
HAL Id: hal-00863933
https://hal.science/hal-00863933v1

Preprint submitted on 20 Sep 2013 (v1), last revised 11 Aug 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differentiating the stochastic entropy for compact
negatively curved spaces under conformal changes

Francois Ledrappier, Lin Shu

To cite this version:
Francois Ledrappier, Lin Shu. Differentiating the stochastic entropy for compact negatively curved
spaces under conformal changes. 2013. �hal-00863933v1�

https://hal.science/hal-00863933v1
https://hal.archives-ouvertes.fr


DIFFERENTIATING THE STOCHASTIC ENTROPY FOR COMPACT

NEGATIVELY CURVED SPACES UNDER CONFORMAL CHANGES

FRANÇOIS LEDRAPPIER AND LIN SHU

Abstract. We consider the universal cover of a closed connected Riemannian manifold
of negative sectional curvature. We show that the linear drift and the stochastic entropy
are differentiable under any C

3 one-parameter family of C
3 conformal changes of the

original metric.

1. Introduction

Let (M,g) be anm-dimensional closed connected Riemannian manifold, and π : (M̃ , g̃) →
(M,g) its universal cover endowed with the lifted Riemannian metric. The fundamental

group G = π1(M) acts on M̃ as isometries such that M = M̃/G.

We consider the Laplacian ∆ := Div∇ on smooth functions on (M̃ , g̃) and the corre-

sponding heat kernel function p(t, x, y), t ∈ R+, x, y ∈ M̃ , which is the fundamental solution

to the heat equation ∂u
∂t

= ∆u. Denote by Vol the Riemannian volume on M̃ . The fol-
lowing quantities were introduced by Guivarc’h [Gu] and Kaimanovich [K1], respectively,

and are independent of x ∈ M̃ :

• the linear drift ℓ := limt→+∞
1
t

∫
dg̃(x, y)p(t, x, y) dVol(y).

• the stochastic entropy h := limt→+∞−1
t

∫
p(t, x, y) ln p(t, x, y) dVol(y).

Let {gλ = e2ϕ
λ
g : |λ| < 1} be a one-parameter family of conformal changes of g0 = g,

where ϕλ’s are real valued functions on M such that (λ, x) 7→ ϕλ(x) is C3. Denote by
ℓλ, hλ the linear drift and the stochastic entropy for (M,gλ). We show

Theorem 1.1. Let (M,g) be a negatively curved closed connected Riemannian manifold.
With the above notation, the functions λ 7→ ℓλ and λ 7→ hλ are differentiable at 0.

For each λ ∈ (−1, 1), let ∆λ be the Laplacian of (M̃, g̃λ) with heat kernel pλ(t, x, y), t ∈
R+, x, y ∈ M̃ , and the associated Brownian motion ωλ

t , t ≥ 0. The relation between ∆λ
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and ∆ is easy to be formulated using gλ = e2ϕ
λ
g:

∆λ = e−2ϕλ
(
∆+ (m− 2)∇kϕλ∇k

)
=: e−2ϕλ

Lλ,

where we still denote ϕλ its lift to M̃ . Let p̂λ(t, x, y), t ∈ R+, x, y ∈ M̃ , be the heat kernel

of the diffusion process ω̂λ
t , t ≥ 0, corresponding to the operator Lλ in (M̃, g̃). We define

• ℓ̂λ := limt→+∞ 1
t

∫
dg̃(x, y)p̂

λ(t, x, y) dVol(y).

• ĥλ := limt→+∞−1
t

∫
p̂λ(t, x, y) ln p̂λ(t, x, y) dVol(y).

It is clear that the following hold true providing all the limits exist:

(dℓλ/dλ)|λ=0 = lim
λ→0

1

λ
(ℓλ − ℓ̂λ) + lim

λ→0

1

λ
(ℓ̂λ − ℓ0) =: (I)ℓ + (II)ℓ,

(dhλ/dλ)|λ=0 = lim
λ→0

1

λ
(hλ − ĥλ) + lim

λ→0

1

λ
(ĥλ − h0) =: (I)h + (II)h.

Here, loosely speaking, (I)ℓ and (I)h are the infinitesimal drift and entropy affects of si-
multaneous metric change and time change of the diffusion, while (II)ℓ and (II)h are the
infinitesimal responses to the adding of drifts to ω0

t .

To analyze (I)ℓ and (I)h, we express the above linear drifts and entropies using the
geodesic spray, the Martin kernel and the exit probability of the Brownian motion at
infinity. It is known ([K1]) that

ℓλ =

∫

M0×∂M̃

〈Xλ
,∇λ ln kλξ 〉λ dm̃λ, hλ =

∫

M0×∂M̃

‖∇λ ln kλξ ‖2λ dm̃λ,(1.1)

where M0 is a fundamental domain of M̃ , ∂M̃ is the geometric boundary of M̃ , X
λ
is the

g̃λ-geodesic spray (i.e., X
λ
(x, ξ) is the unit tangent vector of the g̃λ-geodesic starting from

x pointing at ξ), kλξ (x) is the Martin kernel function of ωλ
t and m̃λ is the harmonic measure

associated with ∆λ. (Exact definitions will appear in Sec. 2.) Similar formulas also exist

for ℓ̂λ and ĥλ (see Proposition 3.5 and the second part of the proof of Theorem 5.7):

(1.2) ℓ̂λ =

∫
〈X0

,∇0 ln kλξ 〉0 dm̂λ, ĥλ =

∫
‖∇0 ln kλξ (x)‖20 dm̂λ,

where m̂λ is the harmonic measure related to the operator Lλ. The quantity (I)h turns
out to be zero since the norm and the gradient changes cancel with the measure change,
while the Martin kernel function remains the same under time rescaling of the diffusion
process. But the metric variation is more involved in (I)ℓ as we can see from the formulas

in (1.1) and (1.2) for ℓλ and ℓ̂λ. Using the existing results of Jacobi fields and the (g, gλ)-
Morse correspondence maps (see [Ano, Gro, Mor] and [FF]), which are homeomorphisms
between the unit tangent bundle spaces in g and gλ metrics preserving the geodesics on
M , we are able to identify the differential

(1.3)
(
X

λ
)′
0
(x, ξ) := lim

λ→0

1

λ

(
X

λ
(x, ξ)−X

0
(x, ξ)

)
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using the stable and unstable Jacobi tensors and a family of Jacobi fields arising naturally
from the infinitesimal Morse correspondence (Proposition 5.5 and Corollary 5.6). As a
consequence, we can express (I)ℓ using kξ, m̃ and these terms (Theorem 5.7).

If we continue to analyze (II)ℓ and (II)h using (1.1) and (1.2), we have the problem of
showing the regularity in λ of the gradient of the Martin kernels. We avoid this by using
an idea from Mathieu ([Ma]) to study (II)ℓ and (II)h along the diffusion processes. For

every point x ∈ M̃ and almost every (a.e.) g̃-Brownian motion path ω0 starting from x, it
is known ([K1]) that

(1.4) lim
t→+∞

1

t
dg̃(x, ω

0
t ) = ℓ0, lim

t→+∞
−1

t
lnG(x, ω0

t ) = h0,

where G(·, ·) on M̃×M̃ denotes the Green function for g̃-Brownian motion. A further study
on the convergence of the limits of (1.4) in [L2] showed that there are positive numbers
σ0, σ1 so that the distributions of the variables

Zℓ,t(x) =
1

σ0
√
t

[
dg̃(x, ω

0
t )− tℓ0

]
, Zh,t(x) =

1

σ1
√
t

[
− lnG(x, ω0

t )− th0
]

are asymptotically close to the normal distribution as t goes to infinity. Note that all ω̂λ
t

starting from x can be simultaneously represented as random processes on the probability
space (Θ,Q) of a standard m-dimensional Euclidean Brownian motion. By using the
Girsanov-Cameron-Martin formula on manifolds (cf. [El]), we show

(1.5) (II)ℓ = lim
t→+∞

E(Zℓ,tMt) and (II)h = lim
t→+∞

E(Zh,tMt),

where E means the expectation and each Mt is a random process on (Θ,Q) recording the
change of metrics along the trajectories of Brownian motion to be specified in Sec. 5. We
will further specify (II)ℓ and (II)h in Theorem 5.7 using properties of martingales and the
Central Limit Theorems for the linear drift and the stochastic entropy.

An immediate consequence of Theorem 1.1 is that Dλ := hλ/ℓλ, which is proportional 1

to the Hausdorff dimension of the distribution of the Brownian motion ωλ at the infinity

boundary of M̃ ([L1]), is also differentiable in λ. Let ℜ(M) be the manifold of negatively
curved C3 metrics on M . Another consequence of Theorem 1.1 is that

Theorem 1.2. Let (M,g) be a negatively curved compact connected Riemannian manifold.
If it is locally symmetric, then for any C3 curve λ ∈ (−1, 1) 7→ gλ ∈ ℜ(M) of conformal
changes of the metric g0 = g with constant volume,

(dhλ/dλ)|λ=0 = 0, (dℓλ/dλ)|λ=0 = 0.

