by
#{MT } the total number of models. We define the penalty (or penalty
function) by pen :MT → R

+ and we select a model by minimizing the fol-
lowing criterion:

m̂ := argmin
m∈MT

[γT (ŝm) + pen(m)].(2.11)
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Then the penalized projection estimator is defined by

s̃= (ν̃, h̃) = ŝm̂.(2.12)

The main problem is now to find a function pen :MT →R
+ that guarantees

that

‖s− s̃‖2 ≤C inf
m∈MT

‖s− ŝm‖2(2.13)

and this either with high probability or in expectation, up to some small
residual term and up to some multiplicative term C that could slightly
increase with T . The previous equation (2.13) is an oracle inequality. If
this oracle inequality holds, this will mean that we can select a model m̂,
and consequently a projection estimator s̃ = ŝm̂, that is almost as good as
the best estimator in the family of the ŝm’s—whereas this best estimator
cannot be guessed without knowing s. Of course this would tell us nothing
if the projection estimators themselves, that is, the ŝm’s, are not sensible.
The next section precisely states the properties of the projection estimator
and the oracle inequality satisfied by the penalized projection estimator. To
conclude Section 2, we precise the different families of models we would like
to use and we precisely explain what self-inhibition means in our model.

2.3. Strategies. A strategy refers to the choice of the family of mod-
els MT . In the sequel, a partition Γ of (0,A] should be understood as a
set of disjoint intervals of (0,A] such that their union is the whole inter-
val (0,A]. A regular partition is such that all its intervals have the same
length. We say that a model m is written on Γ if all the extremities of
the intervals in m are also extremities of intervals in Γ. For instance if Γ =
{(0,0.25], (0.25,0.5], (0.50.75], (0.75,1]} then {(0,0.25], (0.25,1]} or {(0,0.25],
(0.75,1]} are models written on Γ. Now let us give some examples of families
MT . Let J and N be two positive integers.

Nested strategy. Take Γ a dyadic regular partition (i.e., such that |Γ|= 2J ).
Then take MT as the set of all dyadic regular partitions of (0,A] that can be
written on Γ, including the void set. In particular, note that #{MT }= J+2.
We say that this strategy is nested since for any pair of partitions in this
family, one of them is always written on the other one.

Regular strategy. Another natural strategy is to look at all the regular
partitions of (0,A] until some finest partition of cardinal N . That is to say
that one has exactly one model with cardinality k for each k in {0, . . . ,N}.
Here #{MT }=N + 1.

Irregular strategy. Assume now that we know that h is piecewise constant
on (0,A] but that we do not know where the cuts of the resulting partition
are. We can consider Γ a regular partition such that |Γ| = N and then
consider MT the set of all possible partitions written on Γ, including the
void set. In this case, #{MT } % 2N .
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Fig. 1. On each line, one can find a model by looking at the collection of red intervals
between “[” or “].” For the Nested strategy, here are all the models for J = 3. For the Reg-
ular strategy, here are all the models for N = 4. For the Irregular and Islands strategies,
these are just some examples of models in the family with N = 8.

Islands strategy. This last strategy has been especially designed to answer
our biological problem. We think that h has a very localized support. The
interval (0,A] is really large and in fact h is nonzero on a really smaller
interval or a union of really smaller intervals: the resulting model is sparse.
We can consider Γ a regular partition such that |Γ|=N and then consider
MT the set of all the subsets of Γ. A typical m corresponds to a vectorial
space Sm where the functions g are zero on (0,A] except on some disjoints
intervals which look like several “islands.” In this case, #{MT }= 2N .

Figure 1 gives some more visual examples of the different strategies.

2.4. Self-inhibition. The self-interaction can be modeled in a more gen-
eral way by a process whose intensity is given by

λ(t) =

(

ν +

∫ t−

−∞
h(t− u)dNu

)

+

,(2.14)

where h may now be negative. We have taken the positive part to ensure
that the intensity remains positive. Then the condition

∫

|h|< 1 is sufficient
to ensure the existence of a stationary version of the process (see [7]). When
h(d) is strictly positive there is a self-excitation at distance d. When h(d) is
strictly negative, then there is a self-inhibition. It is more or less the same
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interpretation as above [see (1.1)] except that now all the previous occur-
rences are voting whether they “like” or “dislike” to have a new occurrence
at position t. If this process is not studied in this paper from a theoretical
point of view because of major technical issues (except in the remarks fol-
lowing Theorem 2), note that however our projection estimators, ŝm, and
penalized projection estimators, s̃, do not take the sign of g or h into account
for being computed. That is the reason why we will use our estimators, even
in this case, for the numerical results.

Finally, we use in the sequel the notation ♦ which represents a positive
function of the parameters that are written in indices. Each time ♦θ is
written in some equation, one should understand that there exists a positive
function of θ such that the equation holds. Therefore, the values of ♦θ may
change from line to line and even change in the same equation. When no
index appears, ♦ represents a positive absolute constant.

3. Main results. For technical reasons, we are not able to carefully con-
trol the behavior of the projection estimators if ν tends to 0 or to infinity,
but also if p [see (2.1)] tends to 1: in such cases, the number of points in
the process is either exploding or vanishing. Consequently, the theoretical
results are proved within a subset of L2. Let us define for all real numbers
H > 0, η > ρ> 0, 1> P > 0, the following subset of L2:

Lη,ρ
H,P =

{

f = (µ, g) ∈ L
2/µ ∈ [ρ, η], g(·) ∈ [0,H] and

∫ A

0
g(u)du≤ P

}

.

If we know that s belongs to Lη,ρ
H,P and if we know the parameters H,η and

ρ, then it is reasonable to consider the clipped projection estimator, s̄m. If
we denote the projection estimator ŝm = (ν̂m, ĥm), then s̄m = (ν̄m, h̄m) is
given, for all positive t, by































ν̄m =

{

ν̂m, if ρ≤ ν̂m ≤ η,
ρ, if ν̂m < ρ,
η, if ν̂m > η,

h̄m(t) =







ĥm(t), if 0≤ ĥm(t)≤H,

0, if ĥm(t)< 0,

H, if ĥm(t)>H.

(3.1)

Note that s̄m, the clipped version of ŝm, is only designed for theoretical
purpose. Whereas ŝm may be computed even for possibly negative h, the
computation of s̄m does not make sense in this more general framework. For
the clipped projection estimator, we can prove the following result.

Proposition 1. Let (Nt)t∈R be a Hawkes process with intensity given
by Ψs(·). Let m be a model written on Γ where Γ is a regular partition of
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(0,A] such that

|Γ| ≤
√
T

(logT )3
.(3.2)

Then if s belongs to Lη,ρ
H,P , the clipped projection estimator on the model m

satisfies

E(‖s̄m − s‖2)≤ ♦H,P,η,ρ,A

[

‖sm − s‖2 + (|m|+ 1)
logT

T

]

.

This result is a control of the risk of the clipped projection estimator on
one model. A first interpretation is to assume that s belongs to Sm. In this
case, if m is fixed whereas T tends to infinity, Proposition 1 shows that
s̄m is consistent as the maximum likelihood estimator is and that the rate
of convergence is smaller than log(T )/T . It is well known that the MLE is
asymptotically Gaussian in classical settings with a rate of convergence in
1/T . But the aim of Proposition 1 is not to investigate asymptotic properties:
the virtue of the previous result is its nonasymptotic nature. It allows a
dependence of m on T , as soon as (3.2) is satisfied (see Section 6 for the
resulting minimax properties).

There are two terms in the upper bound. The first one ‖sm − s‖2 has
already been identified as the bias of the projection estimator. The second
term can be viewed as an upper bound for the stochastic or variance term.
Actually, this upper bound is almost sharp. If we assume that s belongs
to Sm, that is, s= sm, then the bias disappears and the quantity E(‖s̄m −
s‖2)—a pure variance term—is in fact upper bounded by a constant times
|m| log(T )/T . But on the other hand, we have the following result.

Proposition 2. Let m be a model such that infI∈m ℓ(I)≥ ℓ0 then there
exists a positive constant c depending on A,η,P, ρ,H such that if |m| ≥ c
then

inf
ŝ

sup
s∈Sm∩Lη,ρ

H,P

Es(‖s− ŝ‖2)≥ ♦H,P,η,ρ,Amin

( |m|
T

, ℓ0|m|
)

.

The infimum over ŝ represents the infimum over all the possible estimators
constructed on the observation on [−A,T ] of a point process (Nt)t. Es rep-
resents the expectation with respect to the stationnary Hawkes process (Nt)t
with intensity given by Ψs(·).

Hence, when s belongs to Sm, the clipped projection estimator has a risk
which is lower bounded by a constant times |m|/T and upper bounded by
|m| log(T )/T . There is only a loss of a factor log(T ) between the upper
bound and the lower bound. This factor comes from the unboundedness of
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the intensity. The best control we can provide for the intensity is to bound
it on [0, T ] by something of the order log(T ). The reader may think to this
really similar fact: the sup of n i.i.d. variables with exponential moments
can only be bounded with high probability by something of the order log(n).
Note also that the clipped projection estimator is minimax on Sm ∩ Lη,ρ

H,P
up to this logarithmic term.

