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The aim of this paper is to provide a new method for the detection of either favored or avoided distances between genomic events along DNA sequences. These events are modeled by a Hawkes process. The biological problem is actually complex enough to need a nonasymptotic penalized model selection approach. We provide a theoretical penalty that satisfies an oracle inequality even for quite complex families of models. The consecutive theoretical estimator is shown to be adaptive minimax for Hölderian functions with regularity in (1/2, 1]: those aspects have not yet been studied for the Hawkes' process. Moreover, we introduce an efficient strategy, named Islands,w h i c hi s not classically used in model selection, but that happens to be particularly relevant to the biological question we want to answer. Since am ultiplicativeconstantinthetheoreticalpenalt yisnotcomputable in practice, we provide extensive simulations to find a data-driven calibration of this constant. The results obtained on real genomic data are coherent with biological knowledge and eventually refinet h e m .

1. Introduction. Modeling the arrival times of a particular event on the real line is a common problem in time series theory. In this paper, we deal with a very similar but rarely addressed problem: modeling the process of the occurrences of a particular event along a discrete sequence,n a m e l yaD N A sequence. Such events could be, for instance, any given DNA patterns, any genes or any other biological signals occurring along genomes. A huge literature exists on the statistical properties of pattern occurrences along random sequences [START_REF] Reinert | Probabilistic and statistical properties of words: An overview[END_REF] but our current approach is different. It consists in directly modeling the point process of the occurrences of any kind of events and it is not restricted to pattern occurrences. Our aim is to characterize the dependence, if any, between the event occurrences by pointing out either favored or avoided distances between them, those distances being significantly larger than the classical memory used in the quite popular Markov chain model for instance. At this scale, it is more interesting to use a continuous framework and see occurrences as points. A very interesting model for this purpose is the Hawkes process [START_REF] Gusto | FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model[END_REF].

In the most basic self-exciting model, the Hawkes process (N t ) t∈R is defined by its intensity, which satisfies

λ(t)=ν + t - -∞ h(t -u) dN u , (1.1)
where ν is a positive parameter, h an o n n e g a t i v ef u n c t i o nw i t hs u p p o r t on R + and h<1a n dw h e r edN u is the point measure associated to the process. The interested reader shall find in Daley and Vere-Jones' book [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF] the main definitions, constructions and models related to point processes in general and Hawkes processes in particular [see, e.g., Examples 6.3(c) and 7.2(b) therein].

The intensity λ(t)r e p r e s e n t st h ep r o b a b i l i t yt oh a v ea no c c u r r e n c ea t position t given all the past. In this sense, (1.1)b a s i c a l l ym e a n st h a tt h e r e is a constant rate ν to have a spontaneous occurrence at t but that also all the previous occurrences influence the apparition of an occurrence at t. For instance, an o ccurrence at u increases the intensity by h(tu). If the distance d = tu is favored, it means that h(d)i sr e a l l yl a r g e :h a v i n ga n occurrence at u significantly increases the chance of having an occurrence at t.T h ei n t e n s i t yg i v e nb y( 1.1)i st h em o s tb a s i cc a s e ,b u tv a r i a t i o n so fi t enable us to model self-inhibition, which happens when one allows h to take negative values (see Section 2.4)a n d ,i nt h em o s tg e n e r a lc a s e ,t om o d e l interaction with another type of event. The drawback is that,b yd e fi n i t i o n , the Hawkes process is defined on an ordered real line (there is ap a s t ,a present and a future). But a strand of DNA itself has a direction, a fact that makes our approach quite sensible.

The Hawkes model has been widely used to model the occurrenceso f earthquake [START_REF] Vere-Jones | Some examples of statistical estimation applied to earthquake data[END_REF]. In this set-up and even for more general counting processes, the statistical inference usually deals with maximum likelihood estimation [START_REF] Ogata | On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes[END_REF][START_REF] Ozaki | Maximum likelihood estimation of Hawkes' self-exciting point processes[END_REF]. This approach has been applied to genome analysis: in a previous work [START_REF] Gusto | FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model[END_REF], Gusto and Schbath's method, named FADO, uses maximum likelihood estimates of the coefficients of h on a Spline basis coupled with an AIC criterion to select the set of equally spaced knots.

On one hand, the FADO procedure is quite effective-it can managei nteractions between two types of events and self excitation orinhibition,that is, it works in the most general Hawkes process framework and produces smooth estimates. However, there are several drawbacks. From a theoretical point of view, AIC criterion is proved to select the right set of knots if first, there exists a true set of knots, and then if the family of possible knots is held fixed whereas the length of the observed sequence of DNA tends to infinity. Moreover, from a practical point of view, the criterion seemst obe ha v ev e ry poorly when a lot of possible sets of knots with the same cardinality are in competition [START_REF] Gusto | Estimation de l'intensité d'un processus de Hawkes généralisé[END_REF]. FADO has been implemented with equally spaced knots for this reason. Finally, it heavily depends on an extra knowledge of the support of the function h.I np r a c t i c e ,w eh a v et oi n p u tt h em a x i m a ls i z e of the support, say 10,000 bases, in the FADO procedure. Consequently the FA D O e s t i m a t e i s a s p l i n e f u n c t i o n b a s e d o n k n o t s t h a t a r e e q u ally spaced on [0, [START_REF] Gallager | Information Theory and Reliable Communication[END_REF]000]. If this maximal size is too large, the estimate of h will probably be small with some fluctuations but not null until the end oftheinterv al, whereas it should be null before (see Figure 12 in Section 5).

On the other hand, our feeling is that if interaction exists, say around the distance d =500 bases, the function h to estimate should be really large, around d =500,andifthereisnobiologicalreasonforanyotherinteraction, then h should be null anywhere else.

One way to solve this problem of estimation is to use model selection but in its nonasymptotic version. Ideally, if the work of Birgé and Massart in [START_REF] Birgé | Gaussian model selection[END_REF]w a sn o tr e s t r i c t e dt ot h eG a u s s i a nc a s eb u ti fi ta l s op r o v i d es results for the Hawkes model then it should enable us to find a way of selecting an irregular set of knots with complexity that may grow if the length of the observed sequence becomes larger. The question of the knowledge of the support never appears in Birgé and Massart's work because there is not such aq u e s t i o ni naG a u s s i a nm o d e l ,b u to n ec o u l di m a g i n et h a tt h e ir way of selecting sparse models should enable us to select a sparse support too.

However, we are not in an ideal world where a white noise model and Hawkes model are equivalent (even heuristically), so there is no way to guess the right way of penalizing in our situation. So the purpose oft h i sa r t i c l e is to provide a first attempt at constructing a penalized models e l e c t i o ni n an o n a s y m p t o t i cw a yf o rt h eH a w k e sm o d e l .T h i sp a p e rc o n s i s t si nb o t h practical methods for estimating h that lie on theoretical evidences and also in new theoretical results such as oracle inequalities or adaptivity in the minimax sense. Note that, to our knowledge, the minimax aspects of the Hawkes model have not yet been considered.

Accordingly, we restrict ourselves to a simpler case than theF ADOprocedure. First, we focus on the self-exciting model [i.e., the one given by (1.1), where h is assumed to be nonnegative], but we would at least like that the final estimator remains computable in case of self-inhibition. Then we do not use maximum likelihood estimators since they are not easily handled by model selection procedures, at least from a theoretical point of view. So we provide in this paper theoretical results for penalized projection estimators (i.e., least square estimators) and not for penalized maximum likelihood estimators (see Chapter 7 of [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF]f o rac o m p l e t ec o m p a r i s o no fbo t hc o n t r a s t s in the density setting from a model selection point of view). Finally, for technical reasons, we only deal with piecewise constant estimators. Once all those restrictions are done, the gap between the theoreticalp r o c e d u r ea n d the practical procedure is consequently reduced to a practical calibration problem of the multiplicative constants.

Since the Hawkes processes are quite popular for modeling earthquakes, financial, or economical data, we try to keep a general formalism in most of the sequel (except in the biological applications part). Consequently, our method could be applied to many other type of data.

In Section 2, we define the notation and the different families of models. Section 3 states first a nonasymptotic result for the projection estimators, since up to our knowledge, these estimators were not yet studied. Then Section 3 gives a theoretical penalty that enables us to select a good estimator in a family of projection estimators. Indeed, we prove that our penalized projection estimator satisfies an oracle inequality, hence proving by that result that our estimator is as good as the best projection estimatori nt h ef a m i l y up to some multiplicative term. However, the multiplicativec o n s t a n ti nt h e theoretical penalty is not computable in practice. As a consequence, Section 4 provides simulations which validate a calibration method that seems to work well from a practical point of view. Then in Section 5 we apply this method to DNA data. The results match biological evidences and refine them. Section 6 details the adaptive and minimax properties of our estimators. Section 7 is dedicated to more technical results that are at the origin of the ones stated in Section 3.S k e t c ho fp r o o f sc a nb ef o u n di nS e c t i o n8: the interested reader shall find details of those proofs in [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF].

2.

Framework. Let (N t ) t be a stationnary Hawkes process on the real line satisfying (1.1). We assume that h has a bounded support included in (0,A]w h e r eA is a known positive real number and that

p := A 0 h(u) du (2.1)
satisfies p<1. This condition guarantees the existence of a stationary version of the process (see [START_REF] Hawkes | A cluster process representation of a selfexciting process[END_REF]). Let us remark that, for the DNA applications we have in mind, A is quite known because it corresponds to a maximal distance from which it is no longer reasonable to consider a linear interaction between two genomic locations. If there may exist some interaction at longer distances, then it should certainly imply the 3D structure ofD N A .

We observe the stationary Hawkes pro cess (N t ) t on an interval [-A, T ], where T is a positive real number. Typically T should be significantly larger than A.U s i n gt h i so b s e r v a t i o n ,w ew a n tt oe s t i m a t e s =(ν, h), (2.2) assumed to be in

L 2 = f =(µ, g):g with support in (0,A],
(2.3)

f 2 = µ 2 + A 0 g 2 (x) dx < +∞ .
The introduction of this Hilbert space is related to the fact that we want to use least square estimators.