In case M is a Riemannian surface, Theorem 1.2 for stochastic entropy does not provide
any criterion information for locally symmetric spaces. This is because any g ∈ ℜ(M) is a
conformal change of the metric with constant curvature by the Uniformization Theorem.

1
Dλ is 1

ι
the Hausdorff dimension of the exit measure for the ι-Busemann distance (cf. Sec. 4.2).
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The above calculation yields dhλ/dλ ≡ 0, which implies the stochastic entropy remains the
same for g ∈ ℜ(M) with constant volume.

WhenM has dimension at least 3, it is interesting to know whether the converse direction
of Theorem 1.2 for the stochastic entropy holds. We have the following question.

Let (M,g) be a negatively curved compact connected Riemannian manifold with dimen-
sion greater than 3. Do we have that (M,g) is locally symmetric if and only if for any C3

curve λ ∈ (−1, 1) 7→ gλ ∈ ℜ(M) of constant volume with g0 = g, the mapping λ 7→ hλ is
differentiable and has critical point at 0?

We will present the proof of Theorem 1.1 in a more general setting. In Sec. 2, we give
some basic properties of harmonic measures for an operator L subordinate to the stable
foliation from [H2]. The corresponding formulas and the Central Limit Theorems for the
linear drift and the stochastic entropy for L will appear in Sec. 3 (Proposition 3.5 and
Proposition 3.6). In Sec. 4, we proceed to study the regularity of the linear drift and the
stochastic entropy under the change of the drift part of the operator L (Theorem 4.3 and
Theorem 4.9). As an application, we will obtain (1.5). In Sec. 5, we will first introduce
a special Morse correspondence map and characterize it using stable and unstable Jacobi
fields (Proposition 5.3 and Proposition 5.4). This step is important to valid the differential
in (1.3) (Proposition 5.5 and Corollary 5.6). Following the argument mentioned above, we
will obtain explicit formulas for (dℓλ/dλ)|λ=0 and (dhλ/dλ)|λ=0 in Theorem 5.7, which, in
particular, will imply Theorem 1.1. Finally, Theorem 1.2 can be deduced either using the
formulas in Theorem 5.7 or merely using Theorem 1.1 and the existing results concerning
the regularity of volume entropy for compact negatively curved spaces under conformal
changes from [Ka, KKPW].

2. Harmonic measures for the stable foliation

Let (M̃, g̃) be the universal cover space of (M,g), a negatively curved m-dimensional
closed connected Riemannian manifold with fundamental group G.

Two geodesics in M̃ are said to be equivalent if they remain a bounded distance apart

and the space of equivalent classes of unit speed geodesics is the geometric boundary ∂M̃ .

For each (x, ξ) ∈ M̃ × ∂M̃ , there is a unique unit speed geodesic γx,ξ starting from x
belonging to [ξ], the equivalent class of ξ. The mapping ξ 7→ γ̇x,ξ(0) is a homeomorphism

π−1
x between ∂M̃ and the unit sphere SxM̃ in the tangent space at x to M̃ . So we will

identify SM̃ , the unit tangent bundle of M̃ , with M̃ × ∂M̃ .

Consider the geodesic flow Φt on SM̃ . For each v = (x, ξ) ∈ SM̃ , its stable manifold
with respect toΦt, denotedW

s(v), is the collection of initial vectors w of geodesics γw ∈ [ξ]

and can be identified with M̃×{ξ}. Extend the action of G continuously to ∂M̃ . Then SM ,

the unit tangent bundle of M , can be identified with the quotient of M̃ × ∂M̃ under the
diagonal action of G. Clearly, for ψ ∈ G, ψ(W s(v)) =W s(Dψ(v)) so that the collection of
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W s(v) defines a foliation W on SM , the so-called stable foliation of SM . The leaves of the

stable foliation W are quotients of M̃ , they are naturally endowed with the Riemannian
metric induced from g̃. For v ∈ SM , let W s(v) be the leaf of W containing v. Then
W s(v) is a smoothly immersed submanifold of SM depending continuously on v in the
C3-topology ([SFL]).

A differential operator L on (the smooth functions on) SM with continuous coefficients
and L1 = 0 is said to be subordinate to the stable foliation W, if for every smooth function
f on SM the value of L(f) at v ∈ SM only depends on the restriction of f to W s(v). A
Borel measure m on SM is called L-harmonic if it satisfies

∫
L(f) dm = 0

for every smooth function f on SM . If the restriction of L to each leaf is elliptic, it is true
by [Ga] that there always exist harmonic measures and the set of harmonic probability
measures is a non-empty weak∗ compact convex set of measures on SM . A harmonic
probability measure m is ergodic if it is extremal among harmonic probability measures.

In this paper, we are interested in the case L = ∆ + Y , where ∆ is the laminated

Laplacian and Y is a section of the tangent bundle of W over SM of class Ck,α
s for some

k ≥ 1 and α ∈ [0, 1) in the sense that Y and its leafwise jets up to order k along the leaves
of W are Hölder continuous with exponent α ([H2]). Let m be an L-harmonic measure.

We can characterize it by describing its lift on SM̃ .

Lift L to an operator on SM̃ = M̃×∂M̃ which we shall denote with the same symbol. It

defines a Markovian family of probabilities on Ω+, the space of paths of ω : [0,+∞) → SM̃ ,
equipped with the smallest σ-algebra A for which the projections Rt : ω 7→ ω(t) are

measurable. Indeed, for v = (x, ξ) ∈ SM̃ , let Lv denote the laminated operator of L on

W s(v). It can be regarded as an operator on M̃ with corresponding heat kernel pv(t, y, z),

t ∈ R+, y, z ∈ M̃ . Define

p(t, (x, ξ), d(y, η)) = pv(t, x, y)dVol(y)δξ(η),

where δξ(·) is the Dirac function at ξ. Then the diffusion process on W s(v) with infinites-
imal operator Lv is given by a Markovian family {Pw}w∈M̃×{ξ}, where for every t > 0 and

every Borel set A ∈ M̃ × ∂M̃ we have

Pw ({ω : ω(t) ∈ A}) =
∫

A

p(t,w, d(y, η)).

The following concerning L-harmonic measures holds true ([Ga, H2]).

Proposition 2.1. Let m̃ be the G-invariant measure which extends an L-harmonic mea-

sure m on M̃ × ∂M̃ . Then
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i) the measure m̃ satisfies, for all f ∈ C2
c (M̃ × ∂M̃),

∫

M̃×∂M̃

(∫

M̃×∂M̃

f(y, η)p(t, (x, ξ), d(y, η))

)
dm̃(x, ξ) =

∫

M̃×∂M̃

f(x, ξ) dm̃(x, ξ);

ii) the measure P =
∫
Pv dm̃(v) on Ω+ is invariant under the shift map {σt}t∈R+ on

Ω+, where σt(ω(s)) = ω(s+ t) for s > 0 and ω ∈ Ω+;

iii) the measure m̃ can be expressed locally at v = (x, ξ) ∈ SM̃ as dm̃ = k(y, η)(dy ×
dν(η)), where ν is a finite measure on ∂M̃ and, for ν-almost every η, k(y, η) is a

positive function on M̃ which satisfies ∆(k(y, η)) −Div(k(y, η)Y (y, η)) = 0.

Let m be an L-harmonic measure and m̃ be its G-invariant extension in SM̃ . Choose a
fundamental domain M0 of M̃ and identify SM with M0 × ∂M̃ . We normalize m̃ so that

m̃(M0 × ∂M̃) = 1. Let dW denote the leafwise metric on the stable foliation of SM̃ . Then

it can be identified with dg̃ on M̃ on each leaf. We define

ℓL(m) := lim
t→+∞

1

t

∫

M0×∂M̃

dW((x, ξ), (y, η))p(t, (x, ξ), d(y, η)) dm̃(x, ξ),

hL(m) := lim
t→+∞

−1

t

∫

M0×∂M̃

(lnp(t, (x, ξ), (y, η))) p(t, (x, ξ), d(y, η)) dm̃(x, ξ).

Equivalently, by using P in Proposition 2.1, we see that

ℓL(m) = lim
t→+∞

1

t

∫

ω(0)∈M0×∂M̃

dW(ω(0), ω(t)) dP(ω),

hL(m) = lim
t→+∞

−1

t

∫

ω(0)∈M0×∂M̃

lnp(t, ω(0), ω(t)) dP(ω).

Call ℓL(m) the linear drift of L for m, and hL(m) the entropy of L for m. In case there
is a unique L-harmonic measure m, we will write ℓL := ℓL(m) and hL := hL(m) and call
them the linear drift and the entropy for L, respectively.