Now let us turn to model selection, oracle inequalities and penalty choices.
As before if we know H,η, and ρ, then it is reasonable to consider the clipped
penalized projection estimator, s̄ for theoretical purpose. Recall that the
penalized projection estimator s̃= (ν̃, h̃) is given by (2.12). Then the clipped
penalized projection estimator, s̄= (ν̄, h̄), is given, for all positive t, by































ν̄ =

{

ν̃, if ρ≤ ν̃ ≤ η,
ρ, if ν̃ < ρ,
η, if ν̃ > η,

h̄(t) =







h̃(t), if 0≤ h̃(t)≤H,
0, if h̃(t)< 0,
H, if h̃(t)>H.

(3.3)

The next theorem provides an oracle inequality in expectation [see (2.13)].

Theorem 1. Let (Nt)t∈R be a Hawkes process with intensity Ψs(·). As-
sume that we know that s belongs to Lη,ρ

H,P . Moreover, assume that all the

models in MT are written on Γ, a regular partition of (0,A] such that
(3.2) holds. Let Q > 1. Then there exists a positive constant κ depending
on η, ρ,P,A,H such that if

∀m ∈MT pen(m) = κQ(|m|+1)
log(T )2

T
,(3.4)

then

E(‖s̄− s‖)2 ≤ ♦η,ρ,P,A,H inf
m∈MT

[

‖s− sm‖2 + (|m|+ 1)
log(T )2

T

]

+♦η,ρ,P,A,H
#{MT }

TQ
.

The form of the penalty is a constant times |m| log(T )2/T , that is, it is
equal to the variance term up to some logarithmic factor. Remark also that
choosing the penalty as a constant times the dimension leads to an oracle
inequality in expectation. The multiplicative constant is not an absolute
constant but something that depends on all the parameters that were intro-
duced (H,η,P , etc.). This is actually classical. Even in the Gaussian nested
case (see [6]), Mallows’ Cp multiplicative constant is 2σ2 where σ2 is the
variance of the Gaussian noise. The form is simpler than in our case but
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still an unknown parameter σ2 appears. With respect to the Gaussian case,
remark that there is also some loss due to logarithmic terms. Finally, for
readers who are familiar with model selection techniques, we do not refine
the penalty with the use of weights, because the concentration formulas we
use to derive the penalty expression are not concentrated enough to allow
a real improvement by using those weights. The Gaussian concentration in-
equalities do not apply to Hawkes processes, even if there are some attempts
at proving similar results [22]. As a consequence, we are not able to treat
families of models as complex as in [5]. This lack of concentration actually
comes from an obvious essential feature of the Hawkes’ process: its depen-
dency structure. This has already been noted in several papers on counting
processes (see [20] and [21]). Here, the dependance is not a nuisance pa-
rameter but the structure we want to estimate via the function h. Related
works may be found in discrete time: autoregressive process in [2] or [3] and
Markov chain in [14]. In all these papers, multiplicative constants, which
are usually unknown by practitioners, appear in the penalty term, as in
the Gaussian framework, where the variance noise σ2 is usually unknown.
In the Gaussian case, there have been several papers dealing with the pre-
cise theoretical calibration of those constants in a data-driven way (see [1]
or [6]). Here, since the concentration inequalities are too rough, we cannot
prove theoretical calibration. So we have decided to find at least a practical
data-driven calibration of this multiplicative constant (see Section 4).

4. Practical data-driven calibration via simulations. The main drawback
of the previous theoretical results is that the multiplicative constant in the
penalty is not computable in practice. Even if the formula for the factor κ
is known, it depends heavily on the extra knowledge of parameters (H,η,P ,
etc.) that cannot be guessed in practice. On the contrary, A is a meaningful
quantity, at least for our biological purpose. The aim of this section is to
find a performant implementable method of selection, based on the following
theoretical fact: (3.4) proves that a constant times the dimension of the
model should work.

4.1. Compared methods. Since our simulation design (see Section 4.3) is
computationally demanding, we restricted ourselves to models m with at
most 15 intervals. Consequently, we did not consider the Nested strategy be-
cause it would only involve five models in the family. We then only focus
on the three following strategies: Regular, Irregular and Islands. Since we
are looking for a penalty that is inspired by (3.4), we compare our penal-
ized methods to the most naive approach, namely the Hold-out procedure
described below. As stated in the Introduction, the log-likelihood contrast
coupled with an AIC penalty (see, e.g., [12]) is only adapted to functions
g defined on regular partitions, so we do not consider this method here.
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Moreover, the truncated estimators are designed for minimax theoretical
purposes, but of course they depend on parameters (H , etc.) that cannot
be guessed in practice. They also force the estimate of h to be nonnegative.
Therefore, in this section, we only use nontruncated estimators [see (2.10),
(2.11), (2.12)].

Hold-out. The naive approach is based on the following fact (which can
be made completely and theoretically explicit in the self-exciting case). We
know (see Lemma 3) that γT is a contrast. We know also that E(γT (f)) =
‖f − s‖2D − ‖s‖2D. Moreover, we know that the projection estimators ŝm
behave nicely (see Proposition 1). Now we would like to select a model m̂
such that ŝm̂ is as good as the best possible ŝm. So one way to select a good
model m should be to observe a second independent Hawkes process with
the same s and to compute the minimizer of γT,2(ŝm) over MT (where ŝm is
computed with the first process and γT,2 is our contrast but computed with
the second process). However, we do not have in practice two independent
Hawkes processes at our disposal. But one can cut [−A,T ] in two almost
independent pieces. Indeed, the points of the process in [−A,T/2−A] and in
[T/2, T ] can be equal to those of independent stationary Hawkes processes
and this with high probability (see [22]). Hence, in the sequel whenever
the Hold-out estimator is mentioned, and whatever the family MT is, it is
referring to the following procedure.

1. Cut [−A,T ] into two pieces: H1 refers to the points of the process on
[−A,T/2−A], H2 refers to the points of the process on [T/2, T ].

2. Compute ŝm for all the m in MT by minimizing the least-square contrast
γT,1 on Sm computed with only the points of H1, that is,

∀f ∈ L
2 γT,1(f) =− 2

T

∫ T/2−A

0
Ψf (t)dNt +

1

T

∫ T/2−A

0
Ψf (t)

2 dt.

3. Compute γT,2(ŝm) where γT,2 is computed with H2, that is,

∀f ∈ L
2 γT,2(f) =− 2

T

∫ T

T/2+A
Ψf (t)dNt +

1

T

∫ T

T/2+A
Ψf (t)

2 dt

and find m̂= argminm∈MT
γT,2(ŝm).

4. The Hold-out estimator is defined by s̃HO := ŝm̂.

Penalized. Theorem 1 shows that theoretically speaking a penalty of the
type K(|m|+ 1) should work. However, the theoretical multiplicative con-
stant is not only not computable, it is also too large for practical purpose.
So one needs to consider Theorem 1 as a result that guides our intuition
toward the right shape of penalty and one should not consider it as a sacred
and not improvable way of penalizing. Therefore, we investigate two ways
of calibrating the multiplicative constants.
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1. The first one follows the conclusions of [6]. In the Regular strategy, there
exists at most one model per dimension. If there exists a true model m0,
then for |m| large (larger than |m0|) γT (ŝm) should behave like −k(|m|+
1). So there is a “minimal penalty” as defined by Birgé and Massart
of the form penmin = k(|m| + 1). In this situation, their rule is to take
pen(m) = 2 ∗ penmin(m).

We find a k̂ by doing a least-square regression for large values of |m|
so that

γT (ŝm)%−k̂(|m|+1).

Then we take

m̂= argmin
m∈MT

γT (ŝm) + 2k̂(|m|+1),

and we define s̃min := ŝm̂.
Let us remark that the framework of [6] is Gaussian and i.i.d. It is, in

our opinion, completely out of reach to extend these theoretical results
here. However, at least in the Regular strategy, the concentration formula
that lies at the heart of our proof is really close to the one used in [6],
which tends to prove that their method could work here.

For the Irregular and Islands strategy, as a preliminary step, we need
to find the best data-driven model per dimension, that is,

m̂D = argmin
m∈MT ,|m|=D

γT (ŝm).

Then one can plot as a function of D, γT (ŝm̂D
). In [6], they also obtain an-

other kind of minimal penalty of the form penmin = k(D+1)(log(|Γ|/D)+
5) when the Irregular strategy is used. But for very small values of |Γ|
(as here), we would not see the difference between this form of penalty
and the linear form. Moreover, theoretically speaking, we are not able to
justify, even heuristically, such a form of penalty for large values of |Γ|.
Indeed, the concentration formula in our case is quite different for such
a complex family.

So we have decided that we will use the same penalty as before even
in the Irregular and Islands strategies. That is to say that we find a k̂ by
doing a least-square regression for large value of D so that

γT (ŝm̂D
)%−k̂(D+ 1).

