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DIFFERENTIATING THE STOCHASTIC ENTROPY FOR COMPACT
NEGATIVELY CURVED SPACES UNDER CONFORMAL CHANGES

FRANCOIS LEDRAPPIER AND LIN SHU

ABSTRACT. We consider the universal cover of a closed connected Riemannian manifold
of negative sectional curvature. We show that the linear drift and the stochastic entropy
are differentiable under any C® one-parameter family of C® conformal changes of the
original metric.
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1. INTRODUCTION

Let (M, g) be an m-dimensional closed connected Riemannian manifold, and 7 : (M ,g) =
(M, g) its universal cover endowed with the lifted Riemannian metric. The fundamental

group G = 7 (M) acts on M as isometries such that M = M /G.

We consider the Laplacian A := DivV on smooth functions on (M ,g) and the corre-
sponding heat kernel function p(t, x,y),t € Ry, z,y € M, which is the fundamental solution
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2 FRANCOIS LEDRAPPIER AND LIN SHU

to the heat equation %—7; = Au. Denote by Vol the Riemannian volume on M. The follow-

ing quantities were introduced by Guivarc’h ([Gu]) and Kaimanovich ([K1]), respectively,
and are independent of x € M:

e the linear drift ¢ := lim;_, o % [ dg(z,y)p(t, z,y) dVol(y).
e the stochastic entropy h := lim;_, 4 o —% [ (Inp(t,z,y)) p(t,z,y) dVol(y).

Let {¢* = €29’ g : |A| < 1} be a one-parameter family of conformal changes of ¢ = g,
where ¢*’s are real valued functions on M such that (A, z) + ¢*(z) is C? and ¢° = 0.
Denote by £y, hy, respectively, the linear drift and the stochastic entropy for (M, g*). We
show

Theorem 1.1. Let (M, g) be a negatively curved closed connected Riemannian manifold.
With the above notation, the functions A — £y and A — hy are differentiable at 0.

For each A € (—1,1), let A* be the Laplacian of (M, g") with heat kernel p*(t, z,y),t €
Ri,x,y € M, and the associated Brownian motion wg\,t > 0. The relation between A*
and A is easy to be formulated using g* = 26 g: for F a C? function on M,

ANF = =2 (AF + (m — 2)(Vh, VF>g) = e 2 [,

where we still denote * its G-invariant extension to M. Let PMt,z,y),t Ry x,y € M,
be the heat kernel of the diffusion process @t)‘, t > 0, corresponding to the operator L* in
(M,q). We define

. § = limyy oo + fd (z, )P (t, z, y) dVol(y).
o hyi=limy_joo — 1 [(InP ¢, 2,9))P (¢, 7,y) dVol(y).

It is clear that the following hold true providing all the limits exist:
(d@)\/d)\)’)\:(] = hm )\(6)\ — g)\) + hm )\(6)\ — 60) = (I)Z + (11)67

(dh)\/d)\)’)\:(] = hn}) )\(h)\ — h)\) + hm )\(h)\ — ho) = (I)h + (II)h

Here, loosely speaking, (I), and (I), are the infinitesimal drift and entropy affects of si-
multaneous metric change and time change of the diffusion (when the generator of the
diffusion changes from L* to A*), while (II), and (II), are the infinitesimal responses to
the adding of drifts to w? (when the generator of the diffusion changes from A to L*).

To analyze (I), and (I),, we express the above linear drifts and stochastic entropies using
the geodesic spray, the Martin kernel and the exit probability of the Brownian motion at
infinity. It is known ([K1]) that

(L.1) eA:/ (X, VA kD) din, hA:/ IV 2|3 dim,
Mg xdM My xdM

xXOM
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where My is a fundamental domain of M ) OM is the geometric boundary of M , XMz, &)
is the unit tangent vector of the §*-geodesic starting from z pointing at &, ké\(a:) is the

Martin kernel function of wy and m* is the harmonic measure associated with A*. (Ex-

act definitions will appear in Section 2.) Similar formulas also exist for 7, » and EA (see
Propositions 2.9, 2.16 and (5.13))

(1.2) 7 = /(XO,VO k2o dii, Ty :/||v01nk§(x)||g i,

where m* is the harmonic measure related to the operator L*. The quantity (I), turns
out to be zero since the norm and the gradient changes cancel with the measure change,
while the Martin kernel function remains the same under time rescaling of the diffusion
process (see Section 5, (5.5) and the paragraph after (5.3)). But the metric variation is
more involved in (I), as we can see from the formulas in (1.1) and (1.2) for ¢, and x. In
Section 4, using the (g, g*)-Morse correspondence maps (see [Anol, Gro, Mor] and [FF]),
which are homeomorphisms between the unit tangent bundle spaces in g and ¢* metrics
sending g-geodesics to g*-geodesics, we are able to identify the differential

(13) (X)) (@6 = lm 1 (2.6 - X(.0))

0o A—0 A ’ )
where now Y/\(x,g) is the horizontal lift of X*(x,&) to T(x@SM (see below Section 2.4),
using the stable and unstable Jacobi tensors and a family of Jacobi fields arising naturally
from the infinitesimal Morse correspondence (Proposition 4.5 and Corollary 4.6). As a
consequence, we can express (I), using kg, m? and these terms (see the proof of Theorem
5.1).

If we continue to analyze (II), and (II), using (1.1) and (1.2), we have the problem of
showing the regularity in A of the gradient of the Martin kernels. We avoid this by using
an idea from Mathieu ([Ma]) to study (II), and (II), along the diffusion processes. For

every point € M and almost every (a.e.) g-Brownian motion path w? starting from z, it
is known ([K1]) that

. 1 0 : 1 0
(1.4) tligloo ng(a;,wt) = {, t_lggloo 7 InG(z,w;) = ho,
where G(-,-) on M x M denotes the Green function for §-Brownian motion. A further study
on the convergence of the limits of (1.4) in [L2] showed that there are positive numbers
00,01 so that the distributions of the variables

1 1
1.5 Zoo(x) = —— [da(z,0d) — thy] . Zpi(z) =
( ) ,t( ) O'()\/E[ g( t) ] ,t( ) O'1\/E
are asymptotically close to the normal distribution as ¢ goes to infinity. Moreover, these
limit theorems have some uniformity when we vary the original metric locally in the space
of negatively curved metrics. This allows us to identify (II), and (II), respectively with

[~ InG(z,w)) — the)
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the limits
1 1 1 1
(Ex%dg(x,w?» - Eo(%dg(%wg)O - (Ex% =

where we take A\ = £1/v/t and E,, is the expectation with respect to the transition proba-
bility of the L* process. (More details of the underlying idea will be exposed in Section 3.1
after we introduce the corresponding notations.) Note that all &; starting from z can be
simultaneously represented as random processes on the probability space (0, Q) of a stan-
dard m-dimensional Euclidean Brownian motion. By using the Girsanov-Cameron-Martin
formula on manifolds (cf. [El]), we are able to compare E) with Eg on the same probability
space of continuous path spaces. As a consequence, we show

(1), = tljrgloo Eo(Z¢sM;) and (II), = tljgloo Eo(Zp,:My),

InG(z,w))) — Eo( lnG(x,w?))) )

where each M; is a random process on (©,Q) recording the change of metrics along the
trajectories of Brownian motion to be specified in Section 5. We will further specify (II),
and (II), in Theorem 5.1 using properties of martingales and the Central Limit Theorems
for the linear drift and the stochastic entropy.

An immediate consequence of Theorem 1.1 is that Dy := hy /£y, which is proportional !
to the Hausdorft dimension of the distribution of the Brownian motion w? at the infinity
boundary of M ([L1]), is also differentiable in A. Let (M) be the manifold of negatively
curved C3 metrics on M. Another consequence of Theorem 1.1 is that

Theorem 1.2. Let (M, g) be a negatively curved compact connected Riemannian manifold.
If it is locally symmetric, then for any C® curve A\ € (—1,1) — ¢* € R(M) of conformal
changes of the metric ¢° = g with constant volume,

(dhy/dN)reo = 0,  (d€y/dN)|xo = 0.

In case M is a Riemannian surface, the stochastic entropy remains the same for g € (M)
with constant volume. This is because any g € R(M) is a conformal change of a metric
with constant curvature by the Uniformization Theorem, metrics with the same constant
curvature have the same stochastic entropy by (1.1) and the constant curvature depends
only on the volume by the Gauss-Bonnet formula. Indeed, our formula (Theorem 5.1,
(5.2)) yields dhy/dA = 0 in the case of surfaces if the volume is constant.

When M has dimension at least 3, it is interesting to know whether the converse direction
of Theorem 1.2 for the stochastic entropy holds. We have the following question.

Let (M, g) be a negatively curved compact connected Riemannian manifold with dimen-
sion greater than 3. Do we have that (M, g) is locally symmetric if and only if for any C®
curve A € (—1,1) = g* € R(M) of constant volume with ¢° = g, the mapping X + hy is
differentiable and has a critical point at 07

Ip, is % the Hausdorff dimension of the exit measure for the :-Busemann distance (cf. Section 3.1).
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We will present the proof of Theorem 1.1 and the above discussion in a more general
setting. Indeed, whereas the statements so far deal only with the Brownian motion on
M, proofs of the limit theorems such as (1.4) or (1.5) involve the laminated Brownian
motion associated with the stable foliation of the geodesic flow on the unit tangent bundle
@ : SM — M. As recalled in Section 2.1, the stable foliation W of the geodesic flow
is a Holder continuous lamination, the leaves of which are locally identified with M. A
differential operator £ on (the smooth functions on) SM with continuous coefficients and
L1 =0 is said to be subordinate to the stable foliation W, if for every smooth function F
on SM the value of L(F') at v € SM only depends on the restriction of F' to W*(v). We
are led to consider the family £* of subordinated operators to the stable foliation, given,
for F' smooth on SM, by

LYF = AF + (m —2)(V(¢* ow), VF),

where Laplacian, gradient and scalar product are taken along the leaves of the lamination
and for the metric lifted from the metric g on M. Diffusions associated to a general
subordinated operator of the form A + Y, where Y is a laminated vector field, have been
studied by Hamenstadt ([H2]). We recall her results and several tools in Section 2. In
particular, the difAfusionsA associated to £ have a drift 5 and an entropy hy that coincide
with respectively £ and h). Convergences (1.4) and (1.5) are now natural in this framework.
Then, our strategy is to construct all the laminated diffusions associated to the different
A and starting from the same point on the same probability space and to compute the
necessary limits as expectations of quantities on that probability space that are controlled
by probabilistic arguments. For each v € SM, the stable manifold W#(v) is identified with
M (or a Z quotient of M ).2 As recalled in Subsection 2.5, the diffusions are constructed on

M as projections of solutions of stochastic differential equations on the orthogonal frame
bundle O(M) with the property that only the drift part depends on A (and on v). The
quantities £5 and hy can be read now on the directing probability space, so that we can
compute (II), and (II); in Section 4. We cannot do this computation in such a direct
manner for a general perturbation A — ¢* € R(M) and this is the reason why we restrict
our analysis in this paper to the case of conformal change. But the idea of analyzing the
linear drift and the stochastic entropy using the stochastic differential equations can be
further polished to treat the general case ([LS2]).

We thus will obtain explicit formulas for (dfy/d\)|x=o and (dhy/d\)|x=¢ in Theorem 5.1,
which, in particular, will imply Theorem 1.1. Finally, Theorem 1.2 can be deduced either
using the formulas in Theorem 5.1 or merely using Theorem 1.1 and the existing results

concerning the regularity of volume entropy for compact negatively curved spaces under
conformal changes from [Ka, KKPW].

We will arrange the paper as follow. Section 2 is to introduce the linear drift and
stochastic entropy for a laminated diffusion of the unit tangent bundle with generator

2When v is on a periodic orbit, then W*(v) is a cylinder identified with the quotient of M by the action
of one element of GG represented by the closed geodesic.
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A +Y ([H2]) and to understand them by formulas using pathwise limits and integral
formulas at the boundary, respectively. There are two key auxiliary properties for the
computations of the differentials of P,ﬁ)‘ in A: one is the Central Limit Theorems for the
linear drift and the stochastic entropy; the other is the probabilistic pathwise relations
between the distributions of the diffusions of different generators. They will be addressed
in Subsections 2.5 and 2.6, respectively. In Section 3, we will compute separately the
differentials of the linear drift and the stochastic entropy associated to a one-parameter
of laminated diffusions with generators A +Y + Z*. Section 4 is to use the infinitesimal
Morse correspondence ([FF]) to derive the differential A — X for any general C® curve
A — ¢ contained in R(M). The last section is devoted to the proof of Theorem 1.1 and
Theorem 1.2 as was mentioned in the previous paragraph.

2. FOLIATED DIFFUSIONS

In this section, we recall results from the literature and we fix notations about the stable
foliation in negative sectional curvature, the properties of the diffusions subordinated to
the stable foliation and the construction of these diffusions as solutions of SDE.

2.1. Harmonic measures for the stable foliation. Recall that (]\7 ,g) is the universal
cover space of (M, g), a negatively curved m-dimensional closed connected Riemannian
manifold with fundamental group G. Two geodesics in M are said to be equivalent if
they remain a bounded distance apart and the space of equivalent classes of unit speed
geodesics is the geometric boundary OM. For each (x,€) € M x OM , there is a unique
unit speed geodesic 7, ¢ starting from x belonging to [{], the equivalent class of {. The
mapping & — 4,¢(0) is a homeomorphlsm 71 between OM and the unit sphere S, M in

the tangent space at x to M. So we will identify SM the unit tangent bundle of M with
M x OM.

Consider the geodesic flow ®; on SM. For each v = = (x,§) € SM its stable manifold
with respect to ®;, denoted WS( ), is the collection of initial vectors w of geodesics Yw € €]
and can be identified with M x {¢}. Extend the action of G continuously to dM. Then SM,
the unit tangent bundle of M, can be identified with the quotient of M x OM under the
diagonal action of G. Clearly, for ¢ € G, Y(W?#(v)) = W*(Dv(v)) so that the collection of
W#(v) defines a lamination W on SM, the so-called stable foliation of SM. The leaves of
the stable foliation W are discrete quotients of M , which are naturally endowed with the
Riemannian metric induced from g. For v € SM, let W*(v) be the leaf of W containing
v. Then W#(v) is a C? immersed submanifold of SM depending continuously on v in the
C?2-topology ([SFL]). (More properties of the stable foliation and of the geodesic flow will
appear in Section 2.4.)

Let £ be an operator on (the smooth functions on) SM with continuous coefficients
which is subordinate to the stable foliation WW. A Borel measure m on SM is called
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L-harmonic if it satisfies
/ L(f) dm = 0

for every smooth function f on SM. If the restriction of £ to each leaf is elliptic, it is true
by [Ga] that there always exist harmonic measures and the set of harmonic probability
measures is a non-empty weak® compact convex set of measures on SM. A harmonic
probability measure m is ergodic if it is extremal among harmonic probability measures.

In this paper, we are interested in the case £L = A + Y, where A is the laminated
Laplacian and Y is a section of the tangent bundle of W over SM of class CH® for some
k> 1and a € [0,1) in the sense that Y and its leafwise jets up to order k along the leaves
of W are Holder continuous with exponent « ([H2]). Let m be an £-harmonic measure.

We can characterize it by describing its lift on § M.

Extend £ to a G-equivariant operator on SM = M x OM which we shall denote with
the same symbol. It defines a Markovian family of probabilities on §+, the space of paths
of w: [0,400) — SM , equipped with the smallest o-algebra A for which the projections
R, : @+ w(t) are measurable. Indeed, for v = (z,¢) € SM , let £, denote the laminated
operator of £ on W#*(v). It can be regarded as an operator on M with corresponding heat
kernel functions py (t,y,2), t € Ry, y,z € M. Define

p(t, (z,€),d(y,n)) = pv(t,z,y)dVol(y)de(n),

where d¢(-) is the Dirac function at {. Then the diffusion process on W*(v) with infinites-
imal operator L, is given by a Markovian family {Py } where for every ¢ > 0 and

every Borel set A C M x OM we have

Py ({5 G(t) € A}) = /A p(t,w, d(y, ).

weMx{¢}’

The following concerning £-harmonic measures holds true.