Clearly, hL(m) is nonnegative by definition. We are interested in the case that hL(m) is

positive. Call L weakly coercive, if Lv, v ∈ SM̃ , are weakly coercive in the sense that there
are a number ε > 0 (independent of v) and a positive (Lv + ε)-superharmonic function on

M̃ . For instance, if Y ≡ 0, then L = ∆ is weakly coercive and it has a unique L-harmonic

measure m, whose lift in SM̃ satisfies dm̃ = dx × dm̃x, where dx is proportional to the

volume element and m̃x is the hitting probability at ∂M̃ of the Brownian motion starting
at x. Note that G = π1(M) is non-amenable for any compact connected negatively curved
M and hence λ0, the bottom of the spectrum of Laplacian, is positive by Brooks’ result
([Br]). So, the entropy hL(m), which is not smaller than 2λ0, is positive as well. In general,
there exist weakly coercive L’s which admit uncountably many harmonic measures with
zero entropy ([H2]).
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Let L be such that Y ∗, the dual of Y in the cotangent bundle of SM , satisfies dY ∗ = 0
leafwisely. Let X be the geodesic spray on M and let

pr(−〈X,Y 〉) := sup

{
hµ −

∫
〈X,Y 〉 dµ : µ ∈ M

}

be the pressure of the function −〈X,Y 〉 on SM with respect to the geodesic flow Φt, where
M is the set of Φt-invariant probability measures on SM and hµ is the entropy of µ with
respect to Φt. It was shown in [H2] that hL(m) is positive if and only if pr(−〈X,Y 〉) is
positive, and each one of the two positivity properties will imply that L is weakly coercive,
m is the unique L-harmonic measure and ℓL(m) is positive.

3. A Central limit theorem for the linear drift and the stochastic

entropy

Let L = ∆ + Y be such that Y has closed dual and pr(−〈X,Y 〉) > 0. Let m be the
unique L-harmonic measure. Since it is ergodic, we have for P-almost all paths ω ∈ Ω+,

(3.1) lim
t→+∞

1

t
dW(ω(0), ω(t)) = ℓL.

Similarly, we can characterize hL using the Green function along the trajectories. For each

v = (x, ξ) ∈ M̃ × ∂M̃ , we can regard Lv as an operator on M̃ . Since it is weakly coercive,

there exists the corresponding Green function Gv(·, ·) on M̃×M̃ . Define the Green function

G(·, ·) on SM̃ × SM̃ as being

G((y, η), (z, ζ)) := G(y,η)(y, z)δη(ζ), for (y, η), (z, ζ) ∈ SM̃,

where δη(·) is the Dirac function at η. We have the following proposition concerning hL.

Proposition 3.1. Let L = ∆ + Y be such that Y has closed dual and pr(−〈X,Y 〉) > 0.
Then for P-a.e. paths ω ∈ Ω+, we have

hL = lim
t→+∞

−1

t
lnp(t, ω(0), ω(t))(3.2)

= lim
t→+∞

−1

t
lnG(ω(0), ω(t)).(3.3)

The main difficulty to show the proposition comes from the lack of superadditivity of
− lnp along the trajectories. We will use the trick of [L3] to show that there exists a
convex function hL(s), s > 0, such that for P-a.e. paths ω ∈ Ω+, for any s > 0,

hL(s) = lim
t→+∞

−1

t
lnp(st, ω(0), ω(t)).(3.4)

Setting s = 1 in (3.4) immediately gives (3.2). We observe

G(ω(0), ω(t)) = t

∫ +∞

0
p(st, ω(0), ω(t)) ds,
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so (3.3) will follow from (3.2) once we show that for P-almost all paths ω ∈ Ω+,

(3.5) lim
t→+∞

−1

t
lnG(ω(0), ω(t)) = inf

s>0
{hL(s)} = hL.

To show (3.4) and (3.5), we need some detailed descriptions of pv(t, x, y). First, we have
a variant of Moser’s parabolic Harnack inequality ([Mos]) (see [St, T] and also [Sa]).

Lemma 3.2. There exist A, ς > 0 such that for any v ∈ SM̃ , t ≥ 1, 1
2 ≤ t′ ≤ 1,

x, x′, y, y′ ∈ M̃ with d(x, x′) ≤ ς, d(y, y′) ≤ ς,

(3.6) pv(t, x, y) ≥ Apv(t− t′, x′, y′).

Next, we have the exponential decay property of pv(t, x, y) in time t.

Lemma 3.3. ([H2, p.76])There exist B, ε > 0 independent of v such that

(3.7) pv(t, x, y) ≤ B · e−εt, for all y ∈ M̃ and t ≥ 1.

Let b > 0 be a upper bound of |Y |. We have the following lower bound for pv(t, x, y).

Lemma 3.4. ([W, Theorem 3.1]) Let β =
√
K(m − 1) + b, where K ≥ 0 is such that

Ricci ≥ −K(m− 1). Then for any v ∈ SM̃ , t, σ > 0 and x, y ∈ M̃ , we have

(3.8) pv(t, x, y) ≥ (4πt)−
m
2 exp

[
−(

1

4t
+

σ

3
√
2t
)d2(x, y)− β2t

4
−
(
β2

4σ
+

2mσ

3

)√
2t

]
.

Proof of Proposition 3.1. We first show (3.4). Given s > 0, for ω ∈ Ω+, define

F (s, ω, t) := − ln(p(st− 1, ω(0), ω(t)) · Ã),

where Ã = A2 inf
z∈M̃ Vol(B(z, ς)) and A, ς are as in Lemma 3.2. Then for t, t′ ≥ 1/s,

ω ∈ Ω+,

F (s, ω, t+ t′) ≤ F (s, ω, t) + F (s, σt(ω), t
′).

This follows by the semi-group property of p and (3.6) since

p
(
s(t+ t′)− 1, ω(0), ω(t + t′)

)
=

∫
p(st− 1

2
, ω(0), z)p(st′ − 1

2
, z, ω(t + t′)) dz

≥
∫

B(ω(t),ς)

p(st− 1

2
, ω(0), z)p(st′ − 1

2
, z, ω(t+ t′)) dz

≥ Ãp(st− 1, ω(0), ω(t))p(st′ − 1, ω(t), ω(t + t′)).

For 0 < t1 < t2 < +∞, by (3.8), there exists a constant C > 0, depending on t1, t2 and the

curvature bounds, such that for any v ∈ SM̃ , x, y ∈ M̃ , any t, t1 ≤ t ≤ t2,

C exp

[
−(

1

4t1
+

σ

3
√
2t1

)d2(x, y)

]
≤ pv(t, x, y).
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As a consequence, we have

E

(
sup

1+ 1
s
≤t≤2+ 1

s

F (s, ω, t)

)
< (

1

4s
+

σ

3
√
2s

)E

(
sup

1+ 1
s
≤t≤2+ 1

s

d2(ω(0), ω(t))

)
− ln(CÃ),

where the second expectation term is bounded by a multiple of its value in a hyperbolic
space with curvature the lower bound curvature of M and is finite (cf. [DGM]). So by
the Subadditive Ergodic Theorem, there exists hL(s) such that for P-a.e. ω ∈ Ω+,

(3.9) hL(s) = lim
t→+∞

−1

t
lnp(st− 1, ω(0), ω(t)).

Using the semi-group property of p and (3.6) again, we obtain that for 0 < a < 1, s1, s2 > 0,

p((as1 + (1− a)s2)t− 1, ω(0), ω(t))

≥ Ãp(as1t− 1, ω(0), ω(at))p((1 − a)s2t− 1, ω(at), ω(t)).

It follows that hL(·) is a convex function on R+ and hence is continuous.

Finally, let D be a countable dense subset of R+. There is a measurable set E ⊂ Ω+

with P(E) = 1 such that for ω ∈ E, (3.9) holds true for any s ∈ D. Let ω ∈ Ω+ be such
an orbit. Given any s1 < s2 (s1, s2 ∈ D), let t > 0 be large, then we have by (3.6) that

p(s1t, ω(0), ω(t)) ≤ A(s1−s2)t−1p(s2t− 1, ω(0), ω(t)).

So for s′ < s < s′′(s′, s′′ ∈ D), and ω ∈ E,

hL(s
′′) + (s′′ − s) lnA ≤ lim inf

t→+∞
−1

t
lnp(st, ω(0), ω(t))

≤ lim sup
t→+∞

−1

t
lnp(st, ω(0), ω(t))

≤ hL(s
′)− (s− s′) lnA.

Letting s′, s′′ go to s on both sides, it gives (3.4) by continuity of the function hL.

Next, we show (3.5). Since

G(ω(0), ω(t)) = t

∫ +∞

0
p(st, ω(0), ω(t)) ds,

it is easy to see from (3.4) that for ω ∈ E,

lim sup
t→+∞

−1

t
lnG(ω(0), ω(t)) ≤ inf

s>0
{hL(s)}.

For the reverse inequality, we observe that for s1, t > 1, we have by (3.7) that
∫ +∞

s1

p(st, ω(0), ω(t)) ds ≤ B

∫ +∞

s1

e−ǫst ds =
1

ǫt
Be−ǫs1t.
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So for any small ǫ1 > 0, if s1 and t are large enough, then
∫ +∞

s1

p(st, ω(0), ω(t)) ds ≤ e−(infs>0{hL(s)}−ǫ1)t.