Then we take

m̂= argmin
m∈MT

γT (ŝm) + 2k̂(|m|+1),

and we define s̃min := ŝm̂ even for the Irregular and Islands strategies.
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2. On the other hand, the choice of m̂ by s̃min was not completely satis-
factory when using the Islands or Irregular strategies (see the comments
on the simulations hereafter). But on the contrast curve: D → γT (ŝm̂D

),
we could see a perfectly clear angle at the true dimension. So we have

decided to compute −k̄ =
γT (ŝΓ)−γT (ŝm̂1

)

|Γ|−1 and to choose

m̂= argmin
m∈MT

γT (ŝm) + k̄(|m|+1).

We define s̃angle := ŝm̂. This seems to be a proper automatic way to obtain
this angle without having to look at the contrast curve. It is still based
on the fact that a multiple of the dimension should work. This has only
been implemented for the Irregular and Islands strategies.

This angle method may be viewed as the “extension” of the L-curve
method in inverse problems where one chooses the tuning parameter at
the point of highest curvature.

Table 1 summarizes our 8 different estimators.

4.2. Simulated design. We have simulated Hawkes processes with param-
eters (ν,h), with ν in {0.001,0.002,0.003, 0.004,0.005}, h having a bounded
support in (0,1000] (i.e., A= 1000) and on a sequence of length [−A,T ] with
T = 100,000 or T = 500,000. The fact that the process is or not stationary
does not seem to influence our procedure with this relatively short memory
(indeed T ≥ 100A).

The functions h have been designed so that we can see the influence of
p (2.1) on the estimation procedure. So f1 = 0.004 [200,400] is a piecewise
constant nonnegative function on the regular partition Γ (|Γ| = 15) with
integral 0.8 and we have tested h= c ∗ f1 with c in {0.25,0.5,0.75,1} (i.e.,
p = 0.2,0.4,0.6 and 0.8, respectively). We have also tested a possibly neg-
ative function f2 = 0.003 [200,800/3] − 0.003 [2000/3,2200/3] that is piecewise

Table 1

Table of the different methods

Methods Strategy Selection

1 Regular N = 15 Minimal penalty s̃min

2 Irregular |Γ|= 15 Angle method s̃angle

3 Irregular |Γ|= 15 Minimal penalty s̃min

4 Islands |Γ|= 15 Angle method s̃angle

5 Islands |Γ|= 15 Minimal penalty s̃min

6 Regular N = 15 Hold-out s̃HO

7 Irregular |Γ|= 15 Hold-out s̃HO

8 Islands |Γ|= 15 Hold-out s̃HO
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constant on Γ. Note that (see Section 2.4) the sign of h should not affect
the method (penalized least-square criterion) whereas the log-likelihood may
have some problems each time Ψf (·) remains negative on a large interval.
The parameter of importance here is the integral of the absolute value,
which is here

∫

|f2| = 0.8 and we have tested h = f2. Finally, the method
itself should not be affected by a smooth function h: we have used f3 a non-
negative continuous function (in fact the mixture of two Gaussian densities)
with integral equal to 0.8 and we have tested once again h= f3.

Remark that the mean number of observed points belongs to [125,12,500]
which corresponds to the number of occurrences we could observe in biolog-
ical data.

4.3. Implementation. The minimization of γT is actually quite easy since
we use a least-square contrast. From a matrix point of view, one can associate
to some f in Sm [see (2.9)] a vector of D+1 = |m|+ 1 coordinates

θm =









µ
aI1
...

aID









,

where I1, . . . , ID represent the successive intervals of the model m. Let us
introduce

bm =























1

T
N[0,T ]

1

T

∫ T

0
Ψ(0, I1

)(t)dNt

...
1

T

∫ T

0
Ψ(0, ID

)(t)dNt























and

Xm =











1 1
T

∫ T

0 Ψ(0, I1
)(t)dt · · · 1

T

∫ T

0 Ψ(0, ID
)(t)dt

1
T

∫ T

0 Ψ(0, I1
)(t)dt

1
T

∫ T

0 Ψ2
(0, I1

)
(t)dt · · · 1

T

∫ T

0 Ψ(0, I1
)(t)Ψ(0, ID

)(t)dt

...
...

. . .
...

1
T

∫ T

0 Ψ(0, ID
)(t)dt

1
T

∫ T

0 Ψ(0, I1
)(t)Ψ(0, ID

)(t)dt · · · 1
T

∫ T

0 Ψ2
(0, ID

)
(t)dt











.

It is not difficult to see that the contrast γT (f) can be written

γT (f) =−2θmbm + t
θmXmθm.

Therefore, the minimizer θ̂m of γT (f) over f in Sm satisfies Xmθ̂m = bm,

that is, θ̂m =X
−1
m bm. Since the functions Ψ(0, I)(t) are piecewise constants,
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despite their randomness, it may be long but not that difficult to compute
Xm. It is also possible to compute XΓ and to deduce from it the different
Xm’s, when one uses the Islands or Irregular strategies. Nevertheless, both
Islands and Irregular strategies require to calculate each vector θ̂m for the
2|Γ| possible models m and to store them to evaluate the oracle risk (see
below). We thus restricted our Monte Carlo simulations to models m with
less than 15 intervals. For the analysis of single real data sets, the technical
limitation of our programs is |Γ|= 26 due to the 2|Γ| possible models. The
programs have been implemented in R and are available upon request.

4.4. Results. The quality of the estimation procedures is measured thanks
to two criteria: the risk of the estimators and the associated oracle ratio.

• We call Risk of an estimator the Mean Square Error of this estimator over
100 simulations, that is, we compute for each simulation ‖s− ŝ‖2 and next
we compute the average over 100 simulations. Note that with the range of
our parameters, the error of estimation of ν will be really negligible with

respect to the error of estimation for h, so that ‖s− ŝ‖2 %
∫ A
0 (h− ĥ)2.

• The Oracle Risk is for each method the minimal risk, that is,
minm∈MT

Risk(ŝm). All our methods give an estimator s̃ that is selected
among a family of ŝm’s. The Oracle Ratio is the ratio of the risk of s̃
divided by the Oracle Risk, that is,

Risk(s̃)

minm∈MT
Risk(ŝm)

.

If the Oracle Ratio is 1, then the risk of s̃ is the one of the best estimator
in the family. Note that the definition of MT and even the definition of ŝm
appearing in the Oracle Ratio may change from one method to another
one.

Figure 2 gives the Risk of our estimators for h= 0.5∗ f1 for various ν and
T . We first clearly see that the risk decreases when T increases whatever the
method. Then we see that the “best methods” are methods 1, 2 and 4, that
is, the Regular strategy with minimal penalty and the Irregular and Islands
strategies with the angle method. For the Irregular and Islands strategies, the
minimal penalty seems to behave like the Hold-out strategies. There seems
also to be a slight improvement when ν becomes larger, tending to prove
that, if the mean total number of points E(N [0, T ]) = νT/(1− p) grows, the
estimation is improved—at least in our range of parameters. Figure 3 gives
the Oracle Ratio of our estimators in the same context. The Oracle Ratio
is really close to 1 for methods 1, 2 and 4 when T = 500,000 whatever ν is.
Remark that the Oracle Ratio for the Hold-out estimators (methods 6, 7
and 8) is not that large, but since the estimators ŝm are computed with half
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Fig. 2. Risk of the 8 different methods for h= 0.5 ∗ f1 for different values of ν and T .

of the data, their Risks are not as small as the projection estimators used in
the penalty methods. This explains why the Risk of the Hold-out methods
is large when the Oracle Ratio is close to 1. The Oracle Ratio is improving
when T becomes larger for our three favorite methods (namely 1, 2, 4).

Figure 4 gives the variation of the Risk with respect to p (2.1). Since
h= c ∗ f1 and since c varies, the Rescaled Risk, Risk/c2, gives (up to some
negligible term corresponding to ν) the risk of h̃/c as an estimator of f1. We
clearly see that when T or c becomes larger the Rescaled Risk is decreasing.
So it definitely seems that if the mean total number of points grows, the
estimation is improving. Methods 1, 2 and 4 seem to be still the more precise
ones. Figure 5 gives the Oracle Ratio in the same situation. Once again there
is an improvement when T grows at least for our three favorite methods (1,
2 and 4) and the Oracle Ratio is 1 when T = 500,000 and c= 0.8. The same
comment about a good Oracle Ratio for the Hold-out methods apply.

Figure 6 gives the frequency of the chosen dimension, namely |m̂| + 1
for the different methods. Clearly, methods 1, 2 and 4 are correctly choos-
ing the true dimension in most of the simulations when the other methods
overestimate the true dimension.

Finally, Figure 7 shows the resulting estimators of methods 1, 2 and 4 on
one simulation. In particular, before penalizing, note that one clearly sees
an angle on the contrast curve at the true dimension and that penalizing
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Fig. 6. Frequency of the chosen dimension |m̂| + 1 for the different methods when
T = 500,000, ν = 0.001 and h= 0.5 ∗ f1. Note that the true dimension is 6 for the Regu-
lar method (chosen in 100% of the simulations by method 1) and 4 for the Irregular and
Islands methods (chosen in more than 95% of the simulations by methods 2 and 4).

by the angle method (methods 2 and 4) gives an automatic way to find the
position of this angle.