Proposition 2.1. (|Ga, H2|) Let m be the G-invariant measure which extends an L-
harmonic measure m on M x OM. Then

i) the measure m satisfies, for all f € C’CQ(M X 8]\7),

[ (]t odom)) o = [ o ding.o,

ii) the measure P = [Py dm(v) on Q. is invariant under the shift map {ot}ier, on
Q. where oy(5(s)) = @(s+1t) for s >0 and & € Qy ;

iii) the measure m can be expressed locally at v = (x,§) € SM as din = k(y,n)(dy x
dv(n)), where v is a finite measure on OM and, for v-almost every n, k(y,n) is a
positive function on M which satisfies A(k(y,m)) — Div(k(y,n)Y (y,n)) = 0.
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The group G acts naturally and discretely on the space §~2+ of continuous paths in SM
with quotient the space {24 of continuous paths in SM, and this action commutes with the
shift o4, ¢t > 0. Therefore, the measure P is the extension of a finite, shift invariant measure
P on Q. Note that SM can be identified with My x 8M where M; is a fundamental

domain of M. Hence we can also identify €4 with the lift of its elements in Q+ starting
from My. Elements in 21 will be denoted by w. We will also clarify the notions whenever
there is an ambiguity. In all the paper, we will normalize the harmonic measure m to be
a probability measure, so that the measure P is also a probability measure. We denote by
Ep the corresponding expectation symbol.

Call £ weakly coercive, if L, v € SM , are weakly coercive in the sense that there are a
number € > 0 (independent of v) and, for each v, a positive (Ly+e¢)-superharmonic function
F on M (i.e. (Ly +¢)F > 0). For instance, if Y = 0, then £ = A is weakly coercive and
it has a unique L£-harmonic measure m, whose lift in SM satisfies dm = dz x dm,,, where
dx is proportional to the volume element and m, is the hitting probability at OM of the
Brownian motion starting at x. Consequently, in this case, the function k£ in Proposition
2.1 is the Martin kernel function. This relation is not clear for general weakly coercive L.

A nice property for the laminated diffusion associated with a weakly coercive operator
is that the semi-group oy,t > 0, of transformations of €2, has strong ergodic properties
with respect to the probability P, provided Y satisfies some mild condition. Recall that a
measure preserving semi flow o, ¢t > 0, of transformations of a probability space (2, P) is
called mixing if for any bounded measurable functions Fi, F5 on €2,

tliglooEP(Fl (F2 o O't)) = E]p(Fl)E]p(FQ)

Proposition 2.2. Let L= A+Y be subordinated to the stable foliation and such that Y*,
the dual of Y in the cotangent bundle to the stable foliation over SM, satisfies dY™* = 0
leafwisely. Assume that L is weakly coercive. Let m be the unique invariant measure, P the
associated probability measure on Q4. The shift semi-flow oy, t > 0, is mizing on (24, P).

(Note that Y is a section of the tangent bundle of W over SM of class C*® and that Y*
is a section of the cotangent bundle of W over SM of class ck "“ the duality being defined

by the metric inherited from M. The hypothesis is that this 1-form, seen as a 1-form on
M, is closed.)

Proof. The classical proof that a weakly coercive subordinated operator admits a unique
harmonic measure (see [Ga], [L2], [Y] for the case of A) shows in fact the mixing property
if F1 and F5 are functions on {24 that depends only on the starting point of the path and
are continuous as functions on SM. The mixing property is extended first to bounded
measurable functions on €, that depends only on the starting point of the path by (L?,
say) density, then to functions depending on a finite number of coordinates in the space
of paths by the Markov property and finally to all bounded measurable functions by L?
density. d
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2.2. Linear drift and stochastic entropy for laminated diffusion. Let m be an
L-harmonic measure and m be its G-invariant extension in SM. Choose a fundamental
domain My of M and identify SM with Myx0M. We normalize m so that m(Myx9M) = 1
(so that the measure P is a probability; we denote Ep the corresponding expectation). Let
dyy denote the leafwise metric on the stable foliation of SM. Then it can be identified
with dg on M on each leaf. We define

o1 ~
o) i= tim 5 [ (). (el (.6).dlw.m) dino, ),
t=+too t Mo xdM
. 1 ~
he(m) := lim ——/ _(Inp(t, (z,€), (y,n)) @, (2,£),d(y,n)) dm(z,E).
t=too [y o
Equivalently, by using P in Proposition 2.1, we see that
.1 ~ .1
e(m) = Tim - / oy BO(0) dP) =l GE(y(e(0),(0))

1 ~ 1
he(m) = lim ——/ Inp(t,w(0),w(t)) dP(w) = lim —-Ep(Inp(t,w(0),w(t))).
)= tim 5 [ mp((0)w(n) dP) =l Eenp(,e(0),4(0)
Call £,(m) the linear drift of L for m, and hg(m) the (stochastic) entropy of £ for m. In
case there is a unique £-harmonic measure m, we will write ¢z := ¢z(m) and hg := hz(m)
and call them the linear drift and the (stochastic) entropy for L, respectively.

Clearly, hy(m) is nonnegative by definition. We are interested in the case that h,(m)
is positive. When £ = A, this is true ([K1, Theorem 10]). In general, there exist weakly
coercive L’s which admit uncountably many harmonic measures with zero entropy ([H2]).

Let £ be such that Y*, the dual of Y in the cotangent bundle to the stable foliation over
SM, satisfies dY™* = 0 leafwisely. For v € SM, let X(v) be the tangent vector to W*(v)
that projects on v and let

pr(—(X,Y)) = sup {hﬂ - /(Y, Yydu: pe M}

be the pressure of the function —(X,Y) on SM with respect to the geodesic flow ®;, where
M is the set of ®;-invariant probability measures on SM and h,, is the entropy of y with
respect to ®;. Then,

Proposition 2.3 ([H2]). Let L= A+Y be subordinated to the stable foliation and such
that Y*, the dual of Y in the cotangent bundle to the stable foliation over SM, satisfies
dY* = 0 leafwisely. Then, hy(m) is positive if and only if pr(—(X,Y)) is positive, and
each one of the two positivity properties implies that L is weakly coercive, m is the unique
L-harmonic measure and £, (m) is positive.

In particular, when we consider A + Z*, where Z* := (m — 2)V(¢* o @) and ¢*’s are
real valued functions on M such that (A z) — o) is C% and ¢ = 0, the pressure of
—(Z*,X) is positive for X close enough to 0.



10 FRANCOIS LEDRAPPIER AND LIN SHU

2.3. Linear drift and stochastic entropy for laminated diffusions: pathwise lim-
its. By ergodicity of the shift semi-flow, it is possible to evaluate the linear drift and
stochastic entropy along typical paths. Let £ = A + Y be such that Y*, the dual of Y
in the cotangent bundle to the stable foliation over SM, satisfies dY* = 0 leafwisely and
pr(—(X,Y)) > 0. Let m be the unique L£-harmonic measure. By Proposition 2.2 the
measure P associated to m is ergodic for the shift flow on Q. The following well known
fact follows then from Kingman’s Subadditive Ergodic Theorem ([Ki]). For P-almost all
paths w € Q4 we still denote by w its lift in §+ with w(0) € My and we have

(2.1) lim dW( (0),w(t)) =Lr.

t—+oo t

Similarly, we can characterize he using the Green function along the trajectories. For each
v =(z,8) € M x E?M we can regard L, as an operator on M. Since it is weakly coercive,
there exists the corresponding Green function Gy (+,-) on M x M , defined for z # y by

Gule.) = [ pultay)
Define the Green function G(-,-) on SM x SM as being
G((y,1), (2,Q)) = Gy (9, 2)84(C)s for (y,m). (,C) € SM,

where d,(+) is the Dirac function at 7. We have the following proposition concerning h.

Proposition 2.4. Let L= A +Y be such that Y™, the dual of Y in the cotangent bundle
to the stable foliation over SM, satisfies dY™* = 0 leafwisely and pr(—(X,Y)) > 0. Then
for P-a.e. paths w € Q4 , we have

(2.2) he = tligloo—%lnp(t w(0),w(t))
(23 = im0 G(0), (1),

Contrarily to the distance, the function — In p is not elementarily subadditive along the
trajectories and the argument used to establish (2.1) has to be modified. We will use the
trick of [L3] to show that there exists a convex function hz(s), s > 0, such that for P-a.e.
paths w € Q4 , for any s > 0,

1
(2.4) he(s) = tligloo 7 Inp(st,w(0),w(t)).
Setting s = 1 in (2.4) gives that lim, o —7 Inp(¢,w(0),w(t)) exists and is he(1). More-
over, hp(1) < he by Fatou’s Lemma. Then, (2.3) and (2.2) will follow once we show that
for P-almost all paths w € Q,

(2.5) lim ——lnG( (0),w(t)) = inf{hs(s)} > he.

t—4o0 ¢ s>0
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To show (2.4) and (2.5), we need some detailed descriptions of py (¢, z,y). First, we have
a variant of Moser’s parabolic Harnack inequality ([Mos]) (see [St, T] and also [Sa]).

Lemma 2.5. There exist A,¢ > 0 such that for any v € SM, t > 1, % <t <1,
z, 2 y,y € M with d(z,2') <<, d(y,y') <<,

(26) pV(t7x7y) 2 Apv(t - t/7$l7y,)'

Next, we have the exponential decay property of py(t,z,y) in time ¢.
Lemma 2.6. ([H2, p.76])There exist B,e > 0 independent of v such that
(2.7) py(t,z,y) < B-e™, forallyc M and t > 1.

A Gaussian like upper bound for py (¢, x,y) is also valid.

Lemma 2.7. ([Sa, Theorem 6.1])There ezist constants C1,Ca, K1 such that for any v €
SM,t>0 and x,y € M, we have

1 d*(z,y)
L) S o el v O {Cl“ b V) - W} |

Let b > 0 be an upper bound of ||Y'||. We have the following lower bound for py (¢, z,y).

Lemma 2.8. ([W, Theorem 3.1]) Let § = VK(m — 1) + b, where K > 0 is such that
Ricci > —K(m —1). Then for any v€ SM, t,oc >0 and x,y € M, we have

g 2 2 mo
28)  pu(tary) > (4rt)~F exp [—(i + By - A (f—a n %) w—t] |

Proof of Proposition 2.4. We first show (2.4). Given s > 0, for w € Q, define
Fs,w,1) i= — In(p(st — 1,w(0), () - A),

where A = A2 inf,_37 Vol(B(z,5)) and A,< are as in Lemma 2.5. Then for ¢, > 1/s,
w € Q+,
F(s,w,t +t') < F(s,w,t) + F(s,0¢(w),t).

This follows by the semi-group property of p and (2.6) since
1 1
p(s(t+t)—1Lw(0),wt+t)) = /p(st - §,w(0), 2)p(st’ — 3 zyw(t+t)) dz

1 1
> [ plst- 5w, 2p(st — gonwl+ 1) da
B(w(t),s) 2 2

> Ap(st — 1,w(0),w(t))p(st’ — 1,w(t),w(t +t)).



12 FRANCOIS LEDRAPPIER AND LIN SHU

For 0 < t; < ta < 400, by (2.8), there exists a constant C' > 0, depending on ¢, t2 and the
curvature bounds, such that for any v € SM, x,y € M, any t,t; <t < ts,

Cexp [—(L +

g
d? < py(t,z,y).
i @) <o)

As a consequence, we have

E < sup F(s,w,t)) < (4_13 + 30%)1[5 ( sup d2(w(0),w(t))> — In(CA),

L+ §<t<2+1 14§ <t<2+

where the second expectation term is bounded by a multiple of its value in a hyperbolic
space with curvature the lower bound curvature of M and is finite (cf. [DGM]). So by
the Subadditive Ergodic Theorem applied to the subadditive cocycle F'(s,w,t), there exists
hr(s) such that for P-a.e. w € 24, and for m-a.e. v,

(2.9)

. 1 ) 1
hﬁ(s) = tligloo_glnp(St_17w(0)7w(t)) - tlg—noo_; /MPV(t’x,y) lan(St_17x7y) dVOl(y)

Using the semi-group property of p and (2.6) again, we obtain that for 0 < a < 1, s1, s9 > 0,
p((asi + (1 —a)s2)t — 1,w(0), w(t))
> Ap(asit — 1,w(0), w(at))p((1 — a)sat — 1,w(at), w(t)).

It follows that h,(-) is a convex function on R, and hence is continuous. This allows us
to pick up a full measure set of w such that (2.4) holds true for all positive s. Let D be
a countable dense subset of Ry. There is a measurable set £ C Q4 with P(E) = 1 such
that for w € E, (2.9) holds true for any s € D. Let w € Q4 be such an orbit. Given any
s1 < 82, let t > 0 be large, then we have by (2.6) that

p(s1t,w(0),w(t)) < A2 p (501 — 1w (0), w(t)).

So for ' < s < §'(s',s" € D), and w € E,

he(s”) 4+ (s”" —s)lnA < liminf —% In p(st,w(0),w(t))

t——+o0

1
< limsup 3 In p(st,w(0),w(t))

t——+00

< he(s)—(s—s)InA.

Letting ', s” go to s on both sides, it gives (2.4) by continuity of the function hz. Moreover,
given w € F, the convergence is uniform for s in any closed interval [s1,s2],0 < s1 < 52 <
+00.

To show the first equality in (2.5), we use the observation that for any ¢ € R,

+oo
G(w(0),w(t)) = t/o p(st,w(0),w(t)) ds.
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Let so € (0,00) such that hz(sg) = infssohe(s). For any € > 0, there exists 6,0 < 0 < ¢,

such that for |s — so| < 6, hz(s) < he(so) + €. Write
So+5

G(w(0),w(t)) > t/ ) p(st,w(0),w(t)) ds
so+7
and note that for sg + % < §< 80+, w e Qq, we have as above by (2.6) that
p(st,w(0),w(t)) > AL 1p (5ot — 1, w(0), w(t)).

Moreover, for ¢ large enough and w € E, p(sot — 1,w(0),w(t)) > e Hhe(s0)+2)  Therefore:

5 1/t
(G(w(0), w(t)) /!t > ¢/t 4/t ( / AStds> o~ (he(s0)+e)
1/t

It follows that for w € F,
1
limsup—; In G(w(0),w(t)) < iI;f(;{hg(S)}.

t—+o00

For the reverse inequality, we cut the integral f0+°° p(st,w(0),w(t)) ds into three parts.
Fix €1 € (0, h). We first claim that for s; > 0 small enough, for P-a.e. paths w € Q0 and
t large enough,

S1 1 .
(2.10) / p(st,w(0),w(t)) ds < ;e—(mf»o{hc(S)}—a)t‘
0

Indeed, by Lemma 2.7, there exists a constant C’ such that

51 o [51 1 4% (w(0),w(t))
st,w(0),w(t)) ds < C’/eCt/ e~ st ds
| ptst e ds < o

C'eC't oo _ a2 w(©@.w(®)
B W22, roll v du
1

t /(s1t)
C'eC't _ d2w(0)w®)

t Q (d2(w(0)7w(t))) e C’sqt

where @ is some polynomial of degree [m/2]+ 3. For P-a.e. paths w € Q, for large enough
t,

(2.11) <

L 1 3,
= < — < —=.
0< 5 < td(w(O),w(t)) <

It follows that for those paths, given 1 € (0, h.), for any s; € (0

2

¢ 1
o S
) ACT c'+h£—§el)’ the

quantity in (2.11) is bounded from above by
Log (d?(w(0),w(t))) - e~ (nfsolhels)}=zen),
t )

Consequently, (2.10) is satisfied for those paths, for ¢ large enough.
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Then observe that for so,¢ > 1, we have by (2.7) that

[ bt ey as < [T et as = Lpeenn

S92 52 €

So for any €1 € (0,hz), if sy and t are large enough, then

400 .
[ plst.(0).(0) ds < e tntotie) e

52

Moreover, using the uniform convergence in (2.4) on the interval [si,ss], we get, for
w € E and t large enough,

S92 .
| Blstl0) o) ds < (sp = sp)e (o thell-ten)

s1
< e (infsso{he(s)}—e1)t
Putting everything together, we obtain

lim inf —% In G(w(0),w(t)) > ;gg{hg(s)}.

t——+o0

Finally, we have infs~o{hs(s)} > hr since for any typical v € SM,

L 1 pv(st, z,y)
he(s) —he = t£+moo_2/p"(t’x’y) lnm dVol(y)
. 1 pV(Sta‘Tay)
> lim - [ potay) (1-2UERTYY v
> t_igoot/p( fcy)< ool 7) ol(y)
> 0.

