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Wandering continua for rational maps ∗

Guizhen Cui †and Yan Gao

July 16, 2015

Abstract

We prove that a Lattès map admits an always full wandering continuum if and
only if it is flexible. The full wandering continuum is a line segment in a bi-infinite
or one-side-infinite geodesic under the flat metric.

1 Introduction

Let f be a rational map of the Riemann sphere Ĉ with deg f ≥ 2. Denote by Jf and Ff

the Julia set and the Fatou set of f respectively. One may refer to [12] for their definitions
and basic properties. By a continuum we mean a connected compact set consisting of
more than one point. A continuum K ⊂ Ĉ is called a wandering continuum for f if
K ⊂ Jf and fn(K) ∩ fm(K) = ∅ for any n > m ≥ 0.

The existence of wandering continua for polynomials has been studied by many au-
thors. It was proved that all wandering components of the Julia set of a polynomial
with disconnected Julia set are points [1, 8, 15]. For polynomials with connected Julia
sets, it was proved that a polynomial without irrational indifferent periodic cycles has no
wandering continuum if and only if the Julia set is locally connected [2, 5, 6, 9, 16].

The situation for non-polynomial rational maps is different. There are hyperbolic
rational maps which have non-degenerate wandering components of their Julia sets. The
first example was given by McMullen, where the wandering Julia components are Jordan
curves [11]. In fact, it was proved that for a geometrically finite rational map, a wandering
component of its Julia set is either a Jordan curve or a single point [14].

In this work we study wandering continua for rational maps with connected Julia sets.
A continuum K ⊂ Ĉ is called full if Ĉ\K is connected. A wandering continuum K for
a rational map f is always full if fn(K) is full for all n ≥ 0. Refer to [3] for the the
following theorem and the definition of Cantor multicurves.

Theorem A. Let f be a post-critically finite rational map and K ⊂ Jf be a wandering
continuum. Then either K is always full or there exists an integer N ≥ 0 such that
fn(K) is a Jordan curve for n ≥ N . The latter case happens if and only if f has a
Cantor multicurve.
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Problem: Under what condition does a post-critically finite rational map f admit an
always full wandering continuum?

In this paper, we solve this problem for Lattès maps (refer to §2 for its definition).
Here is the main theorem:

Theorem 1.1. A Lattès map f admits an always full wandering continuum if and only
if it is flexible. In this case the wandering continuum is a line segment in an infinite
geodesic under the flat metric.

2 Lattès maps

This section is a review about Lattès maps. Refer to [10, 12, 13] for details. Let f : Ĉ → Ĉ
be a rational map with deg f ≥ 2. Denote by degz f the local degree of f at a point z ∈ Ĉ,

Ωf = {z : degz f > 1}.

the critical set and

Pf =
∪
n>0

fn(Ωf )

the post-critical set of f . The rational map f is called post-critically finite if #Pf < ∞.

Let f be a post-critically finite rational map. Define νf (z) for each point z ∈ Ĉ to

be the least common multiple of the local degrees degy f
n for all n > 0 and y ∈ Ĉ with

fn(y) = z. By convention νf (z) = ∞ if the point z is contained in a super-attracting

cycle. The orbiford of f is defined by Of = (Ĉ, νf ). Note that νf (z) > 1 if and only if
z ∈ Pf . The signature of the orbifold Of is the list of the values of νf restricted to Pf .
The Euler Characteristic of Of is given by

χ(Of ) = 2−
∑
z∈Ĉ

(
1− 1

νf (z)

)
.

It turns out in [10] that χ(Of ) ≤ 0. The orbifold Of is hyperbolic if χ(Of ) < 0, and
parabolic if χ(Of ) = 0. It is easy to check that the signature of a parabolic orbifold Of

can only be (∞,∞), (2, 2,∞), (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6).
Suppose that the signature of Of is (∞,∞). Then f is Möbius conjugate to a power

map z 7→ zd with |d| ≥ 2. Suppose that the signature of Of is (2, 2,∞). Then f is Möbius
conjugate to ±Ψd, where Ψd is the Chebyshev polynomial of degree d defined by the
equation

Ψd(z +
1

z
) = zd +

1

zd
.