Figure 8 shows the results for the possibly negative function f2 and only
for our three favorite methods (1, 2, 4). For this function only, and because
the true dimension is 16 for method 1, we use for method 1, |Γ|= 25. Note
that (i) methods 1 and 4 select the right dimension whereas method 2 (Ir-
regular strategy) does not see the negative jump and that (ii) it is also more
easy to detect the precise position of the fluctuations on the sparse estimate
given by method 4 (compared to method 1). For sake of simplicity, we do
not give the Risk values, but it is sufficient to note that, for all the methods,
they are small (with a slight advantage for method 4) and that the Oracle
Ratios are close to 1.

Figure 9 gives the same results for the smooth function f3. Of course,
since the projection estimators are piecewise constant, they cannot look
really close to f3. But in any case, method 1 and more interestingly method
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Fig. 7. Contrast (C) and penalized contrast (PC) as a function of the dimension for the
three favorite methods on one simulation with T = 500,000, ν = 0.001 and h = 0.5 ∗ f1.
The chosen estimators (PE) are in blue whereas the function h= 0.5 ∗ f1 is in red.

4 gives the right position for the spikes whereas method 2 does not see the
smallest bump.

Finally, let us conclude the simulations by noting that the penalized pro-
jection estimators with the Islands strategy and the angle penalty (method
4) seems to be an appropriate method for detecting local spikes and bumps
in the function h and even negative jumps.

5. Applications on real data. We have applied the penalized (angle
method) estimation procedure with the Island strategy (method 4) to two
data sets related to occurrences of genes or DNA motifs along both strands
of the complete genome of the bacterium Escherichia coli (T = 9,288,442).
In both cases, we used A= 10,000 as the longest dependence between events
and the finest partition corresponds to |Γ|= 15.

The first process corresponds to the occurrences of the 4290 genes. Figure
10 (top) gives the associated contrast and penalized contrast, together with
the chosen estimator of h (m̂ = 4 and ν̂ = 3.64 10−4). The shape of this
estimator tells us that:
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Fig. 8. Histogram of the selected dimension over 100 simulations (SD). Contrast (C)
and penalized contrast (PC) as a function of the dimension for the three favorite methods
on one simulation with T = 500,000, ν = 0.001 and h= f2. The true dimension is 16 for
method 1 (Regular), 6 for method 2 (Irregular) and 3 for method 4 (Islands). The chosen
estimators (PE) are in blue whereas the function h= f2 is in red.

• gene occurrences seem to be uncorrelated down to 2600 basepairs,
• they are avoided at a short distance (∼0–500 bps) and
• favored at distances ∼700–2000 bps apart.

This general trend has been refined by shortening the support A to 5000 and
then to 2000 (see Figure 11). It then clearly appears both a negative effect
at distances less than 250 bps, and a positive one around 1000 bps. This is
completely coherent with biological observations: genes on the same strand
do not usually overlap, they are about 1000 bps long in average, and there
are few intergenic regions along bacterial genomes (compact genomes).
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Fig. 9. Histogram of the selected dimension over 100 simulations (SD). Contrast (C)
and penalized contrast (PC) as a function of the dimension for the three favorite methods
on one simulation with T = 500,000, ν = 0.001 and h= f3. The chosen estimators (PE)
are in blue whereas the function h= f3 is in red.

The second process corresponds to the 1036 occurrences of the DNA motif
tataat. Figure 10 (bottom) gives the associated contrast and penalized
contrast, together with the chosen estimator of h (m̂= 5 and ν̂ = 7.82 10−5).
The shape of the estimator suggests that:

• occurrences seem to be uncorrelated down to 4000 basepairs,
• favored at distances ∼ 0–1500 bps and 3000 bps apart,
• highly favored at a short distance apart (less than 600 bps).

After shortening the support A to 5000 (see Figure 11), the shape of the
chosen estimator shows that there actually are 3 types of favored distances:
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Fig. 10. Contrasts, penalized contrasts and chosen estimators for both E. coli datasets.

very short distances (less than 300 bps), around 1000 bps and around 3500
bps. This trend is again coherent with the fact that (i) the motif tataat is
self-overlapping (two successive occurrences can occur at a distance 5 apart),
(ii) this motif is part of the most common promoter of E. coli meaning that
it should occur in front of the majority of the genes (and these genes seem to
be favored at distances around 1000 bps apart from the previous example),
(iii) some particular successive genes (operons) can be regulated by the same
promoter (this could explain the third bump).

Figure 12 presents the results of the FADO procedure [12]. Here, we have
forced the estimators to be piecewise constant to make the comparison easier.
Note, however, that the FADO procedure may be implemented with splines
of any fixed degree.

Our results are in agreement with the ones obtained by FADO. Our new
approach has two advantages. First, it gives a better idea of the support A of

Fig. 11. Chosen estimators for both E. coli datasets for different values of A: A= 5000
(left, right) and A= 2000 (middle).
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Fig. 12. FADO estimators for both E. coli datasets for different values of A: A= 10,000
(left) and A= 2000 (right) for genes or A= 5000 (right) for tataat.

the function h: indeed, the estimator provided by FADO (cf. Figure 12 top-
left) has some fluctuations until the end of the interval whereas our estimator
(cf. Figure 10 top-right) points out that nothing significant happens after
3000 bps. Second, our method leads to models of smaller dimension (|m|= 4
for Islands versus |m| = 15 for FADO). The limitation of our method is
essentially that we only consider piecewise constant estimators, but this is
enough to get a general trend on favored or avoided distances within a point
process.

6. Minimax properties. The theoretical procedures of Proposition 1 and
Theorem 1 have more theoretical properties than just an oracle inequality.
This section provides their minimax properties. In particular, even if it has
not been implemented for technical reasons that were described above, the
Nested strategy leads to an adaptive minimax estimator. Such kinds of esti-
mators were not known in the Hawkes model, as far as we know.

6.1. Hölderian functions. First, one can prove the following lower bound.

Proposition 3. Let L> 0 and 1≥ a > 0. Let

HL,a = {s= (ν,h) ∈ L
2/∀x, y ∈ (0,A], |h(x)− h(y)| ≤L|x− y|a}.

Then

inf
ŝ

sup
s∈HL,a∩L

η,ρ

H,P

Es(‖s− ŝ‖2)≥ ♦H,P,A,η,ρ,amin(L2/(2a+1)T−2a/(2a+1),1).
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The infimum over ŝ represents the infimum over all the possible estimators
constructed on the observation on [−A,T ] of a point process (Nt)t. Es rep-
resents the expectation with respect to the stationnary Hawkes process (Nt)
with intensity given by Ψs(·).

But on the other hand, let us consider the clipped projection estimator
s̄m with m a regular partition of (0,A] such that

|m| % (T/ log(T ))1/(2a+1).

If the function h is in HL,a ∩Lη,ρ
H,P with a ∈ (1/2,1], then, applying Propo-

sition 1, s̄m satisfies

E(‖s̄m − s‖2)≤ ♦H,P,A,η,ρ,L,a

(

log(T )

T

)2a/(2a+1)

.

Compared with the lower bound of the minimax risk (Proposition 3), we only
lose a logarithmic factor: the clipped projection estimators are minimax on
HL,a ∩Lη,ρ

H,P , with a ∈ (1/2,1], up to some logarithmic term. We cannot go

beyond a= 1/2 because one needs |m| .
√
T in Proposition 1.

Of course, we need to know a to find s̄m, so s̄m is not adaptive with
respect to a. But the clipped penalized projection estimator s̄ with the
Nested strategy can be adaptive with respect to a. It is sufficient to take
J % log2(

√
T/ log(T )3) to guarantee (3.2). Then we apply Theorem 1 with

Q= 1.1, for instance. Since #{MT } is of the order log(T ), we obtain that

E(‖s̄− s‖)2 ≤ ♦H,η,P,A,ρ inf
m∈MT

[

‖s− sm‖2 + (|m|+1)
log(T )2

T

]

.

If h is in HL,a∩Lη,ρ
H,P with a ∈ (1/2,1], then there exists m in MT such that

|m| % (T/ log(T )2)1/(2a+1)

and consequently

E(‖s̄− s‖)2 ≤ ♦H,η,P,ρ,A,L,a

(

log(T )2

T

)2a/(2a+1)

.

Therefore, the clipped penalized projection estimator s̄ with the Nested
strategy and the theoretical penalty given by (3.4) is adaptive minimax on
{HL,a ∩Lη,ρ

H,P , a ∈ (1/2,1]} up to some logarithmic term.