Consequently, we see that for s1 and t large,

G(ω(0), ω(t)) = t

(∫ s1

0
p(st, ω(0), ω(t)) ds+

∫ +∞

s1

p(st, ω(0), ω(t)) ds

)

≤ t(s1 + 1)e−(infs>0{hL(s)}−ǫ1)t,

from which we derive that for ω ∈ E,

lim inf
t→+∞

−1

t
lnG(ω(0), ω(t)) ≥ inf

s>0
{hL(s)}.

Finally, we have infs>0{hL(s)} = hL(1) since for any typical v ∈ SM ,

hL(s)− hL(1) = lim
t→+∞

−1

t

∫
pv(t, x, y) ln

pv(st, x, y)

pv(t, x, y)
dy

≥ lim
t→+∞

1

t

∫
pv(t, x, y)

(
1− pv(st, x, y)

pv(t, x, y)

)
dy

≥ 0.

�

Now we have that for P-a.e. paths ω ∈ Ω+, both (3.1) and (3.3) hold. For the corre-
sponding Central Limit Theorems, we first express ℓL and hL using the Busemann function
and the Martin kernel function at the geometric boundary and the L-harmonic measure.

Let x ∈ M̃ and define for y ∈ M̃ the Busemann function bx,y(z) on M̃ by letting

bx,y(z) := d(y, z) − d(y, x), for z ∈ M̃ .

The assignment of y 7→ bx,y is continuous, one-to-one and takes value in a relatively com-

pact set of functions for the topology of uniform convergence on compact subsets of M̃ . The

Busemann compactification of M̃ is the closure of M̃ for that topology. In the negative cur-
vature case, the Busemann compactification coincides with the geometric compactification.

So for each v = (x, ξ) ∈ M̃ × ∂M̃ , the Busemann function at v, given by

bv(z) := lim
y→ξ

bx,y(z), for z ∈ M̃,

is well-defined. Note that the strong stable manifold at v, denotedW ss(v), is the collection
of w such that d(Φt(w),Φt(v)) tends to 0 as t goes to infinity (while the strong unstable
manifold at v, denoted W su(v), is defined by reversing the time). The quantity −∆bv has
its geometry meaning as being the mean curvature of the strong stable horosphere, which

is the projection on M̃ of the strong stable manifold at v.
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Let v = (x, ξ) ∈ M̃ × ∂M̃ . A Poisson kernel function kv(·, η) of Lv at η ∈ ∂M̃ is a

positive Lv-harmonic function on M̃ such that

kv(x, η) = 1, kv(y, η) = O(Gv(x, y)), as y → η′ 6= η.

A point η ∈ ∂M̃ is a Martin point of Lv if it satisfies the following properties:

i) there exists a Poisson kernel function kv(·, η) of Lv at η,
ii) the Poisson kernel function is unique, and
iii) if yn → η, then lnGv(·, yn)− lnGv(x, yn) → ln kv(·, η) uniformly on compact sets.

Since (M,g) is negatively curved and Lv is weakly coercive, every point η of the geometric

boundary ∂M̃ is a Martin point by Ancona [Anc].

Proposition 3.5. Let L = ∆ + Y be such that Y has closed dual and pr(−〈X,Y 〉) > 0.

Let X denote the lift of X in SM̃ . Then we have

ℓL = −
∫

M0×∂M̃

(
DivX + 〈Y,X〉

)
dm̃,(3.10)

hL =

∫

M0×∂M̃

‖∇ ln kv(x, ξ)‖2 dm̃.(3.11)

Proof. We first show (3.10). For Pv-a.e. path ω ∈ Ω+, let ω̃ be its projection to M̃ and let

η = limt→+∞ ω̃(t) ∈ M̃ . We see that when t goes to infinity, the process bv(ω̃(t))−d(x, ω̃(t))
converges Pv a.e. to the a.e. finite number −2(ξ|η)x, where

(3.12) (ξ|η)x := lim
y→ξ,z→η

(y|z)x and (y|z)x :=
1

2
(d(x, y) + d(x, z) − d(y, z)) .

So for Pv-a.e. ω ∈ Ω+, we have

lim
t→+∞

1

t
bv(ω̃(t)) = ℓL.

Using the fact that the L-diffusion has leafwise infinitesimal generator ∆ + Y , we obtain

ℓL = lim
t→+∞

1

t

∫ t

0

∂

∂s
bv(ω̃(s)) ds

= lim
t→+∞

1

t

∫ t

0
(∆ + Y )bv(ω̃(s)) ds

= −
∫

M0×∂M̃

(
DivX + 〈Y,X〉

)
dm̃.

For (3.11), we first show for Pv-a.e. ω ∈ Ω+,

(3.13) lim
t→+∞

−1

t
ln kv(ω̃(t), ξ) = hL.
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Let zt be the point on the geodesic ray γω̃(t),ξ closest to x. Then, as t→ +∞,

(3.14) Gv(x, ω̃(t)) ⋍ Gv(zt, ω̃(t)) ⋍
Gv(y, ω̃(t))

Gv(y, zt)

for all y on the geodesic going from ω̃(t) to ξ, where ⋍ means up to some constant inde-
pendent of t. The first ⋍ comes from Harnack inequality using the fact that supt d(x, zt)
is finite Pv-almost everywhere. The second ⋍ comes from Ancona’s inequality ([Anc]).
Replace Gv(y, ω̃(t))/Gv(y, zt) by its limit as y → ξ, which is k(zt,ξ)(ω̃(t), ξ), which is itself
⋍ kv(ω̃(t), ξ) by Harnack inequality again. Altogether we may write that Pv-a.e. we have

lim sup
t→+∞

| lnGv(x, ω̃(t))− ln kv(ω̃(t), ξ)| < +∞,

which implies (3.13) by (3.3). Note that the Martin kernel function kv(·, ξ) satisfies
L(kv(·, ξ)) = 0. Again, using the fact that the L-diffusion has leafwise infinitesimal gener-
ator ∆ + Y , we obtain

hL = lim
t→+∞

−1

t

∫ t

0

∂

∂s
(ln kv(ω̃(s), ξ)) ds

= lim
t→+∞

1

t

∫ t

0
−(∆ + Y ) (ln kv(ω̃(s), ξ)) ds

=

∫

M0×∂M̃

‖∇ ln kv(·, ξ)‖2 dm̃.

�

Finally, we have the following Central Limit Theorem for ℓL and hL ([H2], see [L2]).

Proposition 3.6. Let L = ∆ + Y be such that Y has closed dual and pr(−〈X,Y 〉) > 0.
Then there are positive numbers σ0 and σ1 such that the distributions of the variables

1

σ0
√
t
[dW(ω(0), ω(t)) − tℓL] and

1

σ1
√
t
[lnG(ω(0), ω(t)) + thL]

are asymptotically close to the normal distribution when t goes to infinity.

The proof of the proposition relies on the contraction property of the action of the
diffusion process on a certain space of Hölder continuous functions. Let Qt (t ≥ 0) be the
action of [0,+∞) on continuous functions f on SM which describes the L-diffusion, i.e.,

Qt(f)(x, ξ) =

∫

M0×∂M̃

f̃(y, η)p(t, (x, ξ), d(y, η)),

where f̃ denotes the lift of f to M0 × ∂M̃ . For ι > 0, define a norm ‖ · ‖ι on the space of
continuous functions f on SM by letting

‖f‖ι = sup
x,ξ

|f̃(x, ξ)|+ sup
x,ξ1,ξ2

|f̃(x, ξ1)− f̃(x, ξ2)| exp(ι(ξ1|ξ2)x),
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where (ξ1|ξ2)x is defined as in (3.12), and let Hι be the Banach space of continuous functions
f on SM with ‖f‖ι < +∞. It was shown ([H2, Theorem 5.13]) that for sufficiently
small ι > 0, Qt converges to the mapping f 7→

∫
f dm exponentially for f ∈ Hι. As a

consequence, one concludes that for any f ∈ Hι with
∫
f dm = 0, u = −

∫ +∞
0 Qtf dt, is,

up to an additive constant function, the unique element in Hι which solves Lu = f ([H2,
Corollary 5.14]). Applying this property to bv and kv(·, ξ), where we observe that both v 7→
∆bv and ξ 7→ ∇ ln kv(·, ξ) are G-equivalent and descend to Hölder continuous functions on
SM (see [Ano, HPS] and [H1], respectively), we obtain two Hölder continuous functions
u0, u1 on SM such that

L(u0 ◦ πSM ) = −
(
Div(X) + 〈Y,X〉

)
+

∫

M0×∂M̃

(
Div(X) + 〈Y,X〉

)
dm̃

= −
(
Div(X) + 〈Y,X〉

)
− ℓL, by (3.10), and

L(u1 ◦ πSM ) = ‖∇ ln kv(·, ξ)‖2 −
∫

M0×∂M̃

‖∇ ln kv(·, ξ)‖2 dm̃

= ‖∇ ln kv(·, ξ)‖2 − hL, by (3.11).