With these constraints on h,w ec a nn o t et h a t( 1.1)i se q u i v a l e n tt o

λ(t)=ν + t - t-A h(t -u) dN u . (2.4)
Now, we can introduce intensity candidates: for all f =(µ, g)inL 2 ,wedefine

Ψ f (t):=µ + t - t-A g(t -u) dN u . (2.5)
In particular, note that Ψ s (t)=λ(t). A good intensity candidate should be a Ψ f (•)thatisclosetoΨ s (•). The least-square contrast is consequently defined for all f in L 2 by

γ T (f ):=- 2 T T 0 Ψ f (t) dN t + 1 T T 0 Ψ f (t) 2 dt. (2.6)
As we will see in Lemma 3,t h i sr e a l l yd e fi n e sac o n t r a s t ,i nt h es t a t i s t i c a l sense. Indeed, taking the compensator of the previous formula leads to

- 2 T T 0 Ψ f (t)Ψ s (t) dt + 1 T T 0 Ψ f (t) 2 dt.
Let us consider the last integral in the previous equation:

D 2 T (f ):= 1 T T 0 Ψ f (t) 2 dt. (2.7) Lemma 2 proves that D 2
T (•)d e fi n e saq u a d r a t i cf o r mo nL 2 such that

f D := E(D 2 T (f )) (2.8)
is a quadratic norm on L 2 ,e q u i v a l e n tt o f [see (2.3)]. In this sense, we can see γ T (f )a sa ne m p i r i c a lv e r s i o no f fs 2 Ds 2 D ,w h i c hi sq u i t e classical for a least-square contrast (see the density set-up, e.g., in [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF]).

2.1. Projection estimator. Let m be a set of disjoint intervals of (0,A]. In the sequel, m is called a model and |m| denotes the number of intervals in m.Onecanthinkofm as a partition of (0,A]butthereareo therin teresting cases as we will see later. Let S m be the vectorial space of L 2 defined by 

S m = f =(µ, g) ∈ L 2 such that g = I∈m a I I ℓ(I) with (a I ) I∈m ∈ R m , (2.
E( s -ŝm 2 ) C T s -s m 2 + |m| T ,
where C T is a positive quantity that slowly varies with T .S ot h ev a r i a n c e or stochastic error may be identified as |m|/T .W er e c o v e rab i a s -v a r i a n c e decomposition where the bias decreases and the variance increases. Finding amodelm in a data driven way that almost minimizes the previous equation is the main goal of model selection. However, there is no precise shape for the quantity C T .W econsequen tlyusethemostgeneralformofpenalization in the sequel.

2.2. Penalized projection estimator. Let M T be a family of sets of disjoint intervals of (0,A]( i . e . ,af a m i l yo fp o s s i b l em o d e l s ) .W ed e n o t eb y #{M T } the total number of models. We define the penalty (or penalty function) by pen : M T → R + and we select a model by minimizing the following criterion:

m := arg min m∈M T [γ T (ŝ m )+pen(m)]. (2.11)
Then the penalized projection estimator is defined by s =(ν, h)=ŝ m.

(2.12)

The main problem is now to find a function pen :

M T → R + that guarantees that s -s 2 ≤ C inf m∈M T s -ŝm 2 (2.13)
and this either with high probability or in expectation, up tos o m es m a l l residual term and up to some multiplicative term C that could slightly increase with T .T h ep r e v i o u se q u a t i o n( 2.13)i sa no r a c l ei n e q u a l i t y .I f this oracle inequality holds, this will mean that we can select a model m, and consequently a projection estimator s =ŝ m,t h a ti sa l m o s ta sg o o da s the best estimator in the family of the ŝm 's-whereas this best estimator cannot be guessed without knowing s.O fc o u r s et h i sw o u l dt e l lu sn o t h i n g if the projection estimators themselves, that is, the ŝm 's, are not sensible. The next section precisely states the properties of the projection estimator and the oracle inequality satisfied by the penalized projection estimator. To conclude Section 2, we precise the different families of models we would like to use and we precisely explain what self-inhibition means ino u rm o d e l .

2.3.

Strategies. As t r a t e g yr e f e r st ot h ec h o i c eo ft h ef a m i l yo fm o dels M T .I nt h es e q u e l ,ap a r t i t i o nΓo f( 0 ,A]s h o u l db eu n d e r s t o o da sa set of disjoint intervals of (0,A]s u c ht h a tt h e i ru n i o ni st h ew h o l ei n t e rval (0,A]. A regular partition is such that all its intervals have the same length. We say that a model m is written on Γ if all the extremities of the intervals in m are also extremities of intervals in Γ. For instance if Γ = {(0, 0.25], (0.25, 0.5], (0.50.75], (0.75, 1]} then {(0, 0.25], (0.25, 1]} or {(0, 0.25], (0.75, 1]} are models written on Γ. Now let us give some examples of families M T .L e tJ and N be two positive integers.

Nested strategy.T akeΓadyadicregularpartition(i.e.,suchthat|Γ| =2 J ). Then take M T as the set of all dyadic regular partitions of (0,A]thatcanbe written on Γ, including the void set. In particular, note that#{M T } = J +2. We say that this strategy is nested since for any pair of partitions in this family, one of them is always written on the other one.

Regular strategy.A n o t h e rn a t u r a ls t r a t e g yi st ol o o ka ta l lt h er e g u l a r partitions of (0,A]u n t i ls o m efi n e s tp a r t i t i o no fc a r d i n a lN .T h a ti st os a y that one has exactly one model with cardinality k for each k in {0,...,N}.

Here #{M T } = N +1.

Irregular strategy.A s s u m en o wt h a tw ek n o wt h a th is piecewise constant on (0,A]b u tt h a tw ed on o tk n o ww h e r et h ec u t so ft h er e s u l t i n gp a r t i t ion are. We can consider Γ a regular partition such that |Γ| = N and then consider M T the set of all possible partitions written on Γ, including the void set. In this case, #{M T } 2 N . Islands strategy.T h i sl a s ts t r a t e g yh a sbe e ne s pe c i a l l yd e s i g n e dt oa n s w e r our biological problem. We think that h has a very localized support. The interval (0,A]i sr e a l l yl a r g ea n di nf a c th is nonzero on a really smaller interval or a union of really smaller intervals: the resulting model is sparse. We can consider Γ a regular partition such that |Γ| = N and then consider M T the set of all the subsets of Γ. A typical m corresponds to a vectorial space S m where the functions g are zero on (0,A]e x c e p to ns o m ed i s j o i n t s intervals which look like several "islands." In this case, #{M T } =2 N .

Figure 1 gives some more visual examples of the different strategies.

2.4. Self-inhibition. The self-interaction can be modeled in a more general way by a process whose intensity is given by

λ(t)= ν + t - -∞ h(t -u) dN u + , (2.14)
where h may now be negative. We have taken the positive part to ensure that the intensity remains positive. Then the condition |h| < 1i ss uffi c i e n t to ensure the existence of a stationary version of the process(see [START_REF] Brémaud | Stability of nonlinear Hawkes processes[END_REF]). When h(d)i ss t r i c t l ypo s i t i v et h e r ei sas e l f -e x c i t a t i o na td i s t a n c e d.W h e nh(d)i s strictly negative, then there is a self-inhibition. It is more or less the same interpretation as above [see (1.1)] except that now all the previous occurrences are voting whether they "like" or "dislike" to have a new occurrence at position t.I ft h i sp r o c e s si sn o ts t u d i e di nt h i sp a p e rf r o mat h e o r e t i c al point of view because of major technical issues (except in ther e m a r k sf o llowing Theorem 2), note that however our projection estimators, ŝm ,a n d penalized projection estimators, s,donottakethesignofg or h into account for being computed. That is the reason why we will use our estimators, even in this case, for the numerical results.

Finally, we use in the sequel the notation ♦ which represents a positive function of the parameters that are written in indices. Each time ♦ θ is written in some equation, one should understand that there exists a positive function of θ such that the equation holds. Therefore, the values of ♦ θ may change from line to line and even change in the same equation. When no index appears, ♦ represents a positive absolute constant.

3. Main results. For technical reasons, we are not able to carefully control the behavior of the projection estimators if ν tends to 0 or to infinity, but also if p [see (2.1)] tends to 1: in such cases, the number of points in the process is either exploding or vanishing. Consequently,t h et h e o r e t i c a l results are proved within a subset of L 2 .L e tu sd e fi n ef o ra l lr e a ln u m b e r s H>0, η>ρ>0, 1 >P >0, the following subset of L 2 :

L η,ρ H,P = f =(µ, g) ∈ L 2 /µ ∈ [ρ, η],g(•) ∈ [0,H]a n d A 0 g(u) du ≤ P .
If we know that s belongs to L η,ρ H,P and if we know the parameters H, η and ρ,t h e ni ti sr e a s o n a b l et oc o n s i d e rt h ec l i p p e dp r o j e c t i o ne s timator, sm .I f we denote the projection estimator ŝm =(ν m , ĥm ), then sm =(ν m , hm )i s given, for all positive t,b y

               νm = νm , if ρ ≤ νm ≤ η, ρ, if νm <ρ, η, if νm >η, hm (t)=    ĥm (t), if 0 ≤ ĥm (t) ≤ H, 0, if ĥm (t) < 0, H, if ĥm (t) >H. (3.1)
Note that sm ,t h ec l i p p e dv e r s i o no fŝ m ,i so n l yd e s i g n e df o rt h e o r e t i c a l purpose. Whereas ŝm may be computed even for possibly negative h,t h e computation of sm does not make sense in this more general framework. For the clipped projection estimator, we can prove the followingr e s u l t .

Proposition 1. Let (N t ) t∈R be a Hawkes process with intensity given by Ψ s (•).L e tm be a model written on Γ where Γ is a regular partition of

(0,A] such that |Γ|≤ √ T (log T ) 3 . (3.2) Then if s belongs to L η,ρ H,P ,

t h ec l i p p e dp r o j e c t i o ne s t i m a t o ro nt h em o d e lm satisfies

E( sm -s 2 ) ≤ ♦ H,P,η,ρ,A s m -s 2 +(|m| +1) log T T .
This result is a control of the risk of the clipped projection estimator on one model. A first interpretation is to assume that s belongs to S m .I nt h i s case, if m is fixed whereas T tends to infinity, Proposition 1 shows that sm is consistent as the maximum likelihood estimator is and thatt h er a t e of convergence is smaller than log(T )/T .I ti sw e l lk n o w nt h a tt h eM L Ei s asymptotically Gaussian in classical settings with a rate ofc o n v e r g e n c ei n 1/T .ButtheaimofProposition1 is not to investigate asymptotic properties: the virtue of the previous result is its nonasymptotic nature. It allows a dependence of m on T ,a ss o o na s( 3.

2)i ss a t i s fi e d( s e eS e c t i o n6 for the resulting minimax properties).

There are two terms in the upper bound. The first one s ms 2 has already been identified as the bias of the projection estimator. The second term can be viewed as an upper bound for the stochastic or variance term. Actually, this upper bound is almost sharp. If we assume that s belongs to S m ,t h a ti s ,s = s m ,t h e nt h eb i a sd i s a p p e a r sa n dt h eq u a n t i t yE( sms 2 )-a pure variance term-is in fact upper bounded by a constant times |m| log(T )/T .B u to nt h eo t h e rh a n d ,w eh a v et h ef o l l o w i n gr e s u l t . Proposition 2. Let m be a model such that inf I∈m ℓ(I) ≥ ℓ 0 then there exists a positive constant c depending on A, η, P, ρ, H such that if |m|≥c then

inf ŝ sup s∈Sm∩L η,ρ H,P E s ( s -ŝ 2 ) ≥ ♦ H,P,η,ρ,A min |m| T ,ℓ 0 |m| .