O

2.4. Linear drift and stochastic entropy for laminated diffusions: integral for-
mulas. The interrelation between the underlying geometry of the manifold and the linear
drift and the stochastic entropy is not well exposed in the pathwise limit expressions (2.1)
and (2.3). The purpose of this subsection is to establish the generalization of formulas (1.2)
for the linear drift and the stochastic entropy, respectively, and set up the corresponding
notations.

We begin with £,. We will express it using the Busemann function at the geometric
boundary and the L£-harmonic measure. Recall the geometric boundary OM of M is the
collection of equivalent classes of geodesics, where two geodesics 71,79 of M are said to
be equivalent (or asymptotic) if sup;sqd(y1,72) < +00. Let £L = A +Y be such that Y*,
the dual of Y in the cotangent bundle to the stable foliation over SM, satisfies dY* =
0 leafwisely and pr(—(X,Y)) > 0. For P-a.e. paths w € Q, w(t) converges to the
geometric boundary as t goes to infinity ([H2]), where we still denote by w its projection
to M. Let Yw(0)w(oo) b the geodesic ray starting from w(0) asymptotic to w(oo) :=
limy, 1 oo w(t). Then, loosely speaking, w stays close t0 7,(0)w(cc) (See Lemma 3.5). The
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Busemann function to be introduced will be very helpful to record the movement of the
‘shadow’ of w(t) on v, (0),w(c0)-

Let 2 € M and define for y € M the Busemann function bey(2) on M by letting
by y(2) :=d(y,z) —d(y,x), for z € M.

The assignment of y — b, , is continuous, one-to-one and takes value in a relatively com-
pact set of functions for the topology of uniform convergence on compact subsets of M.
The Busemann compactification of M is the closure of M for that topology. In the negative
curvature case, the Busemann compactification coincides with the geometric compactifi-
cation (see [Ba]). So for each v = (2,£) € M x OM, the Busemann function at v, given
by
by(2) := lim b, (2), for z € M,
y—=¢

is well-defined. For points on the geodesic v, ¢, its Busemann function value is negative its
flow distance with z. In other words, for s, > 0,

(2.12) by (Vag(t)) = by(1ze(s)) = s — 1.
The equation (2.12) continues to hold if we replace 7, ¢ with geodesic 7, ¢ starting from

z € M which is asymptotic to & ([EOQ]). Note that the absolute value of the difference of
the Busemann function at two points are always less than their distance. It follows that,
if we consider the Busemann function b, as a function defined on W#(x,§),

(2.13) Vby(2) = =X (2,€),

where X(z,€) is the tangent vector to W#(v) which projects to (z,£) = 4,¢(0). This
relationship explains why the Busemann function is involved in the analysis of geometric
and dynamical quantities: the variation of X is related to variation of asymptotic geodesics,
the theory of Jacobi fields; while the vector field X on SM defines the geodesic flow.

We are going to use both interpretations of X to see how the linear drift is related the
geometry. Since we only discuss C® metrics in this paper, we will state the results in this
setting. But most results have corresponding versions for C* metrics.

We begin with the theory of Jacobi fields and Jacobi tensors. Most notations will
also be used in Section 4. Recall the Jacobi fields along a geodesic v are vector fields
t = J(t) € Ty M which describe infinitesimal variation of geodesics around v. It is
well-known that J(t) satisfies the Jacobi equation

(2.14) Vi Vi I (6) + RO, 3(1)3(H) =0

and is uniquely determined by the values of J(0) and J'(0). (Here for vector fields Y, Z

along M, we denote Vy Z and R(Y, Z) the covariant derivative and the curvature tensor
associated to the Levi-Civita connection of g.) Let N(v) be the normal bundle of ~:

N(7) = UrerNi(7), where Ni(v) ={Y € () M : {Y,4(t)) = 0}.
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It follows from (2.14) that if J(0) and J'(0) both belong to Ny(v), then J(¢) and J'(t) both
belong to N;(7), for all t € R. Also, it is easy to deduce from (2.14) that the Wronskian of

two Jacobi fields J and J along ~:
W (J,J) = (J', Jy — (J,J)
is constant.

A (1,1)-tensor along ~ is a family V = {V(¢), t € R}, where V(¢) is an endomorphism
of Ni(v) such that for any family Y; of parallel vectors along ~, the covariant derivative
Vi) (V(t)Y?) exists. The curvature tensor R induces a symmetric (1, 1)-tensor along « by
R(t)Y = R(Y,%(t))¥(t). A (1,1)-tensor V() along = is called a Jacobi tensor if it satisfies

V;{(t)vﬁ-{(t)V(t) + R(t)V (t) = 0.
If V/(t) is a Jacobi tensor along ~, then V(¢)Y; is a Jacobi field for any parallel field Y;.

For each s > 0, v € SM , let Sy s be the Jacobi tensor along the geodesic v, with the
boundary conditions Sy s(0) = Id and Sy s(s) = 0. Since (M, g) has no conjugate points,
the limit limg_, 4 o Sy s =: Sy exists ([Gre]). The tensor Sy is called the stable tensor along
the geodesic 7. Similarly, by reversing the time s, we obtain the unstable tensor U, along
the geodesic .

To relate the stable and unstable tensors to the dynamics of the geodesic flow, we first
recall the metric structure of the tangent space 1T M of TM. For x € M and v € T, M an
element w € T, T M is vertical if its projection on 7, wM vanishes. The vertical subspace V,
is identified with TxM . The connection defines a horizontal complement H,, also identified
with TIJ\AJ . This gives a horizontal /vertical Whitney sum decomposition

TTM =TM & TM.
Define the inner product on TTM by

(Y1, Z1), (Ya, Z2))5 == (Y1, Ya)5 + (Z1, Z2)g.

It induces a Riemannian metric on 7' M ; the so-called Sasaki metric. The unit tangent
bundle SM of the universal cover (M, g) is a subspace of T'M with tangent space

TwnSM ={(Y,2): Y,Z € T,M,Z L v}, forx € M,v e S, M.

Assume v = (z,v) € SM. Horizontal vectors in Ty SM correspond to pairs (J(0),0). In
particular, the geodesic spray X, at v is the horizontal vector associated with (v,0). A
vertical vector in Ty SM is a vector tangent to Sy M. Tt corresponds to a pair (0,.J'(0)),
with J’(0) orthogonal to v. The orthogonal space to Xy in T,SM corresponds to pairs
(V1,V2),VZ' € No(’)/v) for i = 1,2.
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The dynamical feature of Jacobi fields can be seen using the geodesic flow on the unit
tangent bundle. Let ®; be the time ¢ map of the geodesic flow on SM, in coordinates,

B(2,6) = (vag(£),€), V(x.8) € SM.
Let D®,; be the tangent map of ®;. Then, if (J(0),J'(0)) is the horizontal/vertical de-
composition of w € T, SM, (J(t),J'(t)) is the horizontal/vertical decomposition of

Dd,w e T@t(Lg)SM

Due to the negative curvature nature of the metric, the geodesic flow on S M is Anosov:
the tangent bundle TSM decomposes into the Witney sum of three D®;-invariant sub-
bundles E¢ @ E*® @& E", where E° is the 1-dimensional subbundle tangent to the flow and
E®® and E" are the strongly contracting and expanding subbundles, respectively, so that
there are constants C,c > 0 such that

i) |D®w| < Ce ||w| for w € E*, t > 0.
i) |[D®;'w| < Ce“||w| for w € E™, ¢ > 0.

For any geodesic v = (z,§) € SM, let Sy, Uy be the stable and unstable tensors along vy,
respectively. The stable subbundle E* at v is the graph of the mapping S, (0), considered
as a map from Ny(7v) to Vi sending Y to S, (0)Y, where No(vv) := {w,w € Hy,w L X,}.
Similarly, the unstable subbundle E™ at v is the graph of the mapping U, (0) considered as
amap from Ny(7y) to V4. Due to the Anosov property of the geodesic flow, the distributions
of E* E" (and hence E¢ @ E* E°¢ @ E"™) are Holder continuous (this is first proved by
Anosov ([Ano2]), see [Ba, Proposition 4.4] for a similar but simpler argument by Brin).
As a consequence, the (1, 1)-tensors Sy, S, Uy, UL, are also Holder continuous with respect

to v.

We are in a situation to see the relation between the Busemann function and the ge-
odesic flow. Let xyp € M be a reference point and for any { € OM consider by ¢(-) =
lim, ¢ by 2(+). For any v = (z,£) € M x OM, the set

{(¥:€) + bage(y) = bage(2)}

turns out to coincide with the strong stable manifold at v, denoted W*$(v), which is

() = { () 5 Timsup g dist (831 B(v)) < 0.
t—+o00 t

(The strong unstable manifold at v, denoted Ws%(v), is defined by reversing the time.) In

other words, the collection of the foot points y such that (y,&) € W5 (x, &) form the stable

horosphere, which is a level set of Busemann function. Note that W**(v) locally is a C?

graph from E to E{ @ Ey" and is tangent to E3’. So, by the Jacobian characterization of

E$ of the previous paragraph and (2.13), it is true ([Esc, HIH]) that

Voo (Vbrg) (@) = =S, ¢ (0)(w), ¥w € T, M.
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Thus, o
Agby ¢ = —DivX = —Trace of Séx’g)(O),

which is the mean curvature of the horosphere W*¢(z, ) at x. Note that for each ¥ € G,
bmoﬂl’i(d}‘r) = bmo@(x) + bw*1x07§(‘r0)’
Hence Agby, ¢ satisfies Aypbyg pe = Dby, e and defines a function B on the unit tangent

bundle SM, which is called the Laplacian of the Busemann function. Due to the hyperbolic
nature of the geodesic flow, the function B is a Holder continuous function on SM.

Now, we can state the integral formula for the linear drift.

Proposition 2.9. Let L= A +Y be such that Y™, the dual of Y in the cotangent bundle
to the stable foliation over SM, satisfies dY™* = 0 leafwisely and pr(—(X,Y)) > 0. Then
we have

(2.15) lp = — / (DivX + (Y, X)) dm.
Mg xdM

(Observe that the classical formula (1.1) for the linear drift is obtained from Proposition
2.9 by considering the metric ¢g* and Y = 0.)

Proof. For P-a.e. path w € Q4, we still denote w its projection to M and let v :=
w(0) and n = limy 4 ow(t) € OM. We see that when t goes to infinity, the process
by(w(t)) — d(xz,w(t)) converges P-a.e. to the a.e. finite number —2(¢|n),, where

(216) (€=l (gl)s and (o) = 3 () +dla2) - d(y.2)

So for P-a.e. w € €4, we have
. 1
tl}I-‘Poo va(w(t)) ={r.

Using the fact that the £-diffusion has leafwise infinitesimal generator A+Y and is ergodic
with invariant measure m on SM, we obtain

le = lim — [ —by(w(s)) ds
~ lim ;/Ot(AJrY)bv(w(s)) ds (: /MOXBM(AJrY)bV dﬁl)

. / (DivX + (v, X)) din.
Mg xdM
O
The negative of the logarithm of the Green function has a lot of properties analogous

to a distance function. First of all, let us recall some classical results concerning Green
functions from [Anc].
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Lemma 2.10. (see [Anc, Remark 3.1]) Let L = A+ Y be such that Y™, the dual of Y
in the cotangent bundle to the stable foliation over SM, satisfies dY™* = 0 leafwisely and

pr(—(X,Y)) >0 and let G(-,-) = {Gv (-, Vtvegar be the Green function of L. There exists

a constant ¢y € (0,1) such that for any v € SM and any z,y,z € M with mutual distances
greater than 1,

(2.17) Gy(z,2) > oGy (z,y)Gv (Y, 2).

For v,w € SmM, S ]\7, the angle Z,(v,w) is the unique number 0 < 6 < 7 such that
(v,w) = cosh. Given v € S;M and 0 < 6 < m, the set

T.(v,0) :={y € MUOM : Zu(v,:,(0)) < 6}

is called the cone of vertex x, awis v, and angle 0, where v, , is the geodesic segment that
starts at = and ends at y. For any s > 0, the cone I" with vertex ~(s) (where - is the
geodesic starting at  with initial speed v), axis 4y (s) and angle 6 is called the s-shifted cone
of T',(v, ). The following is a special case of the Ancona’s inequality at infinity ([Anc]).

Lemma 2.11. (see [Anc, Theorem 1’]) Let £ and G be as in Lemma 2.10. Let T' :=
[yo(v, 5) be a cone in M with vertex xo, axis v and angle 5. Let 'y be the 1-shifted cone

of I and x4 be the vertex of I'1. There exists a constant c1 such that for any v € S]Tj, any
I, allx € M\I" and z € T'y,

(2.18) Gy(z,2) < 1Gy(z,21)Gy (20, 2).

We may assume c¢; = ¢y ! where ¢ is as in Lemma 2.10. As a consequence of Lemma
2.10 and Lemma 2.11, G is related to the distance d in the following way.

Lemma 2.12. Let L and G be as in Lemma 2.10. There exist positive numbers cg, ¢z, az, o3
such that for any v € SM and any z,z € M with d(x,z) > 1,

(2.19) coe2U®2) < G (z, 2) < cze @3N,

Proof. The upper bound of (2.19) was shown in [H2, Corollary 4.8] using Ancona’s in-
equality at infinity (cf. Lemma 2.11). For the lower bound, we first observe that Lemma
2.10 also holds true if z,y, z satisfies d(z,z) > 1 and d(z,y) = 1. Indeed, by the clas-
sical Harnack inequality ([LY]), there exists ¢4 € (0,1) such that for any v € SM and
T,Yy,2 € M with d(z,z) > 1 and d(z,y) <1,

(2.20) csGy(y, 2) < Gy(z,2) < ¢ Gy(y, 2).
Since d(z,y) = 1, by [Anc, Proposition 7], there is ¢5 € (0,1) (independent of z,y) with
(2.21) cs < Gy(z,y) < et

So, if g < ¢yc5, then (2.17) holds true for z,y, z € M with d(z,z) > 1and d(z,y) = 1. Now,
for x,z € M with d(x,z) > 1, choose a sequence of points x;,1 < i < n, on the geodesic
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segment v, . with zg = z, 2, = 2, d(z;,xi41) = 1,4 =0,--- ,n— 2, and d(zp_1, 2) € [1,2).
Applying (2.17) successively for z;, z;+1, 2, we obtain

Gy(z,2) > Gy(zn_1,2)(cocs)" 1 > cacs(cocs)" ™! > cacs(cocs) @),
where, to derive the second inequality, we use (2.20) and the fact that the lower bound

of (2.21) holds for any x,y € M with d(z,y) < 1. The lower bound estimation of (2.19)
follows for ¢y = cacs5 and ag = — In cyes. O

We may assume the constants c,c3 in Lemma 2.12 are such that ¢; is smaller than 1
and c3 = c2_1. For each v e SM, x,z € M, let

dg,(z,2) :== { —In(c2Gv(z,2)), ifd(z,2) > 1;

—Inco, otherwise.
Although dg, is always greater than the positive number min{as, —Inca} by (2.19), we
still call it a ‘Green metric’ for Ly (after [BHM] for the hyperbolic groups case) since it
satisfies an almost triangle inequality in the following sense.
Lemma 2.13. There exists a constant cg € (0,1) such that for all x,y,z € ]T/f,

(2.22) dg,(z,2) < dg,(x,y) + dg, (y,2) — Incg.

Proof. 1f d(x,z) < 1, then (2.22) holds for cg = ¢y. If x,y, z have mutual distances greater
than 1, then (2.22) holds for ¢ = ¢p by Lemma 2.10. If d(x, z) > 1 and d(y, z) < 1, using
the classical Harnack inequality (2.20), we have

Gv($7 Z) > C4Gv(x7 y)

and hence (2.22) holds with cg = ¢4 if, furthermore, d(z,y) > 1 or with cg = c4c5 otherwise.
The case that d(z,z) > 1, d(z,y) < 1 can be treated similarly. O

By Lemma 2.12, dg, is comparable to the metric d for any z,z € M with d(xz,z) > 1:
(2.23) azd(z, z) < dg,(z,2) < azd(z, z) — 2Incs.
Using Lemma 2.11, we can further obtain that dg, is almost additive along the geodesics.

Lemma 2.14. Let L and G _be as in Lemma 2.10. There exists a constant c7 such that
for any v € SM, any x,z € M and y in the geodesic segment vy, . connecting x and z,

(2.24) lda, (z,y) + da, (y, 2) — dag, (2, 2)] < —lner.