Note that the Julia set of the map ±Ψd is the interval [−2, 2]. Thus in both cases, there
exist no wandering continua for f .

A post-critically finite rational map f with parabolic orbifold is called a Lattès map
if νf (z) ̸= ∞ for any point z ∈ Ĉ. Let ν(Of ) = max{νf (z) : z ∈ Ĉ}. Refer to [13,
Theorem 3.1] for the following theorem.
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Theorem 2.1. Let f be a Lattès map. Then there exist a lattice Λ = {n+mω, n,m ∈ Z}
(Im ω > 0), a finite holomorphic cover Θ : C/Λ → Of , a finite cyclic group G of order
ν(Of ) generated by a conformal self-map ρ of C/Λ with fixed points, and an affine map
A(z) = az + b (mod Λ) : C/Λ → C/Λ, such that

Θ(z1) = Θ(z2) ⇔ z1 = ρn(z2) for n ∈ Z,

and the following diagram commutes:

C/Λ A−→ C/Λ
Θ
y yΘ

Of
f−→ Of .

A Lattès map f is called flexible if Of has the signature (2, 2, 2, 2) and the affine map
A(z) = az + b (mod Λ) : C/Λ → C/Λ defined in Theorem 2.1 has an integer derivative
A′ = a ∈ Z. A Lattès map admits a non-trivial quasiconformal deformation if and only if
it is flexible by the following discussion.

Let f be a Lattès map. If #Pf = 3 and f is topologically conjugate to another rational
map g, then f and g are Möbius conjugate.

Now we assume that #Pf = 4. Then the signature of Of is (2, 2, 2, 2) and ν(Of ) = 2.
Let ρ̃ : C → C be a lift of the generator ρ of G under the natural projection π : C → C/Λ.
Let z0 ∈ C be the unique fixed point of ρ̃. Then ρ̃(z) = 2z0 − z. Denote by Q ⊂ C/Λ the
set of fixed points of ρ. Then #Q = 4 and Θ(Q) = Pf . Therefore

π−1(Q) = {n/2 +mω/2 + z0, n,m ∈ Z}. (1)

Let A(z) = az + b (mod Λ) : C/Λ → C/Λ be the affine map defined in Theorem 2.1.
Write α(z) = az + b. Since f(Pf ) ⊂ Pf , we have α(π−1(Q)) ⊂ π−1(Q). Equivalently,
there exist integers (p, q, r, s) such that

a = p+ qω, and aω = r + sω. (2)

It follows that
qω2 + (p− s)ω − r = 0. (3)

If a is a real number, then q = r = 0 and a = p = s. Thus the real number a must be
an integer and equations (2) hold for any complex number ω. This shows that one can
make a quasiconformal deformation for the map f to get another rational map such that
they are not Möbius conjugate.

If a is not real, then q ̸= 0 and thus the complex number ω with Im ω > 0 is uniquely
determined by the integers (p, q, r, s) from equation (3). This shows that if the map f is
topologically conjugate to another rational map g, then f and g are Möbius conjugate.

Remark. A Lattès map is flexible if and only if it has a Cantor multicurve. Therefore
a Lattès map admits a wandering Jordan curve if and only if it is flexible by Theorem A.

3 Wandering continua for torus coverings

Let Λ = {n+mω : n,m ∈ Z} (Im ω > 0) be a lattice. Then C/Λ is a torus. A continuum
E ⊂ C/Λ is full if there exists a simply connected domain U ⊂ C/Λ such that E ⊂ U
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and U\E is connected. Let π : C → C/Λ be the natural projection. If E ⊂ C/Λ is a
full continuum, then so is each component of π−1(E). In this section, we will prove the
following theorem.

Theorem 3.1. Let A(z) = az + b (mod Λ) : C/Λ → C/Λ be a covering of the torus with
degA ≥ 2. Then the map A admits an always full wandering continuum E if and only if
its derivative a is an integer. In this case, the wandering continuum E is a line segment
in an infinite geodesic under the flat metric of C/Λ.

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.2. Let E ⊂ C/Λ be a full continuum. For any line L ⊂ C and any connected
component B of π−1(E), if I is a bounded component of L\B, then π is injective on I.