For each ω ∈ Ω+ belonging to a stable leaf, let ω̃ be its projection to M̃ . Then for

f = −bv + u0 ◦ πSM (or ln kv(·, ξ) + u1 ◦ πSM ), f(ω̃(t)) − f(ω̃(0)) −
∫ t

0 (Lf)(ω̃(s)) ds is a

martingale with increasing process 2‖∇f‖2(ω̃(t)) dt. In other words, we have the following.

Proposition 3.7. (cf. [L2, Corollary 3]) For any v = (x, ξ), the process (Z0
t )t∈R+ with

ω(0) = v [respectively, (Z1
t )t∈R+ with ω(0) = v],

Z0
t := −bω(0)(ω̃(t)) + tℓL + u0 (πSM (ω(t)))− u0 (πSM (ω(0)))

[
respectively,

Z1
t := ln kv(ω̃(t), ξ) + thL + u1(πSM (ω(t))) − u1(πSM (ω(0)))

]

is a martingale with increasing process

2‖X +∇u0‖2(ω̃(t)) dt [respectively, 2‖∇ ln kv(·, ξ) +∇u1‖2(ω̃(t)) dt].

To finish the proof of Proposition 3.6, let us recall a central limit theorem for martingales.

Lemma 3.8. Let M = (Mt)t≥0 be a right-continuous, square-integrable centered martin-
gale with respect to an increasing filtration (Ft)t≥0 of a probability space, with stationary
increments. Assume that M0 = 0 and

(3.15) lim
t→∞

E

(∣∣∣∣
1

t
〈M,M〉t − σ2

∣∣∣∣
)

= 0

for some real number σ2, where 〈M,M〉t denotes the quadratic variation of Mt. Then the
laws of Mt/

√
t converge in distribution to a centered Gaussian law with variance σ2.
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Now we see that both Z0
t and Z1

t are continuous and square integrable. The respective
average variances converge to, respectively, σ20 and σ21 , where

σ20 = 2

∫

M0×∂M̃

‖X +∇u0‖2 dm̃,

σ21 = 2

∫

M0×∂M̃

‖∇ ln kv(·, ξ) +∇u1‖2 dm̃.

Since the L-diffusion system is weak mixing, (3.15) holds for Z0
t and Z1

t with σ = σ0 or
σ1, respectively. Hence both (1/(σ0

√
t))Z0

t and (1/(σ1
√
t))Z1

t will converge to the normal
distribution as t tends to infinity. Note that in the proof of Proposition 3.5 we have shown
that for Pv-a.e. ω ∈ Ω+, bv(ω̃(t))− d(x, ω̃(t)) converges to a finite number and that

lim sup
t→+∞

| lnGv(x, ω̃(t))− ln kv(ω̃(t), ξ)| < +∞.

As a consequence, we see from Proposition 3.7 that (1/(σ0
√
t)) [dW(ω(0), ω(t)) − tℓL] and

(1/(σ0
√
t))Z0

t (respectively, (1/(σ1
√
t)) [lnG(ω(0), ω(t)) + thL] and (1/(σ1

√
t))Z1

t ) have
the same asymptotical distribution, which is normal, when t goes to infinity.

4. Regularity of the linear drift and the stochastic entropy for ∆+ Y

Consider a one-parameter family of variations {Lλ = ∆ + Y + Zλ : |λ| < 1} of L
with Z0 = 0 and Zλ twice differentiable in λ so that supλ∈(−1,1) max{‖dZλ

dλ
‖, ‖d2Zλ

dλ2 ‖} is

finite. Assume each Lλ is subordinate to the stable foliation, Y + Zλ has closed dual and
pr(−〈X,Y + Zλ〉) > 0. Then each Lλ has a unique harmonic measure. Hence the linear
drift for Lλ, denoted ℓλ := ℓLλ , and the stochastic entropy for Lλ, denoted hλ := hLλ , are
well-defined. In this section, we show the differentiability of ℓλ and hλ in λ at 0 (Theorem
4.3 and Theorem 4.9).

4.1. Distribution of the diffusion processes. In this subsection, we compare the dis-
tributions of the leafwise diffusion processes with infinitesimal generators Lλ and L, re-
spectively, using techniques of stochastic differential equation (SDE).

We begin with the general theories of SDE. Let X1, · · · ,Xd, V be bounded C1 vector
fields on a C3 Riemannian manifold (N, 〈·, ·〉). Let Bt = (B1

t , · · · , Bd
t ) be a d-dimensional

Brownian motion on a probability space (Θ,F ,Ft,Q) with generator ∆. An N-valued
semimartingale x = (xt)t∈R+ defined up to a stopping time τ is said to be a solution of the
following Stratonovich SDE

(4.1) dxt =

d∑

i=1

Xi(xt) ◦ dBi
t + V (xt) dt
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up to τ if for all f ∈ C∞(N),

f(xt) = f(x0) +

∫ t

0

d∑

i=1

Xif(xs) ◦ dBi
s +

∫ t

0
V f(xs) ds, 0 ≤ t < τ.

Call a second order differential operator A the generator of x if

f(xt)− f(x0)−
∫ t

0
Af(xs) ds, 0 ≤ t < τ,

is a local martingale for all f ∈ C∞(N). It is known (cf. [Hs]) that (4.1) has a unique
solution with a Hörmander type second order elliptic operator generator

A =

d∑

i=1

X2
i + V.

If X1, · · · ,Xd, V are such that the corresponding A is the Laplace operator on N, then
the solution of the SDE (4.1) generates the Brownian motion on N. However, there is no
general way obtaining such a collection of vector fields on a general Riemannian manifold.

To obtain the the Brownian motion (xt)t∈R+ on N, we can adopt the Eells-Elworthy-

Malliavin approach (cf. [El]). Suppose N has dimension m. Let Bt = (B1
t , · · · , Bm

t ) be an
m-dimensional Brownian motion on a probability space (Θ,F ,Ft,Q) with generator ∆. Let
{ei} be the standard orthonormal basis on Rm. Then, we consider the canonical Brownian
motion on the orthonormal bundle O(N) given by the solution wt of the Stratonovich SDE

dwt =
m∑

i=1

Hi(wt) ◦ dBi
t ,

w0 = w,

where Hi(wt) is the horizonal lift of wtei to wt. The Brownian motion x = (xt)t∈R+ can
be obtained as the projection on N of wt for any choice of w0 which projects to x0. We can
regard x(·) as a measurable map from Θ to Cx0(R+,N), the space of continuous functions
ρ from R+ to N with ρ(0) = x0. So

P := Q(x−1)

gives the probability distribution of the Brownian motion paths in Ω+. For any τ ∈ R+, let
Cx0([0, τ ],N) denote the space of continuous functions ρ from [0, τ ] to N with ρ(0) = x0.
Then x also induces a measurable map x[0,τ ] : Θ → Cx0([0, τ ],N) which sends ω to
(xt(ω))t∈[0,τ ]. We see that

Pτ := Q(x−1
[0,τ ])

describes the distribution probability of the Brownian motion paths on N up to time τ .

More generally, let V1 be a bounded C
1 vector field onN. We denote by V 1 the horizontal

lift of V1 in O(N). To obtain the diffusion process y = (yt)t∈R+ on N with infinitesimal
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generator ∆N + V1, we consider the Stratonovich SDE

dut =

m∑

i=1

Hi(ut) ◦ dBi
t + V 1(ut) dt,

u0 = u.

Then yt is the projection on N of the solution ut for any choice of u0 which projects to
y0. We call ut the horizontal lift of yt. Let P

1 be the distribution of y in Cy0(R+,N) and
let P1

τ (τ ∈ R+) be the distribution of (yt(ω))t∈[0,τ ] in Cy0([0, τ ],N), respectively. Then

P1 = Q(y−1), P1
τ = Q(y−1

[0,τ ]
).

Let M1
t be the random process on R satisfying M1

0 = 1 and the Stratonovich SDE

dM1
t = M1

t 〈
1

2
V1(xt),wt ◦ dBt〉xt −M1

t

(
‖1
2
V1(xt)‖2 +Div

(
1

2
V1(xt)

))
.

Then

M1
t = exp

{∫ t

0
〈1
2
V1(xs(ω)),ws(ω) ◦ dBs(ω)〉xs −

∫ t

0

(
‖1
2
V1(xs(ω))‖2 +Div

(1
2
V1(xs(ω))

))
ds

}
.

In the more familiar Ito’s stochastic integral form, we have

dM1
t =

1

2
M1

t 〈V1(xt),wtdBt〉xt

and

(4.2) M1
t = exp

{
1

2

∫ t

0
〈V1(xs(ω)),ws(ω)dBs(ω)〉xs −

1

4

∫ t

0
‖V1(xs(ω))‖2 ds

}
.