Proof. Let x,z € M and y belong to the geodesic segment v, .. If d(z,y),d(y,z) < 1,
then d(z,z) < 2 and, using (2.23), we obtain (2.24) with c¢; = c3e~2%2. If d(z,y) < 1 and
d(y,z) > 1 (or d(y,z) < 1 and d(z,y) > 1), using Harnack’s inequality (2.20), we have
(2.24) with ¢; = cocq. Finally, if x,y, z have mutual distances greater than 1, we have by
Lemma 2.10 and Lemma 2.11 (where we can use Harnack’s inequality to replace Gy (x, z1)
in (2.18) by ¢; 'Gy(z,20)) that

|1H Gv(x,y) +1n Gv(ya z) —In Gv(x7 Z)| < —ln(6164)
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and consequently,

lda, (z,y) + da, (v, 2) — da, (z, 2)] < —In(creocq).

More is true, as we can see from Lemma 2.11 and Lemma 2.13 as well.

Lemma 2.15. Let L and G be as in Lemma 2.10. There exists a constant cg such that
for any v € SM ifx,y,z € M are such that = and z are separated by some cone I' with
vertex y and angle 5, and I'y, the 1-shifted cone of T', i.e., v € M\F, z €1y, then

’de(.’L’,y) + de(y7Z) - de(.Z',Z)‘ < _lnc8'

The counterpart of the Busemann function for the analysis of the pathwise limits for
stochastic entropy is the Poisson kernel function. Let v = (z,€) € M x OM. A Poisson

kernel function ky(-,m) of Ly at n € OM is a positive Ly-harmonic function on M such
that

ky(z,m) = 1,ky(y,n) = O(Gy(2,y)), asy = #1n.
A point n € M is a Martin point of L if it satisfies the following properties:

i) there exists a Poisson kernel function ky(-,n) of Ly at 7,
ii) the Poisson kernel function is unique, and
iii) if yp, — n, then In Gy (-, yn) — In Gy (z,y,) — Inky (-, ) uniformly on compact sets.

Since (M, g) is negatively curved and Ly is weakly coercive, every point 1 of the geometric

boundary OM is a Martin point by Ancona ([Anc]). Hence ky (-, 7) is also called the Martin
kernel function at 7.

The function ky(-,n) should be understood as a function on W#(v) for all n, i.e. it is
identified with ky(w(+),n), where w : SM — M is the projection map. In case £ = A, all
the ky(-,n)’s are the same as k,(-), the Martin kernel function on M associated to A. In
general, ky, may vary from leaf to leaf.

Finally, we can state the integral formula for the stochastic entropy.

Proposition 2.16. Let L = A+Y be such that Y*, the dual of Y in the cotangent bundle
to the stable foliation over SM, satisfies dY™* = 0 leafwisely and pr(—(X,Y)) > 0. Then
we have

(2.25) he = / [V Inky(z,€)|? dm.
Mg xdM

(Since each ky(-,n) is a function on W*#(v), in particular, when n = &, its gradient (for
the lifted metric from M to W#(v)) is a tangent vector to W#(v). We also observe that
the classical formula (1.1) for the stochastic entropy is obtained from Proposition 2.16 by
considering the metric ¢* and Y = 0.)
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Proof. For P-a.e. path w € Q4, we still denote w its projection to M and write v := w(0).
When t goes to infinity, we see that
limsup | In Gy (z,w(t)) — Inky(w(t), )| < 400,

t——+o0

Indeed, let z; be the point on the geodesic ray 7, ¢ closest to x. Then, as t — +o0,

(2.26) Gy (@, w(t) = Gv(ar,w(t)) = %

for all y on the geodesic going from w(t) to &, where < means up to some multiplicative
constant independent of ¢. The first < comes from Harnack inequality using the fact that
sup, d(x, z;) is finite P-almost everywhere. (For P-a.e. w € Q4, n = limy 4o w(t) dif-
fers from ¢ and d(x,z), as t — +oo, tends to the distance between x and the geodesic
asymptotic to & and 7 in opposite directions.) The second < comes from Ancona’s inequal-
ity ([Anc]). Replace Gy (y,w(t))/Gv(y,z) by its limit as y — &, which is &, ¢)(w(t), &),
which is itself < ky(w(t),£) by Harnack inequality again. By (2.3), it follows that, for
P-a.e. we Qy,
1
tljrgloo 7 Inky(w(t), &) = he.

Again, using the fact that the £-diffusion has leafwise infinitesimal generator A + Y and
is ergodic, we obtain

, 1 [to
he = lim /0 —(Inky (w(s),€)) ds

t—+oo t

~ lim l/ot—(AH/) (In ko (w(s), €)) ds (:—/MOXW(A+Y) (1nk:v)dﬁl>

= [ vk am
My xdM

The last equality comes from the fact that the Martin kernel function ky(-,§) satisfies
(A+Y)(kv(€) =0. O

2.5. A Central limit theorem for the linear drift and the stochastic entropy.
With the help of the Busemann function and the Martin kernel function, we can further
describe the distributions of the pathwise limits for time large. In this subsection, we recall
the Central Limit Theorems for £, and h,y and the ingredients of the proof that we will
use later.

Proposition 2.17. ([H2]) Let L = A+Y be such that Y*, the dual of Y in the cotangent
bundle to the stable foliation over SM, satisfies dY* = 0 leafwisely and pr(—(X,Y)) > 0.
Then there are positive numbers oo and o1 such that the distributions of the variables
1 1
dyw (w(0),w(t)) — tl and
— [ ((0). (1)) ~ the] amd ——

are asymptotically close to the normal distribution when t goes to infinity.

[ln G(w(0),w(t)) + thr]
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The proof of the proposition relies on the contraction property of the action of the
diffusion process on a certain space of Holder continuous functions. Let Q; (t > 0) be the
action of [0, +00) on continuous functions f on SM which describes the £-diffusion, i.e.,

Qu(f)(x,€) = / Fump(t, (. ), d(y,n)),

My xdM

where f denotes the G-invariant extension of f to SM. For ¢ > 0, define a norm |1l on
the space of continuous functions f on SM by letting

[flle =sup|f(z, &)+ sup |f(z,&1) — f(a, &2)lexp(e(S1l€2)e),
z,€ z,61,62

where (£1]£2)5 is defined as in (2.16), and let H, be the Banach space of continuous functions
f on SM with ||f]], < +oo. It was shown ([H2, Theorem 5.13]) that for sufficiently
small © > 0, as t — oo, Q converges to the mapping f ~ [ f dm exponentially in ¢
for f € H,. As a consequence, one concludes that for any f € H, with [ f dm = 0,
U= — 0+°° Q:f dt, is, up to an additive constant function, the unique element in #H, which
solves Lu = f ([H2, Corollary 5.14]). Applying this property to by and ky (-, &), where we
observe that both v — Ab, and v — VInk(-,§) are G-invariant and descend to Holder
continuous functions on SM (see [Anol, HPS| and [H1], respectively), we obtain two
Hélder continuous functions ug, u; on SM (or on My X OM ) such that

Llug) = — (Div(X) + (v, X)) + / (Oiv(X) + (V. X)) di
= — (Div(X)+ (Y, X)) — £z, by (2.15), and
L) = [[Vinky(-0)* - / Ik IR din

= |[VInky(-,&)|? = he, by (2.25),

where we continue to denote up and wu; their G-invariant extensions to Sl\z For each
w € Q4 belonging to a stable leaf of SM, we also denote w its projection to M. Then for

f==by+up (or Inky(-,&)+u1), flw(t)) — f(w(0))— fg(ﬁf)(w(s)) ds is a martingale with
increasing process 2||V f||?(w(t)) dt. In other words, we have the following.

Proposition 2.18. (c¢f. [L2, Corollary 3]) For any v = (z,&), the process (ZY)ier, with
w(0) = v [respectively, (Z})ier, with w(0) = v/,

Zg = _bw(O) (w(t)) + Z%L + U()(w(t)) — UQ(w(O))
[respectz’vely,
Z!=Inky(w(t),€) + the + uy(w(t)) — w1 (w(0))]

1$ a martingale with increasing process

2||X + Vuo||*(w(t)) dt [respectively, 2||V Inky(-,€) + Vau||*(w(t)) dt].
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The last ingredient in the proof of Proposition 2.17 is a Central Limit Theorem for
martingales.

Lemma 2.19. ([RY, Chapter IV, Theorem 1.3]) Let M = (My);>¢ be a continuous, square-
integrable centered martingale with respect to an increasing filtration (F¢)i>o0 of a probability
space, with stationary increments. Assume that My = 0 and

) -0

for some real number o2, where (M, M); denotes the quadratic variation of My. Then the

laws of My/\/t converge in distribution to a centered normal law with variance o?.

1
;<M7 M>t - 02

t——+o0

(2.27) lim E <

Now we see that both Z? and Z} are continuous and square integrable. The respective
average variances converge to, respectively, 03 and a%, where

o2 = 2/ I + Vo |2 di,
My xdM

o2 = 2/ IV I ky (-, €) + Vau ||? dia.
MOXBJ\N/I

By Proposition 2.2, the L-diffusion system is mixing, (2.27) holds for Z? and Z; with
o = 0g or o1, respectively. Hence both (1/(c9v/t))Z? and (1/(o1v/t))Z} will converge to
the normal distribution as ¢ tends to infinity. Note that in the proof of Propositions 2.9
and 2.16 we have shown that for P-a.e. w € Qy, by (w(t)) — dy(w(0),w(t)) converges to a
finite number and that

limsup | In Gy (w(0),w(t)) — Inky(w(t),§)] < +o0.

t—+o00
As a consequence, we see from Proposition 2.18 that (1/(cov/%)) [dyy(w(0),w(t)) — tf,] and

(1/(o0Vt)Z{ (respectively, (1/(01v?)) [InG(w(0),w(t)) +the] and (1/(01V))Z;) have
the same asymptotical distribution, which is normal, when ¢ goes to infinity.

2.6. Construction of the diffusion processes. So far, we know that both the linear
drift and the stochastic entropy are quantities concerning the average behavior of diffusions
and they can be evaluated along typical paths. To see how they vary when we change
the generators of the diffusions from £ to £ + Z (which also fulfills the requirement of
Proposition 2.9 (or Proposition 2.16)), our very first step is to understand the change of
distributions of the corresponding diffusion processes on the path spaces. For this, we use
techniques of stochastic differential equation (SDE) to construct on the same probability
space all the diffusion processes.

We begin with the general theories of SDE on a smooth manifold N. Let X1, ---, X4,V be
bounded C! vector fields on a C® Riemannian manifold (N, (-,-)). Let B; = (B},--- , B{)
be a real d-dimensional Brownian motion on a probability space (0, F, F;, Q) with gener-
ator A. An N-valued semimartingale x = (x;);cr, defined up to a stopping time 7 is said
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to be a solution of the following Stratonovich SDE
d .
(2.28) dxy =Y Xi(x) 0 dBj + V(x;) dt
i=1
up to 7 if for all f € C*°(N),

t d t
f(x¢) = f(x0) +/ ZXZ-f(xS) odB; +/ Vilxs)ds, 0<t<T.
0 0
Call a second order differential operator A the generator of x if

t
F(x0) — F(x0) —/0 Af(x) ds, 0<t <7,

is a local martingale for all f € C*°(N). It is known (cf. [Hs|) that (2.28) has a unique
solution with a Hormander type second order elliptic operator generator

d

A= X7+V.

i=1
If Xq,---,Xy,V are such that the corresponding A is the Laplace operator on N, then
the solution of the SDE (2.28) generates the Brownian motion on N. However, there is
no general way of obtaining such a collection of vector fields on a general Riemannian
manifold.

To obtain the Brownian motion (x;)cr, on N, we adopt the Eells-Elworthy-Malliavin
approach (cf. [El]) by constructing a canonical diffusion on the frame bundle O(N). Let
TO(N) be the tangent space of O(N). For x € N and w € O,(IN), an element u € Ty, O(N)
is wvertical if its projection on T, N vanishes. The canonical connection associated with
the metric defines a horizontal complement, identified with T, IN. For a vector v € T, N,
H,, the horizontal lift of v to Ty O(IN), describes the infinitesimal parallel transport of the
frame w in the direction of v.

Suppose N has dimension m. Let B; = (B}, -+, B"*) be an m-dimensional Brownian
motion on a probability space (0, F,F;, Q) with generator A. Let {e;} be the standard
orthonormal basis on R™. Then, we consider the canonical diffusion on the orthonormal
bundle O(N) given by the solution w; of the Stratonovich SDE

m
dw; = > H;(w) o dB},
i=1
Wy =W,
where H;(wy) is the horizontal lift of we; to w;. The Brownian motion x = (x;);er, can
be obtained as the projection on N of w; for any choice of wy which projects to xo. We can
regard x(-) as a measurable map from O to Cx,(R,IN), the space of continuous functions
p from R4 to N with p(0) = x¢. So

P:=Q(x")
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gives the probability distribution of the Brownian motion paths in 2,. For any 7 € R, let
Cx, ([0, 7], N) denote the space of continuous functions p from [0, 7] to N with p(0) = xo.
Then x also induces a measurable map xjo,] : © — Cx,([0,7],N) which sends w to
(xt(w))sefo,r- We see that

—1
Pr = Qxp,)
describes the distribution probability of the Brownian motion paths on N up to time 7.

More generally, we can obtain in the same way, and on the same probability space, a
diffgsion with generator A + Vi, where V; is a bounded C' vector field on N. We denote
by V1 the horizontal lift of V3 in O(IN). Consider the Stratonovich SDE on O(N)

du; = ZHl(ut) o dB; + Vl(ut) dt,
i=1
up = u.

Then, the diffusion process y = (y)ter, on N with infinitesimal generator An +V; can be
obtained as the projection on N of the solution u; for any choice of ug which projects to
yo. We call u; the horizontal lift of y;. Let P! be the distribution of y in Cy, (R4, N) and
let PL (7 € Ry) be the distribution of (y;(w)):ep,r] in Cy,([0,7],N), respectively. Then

P'=Qy ™), Pr=Qyy,):

We now express the relation between P and P, as described by the Girsanov-Cameron-
Martin formula. Let M} be the random process on R satisfying M} = 1 and the Stratonovich
SDE

1 1 . 1
M =M TG w0 B}, — M (I5TAGe)I + Div (Vi) ).

Then

M} = e { [ Vb w0 dB@is, — [ (I3AG@I + D (GVitxw) ) ds ).

In the more familiar Ito’s stochastic integral form, we have
1
dM% = §M%<V1(Xt)7wtdBt>xt
and

e29) M=o (g [ ) w@iB @) - 1 [ @) ds

Since each Eg (exp{ ! Vi(xs(w))||? ds}) is finite, we have by Novikov ([N]), that M}, ¢ >
Q 1 Jo t

0, is a continuous (F;)-martingale, i.e.,

Eg (M%) =1 for every t > 0,
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where Eq is the expectation of a random variable with respect to Q. For 7 € Ry, let QL
be the probability on ©, which is absolutely continuous with respect to Q with

dQ! 1
M
W) =M w),
Note that M! is a martingale, so that the projection of QL on the coordinates up to 7/ < 7
is given by the same formula. A version of the Girsanov theorem (cf. [El, Theorem 11B])
says that ((y¢)iejo.-, Q) is isonomous to ((x¢)ie(o,-],QF) in the sense that for any finite
numbers 71, , 75 € [0, 7],

(230) (Q(ya1)7 7Q(yTS )) - (Qﬂl—( X7 )7 7@ ( ))

(The coefficients in (2.29) differ from the ones in [El] because B; has generator A.) Let
Q! be the probability on © associated with {QL},cg, . Then (2.30) intuitively means that
by changing the measure Q on © to Q!, x has the same distribution as (y,Q). As a
consequence, we have PL = Ql(x~!) for all 7 € R} and hence

i X
d]P) (X[O 7']) = EQ (MT|‘F(X[O,T])) y A.S.,

where Eq (- | -) is the conditional expectation with respect to Q and F(xj ;) is the smallest
o-algebra on © for which the map x| ;] is measurable.