Proof. Let I be a bounded component of L\B. Then there are exactly two components
U, V of C\(L ∪ B) such that their boundaries contain the interval I. We claim that at
least one of them, denoted it by U , is bounded. Otherwise one may find a Jordan curve γ
in U∪V ∪I such that γ separates the two endpoints x1 and y1 of I. Since γ is disjoint from
B, and both x1 and y1 are contained in B, this contradicts the fact that B is connected.

Assume by contradiction that π is not injective on I, i.e. there exist two distinct
points x, y ∈ I such that π(x) = π(y). For each connected component G of B ∩ ∂U , the
set G∩L is non-empty. Denote by H(G) the closed convex hull of G∩L, i.e. H(G) is the
minimal closed interval in L with H(G) ⊃ G ∩ L. Then for any two components G1, G2

of B ∩ ∂U , H(G1) and H(G2) are either disjoint or one contains another. In particular,
there exists a component G0 of B ∩ ∂U such that H(G0) ⊃ H(G) for any component G
of B ∩ ∂U . Moreover, H(G0) ⊃ I.

b

b

b

b

b

b

x

y

I

b

b

b

b

x2

y2

G0

T n(x2)

T n(y2)

T n(G0)y1

x1
U

Figure 1. Lifting of a full continuum.

Set T (z) = z+(y−x). Let x2 and y2 be the two endpoints of H(G0). Then there exists
an integer n such that T n(x2) ∈ [x, y] and hence T n(y2) /∈ I. Let H be the component of
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C\L that contains U , then T n(G0) is a continuum in H ∪ L joining T n(x2) with T n(y2),
whereas G0 is a continuum in H ∪ L joining x2 with y2. Thus G0 must intersect T n(G0).

On the other hand, since π(x) = π(y), we have (x− y) ∈ Λ. Thus T n(z) = z mod Λ
and T n(B) is another component of π−1(E) and hence is disjoint from B. This contradicts
the facts that G0 ⊂ B and G0 intersects T n(G0).

Lemma 3.3. Let A(z) = az + b (mod Λ) : C/Λ → C/Λ be a covering with degA ≥ 2 and
E ⊂ C/Λ be an always full wandering continuum. Then E must be a line segment.

Proof. Let B be a component of π−1(E). Assume by contradiction that B is not a line
segment. We claim that there exists a line L ⊂ C such that L\B has a bounded component
I. Otherwise, each line segment joining two points in B must be contained in B. Thus B
is convex and hence has positive measure since it is not a line segment. This is impossible
since A is expanding and E is wandering.

As in the proof of Lemma 3.2, there exists a bounded component U of C\(L∪B) such
that I ⊂ ∂U . Since degA ≥ 2, we have a ̸= 1. Thus the map α(z) = az + b : C → C has
a unique fixed point z0 ∈ C. Denote by Γ0 = {n+mω+z0 : n,m ∈ Z} and Γn = α−n(Γ0).
Then there exists two distinct points xn, yn ∈ U ∩ Γn for some integer n ≥ 0 such that
for the line Ln that passes through the points xn, yn, the set Ln ∩ U has a component In
which contains both xn and yn, and the two endpoints of In are contained in B.

xn

yn

In

Ln

U

Figure 2. A wandering continuum is a line segment.

Now consider the full continuum αn(B) and the line αn(Ln). The set αn(Ln)\αn(B)
has a component αn(In), which contains x = αn(xn) and y = αn(yn). Since xn, yn ∈ Γn,
we have x, y ∈ Γ0 and hence π(x) = π(y). This contradicts Lemma 3.2.

Lemma 3.4. Let A(z) = az+b (mod Λ) : C/Λ → C/Λ be a torus covering with degA ≥ 2.
If a is not real, then any line segment in C/Λ is not wandering.
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Proof. Let E ⊂ C/Λ be a line segment. We want to show that there exists an integer
n > 0 such that An(E) intersects An+1(E).