The infimum over ŝ represents the infimum over al l the possible estimators constructed on the observation on [-A, T

] of a point process (N t ) t . E s represents the expectation with respect to the stationnary Hawkes process (N t ) t with intensity given by Ψ s (•).

Hence, when s belongs to S m ,t h ec l i p pe dp r oj e c t i o ne s t i m a t o rh a sar i s k which is lower bounded by a constant times |m|/T and upper bounded by |m| log(T )/T .T h e r ei so n l yal o s so faf a c t o rl o g ( T )b e t w e e nt h eu p p e r bound and the lower bound. This factor comes from the unboundedness of the intensity. The best control we can provide for the intensity is to bound it on [0,T]b ys o m e t h i n go ft h eo r d e rl o g ( T ). The reader may think to this really similar fact: the sup of n i.i.d. variables with exponential moments can only be bounded with high probability by something of the order log(n). Note also that the clipped projection estimator is minimax on S m ∩L η,ρ H,P up to this logarithmic term. Now let us turn to model selection, oracle inequalities and penalty choices. As before if we know H, η,andρ,thenitisreasonabletoconsidertheclipped penalized projection estimator, s for theoretical purpose. Recall that the penalized projection estimator s =(ν, h)isgiv enby(2.12). Then the clipped penalized projection estimator, s =(ν, h), is given, for all positive t,b y

               ν = ν, if ρ ≤ ν ≤ η, ρ, if ν<ρ, η, if ν>η, h(t)=    h(t), if 0 ≤ h(t) ≤ H, 0, if h(t) < 0, H, if h(t) >H. (3.3) 
The next theorem provides an oracle inequality in expectation [see (2.13)].

Theorem 1. Let (N t ) t∈R be a Hawkes process with intensity Ψ s (•).A ssume that we know that s belongs to L η,ρ H,P .

M o r e o v e r ,a s s u m et h a ta l lt h e models in M T are written on Γ,ar e g u l a rp a r t i t i o no f(0,A] such that (3.2)h o l d s .L e tQ>1. Then there exists a positive constant κ depending on η, ρ, P, A, H such that if

∀m ∈M T pen(m)=κQ(|m| +1) log(T ) 2 T , (3.4) then E( s -s ) 2 ≤ ♦ η,ρ,P,A,H inf m∈M T s -s m 2 +(|m| +1) log(T ) 2 T + ♦ η,ρ,P,A,H #{M T } T Q .
The form of the penalty is a constant times |m| log(T ) 2 /T ,t h a ti s ,i ti s equal to the variance term up to some logarithmic factor. Remark also that choosing the penalty as a constant times the dimension leads to an oracle inequality in expectation. The multiplicative constant is not an absolute constant but something that depends on all the parameters that were introduced (H, η, P ,e t c . ) .T h i si sa c t u a l l yc l a s s i c a l .E v e ni nt h eG a u s s i a nn e s ted case (see [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]), Mallows' C p multiplicative constant is 2σ 2 where σ 2 is the variance of the Gaussian noise. The form is simpler than in ourc a s eb u t still an unknown parameter σ 2 appears. With respect to the Gaussian case, remark that there is also some loss due to logarithmic terms. Finally, for readers who are familiar with model selection techniques, wed on o tr e fi n e the penalty with the use of weights, because the concentration formulas we use to derive the penalty expression are not concentrated enough to allow ar e a li m p r o v e m e n tb yu s i n gt h o s ew e i g h t s .T h eG a u s s i a nc o n c entration inequalities do not apply to Hawkes processes, even if there aresomeattempts at proving similar results [START_REF] Reynaud-Bouret | Some nonasymptotic tail estimate for Hawkes processes[END_REF]. As a consequence, we are not able to treat families of models as complex as in [START_REF] Birgé | Gaussian model selection[END_REF]. This lack of concentration actually comes from an obvious essential feature of the Hawkes' process: its dependency structure. This has already been noted in several papers on counting processes (see [START_REF] Reynaud-Bouret | Compensator and exponential inequalities for some suprema of counting processes[END_REF]a n d [START_REF] Reynaud-Bouret | Penalized projection estimators of the Aalen multiplicative intensity[END_REF]). Here, the dependance is not a nuisance parameter but the structure we want to estimate via the function h.R e l a t e d works may be found in discrete time: autoregressive process in [START_REF] Baraud | Model selection for (auto)regression with dependent data[END_REF]o r [START_REF] Baraud | Adaptive estimation in autoregression or beta-mixing regression via model selection[END_REF]a n d Markov chain in [START_REF] Lacour | Adaptive estimation of the transition density of a Markov chain[END_REF]. In all these papers, multiplicative constants, which are usually unknown by practitioners, appear in the penalty term, as in the Gaussian framework, where the variance noise σ 2 is usually unknown. In the Gaussian case, there have been several papers dealing with the precise theoretical calibration of those constants in a data-driven way (see [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] or [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]). Here, since the concentration inequalities are too rough, we cannot prove theoretical calibration. So we have decided to find at least a practical data-driven calibration of this multiplicative constant (see Section 4).

4. Practical data-driven calibration via simulations. The main drawback of the previous theoretical results is that the multiplicative constant in the penalty is not computable in practice. Even if the formula fort h ef a c t o rκ is known, it depends heavily on the extra knowledge of parameters (H, η, P , etc.) that cannot be guessed in practice. On the contrary, A is a meaningful quantity, at least for our biological purpose. The aim of thiss e c t i o ni st o find a performant implementable method of selection, based onthefollo wing theoretical fact: (3.4)p r o v e st h a tac o n s t a n tt i m e st h ed i m e n s i o no ft h e model should work. 4.1. Compared methods. Since our simulation design (see Section 4.3)i s computationally demanding, we restricted ourselves to models m with at most 15 intervals. Consequently, we did not consider the Nested strategy because it would only involve five models in the family. We then only focus on the three following strategies: Regular, Irregular and Islands.S i n c ew e are looking for a penalty that is inspired by (3.4), we compare our penalized methods to the most naive approach, namely the Hold-out procedure described below. As stated in the Introduction,t h el o g -l i k e l i h o o dc o n t r a s t coupled with an AIC penalty (see, e.g., [START_REF] Gusto | FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model[END_REF]) is only adapted to functions g defined on regular partitions, so we do not consider this method here. Moreover, the truncated estimators are designed for minimaxt h e o r e t i c a l purposes, but of course they depend on parameters (H,e t c . )t h a tc a n n o t be guessed in practice. They also force the estimate of h to be nonnegative. Therefore, in this section, we only use nontruncated estimators [see (2.10), (2.11), (2.12)].

Hold-out.T h en a i v ea p p r o a c hi sb a s e do nt h ef o l l o w i n gf a c t( w h i c hc a n be made completely and theoretically explicit in the self-exciting case). We know (see Lemma 3)t h a tγ T is a contrast. We know also that E(γ 1). Now we would like to select a model m such that ŝ m is as good as the best possible ŝm .Soo n ew a yt os e l e c tag ood model m should be to observe a second independent Hawkes process with the same s and to compute the minimizer of γ T,2 (ŝ m )o v erM T (where ŝm is computed with the first process and γ T,2 is our contrast but computed with the second process). However, we do not have in practice two independent Hawkes processes at our disposal. But one can cut [-A, T ]i nt w oa l m o s t independent pieces. Indeed, the points of the process in [-A, T /2 -A]andin [T/2,T]c a nb ee q u a lt ot h o s eo fi n d e p e n d e n ts t a t i o n a r yH a w k e sp r o c esses and this with high probability (see [START_REF] Reynaud-Bouret | Some nonasymptotic tail estimate for Hawkes processes[END_REF]). Hence, in the sequel whenever the Hold-out estimator is mentioned, and whatever the family M T is, it is referring to the following procedure.

T (f )) = f -s 2 D -s 2 D .M o r e o v e

Cut [-A, T ]i n t ot w op i e c e s :H 1 refers to the points of the process on

[-A, T /2 -A], H 2 refers to the points of the process on [T/2,T]. 2. Compute ŝm for all the m in M T by minimizing the least-square contrast γ T,1 on S m computed with only the points of H 1 ,t h a ti s ,

∀f ∈ L 2 γ T,1 (f )=- 2 T T/2-A 0 Ψ f (t) dN t + 1 T T/2-A 0 Ψ f (t) 2 dt. 3. Compute γ T,2 (ŝ m )w h e r eγ T,2 is computed with H 2 ,t h a ti s , ∀f ∈ L 2 γ T,2 (f )=- 2 T T T/2+A Ψ f (t) dN t + 1 T T T/2+A Ψ f (t) 2 dt
and find m =argmin m∈M T γ T,2 (ŝ m ). 4. The Hold-out estimator is defined by sHO := ŝ m.

Penalized.T h e o r e m1 shows that theoretically speaking a penalty of the type K(|m| +1) should work. However, the theoretical multiplicative constant is not only not computable, it is also too large for practical purpose. So one needs to consider Theorem 1 as a result that guides our intuition toward the right shape of penalty and one should not consider it as a sacred and not improvable way of penalizing. Therefore, we investigate two ways of calibrating the multiplicative constants.

1. The first one follows the conclusions of [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]. In the Regular strategy,t h e r e exists at most one model per dimension. If there exists a true model m 0 , then for |m| large (larger than |m 0 |) γ T (ŝ m )s ho ul dbe ha v el i k e-k(|m| + 1). So there is a "minimal penalty" as defined by Birgé and Massart of the form pen min = k(|m| +1). In this situation, their rule is to take pen(m)=2 * pen min (m). We find a k by doing a least-square regression for large values of |m| so that

γ T (ŝ m ) -k(|m| +1).
Then we take m =argmin

m∈M T γ T (ŝ m )+2 k(|m| +1),
and we define smin := ŝ m.

Let us remark that the framework of [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]i sG a u s s i a na n di . i . d .I ti s ,i n our opinion, completely out of reach to extend these theoretical results here. However, at least in the Regular strategy,t h ec o n c e n t r a t i o nf o r m u l a that lies at the heart of our proof is really close to the one used in [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF], which tends to prove that their method could work here.

For the Irregular and Islands strategy,a sap r e l i m i n a r ys t e p ,w en e e d to find the best data-driven model per dimension, that is,

mD =a r g m i n m∈M T ,|m|=D γ T (ŝ m ).
Then one can plot as a function of D, γ T (ŝ mD ). In [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF], they also obtain another kind of minimal penalty of the form pen min = k(D +1)(log(|Γ|/D)+ 5) when the Irregular strategy is used. But for very small values of |Γ| (as here), we would not see the difference between this form of penalty and the linear form. Moreover, theoretically speaking, we are not able to justify, even heuristically, such a form of penalty for largev a l u e so f|Γ|. Indeed, the concentration formula in our case is quite different for such ac o m p l e xf a m i l y .