Since each EQ

(
exp{1

4

∫ t

0 ‖V1(xs(ω))‖2 ds}
)
is finite, we have by Novikov [N], that M1

t , t ≥
0, is a continuous (Ft)-martingale, i.e.,

EQ

(
M1

t

)
= 1 for every t ≥ 0,

where EQ is the expectation of a random variable with respect to Q. For τ ∈ R+, let Q1
τ

be a probability on Θ, which is absolutely continuous with respect to Q with

dQ1
τ

dQ
(ω) = M1

τ (ω).

Note that M1
τ is a martingale, so that the projection of Q1

τ on the coordinates up to τ ′ < τ
is given by the same formula. A version of the Girsanov theorem (cf. [El, Theorem 11B])
says that ((yt)t∈[0,τ ],Q) is isonomous to ((xt)t∈[0,τ ],Q

1
τ ) in the sense that for any finite

numbers τ1, · · · , τs ∈ [0, τ ],

(4.3)
(
Q(y−1

τ1
), · · · ,Q(y−1

τs )
)
=
(
Q1

τ (x
−1
τ1

), · · · ,Q1
τ (x

−1
τs )
)
.

(The coefficients in (4.2) differ from the that in [El] because Bt has generator ∆.) Let
Q1 be the probability on Θ associated with {Q1

τ}τ∈R+ . Then (4.3) intuitively means that
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by changing the measure Q on Θ to Q1, x has the same distribution as (y,Q). As a
consequence, we have P1

τ = Q1
τ (x

−1) for all τ ∈ R+ and hence

dP1
τ

dPτ

(
x[0,τ ]

)
= EQ

(
M1

τ

∣∣F(x[0,τ ])
)
, a.s.,

where EQ (· | ·) is the conditional expectation with respect to Q and F(x[0,τ ]) is the smallest
σ-algebra on Θ for which the map x[0,τ ] is measurable.

Let V2 be another bounded C1 vector field on N. Consider the diffusion process z =
(zt)t∈R+ onN with the same initial point as y, but with infinitesimal generator ∆N+V1+V2.

Let P2 be the distribution of z in Ω+ and let P2
τ (τ ∈ R+) be the distribution of (zt(ω))t∈[0,τ ].

The Girsanov-Cameron-Martin formula on manifolds (cf. [El, Theorem 11C]) says that P2
τ

is absolutely continuous with respect to P1
τ with

(4.4)
dP2

τ

dP1
τ

(y[0,τ ]) = EQ

(
M2

τ

∣∣F(y[0,τ ])
)
, a.s.,

where

M2
τ (ω) = exp

{
1

2

∫ τ

0
〈V2(ys(ω)),us(ω)dBs(ω)〉ys −

1

4

∫ τ

0
‖V2(ys(ω))‖2 ds

}

and F(y[0,τ ]) is the smallest σ-algebra on Θ for which the map y[0,τ ] is measurable.

Finally, we consider the diffusion process of the stable foliation of SM̃ corresponding
to Lλ (λ ∈ (−1, 1)). Let Bt = (B1

t , · · · , Bm
t ) be an m-dimensional Brownian motion on a

probability space (Θ,F ,Ft,Q) with generator ∆. For each v = (x, ξ) ∈ SM̃ , W s(v) can

be identified with M̃ ×{ξ}, or simply M̃ . So for each λ ∈ (−1, 1), there exists the diffusion
process yλ

v = (yλ
v,t)t∈R+ on W s(v) starting from v with infinitesimal generator Lλ

v. Each

yλ
v induces a measurable map from Θ to Cv(R+,W

s(v)) ⊂ Ω+ and P
λ
v := Q((yλ

v)
−1

) gives

the distribution probability of yλ
v in Cv(R+,W

s(v)). For any τ ∈ R+, let P
λ
v,τ be the

distribution of (yλ
v,t)t∈[0,τ ] in Cv([0, τ ],W

s(v)). We have by the Girsanov-Cameron-Martin

formula on manifolds (4.4) that P
λ
v,τ is absolutely continuous with respect to P

0
v,τ with

(4.5)
dP

λ
v,τ

dP
0
v,τ

(y0
v,[0,τ ]) = EQ

(
M

λ
τ

∣∣F
(
y0
v,[0,τ ]

))
, a.s.,

where

M
λ
τ (ω) = exp

{
1

2

∫ τ

0
〈Zλ(y0

v,s(ω)),u
0
v,s(ω)dBs(ω)〉y0

v,s
− 1

4

∫ τ

0
‖Zλ(y0

v,s(ω))‖2 ds
}
,

u0
v,t is the horizontal lift of y

0
v,t in the orthonormal bundle O(W s(v)) and F(y0

v,[0,τ ]) is the

smallest σ-algebra on Θ for which the map y0
v,[0,τ ] is measurable.

For each λ ∈ (−1, 1), let mλ be the unique Lλ-harmonic measure and m̃λ be its G-

invariant extension in SM̃ . We see that P
λ
=
∫
P
λ
v dm̃

λ(v) is the shift invariant measure
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on Ω+ corresponding to m̃λ. Consider the space Θ = SM ×Θ with product σ-algebra and

probability Q
λ
, dQ

λ
(v, ω) = dQ(ω)× dm̃λ(v). Let yλ

t : SM ×Θ → SM̃ be such that

yλ
t (v, ω) = yλ

v,t(ω), for (v, ω) ∈ SM ×Θ.

Then yλ = (yλ
t )t∈R+ defines a random process on the probability space (Θ,Q

λ
) with images

in the space of continuous paths on the stable leaves of SM̃ .

Simply write yt = y0
t and let ut be such that ut(v, ω) = u0

v,t(ω) for (v, ω) ∈ Θ. Denote

by (Zλ)′0 := (dZλ/dλ)|λ=0. We consider three random variables on (Θ,Q
0
):

M0
t :=

1

2

∫ t

0
〈(Zλ)′0(ys),usdBs〉ys ,

Z0
ℓ,t := [dW(y0,yt)− tℓL0 ] ,

Z0
h,t := −

[
1{d(y0,yt)≥1} · lnG(y0,yt) + thL0

]
,

where 1B is the characteristic function of the event B. We will prove the following two
Propositions separately in Sec. 4.2 and Sec. 4.3.

Proposition 4.1. The laws of the random vectors (Z0
ℓ,t/

√
t,M0

t /
√
t) under Q

0
converge in

distribution as t tends to +∞ to a bivariate centered Gaussian law with some covariance
matrix Σℓ. The covariance matrices of (Z0

ℓ,t/
√
t,M0

t /
√
t) under Q

0
converge to Σℓ.

Proposition 4.2. The laws of the random vectors (Z0
h,t/

√
t,M0

t /
√
t) under Q

0
converge

in distribution as t tends to +∞ to a bivariate centered Gaussian law with some covariance
matrix Σh. The covariance matrices of (Z0

h,t/
√
t,M0

t /
√
t) under Q

0
converge to Σh.

4.2. The differential of the linear drift. For any λ ∈ (−1, 1), let ℓλ be the linear drift
of Lλ. The main result of this subsection is the following.

Theorem 4.3. The function λ 7→ ℓλ is differentiable at 0 with

(4.6)
dℓλ
dλ

∣∣∣
λ=0

= lim
t→+∞

1

t
E
Q

0(Z0
ℓ,tM

0
t ).

For any τ ∈ R+, recall that P
λ
v,τ is the distribution of (yλ

v,t)t∈[0,τ ] in Cv([0, τ ],W
s(v)).

By an abuse of notation, we can also regard P
λ
v,τ as a measure on Ω+ whose value only

depends on (ω(t))t∈[0,τ ] for ω = (ω(t))t∈R+ ∈ Ω+. Let P
λ
t =

∫
Pλ
v,t dm

λ(v). Then

ℓλ = lim
t→+∞

1

t
E
P
λ

t

(dW(ω(0), ω(t))) .
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Let λ = 1/
√
t. The following holds true providing all the limits exist:

dℓλ
dλ

∣∣∣
λ=0

= lim
t→+∞

(
1

λ
(ℓλ − ℓ0)−

1√
t

(
E
P
λ

t

(dW(ω(0), ω(t))) − E
P
0
t

(dW(ω(0), ω(t)))
))

+ lim
t→+∞

1√
t

(
E
P
λ

t

(dW(ω(0), ω(t))) − E
P
0
t

(dW(ω(0), ω(t)))
)

=: (I)ℓ + (II)ℓ.(4.7)

We establish (4.6) by showing (I)ℓ = 0 and (II)ℓ = limt→+∞(1/t)E
Q

0(Z0
ℓ,tM

0
t ) successively.

For (I)ℓ = 0, it suffices to find a finite number Dℓ such that for all λ ∈ [−δ1, δ1] (where
δ1 is from Lemma 4.4) and all t > 0,

(4.8)
∣∣E

P
λ (dW(ω(0), ω(t))) − tℓλ

∣∣ ≤ Dℓ.

Since the Lλ-diffusion has leafwise infinitesimal generator Lλ
v and Pλ is stationary, we have

E
P
λ

(
bω(0)(ω̃(t))

)
= E

P
λ

(∫ t

0

∂

∂s
bω(0)(ω̃(s)) ds

)

= E
P
λ

(∫ t

0
(Lλ

ω(0)bω(0))(ω̃(s)) ds

)

= t

∫

M0×∂M̃

Lλ
vbv dm̃

λ

= tℓλ.