Let R be the full parallelogram with vertices 0, 1, ω and 1+ω. Then R is a fundamental
domain of the group Λ. Thus for any n ≥ 0, the set π−1(An(E)) has a component Bn

such that the midpoint m(Bn) of the line segment Bn is contained in the closure of R.
Since the diameter of R is less than 1 + |ω|, for any n ≥ 0, the Euclidean distance

|m(Bn)−m(Bn+1)| ≤ 1 + |ω|. (4)

Denote by a = |a| exp(iθ). Then 0 < |θ| < π since a is not real. Let Ln be the line
containing Bn for n ≥ 0. Then Ln and Ln+1 must intersect at a point On and the angle
formed by these two lines is |θ|. If Bn is disjoint from Bn+1, then On /∈ Bn or On /∈ Bn+1.
In the former case, we have

|On −m(Bn| ≥
|Bn|
2

,

where |Bn| is the length of Bn. Therefore the Euclidean distance from m(Bn) to Ln+1

satisfies

d(m(Bn), Ln+1) ≥
|Bn|
2

sin |θ|.

It follows that

1 + |ω| ≥ |m(Bn)−m(Bn+1)| ≥ d(m(Bn), Ln+1) ≥
|Bn|
2

sin |θ|.

So

|Bn| ≤
2(1 + |ω|)
| sin θ|

. (5)

θ
On

m(B n )

m(B n+1 )

Figure 3. The upper bound of the length.

In the latter case, we have:

|Bn+1| ≤
2(1 + |ω|)
| sin θ|

. (6)

Noticing that degA = |a|2 ≥ 2, we have |Bn| = |a|n|B0| → ∞ as n → ∞. Thus both
cases are impossible.



7
Now suppose that A(z) = az + b (mod Λ) : C/Λ → C/Λ is a covering with degA ≥ 2

and a is an integer. Let L ⊂ C be a line. Then either π(L) is a Jordan curve on C/Λ
or π is injective on L. Write α(z) = az + b. Then for any n,m ≥ 0, αn(L) and αm(L)
either coincide or are parallel. Thus if π is injective on L, then π(L) is either eventually
periodic or a wandering line, i.e. An(π(L)) ∩ Am(π(L)) = ∅ for any n > m ≥ 0.

Lemma 3.5. Let L ⊂ C be a line and B ⊂ L be a line segment.
(a) If π(L) is a Jordan curve, then An(π(B)) is not full when n is large enough.
(b) If π(L) is a wandering line, then π(B) is a wandering continuum.
(c) If π(L) is an eventually periodic line, then there exists a line segment B0 ⊂ B such

that π(B0) is a wandering continuum.

Proof. (a) Since π(L) is a Jordan curve, there exist two distinct points x, y ∈ L such
that π(x) = π(y). Since degA = |a|2 ≥ 2, there exists an integer n0 > 0 such that the
Euclidean length |αn(B)| ≥ |x − y| when n ≥ n0. Thus An(π(B)) = π(αn(B)) = π(L),
which is a Jordan curve, since a is real.

(b) This is obviously.
(c) Assume that π(L) is periodic with period p ≥ 1 for simplicity. Since degA ≥ 2,

there exists a unique point x0 ∈ L such that Ap(π(x0)) = π(x0). Pick a point y0 in the
interior of B with y0 ̸= x0. Then for any n ≥ 1, there exists a unique point yn ∈ L such
that Anp(π(y0)) = π(yn). Moreover, yn → ∞ as n → ∞.

Suppose that the integer a is positive. Then all points yn are contained in the same
component of L\{x0}. Since y0 is contained in the interior of B, there exists a closed line
segment B0 ⊂ B such that B0 ⊂ (y0, y1). Then π(B0) is a wandering continuum.

Now suppose that the integer a is negative. Then the points y2k are contained in the
same component of L\{x0} for k ≥ 0. Since y0 is contained in the interior of B, there
exists a closed line segment B0 ⊂ B such that B0 ⊂ (y0, y2). Then π(B0) is a wandering
continuum for A.

Proof of Theorem 3.1. The result follows directly from Lemmas 3.2, 3.3, 3.4 and 3.5.