Let V5 be another bounded C' vector field on N. Consider the diffusion process z =
(z¢)ter, on N with the same initial point as y, but with infinitesimal generator An+V;+Va.
Let P2 be the distribution of z in the space of continuous paths on N and let P2(7 € R,)
be the distribution of (z¢(w)):e[o,r]- The Girsanov-Cameron-Martin formula on manifolds
(cf. [El, Theorem 11C]) says that P2 is absolutely continuous with respect to PL with

dP?
(231) W(Y[O’T]) = EQ (M72'|]:(Y[0,T])) y &.S.,

where
M) = e 5 [ Ma @) @B, - ] [ @) s}

and F(yjo,r) is the smallest o-algebra on © for which the map y[o ;] is measurable.

3. REGULARITY OF THE LINEAR DRIFT AND THE STOCHASTIC ENTROPY FOR A +Y

Consider a one-parameter family of variations {£* = A +Y + Z*: || < 1} of £ with

7% = 0 and Z* twice differentiable in A so that SUP)e(—1,1) max{[| 4~ || delfg |} is finite.
Assume each £* is subordinate to the stable foliation, Y 4 Z* is Such that (Y + ZM)*,
the dual of (Y + Z%) in the cotangent bundle to the stable foliation over SM, satisfies
d(Y 4+ Z*)* = 0 leafwisely and pr(—(X,Y +Z*)) > 0. Then each £* has a unique harmonic

measure. Hence the linear drift for £}, denoted £y := £,x, and the stochastic entropy for
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L, denoted hy := h,x, are well-defined. In this section, we show the differentiability of £y
and hy in A at 0 (Theorem 3.3 and Theorem 3.9).

Consider the diffusion process of the stable foliation of SM corresponding to £* (A €
(=1,1)). Let B; = (B}, -+, B*) be an m-dimensional Brownian motion on a probability

space (@ F,Ft,Q) with generator A. For each v = (z,§) € S]\Aj, W#(v) can be identified
Wlth M x {&}, or simply M. So for each \ € (—1,1), there exists the diffusion process
vy = (yV,t)tER . on W?(v) starting from v with mﬁnitesimal generator £3. FEach y?
induces a measurable map from © to Cy(Ry, W*(v)) C Q4 and E/\, = Q((yf))_l) gives
the distribution probability of y3 in Cy(Ry, W*(v)). For any 7 € Ry, let @3,7 be the
distribution of (y3 ;)ie(o,-] in Cv([0,7], W#(v)). We have by the Girsanov-Cameron-Martin

formula on manifolds (2.31) that @f\,ﬁ is absolutely continuous with respect to @?,77 with

dﬁir A 0
(3.1) et (yv[ }):EQ<MT‘~F(3’V,[0,T}))= a.s.,
where |
W) = e {5 [ (2068 @) @B, - [ 122651 ).

uy ; is the horizontal lift of y9 ; to O(W*(v)) and F(y! v.[0, ]) is the smallest o-algebra on

O for which the map y?, [0,7] is measurable.

For each A € (—1,1), let m* be the unique £*-harmonic measure and m* be its G-
invariant extension to SM. We see that P = J E\, dm*(v) is the shift invariant measure
on S~)+ corresponding to m* and we restrict P to Q.. Consider the space © = SM x © with
product o-algebra and probability @)‘, d@)\(v, w) = dQ(w) x dm*(v). Let y; : SM x© —
SM be such that

yMv,w) = th( ), for (v,w) € SM x ©.

Then y* = (y;')ier, defines a random process on the probability space (O, @A) with images
in the space of continuous paths on the stable leaves of SM.

Simply write y; = y{ and let u; be such that uy(v,w) = uf ,(w) for (v,w) € ©. Denote
by (Z*)h := (dZ*/d\)|x=o. We consider three random variables on (@,Q )E

1 t
M= 5 [ (2. wdB,.,
Z}, = [dw(yo,y:)— tlo],
Zhy = —[Lagoyn>1) I G(yo,ye) +theo] |

where 1p is the characteristic function of the event B. We will prove the following two
Propositions separately in Sections 3.1 and 3.2.
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Proposition 3.1. The laws of the random vectors (Z9,/v/t, M} /\/t) under @0 converge
in distribution as t tends to +o00 to a bivariate centered normal la(f]w with some covariance
matriz Xy. The covariance matrices of (th/\/z, MY /\/t) under Q  converge to Xy.

Proposition 3.2. The laws of the random vectors (Z27t/ﬂ, MY /\/t) under @0 converge
in distribution as t tends to 400 to a bivariate centered normal l(ng with some covariance
matriz Xp. The covariance matrices of (Z%t/\/f, MY /\/t) under Q  converge to %y

3.1. The differential of the linear drift. For any A € (—1,1), let £, be the linear drift
of £*. The main result of this subsection is the following.

Theorem 3.3. The function \ — £y is differentiable at 0 with

A T
D oo — o 7 Ege (Ze M)

We fix a fundamental domain M of M and identify {24 with the lift of its elements in §+
starting from M. In the following two subsections, we restrict the probabilities on 4 to

Q4. For any 7 € Ry, recall that @3,7 is the distribution of (y3 ;)tefo,-] in Cv ([0, 7], W*(v)).

. =\
By an abuse of notation, we can also regard Py, . as a measure on {); whose value only

T

depends on (w(t))¢cpo,-] for w = (w(t))ier, € Q4. Let E\ = f@f‘,’t dm?(v). Then

Ty = lim g (dw(w(0), (1)

We will prove Theorem 3.3 in two steps. Firstly, using negative curvature, we find a
finite number Dy, such that for all A € [—d1, 1] (where 07 is from Lemma 3.4) and all ¢ > 0,

(3.2) B (dw(w(0),w(t))) — thy] < D.
In particular, for t = A 72,

IAEp (dw (w(0),w(A7?))) — %N < ADy.

dZA R _
Thanks to (3.2), the study of "IN ‘)\:0 = ,1\1—% X‘E)\ — lp| reduces to the study of
1-
. -2
lim [AE_x (dw(w(0),w(A™%)) — 7o,
Setting A = £1/+/%, the second step is to show
- b 1z
53) i (0 = tim B (28 8.

where

(I)Z = ERA <% (dw(w(O),w(t)) - tz())> .
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. . . . =\, —0 . . > =A
Using notations from the previous subsection, we know dP; / d]P’? is given by M? . Each P,
is a random perturbation of the distribution @? on the path space and at the scale of A =

J— 0_1 0)2
1/V/t, M? converge in distribution to M 2B (MD)%)

A c e e MO—
%th - M; converge in distribution to Z%

as t goes to infinity. Consequently,
1 0)2
2Ego((MT) ), which can be identified with

1imt_>+oo(1/t)E@o(Z2’tMg) using Proposition 3.1 (see Lemma 3.8).

We therefore follow the above discussion and prove (3.2) and (3.3). Let us first show
that there is a finite number Dy such that for all A € [-d;,d1] and all ¢t > 0,

[Egr (dw (w(0),w(t))) — t| < D

Since the £ -diffusion has leafwise infinitesimal generator £ and P* is stationary, we have
to
pr (bw(O)(w(t))) = E@A </0 &bw(o)(w(s)) dS)
t
= B ([ oot i)

=t / L3by, dm?
My xdM

= tly.
So, proving (3.2) reduces to showing that for all A € [—d1,d1] and all ¢ > 0,
(3.4) E@A (‘dw(w(O),w(t)) — bw(O) (w(t))D < Dy,

which intuitively means that for all A, v, the £3-diffusion orbits w(t) does not accumulates
to the point £ € OM such that w(0) = v = (x,£). For w € Q4, we still denote w its
projection to M. Then the leafwise distance dyy(w(0),w(t)) in (3.4) is just d(w(0),w(?)).

We first take a look at the distribution of w(oo) := limg_, 4~ w(s) on the boundary. Let
x € M be a reference point and let « > 0 be a positive number. Define

d.(¢,m) = exp (—e(¢|n)z) , VC,n € OM,

where (C|n), is defined as in (2.16). If g is small, each d.(-,-) (z € M,. € (0,1)) defines

a distance on OM ([GH]), the so-called ¢-Busemann distance, which is related to the
Busemann functions since

by (y) = 41717135 ((C|n)y — (C|n)z), for any v = (x,&) € SM,y € M.

)

The following shadow lemma ([Moh, Lemma 2.14], see also [PPS]) says that the £*-
harmonic measure has a positive dimension on the boundary in a uniform way.

Lemmai.él. There are Dq,061,01,t1 > 0 such that for all X € [—61,01], all v € SM and
all ¢ €M, t>0,
Py (@2 (¢,w(00)) < e7') < Dye
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where we identify w(s) with its projection on M.

As a consequence, we see that for ﬁ)\—almost all orbits w € 4, the distance between
w(s) and Y, (0),w(e0)» the geodesic connecting w(0) and w(oo), is bounded in the following
sense.

Lemma 3.5. There exists a finite number Do such that for all X € [—d1,01] (where &1 is
as in Lemma 3.4) and s € Ry,

E]TJQ‘ (d(w(s)vfyw(O),w(oo))) < Ds.

=\ cpy . .. = . .
Proof. Extend P” to a shift invariant probability measure P* on the set of trajectories from
R to SM, by

B = / P o @) dm’(v),
S M

where (@/)’\ is the probability describing the reversed £3-diffusion starting from v. Then

v
we have by invariance of P* that

Ep* (d(w(s)7’Yw(0),w(oo))) = E]fm (d(w(0)77w(—s),w(oo)))

=\~ — ~
(3.5) = / (A, Yoo(=s) (o)) AP (@) AP )} (& (—s))dm*(v).
Fix w(—s) = z at distance D from z, and let ¢ € OM be limy 400 Va2 (t). We estimate
—\ oo
/d(xy’yz,w(oo)) d]P)v(w) = /0 Pv(d(l‘772,w(oo)) > t) dt.

For t > D, it is clear that ﬁf\,(d(az,’yz,w(oo)) > 1) =0. Fort < D, if d(z,7, 4(s0)) > t, then
d4 (¢, w(o0)) < Ce“! for some constant C' and hence we have by Lemma 3.4 that

B (d(, Yz go(o0) > 1) < CDye” 4t

Therefore,

D
N\ D
/d(m,vz7w(oo)) dIP’f\,(w) < / CDie” 1t dt +1 < %E_Oﬂ” +1:= Ds.
1

Using (3.5), we obtain that Eor (d(w(s),yw(o)w(oo))) is bounded by D as well. O
Now, using Lemmas 3.4 and 3.5, we prove in Lemma 3.6 that there is a bounded square

integrable difference between dyy(w(0),w(s)) and by (w(s)) for all s (cf. [Ma, Lemma
3.4]). This Lemma 3.6 implies (3.4) and therefore concludes the proof of (3.2).

Lemma 3.6. There exists a finite number D3 such that for all X € [—d1,01] (where &1 is
as in Lemma 3.4) and s € R4,

Epr (|dw(@(0),0(s)) = buo)@(5)[*) < Ds.
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Proof. 1t is clear that
A

By (Jiw(w(0),(5) ~ by @) =1 [ (wle)le)] dBLew)dm’(v),

where w(0) = v = (z,€) and (w(s)‘&)x = limy ¢ (w(s)‘y)x (see (2.16) for the definition of

(z|y)s for x,y,z € M). So, it suffices to estimate
400 - o0 -
| Bz a- [ Rl > Vi a
For each t > 0, divide the event {w € Q1 : (w(s)|€), > V/t} into two sub-events
M) = (wes: @O0 >V (ws)|wloo) > Vi)
As(t) = {weQq: (W) > VE, (w(s)|w(0))s < i\/i}

. =\ . . . . .
We estimate P, (A4;(t)), i = 1,2, successively. Since M is a closed connected negatively
curved Riemannian manifold, its universal cover M is Gromov hyperbolic in the sense that
there exists § > 0 such that for any x1,z9, 23 € M,
(z1]|72), > min{(x1|x3)s, (z2]|T3)s} — 9.
So on each Aj(t), where t > 6452, we have

(€lw(00))e > 2V

| =

Hence, by Lemma 3.4,
By (41(1) < P((€lu(o0))e > 5V = Bu(dt (w(o0),€) < e 40VF) < Dyemstenvd,
where the last quantity is integrable with respect to t, independent of s. For w € As(t),
dy (w(0),w(s)) = (w(s)|€)z > V1.
On the other hand, the point y(s) on ¥,(0)w(e0) closest to w(s) satisfies
(w(s)|9())e < (wls)|w(o0))s < 3VE
So we must have
d(w(8), Yoo 0) w(o0)) > %\/f
Hence,
/OOO Fi(Ag(t)) dt < /@f\, <d(w(s),7w(0),w(oo)) > %\ﬁ) dt dm*(v),

which, by the same argument as the one used in the proof of Lemma 3.5, is bounded from
above by some constant independent of s. O

To show lim;_, 4 (1)} = limt_>+oo(1/t)E@o(Z27tM?), we first prove Proposition 3.1.
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Proof of Proposition 3.1. Let (Z?)er, , ug be as in Proposition 2.18. The process (ZY)icr,
is a centered martingale with stationary increments and its law under P’ is the same as
the law of (Z?)teﬁh under @0, where (Zf)te& on (6, @0) is given by

Z;(v,w) = =by (yva(w) + tlo + uo(yv.e(w))) — uo(v).

The pair (—Zf ,M?) is a centered martingale on (©, @0) with stationary increments.
To show (—ZO /vV/t, MY /\/t) converge in distribution to a bivariate centered normal vector,
. . . 0
it suffices to show for any (a,b) € R?, the combination —aZ, /v/t + bMY /\/t converge to

a centered normal distribution. The martingales Z? and MY on (0, @0) have integrable
increasing process functions 2||X + Vuo|? and ||(Z*))||?, respectively. Using Schwarz in-

equality, we conclude that —aZ? + bMY also has an integrable increasing process function.
By Lemma 2.19, —az(g) /'t +bMY /\/t converge in distribution in @0 to a centered normal

law with variance ¥[a,b] = (a,b)X(a,b)” for some matrix ¥,. Since both Z? and MY
have stationary increments, we also have

1 _
Zela,b] = Eg [(—azg L OMO)?] forall t € R

The condition (2.27) in Lemma 2.19 is satisfied since the increasing process ( — CLZF) +
MO, —aZF) +bMY) ., is a Birkhoff sum of a square integrable function over a mixing system
(Proposition 2.2). This shows Proposition 3.1 for the pair (—Z?/\/i_f, MY //t) instead of
the pair (th/\/f, MY /\/1).

Recall that ﬁ?,—a.e. w € Qy is such that by (w(t)) — dyw(w(0),w(t)) converges to a finite
number. Moreover, we have by Lemma 3.6 that

supEpAngt + 2?‘2) < +00
t

and hence )
=02
EFA(z‘th +Z;|") =0, as t — fo0.

Consequently, (th /vV/t, MY /\/t) has the same limit normal law as (—Z? /Vt, MY /\/t) and

. . . —=0 . .
its covariance matrix under Q converges to Y, as t goes to infinity. O

We state one more lemma from [Bi] on the limit of the expectations of a class of random
variables on a common probability space which converge in distribution.

Lemma 3.7. (¢f. [Bi, Theorem 25.12]) If the random variables X, (t € R) on a common
probability space converge to X in distribution, and there exists some q > 1 such that
sup, E, (| X¢]|?) < 400, then X is integrable and

lim E, (X;) =E, (X).

t——+o0
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By the above discussion, Theorem 3.3 follows from

Lemma 3.8. We have limy_, o (I)) = limt_>+oo(1/t)E@o(Zg’tM?).

Proof. Lety = (yi)ier, = (Yvt)vesm,cr, be the diffusion process on (O, @0) correspond-

ing to £°. We know from Section 2.6 that @f\ht is absolutely continuous with respect to @&t
with
dP, .
7t AT
d@g (Yv,0.4) = Eq (Mt ‘f(YvJo,t})) ;

v,t

where

W) = exp {3 [ (2 0By~ 1 [ 12 Ol ).

Consequently we have

=\
1 — AP0
lim (I); = lim Exo [ — (dw(w(0),w(t)) — tly) —c—*
t—+oo t——+o00 \/E d]P)w(O)J
. 1 ;
= tl}glooE@O <7 (dW(Yanlt) - MO) (H)l> ’

where
R B N L[t 2
=5[22 0w, wvddBy o~ 7 [ 120 P ds
Let Z" be such that Z* = MZMG + A2Z>. We calculate for \ = 1/+/t that

i = S [N, wany, - g [ ds

1t
+% <Z (YS)a usst>yS
0
1 t =\ 1 L
— [ (@0 2y, ds = 3 [ 1700l as
2t2 4t Jo
1 1
= —M MY, MP), + (1), + (IV),
MY~ g (ME M)+ (I + (V)
where both (III)Z and (IV)E converge almost surely to zero as t goes to infinity. Therefore,

N 0_1 0\2
by Proposition 3.1, the variables %th'M? converge in distribution to deM 2Bgo (M) ),

where (Z9, M) is a bivariate normal variable with covariance matrix .