So (4.8) is equivalent to that for all λ ∈ [−δ1, δ1] and all t > 0,

(4.9) E
P
λ

(∣∣d(ω̃(0), ω̃(t))− bω(0)(ω̃(t))
∣∣) < Dℓ,

which intuitively means that for all λ, the Lλ-diffusion orbits ω̃(t) travel almost along the
geodesics connecting ω̃(0) and ω̃(∞) on the average.

We first take a look at the distribution of ω̃(∞) on the boundary. Let x ∈ M̃ be a
reference point and let ι > 0 be a positive number. Define

dιx(ζ, η) := exp (−ι(ζ|η)x) , ∀ζ, η ∈ ∂M̃,

where (ζ|η)x is defined as in (3.12). If ι0 is small, each dιx(·, ·) (x ∈ M̃, ι ∈ (0, ι0)) defines

a distance on ∂M̃ ([GH]), the so-called ι-Busemann distance, which is related to the
Busemann functions since

bv(y) = lim
ζ,η→ξ

((ζ|η)y − (ζ|η)x) , for any v = (x, ξ) ∈ SM̃, y ∈ M̃.

The following shadow lemma ([Moh, Lemma 2.14], see also [PPS]) says that the Lλ-
harmonic measure has a positive dimension on the boundary in a uniform way.
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Lemma 4.4. There are D1, δ1, α1, ι1 > 0 such that for all λ ∈ [−δ1, δ1], all v ∈ SM and

all ζ ∈ ∂M̃ , t > 0,

P
λ
v

(
dι1x (ζ, ω̃(∞)) ≤ e−t

)
≤ D1e

−α1t,

where ω̃(∞) = lims→+∞ ω̃(s) and ω̃(s) is the projection of ω(s) on M̃ .

As a consequence, we see that for P
λ
-almost all orbits ω, the distance between ω̃(s) and

γω̃(0),ω̃(∞), the geodesic connecting ω̃(0) and ω̃(∞), is bounded in the following sense.

Lemma 4.5. There exists a finite number D2 such that for all λ ∈ [−δ1, δ1] (where δ1 is
as in Lemma 4.4) and s ∈ R+,

E
P
λ

(
d(ω̃(s), γω̃(0),ω̃(∞))

)
< D2.

Proof. Extend P
λ
to a shift invariant probability measure P̆λ on the set of trajectories from

R to SM̃ , by

P̆λ =

∫

SM

P
λ
v ⊗ (P

′
)λv dm

λ(v),

where (P
′
)λv is the probability describing the reversed Lλ

v-diffusion starting from v. Then

we have by invariance of P̆λ that

E
P
λ

(
d(ω̃(s), γω̃(0),ω̃(∞))

)
= E

P̆λ

(
d(ω̃(0), γω̃(−s),ω̃(∞))

)

=

∫ (
d(x, γω̃(−s),ω̃(∞))

)
dP

λ
v(ω̃)d(P

′
)λv(ω̃(−s))dmλ(v).(4.10)

Fix ω̃(−s) = z at distance D from x, and let ζ ∈ ∂M̃ be limt→+∞ γx,z(t). We estimate
∫
d(x, γz,ω̃(∞)) dP

λ
v(ω̃) =

∫ +∞

0
P
λ
v(d(x, γz,ω̃(∞)) > t) dt.

For t ≥ D, it is clear that P
λ
v(d(x, γz,ω̃(∞)) > t) = 0. For t < D, if d(x, γz,ω̃(∞)) > t, then

dι1x (ζ, ω̃(∞)) ≤ Ce−ι1t for some constant C and hence we have by Lemma 4.4 that

P
λ
v(d(x, γz,ω̃(∞)) > t) ≤ CD1e

−α1ι1t.

Therefore,
∫
d(x, γz,ω̃(∞)) dP

λ
v(ω̃) ≤

∫ D

1
CD1e

−α1ι1t dt+ 1 ≤ CD1

α1ι1
e−α1ι1 + 1 := D2.

Using (4.10), we obtain that E
P
λ

(
d(ω̃(s), γω̃(0),ω̃(∞))

)
is bounded by D2 as well. �

Now, we can derive from Lemmas 4.4 and 4.5 that there is a bounded square inte-
grable difference between d(ω̃(0), ω̃(s)) and bω(0)(ω̃(s)) for all s (cf. [Ma, Lemma 3.4]). In
particular, we will obtain (4.9) and finish the proof of (I)ℓ = 0.
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Lemma 4.6. There exists a finite number D3 such that for all λ ∈ [−δ1, δ1] (where δ1 is
as in Lemma 4.4) and s ∈ R+,

E
P
λ

(∣∣d(ω̃(0), ω̃(s))− bω(0)(ω̃(s))
∣∣2
)
< D3.

Proof. It is clear that

E
P
λ

(∣∣d(ω̃(0), ω̃(s))− bω(0)(ω̃(s))
∣∣2
)
= 4

∫ (
ω̃(s)

∣∣ξ
)2
x
dP

λ
v(ω̃)dm

λ(v),

where v = ω(0) = (x, ξ) and
(
ω̃(s)

∣∣ξ
)
x
:= limy→ξ

(
ω̃(s)

∣∣y
)
x
(see (3.12) for the definition of

(z|y)x for x, y, z ∈ M̃). So, it suffices to estimate
∫ +∞

0
P
λ
v((ω̃(s)

∣∣ξ)2x > t) dt =

∫ +∞

0
P
λ
v((ω̃(s)

∣∣ξ)x >
√
t) dt.

For each t > 0, divide the event {ω ∈ Ω+ : (ω̃(s)
∣∣ξ)x >

√
t} into two sub-events

A1(t) := {ω ∈ Ω+ : (ω̃(s)
∣∣ξ)x >

√
t, (ω̃(s)

∣∣ω̃(∞))x ≥ 1

4

√
t},

A2(t) := {ω ∈ Ω+ : (ω̃(s)
∣∣ξ)x >

√
t, (ω̃(s)

∣∣ω̃(∞))x <
1

4

√
t}.

We estimate P
λ
v(Ai(t)), i = 1, 2, successively. Since M is a closed connected negatively

curved Riemannian manifold, its universal cover M̃ is Gromov hyperbolic in the sense that

there exists δ > 0 such that for any x1, x2, x3 ∈ M̃ ,

(x1|x2)x ≥ min{(x1|x3)x, (x2|x3)x} − δ.

So on each A1(t), where t > 64δ2, we have

(ξ|ω̃(∞))x ≥ 1

8

√
t.

Hence, by Lemma 4.4,

P
λ
v(A1(t)) ≤ P

λ
v((ξ|ω̃(∞))x ≥ 1

8

√
t) = P

λ
v(d

ι1
x (ω̃(∞), ξ) < e−

1
8
ι1
√
t) ≤ D1e

− 1
8
ι1α1

√
t,

where the last quantity is integrable with respect to t, independent of s. For ω ∈ A2(t),

d(ω̃(0), ω̃(s)) ≥ (ω̃(s)
∣∣ξ)x >

√
t.

On the other hand, the point y(s) on γω̃(0),ω̃(∞) closest to ω̃(s) satisfies

(ω̃(s)
∣∣y(s))x ≤ (ω̃(s)

∣∣ω̃(∞))x <
1

4

√
t.

So we must have

d(ω̃(s), γω̃(0),ω̃(∞)) >
1

2

√
t.

Hence, ∫ ∞

0
P
λ
v(A2(t)) dt ≤

∫
P
λ
v

(
d(ω̃(s), γω̃(0),ω̃(∞)) >

1

2

√
t

)
dt dmλ(v),
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which, by the same argument as the one used in the proof of Lemma 4.5, is bounded from
above by some constant independent of s. �

To show (II)ℓ = limt→+∞(1/t)E
Q

0(Z0
ℓ,tM

0
t ), we first prove Proposition 4.1.

Proof of Proposition 4.1. Let (Z0
t )t∈R+ , u0 be as in Proposition 3.7. The process (Z0

t )t∈R+

is a centered martingale with stationary increments and its law under P
0
is the same as

the law of (Z
0
t )t∈R+ under Q

0
, where (Z

0
t )t∈R+ on (Θ,Q

0
) is given by

Z
0
t (v, ω) = −bv(πM̃ (yv,t(ω))) + tℓ0 + u0 (πSM(yv,t(ω)))) − u0 (πSM(v)) .

The pair (−Z
0
t ,M

0
t ) is a centered martingale on (Θ,Q

0
) with stationary increments. To

show (−Z
0
t/
√
t,M0

t /
√
t) converge in distribution to a bivariate centered Gaussian vector,

it suffices to show for any (a, b) ∈ R2, the combination −aZ0
t/
√
t + bM0

t /
√
t converge to

a centered Gaussian distribution. The martingales Z
0
t and M0

t on (Θ,Q
0
) have integrable

increasing process functions 2‖X +∇u0‖2 and ‖(Zλ)′0‖2, respectively. Using Schwarz in-

equality, we conclude that −aZ0
t + bM0

t also has an integrable increasing process function.