6.2. Irregular and Islands sets. Let us apply Theorem 1 to the Irregu-
lar strategy and Islands strategy. In both cases, the limiting factor here is
#{MT }. Take N ≤ log2(T ), then #{MT } ≤ T and if Q≥ 2 we obtain that

E(‖s̄− s‖)2 ≤ ♦H,P,A,η,ρ inf
m∈MT

[

‖s− sm‖2 + (|m|+1)
log(T )2

T

]

.
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To measure performances of those estimators, one needs to introduce a set
of sparse functions h, functions that are difficult to estimate with a Nested
strategy. A piecewise function h is usually thought as sparse if the resulting
partition is irregular with few intervals. So we define the Irregular set by

Sirr
Γ,D :=

⋃

m partition written on Γ, |m|=D

Sm.(6.1)

Then, if s belongs to Sirr
Γ,D, using the Irregular strategy, the clipped penalized

projection estimator satisfies

E(‖s̄− s‖)2 ≤ ♦H,P,η,ρ,AD
log(T )2

T
.

But for our biological purpose, the sparsity lies in the support of h. So we
define the Islands set by

Sisl
Γ,D :=

⋃

m⊂Γ,|m|=D

Sm.(6.2)

Then, if s belongs to Sisl
Γ,D, using the Islands strategy, the clipped penalized

projection estimator also satisfies

E(‖s̄− s‖)2 ≤ ♦H,P,η,ρ,AD
log(T )2

T
.

On the other hand it is possible to compute lower bounds for the minimax
risk over those sets.

Proposition 4. Let Γ be a partition of (0,A] such that infI∈Γ ℓ(I)≥ ℓ0.
Let |Γ| = N and let D be a positive integer such that N ≥ 4D. If D ≥
c2(A,η,P, ρ,H)> 1, for c2 some positive constant depending on A,η,P, ρ,H ,
then

inf
ŝ

sup
s∈Sisl

Γ,D
∩Lη,ρ

H,P

Es(‖s− ŝ‖2)≥ ♦H,P,A,η,ρmin

(

D log(N/D)

T
,Dℓ0

)

and

inf
ŝ

sup
s∈Sirr

Γ,D
∩Lη,ρ

H,P

Es(‖s− ŝ‖2)≥ ♦H,P,A,η,ρmin

(

D log(N/D)

T
,Dℓ0

)

.

The infimum over ŝ represents the infimum over all the possible estimators
constructed on the observation on [−A,T ] of a point process (Nt)t. Es rep-
resents the expectation with respect to the stationary Hawkes process (Nt)
with intensity given by Ψs(·).
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To clarify the situation, it is better to take N = |Γ| % log(T ). If D %
log(T )a with a < 1 then the lower bound on the minimax risk is of the
order log(T )a log logT/T when the risk of the clipped penalized projection
estimator (for both strategies) is upper bounded by log(T )a+2/T , and this
whatever a is. So our estimator matches the rate 1/T up to a logarithmic
term. Of course the most fundamental part is this logarithmic term. Think,
however, that there exists some function h in those sets, such that the func-
tion belongs to SΓ but to none of the other spaces Sm for m in the family
MT described by the Nested strategy. Consequently, a clipped penalized es-
timator with the Nested strategy would have an upper bound on the risk of
the order log(T )3/T by applying Theorem 1. So the Irregular and Islands
strategies have not only good practical properties, but there is also definitely
a theoretical improvement in the upper bound of the risk.

7. Technical results.

7.1. Oracle inequality in probability. The following result is actually the
one at the origin of Theorem 1. Note that this result holds for the practical
estimator, s̃, which is not clipped.

Theorem 2. Let (Nt)t∈R be a Hawkes process with intensity Ψs(·). Let
H , η and A be positive known constants such that s= (ν,h) satisfies ν ∈ [0, η]
and h(·) ∈ [0,H].

Moreover, assume that the family MT satisfies

inf
m∈MT

inf
I∈m

ℓ(I)≥ ℓ0 > 0.

Let S be a finite vectorial subspace of L2 containing all the piecewise con-
stant functions constructed on the models of MT . Let R> r > 0 be positive
real numbers, let N be a positive integer and let us consider the following
event:

B = {∀t ∈ [0, T ],N([t−A, t))≤N and ∀f ∈ S, r2‖f‖2 ≤D2
T (f)≤R2‖f‖2},

where N([t− A, t)) represents the number of points of the Hawkes process
(Nt)t in the interval [t−A, t). We set Λ= (η+HN )R2/r2 and we consider
ε and x any arbitrary positive constants. If for all m ∈MT

pen(m)≥ (1 + ε)3Λ
|m|+ 1

T
(1 + 3

√
2x)2,

then there exists an event Ωx with probability larger than 1− 3#{MT }e−x

such that for all m ∈MT , both following inequalities hold:

εr2

1 + ε
‖s̃− s‖2 B∩Ωx
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≤ (1 + ε)D2
T (sm − s) + (1 + ε−1)D2

T (s− s⊥) + r2‖s⊥ − s‖2(7.1)

+
r2

1 + ε
‖s− sm‖2 + (1+ ε)pen(m) +♦ε

Λ

T
x+♦ε

1 +N 2/ℓ0
r2T 2

x2,

where s⊥ denotes the orthogonal projection for ‖ · ‖ of s on S, and

r2
ε

1 + ε
E(‖s̃− s‖2 B∩Ωx)

≤
(

(2 + ε+ ε−1)K2 +
2+ ε

1 + ε
r2
)

‖s− sm‖2(7.2)

+ (1 + ε)pen(m) +♦εΛ
x

T
+♦ε

1 +N 2/ℓ0
r2T 2

x2,

where K is a positive constant depending on s such that ‖f‖D ≤K‖f‖ for
all f in L

2 (see Lemma 2).

Remark 1. This result is really the most fundamental to understand
how the Hawkes process can be easily handled once we only focus on a nice
event, namely B. We have “hidden” in B the fact that the intensity of the
process is unbounded: on B, the number of points per interval of length A is
controlled, so the intensity is bounded on this event. We have also “hidden”
in B the fact that we are working with a natural norm, namely DT , which is
random and which may eventually behave badly: on B, DT is equivalent to
the deterministic norm ‖ · ‖ for functions in S . More precisely, the result of
(7.1) mixes ‖ · ‖ and DT (·) but holds in probability. On the contrary, (7.2) is
weaker but more readable since it holds in expectation with only one norm
‖ · ‖. Note also that B is observable, so if one observes that we are on B,
(7.2) shows that a penalty of the type a factor times the dimension can work
really well to select the right dimension. Indeed, note that if, in the family
MT , there is a “true” model m (meaning that s = sm) and if the penalty
is correctly chosen, then (7.2) proves that ‖s̃− s‖2 is of the same order as
the lower bound on the minimax risk on m, namely |m|/T (see Proposition
2 for the precise lower bound). In that sense, this is an oracle inequality.
The procedure is adaptive because it can select the right model without
knowing it. But of course this hides something of importance. If B is not
that frequent, then the result is completely useless from a theoretical point
of view since one cannot guarantee that the risk of the penalized estimator
and even the risk of the projection estimators themselves are small.

Remark 2. In fact, we will see in the next subsection that the choices
of N ,R, r,MT are really important to control B. In particular, we are not
able at the end to manage families of models with a very high complexity as
in [5] or in most of the other works in model selection (see Theorem 1 and
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Section 6). This is probably due to a lack of independency and boundedness
in the process itself.

Remark 3. Note also that the oracle inequality in probability (7.1) of
Theorem 2 remains true for the more general process defined by (2.14) once
we replace B by B∩B′ where B′ = {∀t≤ T,λ(t)> 0}. But of course then, B′

is not observable. This tends to prove that even in case of self-inhibition a
penalty of the type a constant times the dimension is working.

7.2. Control of B. The assumptions of Theorem 1 are in fact a direct
consequence of the assumptions needed to control B, as shown in the follow-
ing result.

Proposition 5. Let s ∈ Lη,ρ
H,P and R and r such that

R2 > 2max

(

1,
η

(1− P )2
(ηA+ (1−P )−1)

)

and r2 <min

(

ρ

4
,

1−P

8Aη +1

)

.

Moreover let

N =
6 log(T )

P − logP − 1
.

Let us finally assume that S, defined in Theorem 2, is included in SΓ where
Γ is a regular partition of (0,A] such that

|Γ| ≤
√
T

(logT )3
.

Then, under the assumptions of Theorem 2, there exists T0 > 0 depending
on η, ρ,P,A,R and r, such that for all T > T0,

P(Bc)≤ ♦η,P,A
1

T 2
.

These technical results imply very easily Proposition 1 and Theorem 1.

Proof of Theorem 1. We apply (7.2) of Theorem 2 to s̃. Since s̄ is
closer to s than s̃, the inequality is also true for s̄. We choose x=Q log(T )
and N , R,r according to Proposition 5. On the complement of B ∩Ωx, we
bound ‖s̄− s‖ by η2 +H2A and the probability of the complement of the
event by

♦η,P,A,ρ,H

(

1

T 2
+

#{MT }
TQ

)

.