Indeed, to justify

lim (f= lim E (%Z% Mﬁ) Ego (ZO MO 15 o (MO)? >)7

t—+00 t—-+4o00
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we have by Lemma 3.7 that it suffices to show for g = %,

NE
> +00.

th Mt

e

By Holder’s inequality, we calculate that
1o 2}’ 6(IV)?
<E©o (Z 29, >> ‘Ego (e ( >e)

3 4
(el 1)
= (V) (VI)g,

where (V)} is uniformly bounded in ¢ by Proposition 3.1. For (VI)}, we use the Girsanov-
Cameron-Martin formula to conclude that

0} = Eg (e (3 [ (2t By~ 3 [ 120l ds))

5 (oo (3 [ 120w a5) )

for some probability measure Qon ©. Using again Z* = \(Z*)}, —I—)\27)‘ and that A = 1/+/1,
we see that

IN

IN

LR 2 [ty 2 [t
[ 12wl s <3 [ as+ 5 [1ZF o

where the quantities on the right hand side of the inequality are uniformly bounded in t.
So (VI)} is uniformly bounded in ¢ > 1 as well. Now, (3.3) holds. The calculation is the

same with A = —1/+/t.

Finally, since (Z?, M°) has a bivariate normal distribution, we have
0_1 02
Ego (Z0™ 252 0) — B o(zgm0),

3 which is limt_>+oo(1/t)E©o(Z2tM?) by Proposition 3.1. O

3.2. The differential of the stochastic entropy. For any A € (—1, 1),_ let hy be the
entropy of £*. In this subsection, we establish the following formula for (dhy/d)\)|x=o.

Theorem 3.9. The function A — hy is differentiable at 0 with
N T
ﬁ A=0 N t—l}—‘,-moo ZEQO(Zh,tMt )

3We leave the proof of the equality as an exercise. Let the couple (z,y) have a bivariate centered normal
distribution. By diagonalizing the covariance matrix, we may assume that
r = cosfX —sinfY
y = sinfdX + cosbY,
where X and Y are independent centered normal distributions with variance o and 72 respectively. Then
by independence, all Ezy, Ey? and Eze? are easy to compute and one finds Exy = E(xeyf]EyQ/z).
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Since ¢;,0 < i < 8, and «s, ag of Lemmas 2.10-2.15 depend only on the geometry of M
and the coefficients of £, we may assume the constants are such that these lemmas hold
true for every couple £}, G with A € (—1,1).

For each A € (—1,1), by Lemma 2.22 and the Subadditive Ergodic Theorem we obtain
a constant E)\,O such that for @/\—a.e. w e Ny,

1 _
lim 5 In G2 (w(0),w(t)) = hyo, where v =w(0).

t——+o0

=X . .. oATr o
For P -a.e. w € Q4 since w(t) converges to a point in M as t tends to infinity, we also
have

(3.6) lim S dgy (w(0), (1)) = Ty,

t—+oo ¢t
The equation (3.6) continues to hold if we replace the pathwise limit by its expectation.

Actually, since P is a probability on Q. , using (2.23), we see that

Eox < sup [ng(w(O),w(t))P) < 20[%EFA < sup [dw(w(O),w(t))]2> + 8(In ¢2)? < +o0.
tel0,1] t€[0,1]

So, using (2.22), we have by the Subadditive Ergodic Theorem that for A € (—1,1),
1 -
lim ZEFA (deo (w(0),w(t))) = hxro.

t—4o00
The main strategy to prove Theorem 3.9 is to split (hy — ho)/) into two terms:

1 — —_ 1 — — 1 — _
X(h’\ —hy) = X(hx —hxo) + X(hA,O —To) =: () + (D)5,

then show limy_,q (1)2 = 0 and limy_,g (H)z = limt_,+oo(1/t)IE@o(Z27tM?) successively.
Since dgo behaves in the same way as a distance function, the terms hy o and ho are the
‘linear drifts’ of the diffusions with respect these ‘distances’ in distributions @)‘ and @0, re-
spectively. Hence limy_,q (11)2 can be evaluated by following the evaluation of (dfy/d\)| x=o
in Section 3.1. The new term (I)z represents the contribution of the of change of Green

‘metric’ between GO and G3. It turns out that this contribution is of order A2 for C! drift
change of £°. Consequently, we have the following.

Lemma 3.10. limy_,o (I); = 0.

Proof. For each A € (—1,1), recall that by Proposition 2.4 we have for Plae w ISRV
w(0) =: v,

1
h)\ = lim —;lnpf‘,(t,w(O),w(t))

t——+o0

t——+00

1
(3.7) = lim —;/(lnp?,(t,w,y)) Pa(t, x,y) dy.
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Similarly, by the same proof as for Proposition 2.4, we have that

(3.8) hao = ;gg{ﬁx,o(s)h
where for P*-ae. w € Q4, w(0) =:v,
_ . 1.
h)\,O(s) T tETm_;lnpv(Stvw(0)7w(t))
g 1 0 2
(3:9) = lm - / (npy(st, 2, 9)) py(t,z,y) dy.

. . . . .. . =\ . .
Since we are considering the pathwise limit on p2 with respect to P”, the infimum in (3.8)
is not necessarily obtained at s = 1. But we still have limsup, o, (1)2 < 0 since

o 1 2t
iy —Tno = sup{ lim / (mM> P (tz,y) dy}

>0 lt=+oo t P2 (st,x,y)
1 sty
< su lim = [ =277 t.x,y) d
< D}g{t%wt/m(t’x’y) py(t, =, y) dy
= 07

where we use —Ina < a~! — 1 for a > 0 to derive the second inequality.

To show liminfy g4 (1)2 > 0, we observe that by (3.7), (3.8) and (3.9),

= T oF T 1 polt.z,y)\
3.10 hy — hyxo > hyx—hyo(l) = lim ——/ <1DV7 po(t,z,y) dy.
( ) ,0 70( ) pg](t’$’y) ( )
We proceed to estimate In(p(t, x,y)/pS(t, z,y)) using the Girsanov-Cameron-Martin for-

mula in Section 2.6. For v,w € SM, let Q y; be the collection of w € €, such that
w(0) = v,w(t) = w. Since the space (2, is separable, the measure P* disintegrates into a

class of conditional probabilities {]P)\Anw,t}v wesir o0 Qv,w's such that
dPY p'(t, v, w)

3.11 E —L )=

&1 2en (185) = v

Letting v = (z,&),w = (y,&) in (3.11), we obtain

0 0 0
by (t7 Zz, y) dPV t de t
12 In—/——~=In(E ’ >E 1 ’ .
(3 ) n pf‘,(t, z,9) n < P} w.t <dP\)\/,t = BPY n dP\)\/,t

Recall that

v, A
Hﬁ(yé [O,t]) = Egx (Mt |‘F(y\);,[0,t])) )

v,t

. . . — —=A .
where y* = (y\);,t)VESM,te[R . is the diffusion process on (6,Q") corresponding to £* and

Ww) = e {5 [P0 @By 0 - [ 1- 20 ).
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So we can further deduce from (3.12) that

PO (t, z,y)
Pyt z,y)

1 [t 1 [t
2By, (B (5 [ 120008y, - 1 [ 1260 9)|76200))

1/t 1
— £, (B (5 [ 126201 91762 00) ) 2 -00P%,

» Yvos

where the equality holds true since fg (Z )‘(yf‘,,s) u) dBs)yx is a centered martingale and
C is some constant which bounds the norm of dZ*/d\. Reporting this in (3.10) gives

1 - - 1
liminf (1)} = liminf = (7 — P | 2y = 0.
it (08 = Hminf 5 (= Fao) 2 =3 lim a5 =0

We prove in the same way (with switched arguments) that limy_,o_ (1)2 =0. O

The analysis of (11)2 is analogous to that was used for (dfy/d)\)|x=o. We first find a
finite number Dy, such that for A € [—d1, 1] (where d; is from Lemma 3.4) and all ¢t € Ry,

(3.13) [Exx (dag (w(0),w(t))) — thao| < Dp.

Indeed, using again the fact that the £*-diffusion has leafwise infinitesimal generator £3
and P? is stationary, we have

By (C0iw®.9) = Bp (- [ Z0nk(e.9) as)
= Ep (- /0 t L3 (I kS)(w(s)) ds>

= —t / Ly(InkY) dm?
Mg xdM
= tﬁ)wo.
So (3.13) will be a simple consequence of the following lemma.
Lemma 3.11. There exists a finite number 53 such that for all A € [—61,01] and t € Ry,
Epr (|dgg (@(0),0(8) + nkS(w(®).§)[*) < Ds.
Proof. For v = (z,§) € SM, w e Q. starting from v, ¢ > 0, we continue to denote w its

projection to M. Let zt(w) be the point on the geodesic ray Yu(t),¢ closest to z. We will
divide Q4 into four events A’(t), 1 < ¢ < 4, and show there exists a finite D} such that

L = Epn (|dgg (0(0),w(t) + I kS (w(), )" - L)) < D,
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Let A}(t) be the event that d(w(0),w(t)) > 1 and d(w(0),z;(w)) < 1. For w € Aj(?),
using Harnack’s inequality (2.20) and Lemma 2.14, we easily specify the constant ratios
involved in (2.26) and obtain I; < (In(cacier))?.

Let AL(t) be the collection of w such that both d(w(0),w(t)) and d(w(0), z:(w)) are
greater than 1 and z;(w) # w(t). For such w, we first have by Lemma 2.15 that

(B.14)  Jday (@(0),w(8)) — dag (@(0), 2(w) — dag (@ (1), 20(w))| < —Imes.
For dgo (w(t), 2¢(w)), it is true by Lemma 2.14 that
|dGQ/ (w(t), z:(w)) + In GY (y,w(t)) — In G2y, zt(w))‘ < —Iney,

where y is an arbitrary point on 7,,(,,) ¢ far away from z;(w). Then we can use Lemma 2.15
to replace In GY(y, z(w)) by In GY(y,w(0)) — In G2 (2 (w),w(0)), which, by letting y tend
to &, gives

gy (@(t). () + KL (8),€)] < —In(eres) + In G (w(0), 2(w))].
This, together with (3.14), further implies

[dag (@(0)w(t) + nky(w(®): )] <~ In(eacres) +2 [In G (w(0), ()|
< —In(c3ercd) 4 2a0d(w(0), 2 (w)).

Since M is 6-Gromov hyperbolic for some & > 0, it is true (cf. [K2, Proposition 2.1]) that
d(z,vy,2) < (y|2)e + 49, for any z,y,2 € M.
Consequently, we have
1
(3.15) d(w(0), 2(w)) = (WD) )w(o) +40 = 5 [d(w(0),w(t)) — by(w(?))] + 49
Using Lemma 3.6, we finally obtain
I, <2 (80 — ln(052’07c§))2 + 203 Ds.

Let A%(t) be the collection of w such that d(w(0),w(t)) > 1 and z;(w) = w(t). Let ’yﬁd(t) ¢

be the two sided extension of the geodesic v, )¢ and let z1(w) € VL(t) ¢ be the point closet

to w(0). Then zj(w) = z;(w) on %’J(t) ¢ For w € A5(t), using (2.20) if d(z}(w),w(t)) <1 (or
using Lemma 2.15, otherwise), we see that

doy@(0),w(t) < dgy(@(0), 2(w)) + day (4(w), (1)) — In(eacs)

< o (d(w(0), £(w)) + d(24(w), w(6))) — Incheses)
< Baed(w(0), %J(t),g) — ln(c§C468)
< §a2 |d(w(0),w(t)) — by (w(t))] + 12028 — In(c3eqcs),

2
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where we use (3.15) to derive the last inequality. Choose y € v, ¢ with d(w(0),y) and
d(w(t),y) are greater than 1. Similarly, using Lemma 2.15, and then Lemma 2.14, we have

‘m GY(w(t).y)
G4 (w(0),4)

|deg (w(0),y) — dag (w(t), y)]

< —Incs + [dgg (w(0), 2 (w)) + day (2(w), y) — dag (w(t), )]
< —In(eres) + dgy (w(0), 21 (w)) + dag (21(w), w(t))
< §a2 |d(w(0),w(t)) — by(w(t))| + 12028 — In(c3eres).

2
Letting y tend to &, we obtain

3
IIn k9 (w(t), €)| < 392 |d(w(0),w(t)) — by (w(t))] + 12028 — In(cjercs).
Thus, using Lemma 3.6 again, we obtain
I; < Ep ((3a2 |d(w(0),w(t)) — by (w(t))| + 24a2d — ln(c§c4107c§))2)

< 18a3D5 + 2 (2406 — In(Seaercd))”.

Finally, let A)(t) be the event that d(w(0),w(t)) < 1. Then Iy < (—In(cacy))? by the
classical Harnack inequality (2.20). O

As before, this reduces the proof of Theorem 3.9 to showing
lim (N0, = Tim (1/0)Bg0(Z,MY)

t——+o0

where
1

(3.16) (IM1)}, = Ep <% (deo (w(0),w(t)) — tﬁo)> .

The proof is completely parallel to the computation of limy_, 1 (I)Z. We prove Proposition
3.2 first.

Proof of Proposition 3.2. Let (Z%)teRJr, uq be as in Proposition 2.18. The process (Z%)teIM

. . . . . . =0 .
is a centered martingale with stationary increments and its law under P~ is the same as
the law of (Zi)teR+ under @0, where (Zi)teﬂh on (O, @0) is given by

Z, (v,w) = W ky (yv (@), &) + tho + w1 (yva(w)) —us (v).

The pair (—Z} ,M?) is a centered martingale on (@,@0) with stationary increments
and integrable increasing process function. As before, it follows that for (a,b) € R2,
—azz /vt +bMY /\/t converge in distribution in @0 to a centered normal law with variance
Ynla,b] = (a,b)X4(a,b)T for some matrix X;. Therefore, (—Zi/\/i_f, MY /4/t) converge in
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c . . . . 1
distribution to a centered normal vector with covariance 3. Since both Z, and MY have
stationary increments, we also have

1 _
Tala,b] = TEgo [(—azt1 +oM)?] | for all £ € R

This shows Proposition 3.2 for the pair (—Zi/\/i_f, MY /+/t) instead of the pair (Z%’t/\/f, MY /V/1).

Recall that for P-a.e. orbits w € Q4 with w(0) =: v, w, the projection of w to M, is
such that

limsup | In Gy (z,w(t)) — Inky (w(t),€)| < +00.

t——+o0

We have by Lemma 3.11 that

sng@Ang,t +Zi 2) < +o00.
Therefore,

pr(azgi —FZ;l 2) — 0, as t = 4o0.

Consequently, (Z?L’t /Vt, M /\/t) has the same limit normal law as (—Z} /Vt, MY /+/t) and

. . . =0 . .
its covariance matrix under Q converges to Y as t goes to infinity. O

Finally, Theorem 3.9 follows from

Lemma 3.12. lim;, o, (IT); = limt_>+oo(1/t)E@o(Z27tM?), where (1)}, is defined in
(5.16).

Proof. Let y = (yi)ier, = (¥v,t)vesm,er, be the diffusion process on (@,@A) corre-
sponding to £ defined in Section 2.6. Using the Girsanov-Cameron-Martin formula for
d@f‘,’t/dﬁg’t (see (3.1)), we have

—A
1 7\ o)
lim ()], = lim Ep | — (dgg (w(0),w(t)) — the) —g
t—+o00 t—+o00 \/% d]P)w(O),t
| 1 A
= lim Eg (% (day (yo(v,w), yi(v,w)) — tho) - M (@)
L I o =

where we identify y;(v,w)) € M x {¢} with its projection point on M. As before, by

.. . A . . . . 0_1 0)2
Proposition 3.2, the variables %Z?L’t - M; converge in distribution to Z?LeM 2o (M) ),

where (Z9, M) is a bivariate centered normal variable with covariance matrix 3.
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Again, we have by Proposition 3.2 and the same reasoning as in the proof of Lemma 3.8

that
3
a2
SupEo(‘\/, M, ><+oo.