So we have decided that we will use the same penalty as before even in the Irregular and Islands strategies.T h a ti st os a yt h a tw efi n da k by doing a least-square regression for large value of D so that

γ T (ŝ mD ) -k(D +1).
Then we take m =argmin

m∈M T γ T (ŝ m )+2 k(|m| +1),
and we define smin := ŝ m even for the Irregular and Islands strategies.

2. On the other hand, the choice of m by smin was not completely satisfactory when using the Islands or Irregular strategies (see the comments on the simulations hereafter). But on the contrast curve: D → γ T (ŝ mD ), we could see a perfectly clear angle at the true dimension. So we have decided to compute

-k = γ T (ŝ Γ )-γ T (ŝ m1 ) |Γ|-1
and to choose m =argmin

m∈M T γ T (ŝ m )+ k(|m| +1).
We define sangle := ŝ m.T hisseemstobeaproperautomaticwaytoobtain this angle without having to look at the contrast curve. It is still based on the fact that a multiple of the dimension should work. This has only been implemented for the Irregular and Islands strategies. This angle method may be viewed as the "extension" of the L-curve method in inverse problems where one chooses the tuning parameter at the point of highest curvature.

Table 1 summarizes our 8 different estimators. 4.2. Simulated design. We have simulated Hawkes pro cesses with parameters (ν, h), with ν in {0.001, 0.002, 0.003, 0.004, 0.005}, h having a bounded support in (0, 1000] (i.e., A =1000)andonasequenceoflength[-A, T ]with T =100,000 or T =500,000. The fact that the process is or not stationary does not seem to influence our procedure with this relatively short memory (indeed T ≥ 100A).

The functions h have been designed so that we can see the influence of p 

b m =            1 T N [0,T ] 1 T T 0 Ψ (0, I 1 ) (t) dN t . . . 1 T T 0 Ψ (0, I D ) (t) dN t           
and

X m =      1 1 T T 0 Ψ (0, I 1 ) (t) dt ••• 1 T T 0 Ψ (0, I D ) (t) dt 1 T T 0 Ψ (0, I 1 ) (t) dt 1 T T 0 Ψ 2 (0, I 1 ) (t) dt ••• 1 T T 0 Ψ (0, I 1 ) (t)Ψ (0, I D ) (t) dt . . . . . . . . . . . . 1 T T 0 Ψ (0, I D ) (t) dt 1 T T 0 Ψ (0, I 1 ) (t)Ψ (0, I D ) (t) dt ••• 1 T T 0 Ψ 2 (0, I D ) (t) dt      . It is not difficult to see that the contrast γ T (f )c a nb ew r i t t e n γ T (f )=-2θ m b m + t θ m X m θ m .
Therefore, the minimizer θm of γ T (f )o v e rf in S m satisfies X m θm = b m , that is, θm = X -1 m b m .SincethefunctionsΨ (0, I ) (t)a r epi e c e w i s ec o ns t a n t s , despite their randomness, it may be long but not that difficult to compute X m .I ti sa l s op o s s i b l et oc o m p u t eX Γ and to deduce from it the different X m 's, when one uses the Islands or Irregular strategies. Nevertheless, both Islands and Irregular strategies require to calculate each vector θm for the 2 |Γ| possible models m and to store them to evaluate the oracle risk (see below). We thus restricted our Monte Carlo simulations to models m with less than 15 intervals. For the analysis of single real data sets, the technical limitation of our programs is |Γ| =26 due to the 2 |Γ| possible models. The programs have been implemented in R and are available upon request.

4.4.

Results. The quality of the estimation procedures is measured thanks to two criteria: the risk of the estimators and the associatedo r a c l er a t i o .

• We call Risk of an estimator the Mean Square Error of this estimator over 100 simulations, that is, we compute for each simulation sŝ 2 and next we compute the average over 100 simulations. Note that with the range of our parameters, the error of estimation of ν will be really negligible with respect to the error of estimation for h,s ot h a t sŝ 2 A 0 (h -ĥ) 2 . • The Oracle Risk is for each method the minimal risk, that is, min m∈M T Risk (ŝ m ). All our methods give an estimator s that is selected among a family of ŝm 's. The Oracle Ratio is the ratio of the risk of s divided by the Oracle Risk, that is,

Risk (s) min m∈M T Risk (ŝ m ) .
If the Oracle Ratio is 1, then the risk of s is the one of the best estimator in the family. Note that the definition of M T and even the definition of ŝm appearing in the Oracle Ratio may change from one method to another one.

Figure 2 gives the Risk of our estimators for h =0.5 * f 1 for various ν and T .W efirstclearlyseethattheriskdecreaseswhenT increases whatever the method. Then we see that the "best methods" are methods 1, 2 and4 ,t h a t is, the Regular strategy with minimal penalty and the Irregular and Islands strategies with the angle method. For the Irregular and Islands strategies,the minimal penalty seems to behave like the Hold-out strategies. There seems also to be a slight improvement when ν becomes larger, tending to prove that, if the mean total number of points E(N [0,T]) = νT/(1p)g r o w s ,t he estimation is improved-at least in our range of parameters. Figure 3 gives the Oracle Ratio of our estimators in the same context. The Oracle Ratio is really close to 1 for methods 1, 2 and 4 when T =500,000 whatever ν is. Remark that the Oracle Ratio for the Hold-out estimators (methods 6, 7 and 8) is not that large, but since the estimators ŝm are computed with half of the data, their Risks are not as small as the projection estimators used in the penalty methods. This explains why the Risk of the Hold-out methods is large when the Oracle Ratio is close to 1. The Oracle Ratio is improving when T becomes larger for our three favorite methods (namely 1, 2, 4). Figure 4 gives the variation of the Risk with respect to p (2.1). Since h = c * f 1 and since c varies, the Rescaled Risk, Risk /c 2 ,g i v e s( u pt os o m e negligible term corresponding to ν)theriskof h/c as an estimator of f 1 .W e clearly see that when T or c becomes larger the Rescaled Risk is decreasing. So it definitely seems that if the mean total number of points grows, the estimation is improving. Methods 1, 2 and 4 seem to be still themoreprecise ones. Figure 5 gives the Oracle Ratio in the same situation. Once again there is an improvement when T grows at least for our three favorite methods (1, 2a nd4 )a ndt heOracle Ratio is 1 when T =500,000 and c =0.8. The same comment about a good Oracle Ratio for the Hold-out methods apply.

Figure 6 gives the frequency of the chosen dimension, namely | m| +1 for the different methods. Clearly, methods 1, 2 and 4 are correctly choosing the true dimension in most of the simulations when the other methods overestimate the true dimension.

Finally, Figure 7 shows the resulting estimators of methods 1, 2 and 4 on one simulation. In particular, before penalizing, note thato n ec l e a r l ys e e s an angle on the contrast curve at the true dimension and that penalizing by the angle method (methods 2 and 4) gives an automatic way to find the position of this angle.

Figure 8 shows the results for the possibly negative function f 2 and only for our three favorite methods [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF][START_REF] Baraud | Model selection for (auto)regression with dependent data[END_REF][START_REF] Birgé | A new lower bound for multiple hypothesis testing[END_REF]. For this function only, and because the true dimension is 16 for method 1, we use for method 1, |Γ| =25. Note that (i) methods 1 and 4 select the right dimension whereas method 2 (Irregular strategy )d oe sn o ts e et h en e g a t i v ej u m pa n dt h a t( i i )i ti sa l s om o r e easy to detect the precise position of the fluctuations on the sparse estimate given by method 4 (compared to method 1). For sake of simplicity, we do not give the Risk values, but it is sufficient to note that, for all the methods, they are small (with a slight advantage for method 4) and that the Oracle Ratios are close to 1.

Figure 9 gives the same results for the smooth function f 3 .O fc o u r s e , since the projection estimators are piecewise constant, they cannot look really close to f 3 .Butinan ycase,method1andmorein teresting lymethod 

4g i v e st h er i g h tp o s i t i o nf o rt h es p i k e sw h e r e a sm e t h o d2d o e sn o ts e et h e smallest bump.

Finally, let us conclude the simulations by noting that the penalized projection estimators with the Islands strategy and the angle penalty (method 4) seems to be an appropriate method for detecting local spikes and bumps in the function h and even negative jumps.

5. Applications on real data. We have applied the p enalized (angle method) estimation procedure with the Island strategy (method 4) to two data sets related to occurrences of genes or DNA motifs along both strands of the complete genome of the bacterium Escherichia coli (T =9,288,442). In both cases, we used A =10,000asthelongestdependencebetweenevents and the finest partition corresponds to |Γ| =15.

The first process corresponds to the occurrences of the 4290 genes. Figure 10 (top) gives the associated contrast and penalized contrast,t o g e t h e rw i t h the chosen estimator of h (m =4 and ν =3.64 10 -4 ). The shape of this estimator tells us that: • gene occurrences seem to be uncorrelated down to 2600 basepairs, • they are avoided at a short distance (∼0-500 bps) and • favored at distances ∼700-2000 bps apart.

This general trend has been refined by shortening the support A to 5000 and then to 2000 (see Figure 11). It then clearly appears both a negative effect at distances less than 250 bps, and a positive one around 1000 bps. This is completely coherent with biological observations: genes ont h es a m es t r a n d do not usually overlap, they are about 1000 bps long in average, and there are few intergenic regions along bacterial genomes (compactg e n o m e s ) . The second process corresponds to the 1036 occurrences of theDNAmotif tataat.F i g u r e10 (bottom) gives the associated contrast and penalized contrast, together with the chosen estimator of h (m =5and ν =7.82 10 -5 ). The shape of the estimator suggests that:

• occurrences seem to be uncorrelated down to 4000 basepairs, • favored at distances ∼ 0-1500 bps and 3000 bps apart,

• highly favored at a short distance apart (less than 600 bps).

After shortening the support A to 5000 (see Figure 11), the shape of the chosen estimator shows that there actually are 3 types of favored distances: very short distances (less than 300 bps), around 1000 bps and around 3500 bps. This trend is again coherent with the fact that (i) the motif tataat is self-overlapping (two successive occurrences can occur at adistance5apart), (ii) this motif is part of the most common promoter of E. coli meaning that it should occur in front of the majority of the genes (and thesegenesseemto be favored at distances around 1000 bps apart from the previous example), (iii) some particular successive genes (operons) can be regulated by the same promoter (this could explain the third bump).

Figure 12 presents the results of the FADO procedure [START_REF] Gusto | FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model[END_REF]. Here, we have forced the estimators to be piecewise constant to make the comparison easier. Note, however, that the FADO procedure may be implemented with splines of any fixed degree.