The same control may be applied if T is not large enough. To complete the
proof, note finally that K ≤ ♦η,P,A. "
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Proof of Proposition 1. We can apply Theorem 2 to a family that is
reduced to only one model m. If the inequality is true for the nontruncated
estimator, and if we know the bounds on s then the inequality is necessarily
true for the truncated estimator, which is closer to s than s̃. Then the penalty
is not needed to compute the estimator but it appears nevertheless in both
oracle inequalities. We can conclude by similar arguments as Theorem 1, but
if we take x= log(T ) in (7.2), we lose a logarithmic factor with respect to
Proposition 1. We actually obtain Proposition 1 by integrating also in x the
oracle inequality in probability (7.1) and we conclude by similar arguments,
using that ‖ · ‖D ≤K‖ · ‖. "

8. Sketch of proofs for the technical and minimax results.

8.1. Contrast and norm. First, let us begin with a result that makes clear
the link between the classical properties of the Hawkes process (namely the
Bartlett spectrum) and the quantity

∫

g2 that is appearing in the definition
of the L

2 space (2.3).

Lemma 1. Let (Nt)t∈R be a Hawkes process with intensity Ψs(·). Let g
be a function on R+ such that

∫ +∞
0 g(u)du is finite. Then for all t,

E

[(
∫ t

−∞
g(t− u)dNu

)2]

=
ν2

(1− p)2

(∫ +∞

0
g(u)du

)2

+

∫

R

|Fg(−w)|2fN(w)dw

≤ ν2

(1− p)2

(∫ +∞

0
g(u)du

)2

+
ν

(1− p)3

∫ +∞

0
g2(u)du,

where

fN (w) =
ν

2π(1− p)|1−Fh(w)|2

is the spectral density of (Nt)t∈R.

Remark (Notation). Fh is the Fourier transform of h, that is, Fh(x) =
∫

R
eixth(t)dt.

Proof of Lemma 1. Let φt(u) = u<tg(t− u). We know (see [8], page
123) that

Var

[∫

R

φt(u)dNu

]

=

∫

R

|Fφt(w)|2fN (w)dw.
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Moreover, since g has a positive support, Fφt(w) = eiwtFg(−w). Hence,

Var

[∫

R

φt(u)dNu

]

=

∫

R

|Fg(−w)|2fN (w)dw.

But we also know that (see [13])

λ= E(λ(t)) =
ν

1− p
.

Consequently,

E

[(∫ t

−∞
g(t− u)dNu

)2]

=Var

[∫

R

φt(u)dNu

]

+

(

E

(∫

R

φt(u)dNu

))2

=Var

[∫

R

φt(u)dNu

]

+

(

λ

∫ +∞

0
g(u)du

)2

,

which gives the first part of the lemma. The second part is due to Plancherel’s
identity, which states

∫

R

|Fg(−w)|2 dw = 2π

∫ A

0
g2(x)dx,(8.1)

and the fact that fN is upper bounded by ν/[2π(1− p)3] since h is nonneg-
ative. "

Lemma 1 is at the root of Lemma 2, which gives the equivalence between
the L

2-norms, ‖ · ‖ and ‖ · ‖D, equivalence that is essential for our analysis.
Lemma 1 essentially represents the main feature of the lengthy but necessary
computations of Lemma 2. The proof of Lemma 2 is consequently omitted
and can be found in [23].

Lemma 2. The functional D2
T is a quadratic form on L

2 and its expec-
tation ‖ · ‖2D [see (2.8)] is the square of a norm on L

2 satisfying

∀f ∈ L
2 L‖f‖ ≤ ‖f‖D ≤K‖f‖,(8.2)

where

K2 = 2max

[

1,
ν

(1− p)2

(

νA+
1

1− p

)]

and L2 =min

[

ν

4
,

1− p

8Aν +1

]

.

Lemma 2 has a direct corollary: γT defines a contrast.

Lemma 3. Let (Nt)t∈R be a Hawkes process with intensity Ψs(·). Then
the functional given by

∀f ∈ L
2 γT (f) =− 2

T

∫ T

0
Ψf (t)dNt +

1

T

∫ T

0
Ψf (t)

2 dt

is a contrast, that is, E(γT (f)) is minimal for f = s.
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Proof. Let us compute E(γT (f)). As λ(t) = Ψs(t), one can write by
the martingale properties of dNt−Ψs(t)dt using the associate bilinear form
of D2

T (f) that

E(γT (f)) = E

[

− 2

T

∫ T

0
Ψf (t)dNt

]

+E(D2
T (f))

= E

[

− 2

T

∫ T

0
Ψf (t)Ψs(t)dt

]

+ ‖f‖2D

= ‖f − s‖2D − ‖s‖2D.
Consequently, E(γT (f)) is minimal when f = s since Lemma 2 proves that
‖ · ‖D is a norm. "

8.2. Proof of Theorem 2. This proof is quite classical in model selection.
It heavily depends on a concentration inequality for χ2-type statistics that
has been derived in [20] and which holds for any counting process. The main

feature is to use the martingale properties of Nt −
∫ t
0 λ(u)du [see (1.1)]. We

do not need any further properties of the Hawkes process to obtain (7.1)
(see Remark 3).

We give here a sketch of the proof to emphasize that:

1. the oracle inequalities of Theorem 2 hold for s̃ the practical estimator
and not only the clipped one, and

2. that (7.1) holds for possible negative function h up to a minor correction
(see Remark 4 at the end of the proof).

More details may be found in [23].

Proof of Theorem 2. Let m be a fixed partition of MT . By con-
struction, we obtain

γT (s̃) + pen(m̂)≤ γT (ŝm) + pen(m)≤ γT (sm) + pen(m).(8.3)

Let us denote for all f in L
2,

νT (f) =
1

T

∫ T

0
Ψf (t)(dNt −Ψs(t)dt),

which is linear in f . Then (2.6) becomes γT (f) =D2
T (f−s)−D2

T (s)−2νT (f)
and (8.3) leads to

D2
T (s̃− s)≤D2

T (sm − s) + 2νT (s̃− sm) + pen(m)− pen(m̂).(8.4)

By linearity of νT , νT (s̃−sm) = νT (s̃−sm̂)+νT (sm̂−sm). Now let us control
each term in the right-hand side of (8.4).
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1. Let us begin with A1 = 2νT (s̃− sm̂). For all m′ in MT , we set

Wm′ = sup
f∈Sm′

νT (f)

‖f‖ .(8.5)

Thus, A1 ≤ 2‖s̃− sm̂‖Wm̂. Therefore, for all θ > 0, one has the following
upper bound:

A1 ≤ θ‖s̃− sm̂‖2 + 1

θ
W 2

m̂.(8.6)

Now we need to control Wm̂ which is doubly random: for fixed m, Wm

is random but the choice m̂ is random too. So one needs to control each
Wm′ ’s to control Wm̂.

To do so, we first need to find a simpler form for Wm′ . Note that

{(1,0)} ∪
{(

0,
I

√

ℓ(I)

)

, I ∈m′

}

is an orthonormal basis of Sm′ for ‖ · ‖. For all I ∈m′, let us denote

NI(t) =Ψ(0, I )(t).

Then we can prove that (see [23])

Wm′ =

√

√

√

√

(

∫ T

0

1

T
(dNt −Ψs(t)dt)

)2

+
∑

I∈m′

(

∫ T

0

NI(t)

T
√

ℓ(I)
(dNt −Ψs(t)dt)

)2

.

Let T be defined by

T =

{

t≥ 0/N([t−A, t))>N or ∃f ∈ S, 1
T

∫ t

0
Ψf (u)

2 du >R2‖f‖2
}

and let τ be the stopping time defined by

τ = inf{t≥ 0, t ∈ T }.
It is quite easy to see that if t belongs to T then there exists t′ < t such
that t′ belongs to T . Hence, τ does not belong to T and since

∫ t
0 Ψf (u)

2 du
is increasing in t, saying that we restrict ourselves to B implies that τ ≥ T .
Finally, we can write that on B, Wm′ = Zm′ defined by

Zm′ =

((
∫ T

0

1

T
t≤τ (dNt −Ψs(t)dt)

)2

+
∑

I∈m′

(
∫ T

0

NI(t)

T
√

ℓ(I)
t≤τ (dNt −Ψs(t)dt)

)2)1/2

.
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Written in this way, this is a χ2-type statistics as defined in [20], since
the NI(·)’s are predictable processes and so is t≤τ . So Corollary 2 of [20]
gives that with probability larger than 1− 2e−x,

Zm′ ≤
√

Cm′ +3
√
2vx+ bx,

where

Cm′ =

∫ T

0

[

1

T 2
+

∑

I∈m′

N2
I (t)

T 2ℓ(I)

]

t≤τΨs(t)dt, v = ‖Cm′‖∞,

and where b is a deterministic constant that should satisfy

b2 ≥ t≤τ

[

1

T 2
+

∑

I∈m′

N2
I (t)

T 2ℓ(I)

]

.