4 Proof of Theorem 1.1

Proof of Theorem 1.1. Let f be a Lattès map. By Theorem 2.1, there exist a lattice
Λ = {n + mω, n,m ∈ Z} with Im ω > 0, a finite holomorphic cover Θ : C/Λ → Of , a
finite cyclic group G of order ν(Of ) generated by a conformal self-map ρ of C/Λ with
fixed points, and an affine map A(z) = az + b (mod Λ) : C/Λ → C/Λ, such that

Θ(z1) = Θ(z2) ⇔ z1 = ρn(z2) for n ∈ Z,

and the following diagram commutes:

C/Λ A−→ C/Λ
Θ
y yΘ

Of
f−→ Of .

Suppose that K is an always full wandering continuum of the map f . Then for each
n ≥ 0, every component of Θ−1(fn(K)) is a full continuum in C/Λ since fn(K) is disjoint
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from Pf . Let E be a component of Θ−1(K). It is an always full wandering continuum for
the map A. Therefore the derivative a is an integer and K is a line segment in an infinite
geodesic under the flat metric on C/Λ by Theorem 3.1.

Let En be a component of Θ−1(fn(K)). Then ρ(En) is also a component of Θ−1(fn(K)),
where ρ is the generator of the group G. Let R be the full parallelogram with vertices
0, 1, ω and 1 + ω. Then R is a fundamental domain of the group Λ. Thus there are
components In and Jn of π−1(En) and π−1(ρ(En)) respectively, such that the midpoints
of In and Jn are contained in R.

Assume that #Pf = 3. Let ρ̃ be a lift of the map ρ under the projection π. Then ρ̃ is
a rotation around its fixed point with angle (2π)/ν, where ν = 3, 4 or 6. Thus the angle
formed by the two lines containing In and Jn respectively, is (2π)/ν. As in the proof of
Lemma 3.4, we have:

|In| ≤
2(1 + |ω|)
sin(π/3)

,

where |In| is the length of In. This leads to a contradiction since |In| = |a|n|I0| → ∞ as
n → ∞. Therefore #Pf = 4 and f is a flexible Lattès map.

Conversely, suppose that the map f is flexible. Denote by Q the set of fixed points of
ρ. Then A(Q) ⊂ Q since f(Pf ) ⊂ Pf .

Let L ⊂ C be a line. If L passes through at least two points z1, z2 ∈ π−1(Q), then it
passes through the point (z2 + (z2 − z1)). Note that z2 − z1 ≡ 0mod (Λ/2) by (1). So
we have 2(z2 − z1) ≡ 0mod Λ, i.e., π(z2 + (z2 − z1)) = π(z1). So π(L) is a Jordan curve
on C/Λ. If L passes through exactly one point z0 ∈ π−1(Q), then π is injective on L,
Θ(π(L)) is a ray from a point in Pf , and Θ : π(L) → Θ(π(L)) is a folding with exactly
one fold point at π(z0) ∈ Q. If L is disjoint from π−1(Q), then Θ ◦ π is injective on L.

Suppose that π(L) ⊂ C/Λ is a wandering line. Then An(π(L)) is disjoint from Q for
all n ≥ 0. Thus Θ is injective on each line An(π(L)). On the other hand, if Θ(An(π(L)))
intersects Θ(An+p(π(L))) for some integer p > 0, then they coincide since the map ρ in G
preserves the slopes of the lines. Thus An+p(π(L))) = ρ(An(π(L)). Therefore

An+2p(π(L)) = ρ(An+p(π(L)))

since A ◦ ρ = ρ ◦ A. But ρ2 is the identity. So An+2p(π(L)) = An(π(L)). This is a
contradiction. Therefore Θ(An(π(L))) is pairwise disjoint. Thus for any line segment
E ⊂ π(L), the set Θ(E) is an always full wandering continuum for f .

Now suppose that π(L) ⊂ C/Λ is an eventually periodic line with period p ≥ 1. Then
Θ(An(π(L))) are either bi-infinite or one-side-infinite geodesics depending on whether
An(π(L)) passes through a point in Q. Since ρ2 is the identity, either they are disjoint
and have the same period, or two of them coincide and the period is p/2. Let E ⊂ π(L) be
a wandering line segment. In the former case, Θ(E) is an always full wandering continuum
of f . In the latter case, there exists a line segment E0 ⊂ E such that Θ(E0) is an always
full wandering continuum for f .
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