Our results are in agreement with the ones obtained by FADO. Our new approach has two advantages. First, it gives a better idea of the support A of the function h:i n d e e d ,t h ee s t i m a t o rp r o v i d e db yF A D O( c f .F i g u r e12 topleft) has some fluctuations until the end of the interval whereas our estimator (cf. Figure 10 top-right) points out that nothing significant happens after 3000 bps. Second, our method leads to models of smaller dimension (|m| =4 for Islands versus |m| =15 for F ADO). The limitation of our method is essentially that we only consider piecewise constant estimators, but this is enough to get a general trend on favored or avoided distances within a point process.

6. Minimax properties. The theoretical procedures of Proposition 1 and Theorem 1 have more theoretical properties than just an oracle inequality. This section provides their minimax properties. In particular, even if it has not been implemented for technical reasons that were described above, the Nested strategy leads to an adaptive minimax estimator. Such kinds of estimators were not known in the Hawkes model, as far as we know.

6.1. Hölderian functions. First, one can prove the following lower bound.

Proposition 3. Let L>0 and 1 ≥ a>0.L e t H L,a = {s =(ν, h) ∈ L 2 /∀x, y ∈ (0,A], |h(x) -h(y)|≤L|x -y| a }. Then inf ŝ sup s∈H L,a ∩L η,ρ H,P E s ( s -ŝ 2 ) ≥ ♦ H,P,A,η,ρ,a min(L 2/(2a+1) T -2a/(2a+1) , 1).
The infimum over ŝ represents the infimum over al l the possible estimators constructed on the observation on [-A, T ] of a point process (N t ) t . E s represents the expectation with respect to the stationnary Hawkes process (N t ) with intensity given by Ψ s (•).

But on the other hand, let us consider the clipped projection estimator sm with m ar e g u l a rp a r t i t i o no f( 0 ,A]s u c ht h a t |m| (T/log(T )) 1/(2a+1) .

If the function h is in H L,a ∩L η,ρ
H,P with a ∈ (1/2, 1], then, applying Proposition 1,s m satisfies

E( sm -s 2 ) ≤ ♦ H,P,A,η,ρ,L,a log(T ) T 2a/(2a+1)
.

Compared with the lower bound of the minimax risk (Proposition 3), we only lose a logarithmic factor: the clipped projection estimators are minimax on H L,a ∩L η,ρ H,P ,w i t ha ∈ (1/2, 1], up to some logarithmic term. We cannot go beyond a =1/2b e c a u s eo n en e e d s|m| √ T in Proposition 1. Of course, we need to know a to find sm ,s os m is not adaptive with respect to a.B u tt h ec l i p p e dp e n a l i z e dp r o j e c t i o ne s t i m a t o rs with the Nested strategy can be adaptive with respect to a.I ti ss u ffi c i e n tt ot a k e J log 2 ( √ T/log(T ) 3 )t og u a r a n t e e( 3.2). Then we apply Theorem 1 with Q =1.1, for instance. Since #{M T } is of the order log(T ), we obtain that

E( s -s ) 2 ≤ ♦ H,η,P,A,ρ inf m∈M T s -s m 2 +(|m| +1) log(T ) 2 T .
If h is in H L,a ∩L η,ρ H,P with a ∈ (1/2, 1], then there exists m in M T such that

|m| (T/log(T ) 2 ) 1/(2a+1)
and consequently

E( s -s ) 2 ≤ ♦ H,η,P,ρ,A,L,a log(T ) 2 T 2a/(2a+1)
.

Therefore, the clipped penalized projection estimator s with the Nested strategy and the theoretical penalty given by (3.4)i sa d a p t i v em i n i m a xo n {H L,a ∩L η,ρ H,P ,a∈ (1/2, 1]} up to some logarithmic term.

Irregular and Islands sets. Let us apply Theorem 1 to the Irregular strategy and Islands strategy.I nb o t hc a s e s ,t h el i m i t i n gf a c t o rh e r ei s #{M

T }.T a k eN ≤ log 2 (T ), then #{M T }≤T and if Q ≥ 2w eo b t a i nt h a t E( s -s ) 2 ≤ ♦ H,P,A,η,ρ inf m∈M T s -s m 2 +(|m| +1) log(T ) 2 T .
To measure p erformances of those estimators, one needs to introduce a set of sparse functions h,f u n c t i o n st h a ta r ed i ffi c u l tt oe s t i m a t ew i t haNested strategy.Ap i e c e w i s ef u n c t i o nh is usually thought as sparse if the resulting partition is irregular with few intervals. So we define the Irregular set by

S irr Γ,D := m partition written on Γ, |m|=D S m . (6.1)
Then, if s belongs to S irr Γ,D ,usingtheIrregular strategy,theclippedpenalized projection estimator satisfies

E( s -s ) 2 ≤ ♦ H,P,η,ρ,A D log(T ) 2 T .
But for our biological purpose, the sparsity lies in the support of h.S ow e define the Islands set by

S isl Γ,D := m⊂Γ,|m|=D S m . (6.2) 
Then, if s belongs to S isl Γ,D ,u s i n gt h eIslands strategy,t h ec l i p pe dpe n a l i z e d projection estimator also satisfies

E( s -s ) 2 ≤ ♦ H,P,η,ρ,A D log(T ) 2 T .
On the other hand it is possible to compute lower bounds for them i n i m a x risk over those sets.

Proposition 4. Let Γ be a partition of (0,A] such that inf I∈Γ ℓ(I) ≥ ℓ 0 . Let |Γ| = N and let D be a positive integer such that N ≥ 4D. If D ≥ c 2 (A, η, P, ρ, H) > 1,forc 2 some positive constant depending on A, η, P, ρ, H, then

inf ŝ sup s∈S isl Γ,D ∩L η,ρ H,P E s ( s -ŝ 2 ) ≥ ♦ H,P,A,η,ρ min D log(N/D) T ,Dℓ 0 and inf ŝ sup s∈S irr Γ,D ∩L η,ρ H,P E s ( s -ŝ 2 ) ≥ ♦ H,P,A,η,ρ min D log(N/D) T ,Dℓ 0 .
The infimum over ŝ represents the infimum over al l the possible estimators constructed on the observation on [-A, T ] of a point process (N t ) t . E s represents the expectation with respect to the stationary Hawkes process (N t ) with intensity given by Ψ s (•).

To clarify the situation, it is b etter to take N = |Γ| log(T ). If D log(T ) a with a<1t h e nt h el o w e rb o u n do nt h em i n i m a xr i s ki so ft h e order log(T ) a log log T/T when the risk of the clipped penalized projection estimator (for both strategies) is upper bounded by log(T ) a+2 /T ,a n dt h i s whatever a is. So our estimator matches the rate 1/T up to a logarithmic term. Of course the most fundamental part is this logarithmict e r m .T h i n k , however, that there exists some function h in those sets, such that the function belongs to S Γ but to none of the other spaces S m for m in the family M T described by the Nested strategy.C o n s e q u e n t l y ,ac l i p pe dpe n a l i z e de stimator with the Nested strategy would have an upper bound on the risk of the order log(T ) 3 /T by applying Theorem 1.S ot h eIrregular and Islands strategies have not only good practical properties, but there is also definitely at h e o r e t i c a li m p r o v e m e n ti nt h eu p pe rbo u n do ft h er i s k .

7. Technical results.

Oracle inequality in probability.

The following result is actually the one at the origin of Theorem 1.N o t et h a tt h i sr e s u l th o l d sf o rt h ep r a c t i c a l estimator, s,w h i c hi sn o tc l i p pe d . Theorem 2. Let (N t ) t∈R be a Hawkes process with intensity Ψ s (•).L e t H, η and A be positive known constants such that s =(ν, h) satisfies ν ∈ [0,η] and h(•) ∈ [0,H].

Moreover, assume that the family M T satisfies

inf m∈M T inf I∈m ℓ(I) ≥ ℓ 0 > 0.
Let S be a finite vectorial subspace of L 2 containing al l the piecewise constant functions constructed on the models of M T .L e tR>r>0 be positive real numbers, let N be a positive integer and let us consider the fol lowing event: where N ([t -A, t)) represents the number of points of the Hawkes process (N t ) t in the interval [t -A, t).W es e tΛ=(η + HN )R 2 /r 2 and we consider ε and x any arbitrary positive constants. If for all m ∈M T pen(m)

B = {∀t ∈ [0,T],N([t -A, t)) ≤N and ∀f ∈S,r 2 f 2 ≤ D 2 T (f ) ≤ R 2 f 2 },
≥ (1 + ε) 3 Λ |m| +1 T (1 + 3 √ 2x) 2 ,
then there exists an event Ω x with probability larger than 1 -3#{M T }e -x such that for all m ∈M T ,b o t hf o l l o w i n gi n e q u a l i t i e sh o l d :

εr 2 1+ε s -s 2 B∩Ωx ≤ (1 + ε)D 2 T (s m -s)+(1+ε -1 )D 2 T (s -s ⊥ )+r 2 s ⊥ -s 2 (7.1) + r 2 1+ε s -s m 2 +(1+ε)pen(m)+♦ ε Λ T x + ♦ ε 1+N 2 /ℓ 0 r 2 T 2 x 2 ,
where s ⊥ denotes the orthogonal projection for • of s on S,a n d

r 2 ε 1+ε E( s -s 2 B∩Ωx ) ≤ (2 + ε + ε -1 )K 2 + 2+ε 1+ε r 2 s -s m 2 (7.2) +(1+ε)pen(m)+♦ ε Λ x T + ♦ ε 1+N 2 /ℓ 0 r 2 T 2 x 2 ,
where K is a positive constant depending on s such that

f D ≤ K f for all f in L 2 (see Lemma 2).
Remark 1. This result is really the most fundamental to understand how the Hawkes process can be easily handled once we only focuso nan i c e event, namely B.W eh a v e" h i d d e n "i nB the fact that the intensity of the process is unbounded: on B,then um berofpoin tsperin terv aloflengthA is controlled, so the intensity is bounded on this event. We havea l s o" hi dde n" in B the fact that we are working with a natural norm, namely D T ,whic his random and which may eventually behave badly: on B, D T is equivalent to the deterministic norm • for functions in S.M o r ep r e c i s e l y ,t h er e s u l to f (7.1)mixes • and D T (•)butho l dsi npr o ba bi l i t y .O nt hec o n t r a r y ,( 7.2)is weaker but more readable since it holds in expectation with only one norm

• .N o t ea l s ot h a tB is observable, so if one observes that we are on B, (7.2)sho wsthatapenalt yofthet ypeafactortimesthedimensioncan work really well to select the right dimension. Indeed, note that if, in the family M T ,t h e r ei sa" t r u e "m o d e lm (meaning that s = s m )a n di ft h ep e n a l t y is correctly chosen, then (7.2)p r o v e st h a t ss 2 is of the same order as the lower bound on the minimax risk on m,n a m e l y|m|/T (see Proposition 2 for the precise lower bound). In that sense, this is an oracle inequality. The procedure is adaptive because it can select the right model without knowing it. But of course this hides something of importance.I fB is not that frequent, then the result is completely useless from a theoretical point of view since one cannot guarantee that the risk of the penalized estimator and even the risk of the projection estimators themselves ares m a l l .