Once we are restricted to {τ ≥ T}, we can use the quantities defined in
B to upper bound Cm′ , v and b (see details in [23]). Finally, on B, with
probability larger than 1− 2#{MT }e−x,

Wm̂ ≤
√

(η+HN )R2
|m̂|+ 1

T
(1 + 3

√
2x) +

√

1 +N 2/ℓ0
T

x.(8.7)

Let us fix some positive numbers θ and ε that will be chosen later and
let us go back to A1. We obtain the following upper bound:

A1 ≤ θ‖s̃− sm̂‖2 + 1

θ

[

(1 + ε)(η +HN )R2 |m̂|+1

T
(1 + 3

√
2x)2

(8.8)

+ (1 + ε−1)
1 +N 2/ℓ0

T 2
x2

]

,

inequality which holds on B with probability larger than 1−2#{MT }e−x.
2. Let us control now A2 = 2νT (sm̂ − sm). To do so, we need to control all

the Vm′ = νT (sm′ − sm). But on B, Vm′ =Um′ where

Um′ =
1

T

∫ T

0
t≤τΨsm′−sm(t)(dNt −Ψs(t)dt).

So one can use Corollary 1 of [20]: with probability larger than 1− e−x,

Um′ ≤
√
2vx+

b

3
x,

where v and b are constants such that for all t≤ T ,

v ≥ 1

T 2

∫ T

0
t≤τΨsm′−sm(t)

2Ψs(t)dt and b≥ t≤τ
1

T
|Ψ(sm′−sm)(t)|.
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By similar arguments, we can obtain the following upper bound (see
[23]): on B with probability larger than 1−#{MT }e−x

νT (sm̂ − sm)≤ ‖sm̂ − sm‖
√

2
(η +HN )R2

T
x+

2HN
3T

x.(8.9)

But ‖sm̂ − sm‖ ≤ ‖sm̂ − s‖+ ‖s− sm‖. Thus, with the same constant θ
as in (8.8), this gives (see [23])

A2 ≤ θ‖sm̂ − s‖2 + θ‖sm − s‖2 +
(

4

θ
+

2

3R2

)

(η+HN )R2

T
x.(8.10)

Now let us go back to (8.4). Using (8.8) and (8.10), we have actually ob-
tained that on B and on an event Ωx whose probability is larger than
1− 3#{MT }e−x, the following inequality is true:

D2
T (s̃− s)≤D2

T (sm − s) + θ[‖s̃− sm̂‖2 + ‖sm̂ − s‖2] + θ‖s− sm‖2

+
1

θ

[

(1 + ε)(η +HN )R2 |m̂|+ 1

T
(1 + 3

√
2x)2

+ (1+ ε−1)
1 +N 2/ℓ0

T 2
x2

]

+

(

4

θ
+

2

3R2

)

(η+HN )R2

T
x+pen(m)− pen(m̂).

As s⊥ denotes the orthogonal projection for ‖ · ‖ of s on S , we can remark
that

‖s̃− sm̂‖2 + ‖sm̂ − s‖2 = ‖s̃− s‖2 = ‖s̃− s⊥‖2 + ‖s⊥ − s‖2.
Moreover,

D2
T (s̃− s⊥) =

1

T

∫ T

0
(Ψs̃−s(t) +Ψs−s⊥(t))

2 dt

≤ (1 + ε)D2
T (s̃− s) + (1 + ε−1)D2

T (s− s⊥).

Hence, we obtain that on B ∩Ωx

D2
T (s̃− s⊥)≤ (1 + ε)D2

T (sm − s) + (1 + ε−1)D2
T (s− s⊥)

+ (1 + ε)θ[‖s̃− s⊥‖2 + ‖s⊥ − s‖2]
+ (1 + ε)θ‖s− sm‖2 + (1 + ε)pen(m)

+ (1 + ε)

[

1

θ
(1 + ε)(η +HN )R2 |m̂|+1

T
(1 + 3

√
2x)2 − pen(m̂)

]

+ (1 + ε)

(

4

θ
+

2

3R2

)

(η+HN )R2

T
x
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+
(1 + ε)(1 + ε−1)

θ

1 +N 2/ℓ0
T 2

x2.

But on B, D2
T (s̃− s⊥)≥ r2‖s̃− s⊥‖2 since s̃− s⊥ belongs to S . Hence, if we

choose θ = r2(1 + ε)−2, we obtain

εr2

1 + ε
‖s̃− s⊥‖2 B∩Ωx

≤ (1 + ε)D2
T (sm − s) + (1 + ε−1)D2

T (s− s⊥) + (1 + ε)θ‖s⊥ − s‖2

+ (1+ ε)θ‖s− sm‖2 + (1+ ε)pen(m)

+ (1 + ε)

(

4

θ
+

2

3R2

)

(η +HN )R2

T
x+

(1 + ε)(1 + ε−1)

θ

1 +N 2/ℓ0
T 2

x2.

It remains to add εr2(1+ ε)−1‖s⊥− s‖2 B∩Ωx on both sides, to obtain (7.1).

For (7.2), let us take the expectation on both parts. We can remark that
E(D2

T (sm− s)) = ‖sm− s‖2D ≤K2‖sm− s‖2, by applying Lemma 2 and sim-

ilar computations hold for s⊥. Moreover, remark that ‖s− s⊥‖ ≤ ‖sm − s‖,
since Sm is a subset of S . This concludes the proof. "

Remark 4. In case of self-inhibition [see (2.14) and Remark 3], it is

sufficient to replace T by T ∩ T ′ where

T ′ = {t/λ(t) = 0}

and to define accordingly the stopping time τ to obtain (7.1).

8.3. Proof of Proposition 5. The control of B is twofold.
On one hand, one needs to control the number of points in any interval

of length A. The control of the number of points in one interval comes from
some tedious computations that have been done in [22]. Then the control for

any interval comes from a reasoning that is close in essence to the control of

the suprema of identically distributed variables with exponential moment.
On the other hand, one needs to control the deviations of D2

T (f) from

its mean for f in a finite vectorial subspace. We decompose the problem in
controlling the deviations of the associated bilinear form for elements of the

basis. Those deviations are controlled by using a concentration inequality
for Hawkes processes that have been derived via coupling in [22].

The heart of the proof actually consists in the probabilistic results derived
in [22]. The final step is composed of lengthy and not very informative

computations that are omitted here and which can be found in [23].
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8.4. Proof of the minimax results (Propositions 2, 3 and 4). We first
need two important lemmas.

Lemma 4. Let f = (µ, g) and s= (ν,h) be two elements of L2 such that

µ, ν > 0, g,h ≥ 0,
∫

g < 1 and
∫

h < 1. Let P
[−A,T ]
f , respectively, P

[−A,T ]
s ,

be the distribution of a stationary Hawkes process with intensity Ψf (·), re-
spectively, Ψs(·), restricted to [−A,T ]. Then the Kullback–Leibler distance
satisfies

K(P
[−A,T ]
f ,P[−A,T ]

s ) = Ef

(∫ T

0
φ

[

log

(

Ψs(t)

Ψf (t)

)]

Ψf (t)dt

)

+K(P
[−A,0]
f ,P[−A,0]

s ),

where φ(u) = eu − u− 1 and Ef represents the expectation with respect to

P
[−A,T ]
f .

Moreover, if f and s belong to Lη,ρ
H,P and if A‖h‖∞ ≤ P − logP − 1, then

K(P
[−A,T ]
f ,P[−A,T ]

s )≤ TC1‖f − s‖2 + C2,
where C1 and C2 are positive constants depending only on A,H,P,η,ρ.

Lemma 4 shows that the Kullback–Leibler distance between two different
processes linearly increases with T . It also clarifies the link between the
natural Kullback–Leibler distance and the L

2-norm, ‖ · ‖, we used.

Proof of Lemma 4. Let us denote by P
[0,T ]
f |[−A,0] the conditional dis-

tribution of the points of the process lying in [0, T ] conditionally to the
family of points lying in [−A,0]. Then the classical decomposition of the
Kullback–Leibler distance with respect to the marginals gives the following
decomposition:

K(P
[−A,T ]
f ,P[−A,T ]

s ) = Ef

[

ln
dP

[0,T ]
f |[−A,0]

dP
[0,T ]
s |[−A,0]

]

+K(P
[−A,0]
f ,P[−A,0]

s ).

Next, we combine Example 7.2(b) with Proposition 7.2.III of [9] to obtain
that the conditional likelihood ratio is

dP
[0,T ]
f |[−A,0]

dP
[0,T ]
s |[−A,0]

= exp

(
∫ T

0
ln[Ψf (t)/Ψs(t)]dNt −

∫ T

0
Ψf (t)dt+

∫ T

0
Ψs(t)dt

)

.

Using the martingale properties and the fact that the intensity is predictable,
one gets the first equation of Lemma 4. Now to upper bound the Kullback–
Leibler distance, we need first to remark that ∀x>−1, log(1+x)≥ x/(1+x)
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which gives that

Ef

(
∫ T

0
φ

[

log

(

Ψs(t)

Ψf (t)

)]

Ψf (t)dt

)

≤ Ef

(
∫ T

0

(Ψs(t)−Ψf (t))
2

Ψs(t)
dt

)

≤ T

ρ
‖f − s‖2D.

It is important to note that here (and only here) ‖ · ‖D is computed with
respect to f and not s. Now it remains to use Lemma 2 and to upperbound
the constants depending on f by constants depending on A,H,P,η,ρ to
obtain the first part of the inequality.