It follows from Lemma 3.7 that

. t 10 ) 0 MO—1E_o((M°)?)
tligloo(IH)h—tl:IllooE—o<\/%Zh7t-Mt = Ego (Zhe g )

Finally, using the fact that (Z9, MP?) has a bivariate normal distribution, we have again
1
Eg (2™ 250 MY) — 5o (ziMm0),

which is limt_>+oo(1/t)E@o(Z?L’tMg) by Proposition 3.2. O

4. INFINITESIMAL MORSE CORRESPONDENCE

In this section, we study the limit (1.3) and give an expression for the derivative of the
geodesic spray when the metric varies in R(M).

Let (M, g) be a negatlvely curved closed connected m-dimensional Riemannian manifold
as before. Let OM be the ‘geometric boundary of the universal cover space (M g). We can

identify M x OM with SM 5, the unit tangent bundle of M in metric g, by sending (z,&)
to the unit tangent vector Of the g-geodesic starting at x pointing at &.

Let A € (—1,1) — ¢* be a one-parameter family of C3 metrics on M of negative
curvature with ¢° = g. Denote by §* the G-invariant extension of ¢* to M. For each ),
the geometric boundary of (M, "), denoted OMzx, can be identified with OM since the

identity isomorphism from G = 71 (M) to itself induces a homeomorphism between aﬂgk
and OM. So each (z,&) € M x OM is also associated with the g*-geodesic spray Ygx (z,8),

the horizontal vector in TT'M which projects to the unit tangent vector of the g*-geodesic
starting at x pointing towards £. Our very first step to study the differentiability of the
linear drift under a one-parameter family of conformal changes ¢* of ¢ is to understand
the differentiable dependence of the geodesic sprays Y@v\ (x,€) on the parameter \.

For each ¢g*, there exist (g, g*)-Morse correspondence ([Anol, Gro, Mor]), the home-
omorphisms from SM, to SM» sending a g geodesic on M to a g" geodesic on M. The
(g, 9™)-Morse correspondence is not unique, but any two such maps only differ by shifts
in the geodesic flow directions (i.e., if Fy, Fy are two (g, ¢)-Morse correspondence maps,
then there exists a real valued function ¢(-) on SM, such that F; ' o Fy(v) = Dy (v)
for v € SMy), where ® is the geodesic flow map on SM, ([Anol, Gro, Mor]|, see [FF,
Theorem 1.1]).
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Let us construct a (g, g*)-Morse correspondence map by lifting the systems to their
universal cover spaces as in [Gro]. For an oriented geodesic 7 in (M ,g), denote by 07 () €
E?Mg and 07 () € (‘Nf\\fg the asymptotic classes of its positive and negative directions. The
map v+ (07 (7),07 (7)) € OME X OME establishes a homeomorphism between the set of
all oriented geodesics in (M,§) and 82(]T4/§) = (8]\\4/5 X 8%9*)\{(5,5)  Ee 8M5}. So the
natural homeomorphism D* : 82(M5) — 82(M§)\) induced from the identity isomorphism
from G to itself can be viewed as a homeomorphism between the sets of oriented geodesics
in (]\7 ,g) and (]\7 ,3"). Realize points from S]\Ajfgv by pairs (v,y), where v is an oriented
geodesic and y € v, and define a map FA S]f\\fg — S]f\zgx by sending (v,y) € S]f\\fg to

FX,y) = (D),9),

where 3/ is the intersection point of D*(v) and the hypersurface {exp; Y : Y Lv}, where

v is the vector in SyM§ pointing at 9% (y). The map Fis a homeomorphism since both
g and ¢* are of negative curvature. Returning to SMy and SMx, we obtain a map F A
Given any sufficiently small €, if ¢* is in a sufficiently small C3-neighborhood of g, then
F* is the only (g, g*)-Morse correspondence map such that the footpoint of F*(v) belongs
to the hypersurface of points {exp,Y : Y Lo, [[Y||, < €}.

Regard SMgx as a subset of TM and let T SMgn — SMg be the projection map
sending v to v/|[v||y. The map 7 records the direction information of the vectors of SM, )
in SMy. Let FA SMy — SMyx be the (g, 9™)-Morse correspondence map obtained as
above. We obtain a one-parameter family of homeomorphisms 7* o F* from SM, to SM,.
By using the implicit function theorem, de la Llave-Marco-Moriyén [LMM, Theorem A.1]
improved the differentiable dependence of 7* o F'* on the parameter \.

Theorem 4.1. (c¢f. [FF, Theorem 2.1]) There exists a C® neighborhood of g so that for
any C3 one-parameter family of C3 metrics X € (—1,1) — g¢* in it with ¢° = g, the map
A — 1 o F is C3 with values in the Banach manifold of continuous maps SMy — SM,.
The tangent to the curve ™ o F* is a continuous vector field =y on SM,.

Following Fathi-Flaminio [FF], we will call £ := Zy in Theorem 4.1 the infinitesimal
Morse correspondence at g for the curve g*. It was shown in [FF] that the vector field =
only depends on g and the differential of ¢* in A at 0. More precisely, the horizontal and
the vertical components of = are described by:

Theorem 4.2. ([FF, Proposition 2.7]) Let Z be the infinitesimal Morse correspondence
at g for the curve ¢* and let =, be the restriction of horizontal component of Z to a unit
speed g-geodesic y. Then =, is the unique bounded solution of the equation

(4.1) VAE, + R(E,, )7 + T8 — (Ts4, )4 = 0
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satisfying (Z,%) = 0 along v, where §(t) = %’y(t), V and R are the Levi-Civita connection
and curvature tensor of metric g, V* is the Levi-Civita connection of the metric ¢* and
[' = 0\V*s=0. The vertical component of = in T(SM,) is given by V4=,

We will still denote by = the G-invariant extension to 7'(S Mg) of the infinitesimal Morse-

correspondence at g for the curve ¢*. For any geodesic v in (M ,9), let N(7) be the normal
bundle of ~:

N(7) = UierNi(7), where Ni(v) = (4(1)" = {E € T\ M : (E,5(t)) = 0}.
The one-parameter family of vectors along  arising in equation (4.1)

(4.2) T(t) = (Do — (D34, 9)3) (10)), ¢ € R,

is such that Y(¢) belongs to Ny() for all t. The restriction of the infinitesimal Morse
correspondence to 7 is (2, V5Z,), with both =, and V4=, belonging to N(v) as well. In
the following, we will specify Z, and V5=, using T and a special coordinate system of
Ny¢()’s arising from the stable and unstable Jacobi fields along ~.

Let v = (z,v) be a point in TM. Recall from Subsection 2.3 the definition (2.14) of
Jacobi Fields, Jacobi tensors and, for v € SM, of the stable and unstable tensors along ~,
denoted Sy and Uy, .

For each v € SM, the vectors (Y,S,(0)Y), Y € Ny(v), (or (Y,U,L(0)Y)) generate TWJ*

(or TW3"). As a consequence of the Anosov property of the geodesic flow on SM, the
operator (U] (0)—S%,(0)) is positive and symmetric (see [Bo]). Hence we can choose vectors

X1, , Tm—1 to form a basis of Ny(7y) so that
(4.3) ((Uy(0) = 54(0))Z;, Z;) = i
Let Ji, -+, Jom—2 be the Jacobi fields with

, / | (@,8,(0)3), ifie{l,--- ,m—1}
(JZ(0)7 Jz (0)) - { (fi+l—m7 U\//(O)fi-i-l—m); lfz [= {m7 - 72m _ 2}

Since the Wronskian of two Jacobi fields remains constant along geodesics, we have

. fo, ifi,je{l,-,m—1}ord,je {m,-,2m—2};
(4'4) W(J“ Jj) o { _6i,j+1—m, if i € {1, cee M — 1} and j € {m, s 2m — 2}.
Equivalently, if we write Jg for the matrix with column vectors (Jy,--- , Jp,—1) and J for
the matrix with column vectors (Jp,, - , Jam—2), then (4.4) gives

(4.5) I, =(3,) Ty, w=soru, and J;J. — (J)*Js = —1Id.

The collection (J;(t), J/(t)),i =1,--- ,m — 1, (or (J;(t),J/(t)),i = m,--- ,2m — 2) gen-
erate TW2 (or TWi‘/“(t)). Consequently, any V(t) = (Vi(t), Va(t)) € TTM along v with
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Vi(t) € Ni(vy), i = 1,2, can be expressed as

m—1 2m—2
= Z al(t)(JZ(t), , Z bl m+1 ) Jl( ))
i=1
where (a;(t),b;i(t)),i =1---m — 1, are 2m — 2 real numbers. Writing them as two column
vectors d(t), b(t), we write any such V (t) as

V(t) = (Js(6)a(), I()a(t) + (Ju()b(t), I (£)b(1))-
To specify the infinitesimal Morse correspondence Z at ¢ for the curve ¢*, it suffices to find
the coefficients d(t), b(t) for the restriction of = along any g-geodesic 7.

Proposition 4.3. Let = be the infinitesimal Morse correspondence at g for a C3 one-
parameter family of C® metrics g with ¢° = g. Then the restriction of = to a §-geodesic

i (B (0(1), I (0)a(0) + (BulOF(0), 3, (15(E)) with
t . —+o00
(4.6) at) = / ()Y (s) ds, B(t) = /t ()X (s) ds,

— 00

where Y(s) is given by (4.2).

Proof. By the construction of Morse correspondence, for any g-geodesic v, the value of =
along ~y, denoted Z(v), belongs to N () x N(v). So, there are d(t),b(t),t € R, such that

E(y) = (Js()a(t), Ju(D)a(t)) + (Ju()b(t), I, ()b(1)).

The horizontal part =, of Z(v) is Js(t)a(t) + Ju(t)b b(t). On the other hand, the vertical

-

part of Z(v) is Ji(¢)d(t) + I/, (¢)b(t), which, by Theorem 4.2, is also
ViE, = J()a(t) + I, ()b() + Io()a () + Tu ()5 (1).

So we must have

(4.7) Js(t)a' (t) +
Differentiating V5=, = J.()a(t) + I, (£)b(t
u(t

JL6)a (1) + I, (0 () + IL(Ba(t) + T (0)

which simplifies to

Ju(t)B' () = 0.

along v and reporting it in (4.1), we obtain

t)
b(t) + R(1)Ts(£)a(t) + R(6)Tu(D)b(t) =~ (),

(4.8) I () + I, (O (1) = =T (¢)
by the defining property of Jacobi fields. Using (4.5), we solve a’, v from (4.7), (4.8) with
(4.9) a=J7, 0 =-JT.

Note that Jy(—00) = Js(+00) = 0. Finally, we recover @(t), b(t) from (4.9) by integration.
O
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For any s € R, let (K, K/) be the unique Jacobi field along a g-geodesic v such that
Ki(s) = T(s) and Ks(s) = 0.
Then
(Ks(0), K5(0)) = (D®5)7 (0, 7(s)) -
We further express = using K,’s by specifying the value of Z((0)) for any g-geodesic +.
Proposition 4.4. Let = be the infinitesimal Morse correspondence at g for a C3 one-
parameter family of C® metrics g» with ¢° = g. Then for the §-geodesic v with 7(0) = v:

0
Eﬂ»=<m@ﬂww*v<m@—M@m@Ms

—00

+o00
[0 - SU0K.(0) ],
0

0
WﬁmmzAwwmw—&@ﬂ/<mw—mwm@m3

—00

+00
Hmwm@—a@ﬂA (K,(0) — 5, (0)K.(0)) ds.

Proof. By Proposition 4.3, for any g-geodesic +,
2(1(0)) = (2,(0). (V32,)(0) = (3,(0)(0) + T, (0)5(0), F,(0)a(0) + T,(0)5(0))

where @(0),b(0) are given by (4.6). We first express @(0) using Ky’s. Let s < 0. The
Wronskian between K and any unstable Jacobi fields are preserved along the geodesics
and must have the same value at y(s) and v(0). This gives
Ji(s)Y(s) = JL(0)KL(0) — (J,)"(0)K(0).
Consequently,
(TDTHO)IL ()T (s) = KL (0) — (I3)7H0)(T}) " (0)Ks(0) = K (0) — U (0)K;(0),

where we use the fact that J/ (0) = U (0)J,(0) for the second equality. So we have
0

6@=x@/<mw—m@mww&

—00
Similarly, for any s > 0, a comparison of the Wronskian between K, and any stable Jacobi
fields at time s and 0 gives

JI(5)Y(s) = JZ(0)KL(0) — (I)"(0)K(0).
As a consequence, we have
(I 7H0)IZ ()Y (s) = K(0) — (I TH0)(T)*(0)K,(0) = K((0) — S (0)K;(0),

which gives

+o0
bwzx@A (K(0) — S, (0)K.(0)) ds.
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The formula for Z(+(0)) follows by using J(0) = J(0) and J,,(0)J%(0) = (U (0)—S%(0))~L.
O

A dynamical point of view of the integrability of the integrals in Proposition 4.4 is that
(K%(0) — UL (0)Ks(0)) (s < 0) is the stable vertical part of (D®,)~!(0,Y(s)) and hence
decays exponentially when s goes to —oo, while (K’ (0)—S%(0)K;(0)) (s > 0) is the unstable
vertical part of (D®,)~! (0, Y(s)) and thus decays exponentially when s goes to +oc.

For any curve A € (—1,1) + Cy € N (or C* € N) on some Riemannian manifold N, we
write (Cy)j = (dCA/d)\)\A o (or (CM)§ := (dC*/d\)|r=0) whenever the differential exists.

We can put a formula concerning (X ) for any C2 curve ¢* in R(M) with ¢° = g.

Proposition 4.5. Let (M, g) be a negatively curved closed connected m-dimensional Rie-
mannian manifold. Then for angC?’ one-parameter family of C3 metrics A € (—1,1) — ¢g*
in it with ¢° = g, the map X\ — X (x,€) is differentiable at A = 0 for each v = (x,&) with

+o00
(Xp)p (.6) = (0, (X5 ll7) (V) + /0 (KL(0) — S, (0)K.,(0)) ds) .

Proof. Express the homeomorphism F> as a map from M x OM to M x 8M§A with

FNx,€) = (f(2),€), Y(z,€) € SM,

where fg‘ records the change of footpoint of the (g, g*)-Morse correspondence F*. We have

1 _
i\ (X (z,6) — X5(,6))
1 [(— X (x, 1{ Xalx, _
=<+ | Xpr(,8) _gA( 3 + = ﬁ_)(g(%g)
A [ X5 (2, )7 A\ X (2,95
=: (a)x + (b)x-
When A tends to zero, (a)y tends to (0, ([[X g H)g (v)v). For (b),, we can transport Xg(z, &)
o ﬂ along two pieces of curves: the first is to follow the footpoint of the

inverse of the (g%, g)-Morse correspondence from Xz(z,¢) to Yg((fg‘)_l(x),f) with the
constraint that the vector remains within TW?(z,¢); the second is to use the (g, g)-
X5 (=, )Hg
orem 4.2, the second curve is C'! and the derivative is (Z,,(0), Vs, Z,,(0)), which is also
(35(0)@(0), J.(0)a@(0)) + (J.(0)6(0),F’,(0)b(0)) with @(0),b(0) from Proposition 4.3. The
horizontal projection of the first curve is the reverse of the second one; so it is also C! and
the horizontal part of the derivative is —=Z,,(0). Since it belongs to TW#(x,§) which is a

Morse correspondence from X (( fg‘)_l(x), €) to . By Theorem 4.1 and The-
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graph over the horizontal plane, the vertical part is also C' and the derivative is given by
54(0)(=E5,(0)). So,
lim (b)x = (0, (V5,Z5,)(0) = SL(0)Z,, (0) = (0, (T3(0) = $4(0)Ju(0)5(0))

which, by our choice of J,(0) = J4(0) and the defining property of J,(0) in (4.3), is

(0,097 @30) = (0. [ k200 - st0)K.0) as).
]

Corollary 4.6. Let (M,g) be a negatively curved closed connected Riemannian manifold
and let X € (—1,1) r—>£)‘ € R(M) be a C? curve of C3 conformal changes of the metric
d° =g. The map )\ — X (z,8) is differentiable for each v = (x,€) with

+oo
() @8 = (0. -pom v [0 - SOK.(0) ds )

where ¢ : M — R is such that ¢* = 62/\‘”+O()‘2)g, w denotes the projections w : SM — M

and @ : SM — M, and (K,(0),K.(0)) = (D®,)™ (0, Y (s)) with T = =V + (Ve, 3 ) -

Proof. Let A € (—1,1) = ¢* be such that ¢* = €2*"g. Clearly, Xl = e=?"°% and
hence ([ X ||§)g (V)v = —pow v. Write (-, )y for the g*-inner product and let V* denote
the associated Levi-Civita connection (we simply write (-,-) and V when A = 0). Each
V* is torsion free and preserves the metric inner product. Using these two properties, we

obtain Koszul’s formula, which says for any smooth vector fields X,Y,Z on M,
(4.10)
2VAY, Z)x = X(Y, 2+ Y (X, Z)x = Z(X, Y )2+ (X, Y], Z)a — (X, Z], V)2 — ([, Z], X)».