Remark 2. In fact, we will see in the next subsection that the choices of N ,R,r,M T are really important to control B.I np a r t i c u l a r ,w ea r en o t able at the end to manage families of models with a very high complexity as in [START_REF] Birgé | Gaussian model selection[END_REF]o ri nm o s to ft h eo t h e rw o r k si nm o d e ls e l e c t i o n( s e eT h e o r e m1 and Section 6). This is probably due to a lack of independency and boundedness in the process itself.

Remark 3. Note also that the oracle inequality in probability (7.1)o f Theorem 2 remains true for the more general process defined by (2.14)once we replace B by B∩B where B = {∀t ≤ T,λ(t) > 0}.B u to fc o u r s et h e n ,B is not observable. This tends to prove that even in case of self-inhibition a penalty of the type a constant times the dimension is working. 

R 2 > 2max 1, η (1 -P ) 2 (ηA +(1-P ) -1 )
and r 2 < min ρ 4 , 1 -P 8Aη +1 .

Moreover let N = 6log(T ) Plog P -1 .

Let us final ly assume that S, defined in Theorem 2,i si n c l u d e di nS Γ where Γ is a regular partition of (0,A] such that

|Γ|≤ √ T (log T ) 3 .
Then, under the assumptions of Theorem 2,t h e r ee x i s t sT 0 > 0 depending on η, ρ, P, A, R and r,s u c ht h a tf o ra l lT>T 0 ,

P(B c ) ≤ ♦ η,P,A 1 T 2 .
These technical results imply very easily Proposition 1 and Theorem 1.

Proof of Theorem 1. We apply (7.2)o fT h e o r e m2 to s.S i n c es is closer to s than s,t h ei n e q u a l i t yi sa l s ot r u ef o rs.W ec h o o s ex = Q log(T ) and N , R, r according to Proposition 5.O nt h ec o m p l e m e n to fB∩Ω x ,w e bound ss by η 2 + H 2 A and the probability of the complement of the event by

♦ η,P,A,ρ,H 1 T 2 + #{M T } T Q .
The same control may be applied if T is not large enough. To complete the proof, note finally that K ≤ ♦ η,P,A .

P. REYNAUD-BOURET AND S. SCHBATH

Proof of Proposition 1. We can apply Theorem 2 to a family that is reduced to only one model m.I ft h ei n e q u a l i t yi st r u ef o rt h en o n t r u n c a t e d estimator, and if we know the bounds on s then the inequality is necessarily true for the truncated estimator, which is closer to s than s.Thenthepenalty is not needed to compute the estimator but it appears nevertheless in both oracle inequalities. We can conclude by similar arguments asTheorem1,but if we take x =log(T )i n( 7.2), we lose a logarithmic factor with respect to Proposition 1.W eactuallyobtainProposition1 by integrating also in x the oracle inequality in probability (7.1)a ndw ec o nc l udeb ys i m i l a ra r g um e n t s , using that

• D ≤ K • .
8. Sketch of proofs for the technical and minimax results.

8.1. Contrast and norm. First, let us begin with a result that makes clear the link between the classical properties of the Hawkes process (namely the Bartlett spectrum) and the quantity g 2 that is appearing in the definition of the L 2 space (2.3). Lemma 1. Let (N t ) t∈R be a Hawkes process with intensity Ψ s (•).L e tg be a function on R + such that +∞ 0 g(u) du is finite. Then for all t,

E t -∞ g(t -u) dN u 2 = ν 2 (1 -p) 2 +∞ 0 g(u) du 2 + R |Fg(-w)| 2 f N (w) dw ≤ ν 2 (1 -p) 2 +∞ 0 g(u) du 2 + ν (1 -p) 3 +∞ 0 g 2 (u) du, where f N (w)= ν 2π(1 -p)|1 -Fh(w)| 2
is the spectral density of (N t ) t∈R .

Remark (Notation). Fh is the Fourier transform of h,thatis,Fh(x)= R e ixt h(t) dt.

Proof of Lemma 1. Let φ t (u)= u<t g(tu). We know (see [START_REF] Brémaud | Hawkes branching point processes without ancestors[END_REF], page 123) that

Var R φ t (u) dN u = R |Fφ t (w)| 2 f N (w) dw.
Moreover, since g has a positive support, Fφ t (w)=e iwt Fg(-w). Hence,

Var R φ t (u) dN u = R |Fg(-w)| 2 f N (w) dw.
But we also know that (see [START_REF] Hawkes | A cluster process representation of a selfexciting process[END_REF])

λ = E(λ(t)) = ν 1 -p .
Consequently,

E t -∞ g(t -u) dN u 2 =V ar R φ t (u) dN u + E R φ t (u) dN u 2 =V ar R φ t (u) dN u + λ +∞ 0 g(u) du 2 ,
which gives the first part of the lemma. The second part is due toPlancherel's identity, which states

R |Fg(-w)| 2 dw =2π A 0 g 2 (x) dx, (8.1) 
and the fact that f N is upper bounded by ν/[2π(1p) 3 ]s i n c eh is nonnegative.

Lemma 1 is at the root of Lemma 2,w h i c hg i v e st h ee q u i v a l e n c ebe t w e e n the L 2 -norms, • and • D ,e q u i v a l e n c et h a ti se s s e n t i a lf o ro u ra n a l y s i s . Lemma 1 essentially represents the main feature of the lengthy but necessary computations of Lemma 2.T h ep r o o fo fL e m m a2 is consequently omitted and can be found in [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF].

Lemma 2. The functional D 2

T is a quadratic form on L 2 and its expectation

• 2 D [see (2.8)] is the square of a norm on L 2 satisfying ∀f ∈ L 2 L f ≤ f D ≤ K f , (8.2)
where

K 2 =2max 1, ν (1 -p) 2 νA + 1 1 -p and L 2 =min ν 4 , 1 -p 8Aν +1
.

Lemma 2 has a direct corollary: γ T defines a contrast.

Lemma 3. Let (N t ) t∈R be a Hawkes process with intensity Ψ s (•). Then the functional given by

∀f ∈ L 2 γ T (f )=- 2 T T 0 Ψ f (t) dN t + 1 T T 0 Ψ f (t) 2 dt is a contrast, that is, E(γ T (f )) is minimal for f = s.
Proof. Let us compute E(γ T (f )). As λ(t)=Ψ s (t), one can write by the martingale properties of dN t -Ψ s (t) dt using the associate bilinear form of D 2 T (f )t h a t

E(γ T (f )) = E - 2 T T 0 Ψ f (t) dN t + E(D 2 T (f )) = E - 2 T T 0 Ψ f (t)Ψ s (t) dt + f 2 D = f -s 2 D -s 2 D . Consequently, E(γ T (f )) is minimal when f = s since Lemma 2 proves that • D is a norm. 8.2.
Proof of Theorem 2. This proof is quite classical in model selection. It heavily depends on a concentration inequality for χ 2 -type statistics that has been derived in [START_REF] Reynaud-Bouret | Compensator and exponential inequalities for some suprema of counting processes[END_REF]andwhic hholdsforan ycoun tingprocess.Themain feature is to use the martingale properties of N t -t 0 λ(u) du [see (1.1)]. We do not need any further properties of the Hawkes process to obtain (7.1) (see Remark 3).

We give here a sketch of the pro of to emphasize that:

1. the oracle inequalities of Theorem 2 hold for s the practical estimator and not only the clipped one, and 2. that (7.1)ho l dsf o rpo s s i bl ene g a t i v ef unc t i o nh up to a minor correction (see Remark 4 at the end of the proof).

More details may be found in [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF].

Proof of Theorem 2. Let m be a fixed partition of M T .B yc o nstruction, we obtain

γ T (s)+pen(m) ≤ γ T (ŝ m )+pen(m) ≤ γ T (s m )+pen(m). (8.3) Let us denote for all f in L 2 , ν T (f )= 1 T T 0 Ψ f (t)(dN t -Ψ s (t) dt), which is linear in f .Then(2.6)becomesγ T (f )=D 2 T (f -s)-D 2 T (s)-2ν T (f ) and (8.3)l e a d st o D 2 T (s -s) ≤ D 2 T (s m -s)+2ν T (s -s m )+pen(m) -pen( m). (8.4)
By linearity of ν T , ν T (ss m )=ν T (ss m)+ν T (s ms m ). Now let us control each term in the right-hand side of (8.4). Then we can prove that (see [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF])

Let us begin with

W m = T 0 1 T (dN t -Ψ s (t) dt) 2 + I∈m T 0 N I (t) T ℓ(I) (dN t -Ψ s (t) dt) 2 .
Let T be defined by

T = t ≥ 0/N ([t -A, t)) > N or ∃f ∈S, 1 T t 0 Ψ f (u) 2 du > R 2 f 2
and let τ be the stopping time defined by

τ =inf{t ≥ 0,t∈T}.
It is quite easy to see that if t belongs to T then there exists t <t such that t belongs to T .Hence,τ does not belong to T and since t 0 Ψ f (u) 2 du is increasing in t,sayingthatwerestrictourselvestoB implies that τ ≥ T . Finally, we can write that on B, W m = Z m defined by

Z m = T 0 1 T t≤τ (dN t -Ψ s (t) dt) 2 + I∈m T 0 N I (t) T ℓ(I) t≤τ (dN t -Ψ s (t) dt) 2 1/2 .
Written in this way, this is a χ 2 -type statistics as defined in [START_REF] Reynaud-Bouret | Compensator and exponential inequalities for some suprema of counting processes[END_REF], since the N I (•)'s are predictable processes and so is t≤τ .SoCorollary2of [START_REF] Reynaud-Bouret | Compensator and exponential inequalities for some suprema of counting processes[END_REF] gives that with probability larger than 1 -2e -x ,

Z m ≤ C m +3 √ 2vx + bx,
where

C m = T 0 1 T 2 + I∈m N 2 I (t) T 2 ℓ(I) t≤τ Ψ s (t) dt, v = C m ∞ ,
and where b is a deterministic constant that should satisfy

b 2 ≥ t≤τ 1 T 2 + I∈m N 2 I (t) T 2 ℓ(I)
.