Then it remains to upper bound K(P
[−A,0]
f ,P

[−A,0]
s ). This quantity is just

a remaining term: we only need to prove that on Lη,ρ
H,P , this term cannot

explode. A lengthy but necessary proof of it can be found in [23]. In essence,
it is close to Proposition 5 and it heavily depends on the results of [22]. "

Lemma 4 combined with Birgé’s lemma [4] gives the following result,
which is ready to use for the different lower bounds in the different situations.

Lemma 5. Let S be a family of possible s such that Ψs(·) is the intensity
of a stationary Hawkes process, and such that s belongs to Lη,ρ

H,p. Let δ > 0

and let C ⊂ S be a finite family such that for all f = (µ, g) ∈ C, A‖g‖∞ ≤
P − logP − 1. Then there exists ζ1 and ζ2 two particular positive functions
of η,ρ,A,P,H such that if for all f 2= f ′ in C

ζ1 log |C| − ζ2

T
≥ ‖f − f ′‖2 ≥ δ then inf

ŝ
sup
s∈S

Es(‖ŝ− s‖2)≥ δ(1−α)

4
,

where α is an absolute positive constant (see [4] for a precise value).

Proof. First, it is very classical to obtain that

inf
ŝ
sup
s∈S

Es(‖ŝ− s‖2)≥ 1

4
inf
ŝ∈C

sup
s∈C

Es(‖ŝ− s‖2).

But

Es(‖ŝ− s‖2)≥ δPs(ŝ 2= s).

So

inf
ŝ
sup
s∈S

Es(‖ŝ− s‖2)≥ δ

4
inf
ŝ∈C

(

1− inf
s∈C

Ps(ŝ= s)
)

.

It remains to apply Birgé’s lemma [4], by upper bounding the mean Kullback–
Leibler distance on C. Using Lemma 4, it remains only to choose ζ1 and ζ2
according to C1 and C2. This concludes the proof. "
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It is now sufficient to apply the previous lemma for good choices of C.

Proof of Proposition 2. Let m be a model. We set D = |m|. Let P0

be the maximal collection of subsets of m, such that for all I 2= I ′ in P0,
|I∆I ′| ≥ θ|m|, then by [10], one has that log |P0| ≥ σ|m|, for θ and σ some
absolute constants.

Let

C0 =
{

fI =

(

ρ,
∑

I∈I

ε
√

ℓ(I)
I

)

,I ∈ P0

}

,

where ε is a positive real number that will be chosen later. To ensure that
C0 ⊂ Lη,ρ

H,P , we need that ε ≤min(H,P/A)
√
ℓ0. Moreover, to apply Lemma

5, we need that ε≤ (P − logP − 1)
√
ℓ0/A.

Now, for all fI , fI′ in C0,
‖fI − fI′‖2 = |I∆I ′|ε2 ≥ θDε2.

Moreover,

‖fI − fI′‖2 ≤ ε2D.

Finally, taking

ε2 =min

(

(ζ1D− ζ2)σ

TD
, ℓ0min(H,P/A, (P − logP − 1)/A)2

)

,

and applying Lemma 5 gives the result. "

Proof of Proposition 4. Let Γ be a partition of (0,A] and let us
concentrate first on the Islands set. Let P1 be the maximal collection of
subsets of Γ with cardinal D, such that for all I 2= I ′ in P1, |I∆I ′| ≥ θD,
then by the Appendix of [19], one has that log |P1| ≥ σD log N

D , for θ and σ

some absolute constants. Let

C1 =
{

fI =

(

ρ,
∑

I∈I

ε
√

ℓ(I)
I

)

,I ∈ P1

}

.

Then the same computations as before give the result for the Islands set.
But note that the set C1 is also included in Sirr

Γ,(2D+1). Consequently, the

lower bound is also valid up to some multiplicative constant for Sirr
Γ,(2D+1).

"

Proof of Proposition 3. For the Hölderian family, let ϕ be a positive
continuous function on R, null outside (0,A] and such that for all x, y ∈R,
|ϕ(x) − ϕ(y)| ≤ |x− y|a. Remark that a quantity that only depends on ϕ

actually depends on A and a.
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Letm be a regular partition of (0,A] inD pieces. Let ϕD(x) = LD−aϕ(Dx).
Let P0 be defined as before and

C2 =
{

sI =

(

ρ,
∑

I∈I

ϕD(x− uI)

)

,I ∈ P0

}

,

where uI is the left extremity of I . To ensure that C2 ⊂ Lη,ρ
H,p and that

‖g‖∞ ≤ (P − logP − 1)/A, we need that D ≥ c(A,a,H,P )L1/a, for some
positive continuous function c.

But for all sI , sI′ in C2,

‖sI − sI′‖2 = |I∆I ′|L2D−2a−1

∫

ϕ2 ≥ θL2D−2a

∫

ϕ2.

Moreover,

‖sI − sI′‖2 ≤ L2D−2a

∫

ϕ2.

But note that for D large enough ζ1σD−ζ2 ≥ ζ ′D for some other constant
ζ ′.

It remains to choose

D = ♦H,P,A,ρ,η,amax[(TL2)1/(2a+1),L1/a]

to obtain the result. "

9. Conclusion. We proposed a method based on model selection princi-
ple for Hawkes processes that is proved to be adaptive minimax with respect
to certain classes of functions. In practice, the multiplicative constant in the
penalty is calibrated in a data-driven way that is proved to work well on
simulations. In particular, we designed a new method—namely the Islands
strategy coupled with the angle penalty—that seems to be really adapted
to our biological problem, namely characterizing the dependence between
the occurrences of a biological signal. Moreover, it allows us to estimate the
right range of interaction.

This work asks, however, for several future developments. First, it is nec-
essary to treat interaction with another type of events (e.g., promoter/genes)
with the Islands strategy. Next, a test procedure should be applied to know
whether the function h is really nonzero. This would be equivalent to testing
whether there exists an interaction or not.
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Ann. Inst. H. Poincaré Probab. Statist. 43 571–597. MR2347097

[15] Massart, P. (2007). Concentration Inequalities and Model Selection. Lecture Notes
in Math. 1896. Springer, Berlin. MR2319879

[16] Ogata, Y. and Akaike, H. (1982). On linear intensity models for mixed doubly
stochastic Poisson and self-exciting point processes. J. Roy. Statist. Soc. Ser. B
44 102–107. MR0655379

[17] Ozaki, T. (1979). Maximum likelihood estimation of Hawkes’ self-exciting point
processes. Ann. Inst. Statist. Math. 31 145–155. MR0541960

[18] Reinert, G., Schbath, S. and Waterman, M. S. (2000). Probabilistic and statis-
tical properties of words: An overview. J. Comput. Biol. 7 1–46.

[19] Reynaud-Bouret, P. (2003). Adaptive estimation of the intensity of inhomogeneous
Poisson processes via concentration inequalities. Probab. Theory Related Fields
126 103–153. MR1981635

[20] Reynaud-Bouret, P. (2006). Compensator and exponential inequalities for some
suprema of counting processes. Statist. Probab. Lett. 76 1514–1521. MR2245573

[21] Reynaud-Bouret, P. (2006). Penalized projection estimators of the Aalen multi-
plicative intensity. Bernoulli 12 633–661. MR2248231

http://www.ams.org/mathscinet-getitem?mr=1845321
http://www.ams.org/mathscinet-getitem?mr=1865343
http://www.ams.org/mathscinet-getitem?mr=2241522
http://www.ams.org/mathscinet-getitem?mr=1848946
http://www.ams.org/mathscinet-getitem?mr=2288064
http://www.ams.org/mathscinet-getitem?mr=1411506
http://www.ams.org/mathscinet-getitem?mr=1816118
http://www.ams.org/mathscinet-getitem?mr=0950166
http://www.math.u-psud.fr/~stats/NEW/theses.php
http://www.ams.org/mathscinet-getitem?mr=2170440
http://www.ams.org/mathscinet-getitem?mr=0378093
http://www.ams.org/mathscinet-getitem?mr=2347097
http://www.ams.org/mathscinet-getitem?mr=2319879
http://www.ams.org/mathscinet-getitem?mr=0655379
http://www.ams.org/mathscinet-getitem?mr=0541960
http://www.ams.org/mathscinet-getitem?mr=1981635
http://www.ams.org/mathscinet-getitem?mr=2245573
http://www.ams.org/mathscinet-getitem?mr=2248231


44 P. REYNAUD-BOURET AND S. SCHBATH

[22] Reynaud-Bouret, P. and Roy, E. (2007). Some nonasymptotic tail estimate for
Hawkes processes. Bull. Belg. Math. Soc. Simon Stevin 13 883–896. MR2293215

[23] Reynaud-Bouret, P. and Schbath, S. (2010). Adaptive estimation
for Hawkes’processes; application to genome analysis. Available at
arXiv:0903.2919v3.

[24] Vere-Jones, D. and Ozaki, T. (1982). Some examples of statistical estimation
applied to earthquake data. Ann. Inst. Statist. Math. 34 189–207.

Laboratoire J. A. Dieudonné
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