Note that §* = ezwowﬁ, which means (-, ), = 6250A°w(-, ). So, if we multiply both sides of
(4.10) with ¢~2¢"°% and compare it with the expression (4.10) for V, we obtain
AVXY,Z) = 27 (Dxe* )Y, 2) + (Dye* *F)(X, Z) = (D7¢* =)(X,Y))
+X(Y, 2+ Y(X,Z) - Z(X,Y)+ (X,Y],Z) — ([X, Z],Y) — ([Y, Z], X)
= 2(Dx¢* ow)(Y,Z) +2(Dy* ow)(X, Z) —2(Dyp* o w)(X,Y) +2(VxY, Z).
Since Z is arbitrary, this implies
VXY - VxY = (Dx¢* o@)Y + (Dyp* ow)X — (X,Y)Vyp o
for any two smooth vector fields X,Y on M. As a consequence, we have
I'xY = (Dxpow)Y + (Dypow)X — (X, Y)Vpow.
In particular, I's4 = 2(Vy 0w, %)y — Ve o w and the equation (4.1) reduces to
VZE, +R(E,,9)% — Vopow + (Vo w, i)y = 0.
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The formula for (Yﬁ))g (z,€) follows immediately by Proposition 4.5. 0

5. PROOF OF THE MAIN THEOREMS

Let A € (—1,1) = ¢ € R(M) be a C3 curve of C? conformal changes of the metric
g° = g. We simply use the superscript A (A # 0) for X, m, m, ky, P to indicate that the
metric used is ¢*, for instance, m” is the harmonic measure for the laminated Laplacian
in metric g*. The corresponding quantities for g will appear without superscripts. Let
A€ (—1,1) = ¢* be such that g* = 62@9. For each A, we have

AN =2 (A + (m — 2)ch)‘> = e 2L,

Let £ := A + Z* with Z* = (m — 2)Vy* o w. Leafwisely, Z* is the dual of the closed
form (m — 2)de* o w. Moreover, the pressure of the function —(X,Z% = 0 is positive.
Therefore, there exists § > 0 such that for || < §, the pressure of the function —(X, 7
is still posmve so that the results of Section 3 apply to L for \ € (—0,+9). Note that
7, » and h A defined in Section 1 are just the linear drift and the stochastic entropy for the
operator L with respect to metric g. Let £y and h) be the linear drift and entropy for
(M, g*) as were defined in Section 1. From the results in Sections 3 and 4, the following
limits considered in Section 1 exist:

(d@)\/d)\)’)\:(] = hm/\(&\—&\)—i- lim )\(6)\—60) = (I)Z—l-(II)Z,

A—
(dh)\/d)\)’)\:(] = hil}] /\(h)\ — h)\) + hm )\(h)\ — ho) (I)h + (II)h

This shows the differentiability in A at 0 of A — ¢) and A — h) (Theorem 1.1). In
this section, we give more details and formulas for the derivative. Namely, we prove the
following Theorem

Theorem 5.1. Let (M, g) be a negatively curved compact connected m-dimensional Rie-
mannian manifold and let A € (—1,1) — ¢* = 62@)\9 € R(M)be a C? curve of C* conformal
changes of the metric ¢° = g with constant volume. Let ¢ be such that g* = 62)‘9”0()‘2)9.
With the above notations, the following holds true.

i) The function \ — £y is differentiable at 0 with
“+oo
= (pom Xt [ 40 - 8, 00K 0) ds, VInk) dia
Mg xdM 0 '
(5.1) —|—(m—2)/ pow (Vuo+ X,Vinky) di,
My xdM

where (K4(0),K.(0)) = (D®,)71(0,Y(s)) with ¥ = —V + (Vip,4)% along the
g-geodesic v with 4(0) = (z,€) and ug is the function defined before Proposition
2.18.
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ii) The function A — hy is differentiable at 0 with

(5.2) (hy)y = (m — 2)/ pow (V(ug +Inky),Vinky,) dm

SM

where uy is the function defined before Proposition 2.18.

Proof. Observe firstly that since g* has constant volume, m | ¢ dVol = (Vol(M ) g’\))/0 =0
and therefore

(5.3) / powdm = 0.
SM

We derive the formula for (hy)j first. Let m* be the G-invariant extension to SM
of the harmonic measure corresponding to L£* with respect to metric g. Then dm? =
e~ 20 @ gm , where ¢* also denotes its G-invariant extension to M. Moreover, since there
is only a tlme change between the leafwise diffusion processes with infinitesimal operators
L£* and A?, the leafwise Martin kernel functions of the two operators are the same. (Indeed,
because L only differs from A* by multiplication by a positive function, the leafwise
positive harmonic functions of the two generators are the same. In particular, the minimal
leafwise positive harmonic functions normalized at x = w(v) are the same for L* and AX.
It is known ([Anc, Theorem 3]) that the leafwise Martin kernel functions kX(-,€) of £
(or A*) can be characterized as minimal leafwise positive > (or A*)-harmonic functions
normalized at x such that k{(y, &) goes to zero when ¥ tends to a point in the boundary
different from £. Thus, the two Martin kernel functions coincide.) Using Proposition 2.16,
we obtain

(54)  ha= / IV In k) (a, €) 2 di = / 2|V In K (a2, )| diin,

whereas here, and hereafter, the integrals with respect to m* and m* are always taken on
My x OM and we will omit the subscript of | Mo xOFT whenever there is no ambiguity. As
before, k3(-,n) should be understood as a function on W#(v) for all 5. In particular, for
n = &. Then its gradient (for the lifted metric from M to W* (v)) is a tangent vector to
W#(v). We also know kd(y,n) = k%‘(y), where k;‘ is the Martin kernel function on M for

the g*-Laplacian. Of our special interest is k3 (-, €), which we will abbreviate as k{ in the
following context.

For (hy)(, we have

(h)\)o = hm (h)\ — h)\) + hm )\(h)\ — ho) = (I)h + (II)h,

0A
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if both limits exist. It is easy to see (I), = 0 since by Proposition 2.16 and (5.4),

0, =t 3 ([I9 0K OR @it - [ 190 mR. ol di)

A—0 A

1 -
= lim [ —(e72°F — e 27°) |V In k (2, €)||* i,
A—0 A

where we use

VM kd(z,€) = e 2PV Inkd(x, ) and |V Inkd (2, )3 = e 227°% |V In kD (z, ).
Thus,
(5.5) (1), = 0.

For (II),, we have by Theorem 3.9 that it equals to lim¢, oo (1/t)Eq(Zp,:M;). Recall
that x; belongs to W#(xg). The process

_ ¢
(5.6) Zh = flx) - Al - [ (AR ds

0
where f; = —Ink, — u; and v = x¢ and the function u; is such that
(5.7) Aup = |Vinky|? —

is a martingale with increasing process 2|V In ky + Vuy || (x¢) dt. It is true by Proposition
3.2 that

lim E g(Zn M) = lim E 5(ZiMy),

t——+oo t t—+oo t

where .
1
M =5 [ (2 widB)s,
0

Note that (Z*)), the G-invariant extension of (m — 2)V o, is a gradient field. So, if we
write ¢ = %( — 2)¢ o w, we have by Ito’s formula that

(5.8) M, = (xe) — (x0) — /0 (A)(x) ds

is a martingale with increasing process 2||V#||%. Using (5.6), (5.8) and a straightforward
computation using integration by parts formula for (aZ} + bM;)?, a,b = 0 or 1, we obtain

. t
Z:M; = 2/ (V f1, V) (xs) ds
0
and hence

lim E 5(ZiMy) :2/<Vf1,v¢> din = —2/<Vlnkv,V1/1> dﬁl—2/<vu1,w> dn.

t—+oo t

Here,

—2/<v1nkv,v¢> dim = 2/

SM

Div(Vy) dm = (m — 2) /SM A(pow) dm =0,
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where the first equality is the integration by parts formula and m is identified with the
restriction of m to My x OM, and the last one holds because m is A-harmonic. We finally
obtain

(h,\)f):—(m—Z)/ (Vuy, Ve o ) dm.

SM

Observe that:
2(Vu,Voow) = A(mpow)— Auy)pow —uiApow
(5.9) = A(umpow)—pow||Vinky||? + hopow — u1Ag o w,

where we use the defining property (5.7) of u;. When we take the integral of (5.9) with
respect to m, the first term vanishes because m is A harmonic, the second term gives
— [ pow|VInky||? dm, the third term vanishes by (5.3). Finally for the last term, by
using the integration by parts formula:

(5.10) / uAv dm = / vAu dm + 2/ v(Vu,Vinky) dm,
SM SM SM
we have

/ulAgpowdm = / pow (Auy +2(Vuy,Vinky)) dm
SM SM

_ / pow (|Vinky|? +2(Vuy, Vinky)) dm.
SM

Next, we derive the formula for (£y). Clearly,
(6o = lim +(€x — £y) + lim +(€5 = bo) =: (I), + (IT),,

if both limits exist. Here the ¢ » defined in the introduction is just the linear drift for the

operator L£* with respect to metric g. The (II), term can be analyzed similarly as above
for (II),. Indeed, by Theorem 3.3, (II), = lim¢, o0 (1/t)Eg(ZesMy). The process

(5.11) Z) = fo(xi) — fo(xo) — /t(Afo)(Xs) ds,
0

where fo = by — ug and the function wug is such that

(5.12) AUO = —DiV(X) — 60

is a martingale with increasing process 2||X + Vug||?(x;) dt. It is true by Proposition 3.1
that

1 1~
lim ;E@(Z&tMt) = t—l}—i-moo ?E@(Zt Mt),

t—+o00
where My, by (5.8), is a martingale with increasing process 2||V¢||?. So using (5.8), (5.11)
and a straightforward computation using integration by parts formula for (aZ? + bM;)?,
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a,b=0 or 1, we obtain
_ t
Z;M,; =2 / (V fo, Vi) (xs) ds
0
and hence (recall that Vb, = —X (v), see (2.13))

lim lE@(Zﬁv[t) = 2 / (Vfo, Vi) dm

t——+oo t
= —(m-2) (/(Y,V((pow)) dm + /<VUO,V(<,00@)> dﬁl) .
Using the formula Div(¢ ow X) = ¢ o w DivX + (V(p o w), X), we obtain

/(Y,V(g@ow» dm = /(Div(cpow X)—pow DivX) dm

= —/gp ow ((X,VInky)+ DivX) dm,
where we used the foliated integration by parts formula [ DivY dm = — [(Y,VInk,) dm.
Observe that:
2(Vug,V(pow)) = Alug pow)— Aug)pow — uglA(pow)

= Aug pow)+pow Div(X) + yp o w — upA(p o w),

where we use the defining property (5.12) of ug. When we report in the integration
2 [(Vuy,V(p o w)) dm, the first term vanishes because m is A harmonic, the second
term is — [ ¢ owAug dm by (5.12) and the third term vanishes by (5.3). Again, using the
integration by parts formula (5.10) for [ugA(yp o w) dm, we have

/(Vuo, V(pow)) dm = — /cp o w(Aug + (Vug, VInk)) dm
Finally, we obtain

(Im, = (m—2)/<pow(Auo+Div7+(Vuo +X,Vinky)) dm

= (m—2)/<pow<Vuo+Y,Vlnkv> dm,

where the last equality holds by using (5.12) and (5.3).

For (I),, we first observe the convergence of Martin kernels and harmonic measures.
For any (z,£) =: v € M x OM, the Martin kernel function k{(y, &) converges to ky(y,£)
pointwisely as A goes to zero. For small A and fixed x, the function £ — VIn k‘fc"g is Holder

continuous on &M for some uniform exponent ([H1]). As a consequence, we have the
convergence of V In k:f‘, (and hence V* In k:f‘,) to V1n ky, when A tends to zero. By uniqueness,
the harmonic measure m” converges weakly to m (A — 0) as well. By Proposition 2.9,

b\ = /<7A,vA Ink)), dm* = /(Y{vmm din.
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. . l —)\_—0 ~ . l ~ A ~\ 7
@M, = /1\1—%)\ (X" —X"),Vink,) dm+)l\1ir%)/\</<X,Vlnkv> dm E,\>

— (), + V),
if (III), and (IV), exist. The quantity (III),, by Corollary 4.6, is
/<—¢ 0w X +/ (KL(0) — S, (0)K.(0)) ds, VIn ky) difs.
0
By Proposition 2.9,
0= —/ (DIvE + (2}, X))
For (IV),, let us first calculate [ DivX dm. We have
/ DivX dm* = / =27 °"DivX dm
= /e_wkowDiV)‘y dm? +/ (DivY—DiV)‘Y) dm*
= /6_2¢A°wDiVAY dm* — m/(V(gpA ow),X) dm?,

where the last equality holds since (Div* — Div)(:) = m(V(p* o @, -) for g* = 29" g. Note
that

DivA(e_z“DAOWY) = e 207 owmDIAY — 26—2@A°W(vk(gﬂ ow), X)x.
So we have

/DivY dm* = /DivA(e_%kOWY) dm? +/26_2¢AOW(VA<,0)‘ 0w, X)y dm’
—m/(V(cp)‘ ow), X) dm*
= - /<Y, VA k) dm® — (m — 2) /(V(go)‘ ow),X) dm*

S / (X, Vinkd) di — (m — 2) / (V(p* 0 @), X) diir,

where, for the second equality, we use the leafwise integration by parts formula f Div'Y dm? =
— [{Y,V*Inkg), dm?. This gives

(5.13) 0y = /<7,v1n k) dm?.,
Finally, we obtain

1 — _ — N
Iv), = /l\in%]/ X(eww ~1)(X,VInk}) dm* = 2/(p ow (X,Vink,) dm.
—



DIFFERENTIATING THE STOCHASTIC ENTROPY IN NEGATIVELY CURVED SPACES 55

Proof of Theorem 1.2. Let (M, g) be a negatively curved compact connected Riemannian
manifold. Define the volume entropy v, by:
In Vol(B(x,r))

vy = lim ————"
r——4o0o r

where B(z,7) is the ball of radius r in M. we have ly < g, hy < vg (see [LS1] and the

references within). In particular, if A € (—1,1) = ¢g* € R(M) is a C® curve of conformal
changes of the metric ¢ = g,

2
fg,\ < Ugh, th < Uga-

Assume (M, g") is locally symmetric. Then Ly = vgo and hgo = 1)30. Moreover it is

g
known (Katok [Ka]) that vg is a global minimum of the volume entropy among metrics g

which are conformal to ¢° and have the same volume and (Katok-Knieper-Pollicott-Weiss
[KKPW]) that A + v, is differentiable. In particular v s is critical at A = 0. Since, by
Theorem 1.1, £,» and hgx are differentiable at A = 0, they have to be critical as well. [

Remark 5.2. We can also show Theorem 1.2 using the formulas in Theorem 5.1. Indeed,
the conclusion for the stochastic entropy follows from (5.2) since for a locally symmetric
space, the solutions u; to (5.7) are constant ([L2]) and ||V Inky|? is also constant. The
derivative is proportional to [ ¢ o w dm, which vanishes by (5.3).

We also see that the stochastic entropy depends only on the volume for surfaces (m = 2).
For the drift ¢, it is true that for a locally symmetric space, V In ky, = —¢Vb,, everywhere.
The solutions ug to (5.12) are constant for a locally symmetric space as well ([L2]). So
(5.1) reduces to

+00
(0 = — /M aﬁom/o (K,(0) — S,(0)K. (0)) ds, Vlnky) di,

which is zero because the vector f0+°O (K%(0) — S%,(0)K4(0)) ds is orthogonal to v and hence
is orthogonal to V1n k.
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