Once we are restricted to {τ ≥ T },w ec a nu s et h eq u a n t i t i e sd e fi n e di n B to upper bound C m , v and b (see details in [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF]). Finally, on B,w i t h probability larger than 1 -2#{M T }e -x ,

W m ≤ (η + HN )R 2 | m| +1 T (1 + 3 √ 2x)+ 1+N 2 /ℓ 0 T x. (8.7)
Let us fix some positive numbers θ and ε that will be chosen later and let us go back to A 1 .W eo b t a i nt h ef o l l o w i n gu p pe rbo u n d :

A 1 ≤ θ s -s m 2 + 1 θ (1 + ε)(η + HN )R 2 | m| +1 T (1 + 3 √ 2x) 2 (8.8) +(1+ε -1 ) 1+N 2 /ℓ 0 T 2 x 2 ,
inequality which holds on B with probability larger than 1-2#{M T }e -x . 2. Let us control now A 2 =2ν T (s ms m ). To do so, we need to control all the

V m = ν T (s m -s m ). But on B, V m = U m where U m = 1 T T 0 t≤τ Ψ s m -sm (t)(dN t -Ψ s (t) dt).
So one can use Corollary 1 of [START_REF] Reynaud-Bouret | Compensator and exponential inequalities for some suprema of counting processes[END_REF]: with probability larger than 1e -x ,

U m ≤ √ 2vx + b 3 x,
where v and b are constants such that for all t ≤ T ,

v ≥ 1 T 2 T 0 t≤τ Ψ s m -sm (t) 2 Ψ s (t) dt and b ≥ t≤τ 1 T |Ψ (s m -sm) (t)|.
By similar arguments, we can obtain the following upper bound( s e e [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF]): on B with probability larger than 1

-#{M T }e -x ν T (s m -s m ) ≤ s m -s m 2 (η + HN )R 2 T x + 2HN 3T
x. (8.9)

But s ms m ≤ s ms + ss m .T h u s ,w i t ht h es a m ec o n s t a n tθ as in (8.8), this gives (see [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF])

A 2 ≤ θ s m -s 2 + θ s m -s 2 + 4 θ + 2 3R 2 (η + HN )R 2 T x. (8.10)
Now let us go back to (8.4). Using (8.8)a n d( 8.10), we have actually obtained that on B and on an event Ω x whose probability is larger than 1 -3#{M T }e -x ,t h ef o l l o w i n gi n e q u a l i t yi st r u e :

D 2 T (s -s) ≤ D 2 T (s m -s)+θ[ s -s m 2 + s m -s 2 ]+θ s -s m 2 + 1 θ (1 + ε)(η + HN )R 2 | m| +1 T (1 + 3 √ 2x) 2 +(1+ε -1 ) 1+N 2 /ℓ 0 T 2 x 2 + 4 θ + 2 3R 2 (η + HN )R 2 T
x +pen(m)pen( m).

As s ⊥ denotes the orthogonal projection for • of s on S,w ec a nr e m a r k that

s -s m 2 + s m -s 2 = s -s 2 = s -s ⊥ 2 + s ⊥ -s 2 .
Moreover,

D 2 T (s -s ⊥ )= 1 T T 0 (Ψ s-s (t)+Ψ s-s ⊥ (t)) 2 dt ≤ (1 + ε)D 2 T (s -s)+(1+ε -1 )D 2 T (s -s ⊥ ). Hence, we obtain that on B∩Ω x D 2 T (s -s ⊥ ) ≤ (1 + ε)D 2 T (s m -s)+(1+ε -1 )D 2 T (s -s ⊥ ) +(1+ε)θ[ s -s ⊥ 2 + s ⊥ -s 2 ] +(1+ε)θ s -s m 2 +(1+ε)pen(m) +(1+ε) 1 θ (1 + ε)(η + HN )R 2 | m| +1 T (1 + 3 √ 2x) 2 -pen( m) +(1+ε) 4 θ + 2 3R 2 (η + HN )R 2 T x + (1 + ε)(1 + ε -1 ) θ 1+N 2 /ℓ 0 T 2 x 2 .
But on B, D 2 T (ss ⊥ ) ≥ r 2 ss ⊥ 2 since ss ⊥ belongs to S.H e n c e ,i fw e choose θ = r 2 (1 + ε) -2 ,w eo b t a i n

εr 2 1+ε s -s ⊥ 2 B∩Ωx ≤ (1 + ε)D 2 T (s m -s)+(1+ε -1 )D 2 T (s -s ⊥ )+(1+ε)θ s ⊥ -s 2 +(1+ε)θ s -s m 2 +(1+ε)pen(m) +(1+ε) 4 θ + 2 3R 2 (η + HN )R 2 T x + (1 + ε)(1 + ε -1 ) θ 1+N 2 /ℓ 0 T 2 x 2 .
It remains to add εr 2 (1 + ε) -1 s ⊥s 2 B∩Ωx on both sides, to obtain (7.1). For (7.2), let us take the expectation on both parts. We can remark that and to define accordingly the stopping time τ to obtain (7.1).

E(D 2 T (s m -s)) = s m -s 2 D ≤ K 2 s m -

Proof of Proposition 5.

The control of B is twofold. On one hand, one needs to control the number of points in any interval of length A.T h ec o n t r o lo ft h en u m be ro fpo i n t si no n ei n t e r v a lc o m e sf r o m some tedious computations that have been done in [START_REF] Reynaud-Bouret | Some nonasymptotic tail estimate for Hawkes processes[END_REF]. Then the control for any interval comes from a reasoning that is close in essence tothecon trolof the suprema of identically distributed variables with exponential moment.

On the other hand, one needs to control the deviations of D 2 T (f )f r o m its mean for f in a finite vectorial subspace. We decompose the problem in controlling the deviations of the associated bilinear form for elements of the basis. Those deviations are controlled by using a concentration inequality for Hawkes processes that have been derived via coupling in [START_REF] Reynaud-Bouret | Some nonasymptotic tail estimate for Hawkes processes[END_REF].

The heart of the proof actually consists in the probabilisticresultsderiv ed in [START_REF] Reynaud-Bouret | Some nonasymptotic tail estimate for Hawkes processes[END_REF]. The final step is composed of lengthy and not very informative computations that are omitted here and which can be found in [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF]. which gives that

E f T 0 φ log Ψ s (t) Ψ f (t) Ψ f (t) dt ≤ E f T 0 (Ψ s (t) -Ψ f (t)) 2 Ψ s (t) dt ≤ T ρ f -s 2 D .
It is important to note that here (and only here) • D is computed with respect to f and not s.N o wi tr e m a i n st ou s eL e m m a2 and to upperbound the constants depending on f by constants depending on A, H, P, η, ρ to obtain the first part of the inequality.

Then it remains to upper bound K(P

[-A,0] f , P [-A,0] s
). This quantity is just ar e m a i n i n gt e r m :w eo n l yn e e dt op r o v et h a to nL η,ρ H,P ,t h i st e r mc a n n o t explode. A lengthy but necessary proof of it can be found in [START_REF] Reynaud-Bouret | Adaptive estimation for Hawkes'processes; application to genome analysis[END_REF]. In essence, it is close to Proposition 5 and it heavily depends on the results of [START_REF] Reynaud-Bouret | Some nonasymptotic tail estimate for Hawkes processes[END_REF]. Lemma 4 combined with Birgé's lemma [START_REF] Birgé | A new lower bound for multiple hypothesis testing[END_REF]g i v e st h ef o l l o w i n gr e s u l t , which is ready to use for the different lower bounds in the different situations. Lemma 5. Let S be a family of possible s such that Ψ s (•) is the intensity of a stationary Hawkes process, and such that s belongs to L η,ρ H,p .L e tδ>0 and let C⊂S be a finite family such that for al l f =(µ, g) ∈C, A g ∞ ≤ Plog P -1. Then there exists ζ 1 and ζ 2 two particular positive functions of η, ρ, A, P, H such that if for all f = f in C

ζ 1 log |C| -ζ 2 T ≥ f -f 2 ≥ δ then inf ŝ sup s∈S E s ( ŝ -s 2 ) ≥ δ(1 -α) 4 ,
where α is an absolute positive constant (see [START_REF] Birgé | A new lower bound for multiple hypothesis testing[END_REF]f o rap r e c i s ev a l u e ) .

Proof. First, it is very classical to obtain that Moreover, Then the same computations as before give the result for the Islands set. But note that the set C 1 is also included in S irr Γ,(2D+1) .C o n s e q u e n t l y ,t h e lower bound is also valid up to some multiplicative constant for S irr Γ,(2D+1) .

f I -f I 2 ≤ ε 2 D.
Proof of Proposition 3. For the Hölderian family, let ϕ be a positive continuous function on R,n u l lo u t s i d e( 0 ,A]a n ds u c ht h a tf o ra l lx, y ∈ R, |ϕ(x)ϕ(y)|≤|x -y| a .R e m a r kt h a taq u a n t i t yt h a to n l yd e p e n d so nϕ actually depends on A and a.

  [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF] where ℓ(I)= I dt.W es a yt h a tg in the above equation is constructed on the model m.C o n v e r s e l y ,i fg is a piecewise constant function, remark that we can define a resulting model m by the set of intervals where g is constant but nonzero and a resulting partition by the set of intervals where g is constant. The projection estimator, ŝm ,i st h el e a s ts q u a r ee s t i m a t o ro f s defined by ŝm := arg min f ∈Sm γ T (f ). (2.10) Of course the estimator ŝm heavily depends on the choice of the model m. That is the main reason for trying to select it in a data driven way. Model selection intuition usually relies on a bias-variance decomposition of the risk of ŝm .S ol e tu sd e fi n es m as the orthogonal projection for • of s on S m . Then ŝm is a "good" estimate of s m ,s i n c eγ T (f )i sa na p p r o x i m a t i o no f fs 2 Ds D .W ec a n n o tp r o v et h a ti ti sa nu n b i a s e de s t i m a t e ,b u tt h e intuition applies. So the bias can be more or less identified as ss m 2 . This is the approximation error of the model m with respect to s.Asw ewill see in Proposition 1 and the consecutive comments, one can actually prove that
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 1 Fig. 1. On each line, one can find a model by looking at the collection ofr e di n t e r v a l s between "[" or "]." For the Nested strategy,h e r ea r ea llt h emo d e lsfo rJ =3.F ortheRegular strategy,h e r ea r ea l lt h em o d e l sf o rN =4.F o rt h eIrregular and Islands strategies, these are just some examples of models in the family with N =8.

  (2.1)o nt h ee s t i m a t i o np r o c e d u r e .S of 1 =0.004 [200,400] is a piecewise constant nonnegative function on the regular partition Γ (|Γ| =15) with integral 0.8a n dw eh a v et e s t e dh = c * f 1 with c in {0.25, 0.5, 0.75, 1} (i.e., p =0.2, 0.4, 0.6a n d0 .8, respectively). We have also tested a possibly negative function f 2 =0.003 [200,800/3] -0.003 [2000/3,2200/3] that is piecewise

  I 1 ,...,I D represent the successive intervals of the model m.L e tu s introduce
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 2 Fig. 2. Risk of the 8 different methods for h =0.5 * f1 for different values of ν and T .
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 345 Fig. 3. Oracle Ratio of the 8 different methods for h =0.5 * f1 for different values of ν and T .
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 6 Fig.6. Frequency of the chosen dimension | m| +1 for the different methods when T =500,000, ν =0.001 and h =0.5 * f1.N o t et h a tt h et r u ed i m e n s i o ni s6f o rt h eR e g ular method (chosen in 100% of the simulations by method 1) and 4f o rt h eI r r e g u l a ra n d Islands methods (chosen in more than 95% of the simulations bym e t h o d s2a n d4 ) .
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 7 Fig. 7. Contrast (C) and penalized contrast (PC) as a function of the dimension for the three favorite methods on one simulation with T =500,000, ν =0.001 and h =0.5 * f1. The chosen estimators (PE) are in blue whereas the function h =0.5 * f1 is in red.

Fig. 8 .

 8 Fig.8. Histogram of the selected dimension over 100 simulations (SD). Contrast (C) and penalized contrast (PC) as a function of the dimension fort h et h r e ef a v o r i t em e t h o d s on one simulation with T =500,000, ν =0.001 and h = f2.T h et r u ed i m e n s i o ni s1 6f o r method 1 (Regular), 6 for method 2 (Irregular) and 3 for method4( I s l a n d s ) .T h ec h o s e n estimators (PE) are in blue whereas the function h = f2 is in red.
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 9 Fig.9. Histogram of the selected dimension over 100 simulations (SD). Contrast (C) and penalized contrast (PC) as a function of the dimension fort h et h r e ef a v o r i t em e t h o d s on one simulation with T =500,000, ν =0.001 and h = f3.T h ec h o s e ne s t i m a t o r s( P E ) are in blue whereas the function h = f3 is in red.
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 10 Fig. 10. Contrasts, penalized contrasts and chosen estimators for both E. coli datasets.
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 11 Fig. 11. Chosen estimators for both E. coli datasets for different values of A: A =5000 (left, right) and A =2000 (middle).
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 12 Fig.[START_REF] Gusto | FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model[END_REF]. FADO estimators for both E. coli datasets for different values of A: A =10,000 (left) and A =2000 (right) for genes or A =5000 (right) for tataat.
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 2 Control of B. The assumptions of Theorem 1 are in fact a direct consequence of the assumptions needed to control B,assho wninthefollo wing result. Proposition 5. Let s ∈L η,ρ H,P and R and r such that

6 ){

 6 A 1 =2ν T (ss m). For all m in M T ,w es e t W m =s u p f ∈S m ν T (f ) f . (8.5) Thus, A 1 ≤ 2 ss m W m.T h e r e f o r e ,f o ra l lθ>0, one has the following upper bound: A 1 ≤ θ s -Now we need to control W m which is doubly random: for fixed m, W m is random but the choice m is random too. So one needs to control each W m 's to control W m. To do so, we first need to find a simpler form for W m .N o t et h a t m is an orthonormal basis of S m for • .F o ra l lI ∈ m ,l e tu sd e n o t e N I (t)=Ψ (0, I ) (t).

  s 2 ,b yapplyingLemma2 and similar computations hold for s ⊥ .M o r e o v e r ,r e m a r kt h a t ss ⊥ ≤ s ms , since S m is a subset of S.T h i sc o n c l u d e st h ep r oo f . Remark 4. In case of self-inhibition [see (2.14)a n dR e m a r k3], it is sufficient to replace T by T∩T where T = {t/λ(t)=0}

8. 4 .

 4 Proof of the minimax results (Propositions 2, 3 and 4). We first need two important lemmas.

Lemma 4 .) 0 Ψ f (t) dt + T 0 Ψ

 400 Let f =(µ, g) and s =(ν, h) be two elements of L 2 such that µ, ν > 0, g, h ≥ 0, g<1 and h<1.L e tP [-A,T ] f ,r e s p e c t i v e l y ,P [-A,T ] s , be the distribution of a stationary Hawkes process with intensity Ψ f (•),r espectively, Ψ s (•),r e s t r i c t e dt o[-A, T ]. Then the Kullback-Leibler distance satisfiesK(P [-A,T ] f , P [-A,T ] s )=E f T 0 φ log Ψ s (t) Ψ f (t) Ψ f (t) dt + K(P [-A,0] f , P [-A,0] s ),where φ(u)=e uu -1 and E f represents the expectation with respect toP [-A,T ] f . Moreover, if f and s belong to L η,ρ H,P and if A h ∞ ≤ Plog P -1,t h e n ≤ T C 1 fs 2 + C 2 ,where C 1 and C 2 are positive constants depending only on A, H, P, η, ρ.Lemma 4 shows that the Kullback-Leibler distance between two different processes linearly increases with T .I ta l s oc l a r i fi e st h el i n kb e t w e e nt h e natural Kullback-Leibler distance and the L 2 -norm, • ,w eu s e d . Proof of Lemma 4. Let us denote by P [0,T ] f | [-A,0] the conditional distribution of the points of the process lying in [0,T]c o n d i t i o n a l l yt ot h e family of points lying in [-A, 0]. Then the classical decomposition of the Kullback-Leibler distance with respect to the marginals gives the following decomposition: combine Example 7.2(b) with Proposition 7.2.III of [9]t oo b t a i n that the conditional likelihood ratio isdP f (t)/Ψ s (t)] dN t -T s (t) dt .Using the martingale properties and the fact that the intensity is predictable, one gets the first equation of Lemma 4.N o wt ou p pe rbo u n dt h eK u l l b a c k -Leibler distance, we need first to remark that ∀x>-1, log(1 + x) ≥ x/(1 + x)

  ŝs 2 ). But E s ( ŝs 2 ) ≥ δP s (ŝ = s). s∈C P s (ŝ = s) .It remains to apply Birgé's lemma[START_REF] Birgé | A new lower bound for multiple hypothesis testing[END_REF], by upper bounding the mean Kullback-Leibler distance on C.U s i n gL e m m a4,i tr e m a i n so n l yt oc h o o s eζ 1 and ζ 2 according to C 1 and C 2 .T h i sc o n c l u d e st h ep r oo f . It is now sufficient to apply the previous lemma for good choiceso fC. Proof of Proposition 2. Let m be a model. We set D = |m|.LetP 0 be the maximal collection of subsets of m,s u c ht h a tf o ra l lI = I in P 0 , |I∆I |≥θ|m|,t h e nb y[ 10], one has that log |P 0 |≥σ|m|,f o rθ and σ some absolute constants.LetC 0 = f I = ρ, I∈I ε ℓ(I) I , I∈P 0 ,where ε is a positive real number that will be chosen later. To ensure thatC 0 ⊂L η,ρ H,P ,w en e e dt h a tε ≤ min(H, P/A) √ ℓ 0 .M o r e o v e r ,t oa p p l yL e m m a 5,w en e e dt h a tε ≤ (Plog P -1) √ ℓ 0 /A. Now, for all f I ,f I in C 0 , f If I 2 = |I∆I |ε 2 ≥ θDε 2 .

Finally, taking ε 2 =min (ζ 1 D

 1 ζ 2 )σ TD ,ℓ 0 min(H, P/A, (Plog P -1)/A) 2 , and applying Lemma 5 gives the result. Proof of Proposition 4. Let Γ be a partition of (0,A]a n dl e tu s concentrate first on the Islands set. Let P 1 be the maximal collection of subsets of Γ with cardinal D,s u c ht h a tf o ra l lI = I in P 1 , |I∆I |≥θD, then by the Appendix of [19], one has that log |P 1 |≥σD log N D ,f o rθ and σ some absolute constants. Let C 1 = f I = ρ, I∈I ε ℓ(I) I , I∈P 1 .

  r ,w ek n o wt h a tt h ep r o j e c t i o ne s t i m a t o r sŝ m behave nicely (see Proposition

Table 1

 1 

  Table of the different methods Note that (see Section 2.4)t h es i g no fh should not affect the method (penalized least-square criterion) whereas the log-likelihood may have some problems each time Ψ f (•)r e m a i n sn e g a t i v eo nal a r g ei n t e r v a l . The parameter of importance here is the integral of the absolute value, which is here |f 2 | =0.8a n dw eh a v et e s t e dh = f 2 .F i n a l l y ,t h em e t h o d itself should not be affected by a smooth function h:w eha v eusedf 3 anonnegative continuous function (in fact the mixture of two Gaussian densities) with integral equal to 0.8a n dw eh a v et e s t e do n c ea g a i nh = f 3 .Remark that the mean number of observed points belongs to [125,[START_REF] Gusto | FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model[END_REF],500] which corresponds to the number of occurrences we could observe in biological data. 4.3. Implementation. The minimization of γ T is actually quite easy since we use a least-square contrast. From a matrix point of view, one can associate to some f in S m [see (2.9)] a vector of D +1=|m| +1 coordinates

	constant on Γ.		
	Methods	Strategy	Selection
	1	Regular N =15	Minimal penalty smin
	2	Irregular |Γ| =15	Angle method sangle
	3	Irregular |Γ| =15	Minimal penalty smin
	4	Islands |Γ| =15	Angle method sangle
	5	Islands |Γ| =15	Minimal penalty smin
	6	Regular N =15	Hold-out sHO
	7	Irregular |Γ| =15	Hold-out sHO
	8	Islands |Γ| =15	Hold-out sHO
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Let m be a regular partition of (0,A]inD pieces. Let ϕ D (x)=LD -a ϕ(Dx). Let P 0 be defined as before and

where u I is the left extremity of I.T oe n s u r et h a tC 2 ⊂L η,ρ H,p and that g ∞ ≤ (Plog P -1)/A,w en e e dt h a tD ≥ c(A, a, H, P )L 1/a ,f o rs o m e positive continuous function c.

But for all s I ,s

Moreover,

But note that for D large enough

It remains to choose

to obtain the result.

Conclusion.

We prop osed a metho d based on mo del selection principle for Hawkes processes that is proved to be adaptive minimaxwithrespect to certain classes of functions. In practice, the multiplicative constant in the penalty is calibrated in a data-driven way that is proved to work well on simulations. In particular, we designed a new method-namelyt h eIslands strategy coupled with the angle penalty-that seems to be really adapted to our biological problem, namely characterizing the dependence between the occurrences of a biological signal. Moreover, it allows us to estimate the right range of interaction.

This work asks, however, for several future developments. First, it is necessary to treat interaction with another type of events (e.g., promoter/genes) with the Islands strategy.N e x t ,at e s tp r o c e d u r es h o u l db ea p p l i e dt ok n o w whether the function h is really nonzero. This would be equivalent to testing whether there exists an interaction or not.