Now using the fact that the L0-diffusion system on (Θ,Q
0
) is weakly mixing, we see that

(3.15) holds true for −aZ0
t + bM0

t . Hence, by Lemma 3.8, −aZ0
t/
√
t + bM0

t /
√
t converge

in distribution in Q
0
to a centered Gaussian law with variance Σℓ[a, b] = (a, b)Σℓ(a, b)

T for

some matrix Σℓ. Since both Z
0
t and M0

t have stationary increments, we also have

Σℓ[a, b] =
1

t
E
Q

0

[
(−aZ0

t + bM0
t )

2
]
, for all t ∈ R+.

Finally, for P
0
v-a.e. ω ∈ Ω+, ω̃, the projection of ω to M̃ , is such that bv(ω̃(t)) −

d(π
M̃
(v), ω̃(t)) converges to a finite number. Moreover, we have by Lemma 4.6 that

sup
t

E
P
λ(
∣∣Z0

ℓ,t + Z
0
t

∣∣2) < +∞

and hence

E
P
λ(
1

t

∣∣Z0
ℓ,t + Z

0
t

∣∣2) → 0, as t → +∞.

Consequently, (Z0
ℓ,t/

√
t,M0

t /
√
t) has the same limit Gaussian law as (−Z

0
t/
√
t,M0

t /
√
t)

and its covariance matrix under Q
0
converges to Σℓ as t goes to infinity. �

We state one more lemma from [Bi] on the limit of the expectations of a class of random
variables on a common probability space which converge in distribution.

Lemma 4.7. (cf. [Bi, Theorem 25.12]) If the random variables Xt (t ∈ R) on a common
probability space converge to X in distribution, and there exists some q > 1 such that
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supt Eν (|Xt|q) < +∞, then X is integrable and

lim
t→+∞

Eν (Xt) = Eν (X) .

Lemma 4.8. The quantity (II)ℓ introduced in (4.7) equals to limt→+∞(1/t)E
Q

0(Z0
ℓ,tM

0
t ).

Proof. By Proposition 3.6, the distribution of
(
dW(ω(0), ω(t)) − tℓ0

)
/
√
t under P

0
is as-

ymptotic to a centered Gaussian distribution. Hence

(II)ℓ = lim
t→+∞

E
P
λ

t

(
1√
t

(
dW(ω(0), ω(t)) − tℓ0

))
− lim

t→+∞
E
P
0

(
1√
t

(
dW(ω(0), ω(t)) − tℓ0

))

= lim
t→+∞

E
P
λ

t

(
1√
t

(
dW(ω(0), ω(t)) − tℓ0

))

=: (III)ℓ.

Let y = (yt)t∈R+ = (yv,t)v∈SM,t∈R+ be the diffusion process on (Θ,Q
0
) corresponding to

L0. We know from Sec. 4.1 that P
λ
v,t is absolutely continuous with respect to P

0
v,t with

dP
λ
v,t

dP
0
v,t

(yv,[0,t]) = EQ

(
M

λ
t

∣∣F(yv,[0,t])
)
,

where

M
λ
t (ω) = exp

{
1

2

∫ t

0
〈Zλ(yv,s(ω)),uv,s(ω)dBs(ω)〉yv,s(ω) −

1

4

∫ t

0
‖Zλ(yv,s(ω))‖2 ds

}
.

Consequently we have

(III)ℓ = lim
t→+∞

E
P
0


 1√

t

(
dW(ω(0), ω(t)) − tℓ0

) dPλ
ω(0),t

dP
0
ω(0),t




= lim
t→+∞

E
Q

0

(
1√
t

(
dW(y0,yt)− tℓ0

)
· e(IV)tℓ

)
,

where

(IV)tℓ =
1

2

∫ t

0
〈Zλ(ys(v, ω)), us(v, ω)dBs〉ys(v,ω) −

1

4

∫ t

0
‖Zλ(ys(v, ω))‖2 ds.
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Let Z
λ
be such that Zλ = λ(Zλ)′0 + λ2Z

λ
. Recall that λ = 1/

√
t. We calculate that

(IV)tℓ =
1

2
√
t

∫ t

0
〈(Zλ)′0(ys), usdBs〉ys −

1

4t

∫ t

0
‖(Zλ)′0(ys)‖2 ds

+
1

2t

∫ t

0
〈Zλ

(ys), usdBs〉ys

− 1

2t
3
2

∫ t

0
〈(Zλ)′0(ys), Z

λ
(ys)〉ys ds−

1

4t2

∫ t

0
‖Zλ

(ys)‖2 ds

=:
1√
t
M0

t −
1

2t
〈M0

t ,M
0
t 〉t + (V)tℓ + (VI)tℓ,

where both (V)tℓ and (VI)tℓ converge almost surely to zero as t goes to infinity. Therefore,

by Proposition 4.1, the variables 1√
t
Z0
ℓ,t ·M

λ
t converge in distribution to Z0

ℓe
M0− 1

2
E
Q
0 ((M0)2)

.

To justify

(III)ℓ = lim
t→+∞

E
Q

0

(
1√
t
Z0
ℓ,t ·M

λ
t

)
= E

Q
0

(
Z0
ℓe

M0− 1
2
E
Q
0 ((M0)2)

)
,(4.11)

we have by Lemma 4.7 that it suffices to show for q = 3
2 ,

sup
t

E
Q

0

(∣∣∣∣
1√
t
Z0
ℓ,t ·M

λ
t

∣∣∣∣
q)

< +∞.

By Hölder’s inequality, we calculate that
(
E
Q

0

(∣∣∣∣
1√
t
Z0
ℓ,t ·M

λ
t

∣∣∣∣
3
2

))4

≤
(
E
Q

0

(
1

t

∣∣Z0
ℓ,t

∣∣2
))3

· E
Q

0

(
e6(IV)tℓ

)

=: (VII)tℓ · (VIII)
t
ℓ,

where (VII)tℓ is uniformly bounded in t by Proposition 4.1. For (VIII)tℓ, we use the Girsanov-
Cameron-Martin formula to conclude that

(VIII)tℓ = E
Q

0

(
exp

(
3

∫ t

0
〈Zλ(ys(v, ω)), us(v, ω)dBs〉ys(v,ω) −

3

2

∫ t

0
‖Zλ(ys(v, ω))‖2 ds

))

≤ E
Q̃

(
exp

(
15

2

∫ t

0
‖Zλ(ys(v, ω))‖2 ds

))

for some probability measure Q̃ on Θ. Using again Zλ = λ(Zλ)′0+λ
2Z

λ
and that λ = 1/

√
t,

we see that
∫ t

0
‖Zλ(ys(v, ω))‖2 ds ≤

2

t

∫ t

0
‖(Zλ)′0‖2 ds+

2

t2

∫ t

0
‖Zλ‖2 ds,

where the quantities on the right hand side of the inequality are uniformly bounded in t.
So (VIII)tℓ is uniformly bounded in t as well. Now, (4.11) holds. Finally, since (Z0

ℓ ,M
0)
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has a bivariate normal distribution, we have

E
Q

0

(
Z0
ℓe

M0− 1
2
E
Q
0 ((M0)2)

)
= E

Q
0(Z0

ℓM
0),

which is limt→+∞(1/t)E
Q

0(Z0
ℓ,tM

0
t ) by Proposition 4.1. �

4.3. The differential of the stochastic entropy. For any λ ∈ (−1, 1), let hλ be the
entropy of Lλ. In this subsection, we establish the following formula for (dhλ/dλ)|λ=0.

Theorem 4.9. The function λ 7→ hλ is differentiable at 0 with

dhλ
dλ

∣∣∣
λ=0

= lim
t→+∞

1

t
E
Q

0(Z0
h,tM

0
t ).

First of all, let us recall some classical results concerning Green functions.

Lemma 4.10. Let L = ∆ + Y be such that Y has closed dual and pr(−〈X,Y 〉) > 0 and
let G(·, ·) = {Gv(·, ·)}v∈SM̃ be the Green function of L. There exists a constant c0 ∈ (0, 1)

such that for any v ∈ SM̃ and any x, y, z ∈ M̃ with mutual distances greater than 1,

(4.12) Gv(x, z) ≥ c0Gv(x, y)Gv(y, z).

For v,w ∈ SxM̃ , x ∈ M̃ , the angle ∠x(v,w) is the unique number 0 ≤ θ ≤ π such that

〈v,w〉 = cos θ. Given v ∈ SxM̃ and 0 < θ < π, the set

Γx(v, θ) := {y ∈ M̃ ∪ ∂M̃ : ∠x(v, γ̇x,y(0)) < θ}
is called the cone of vertex x, axis v, and angle θ, where γx,y is the geodesic segment that
starts at x and ends at y. For any s > 0, the cone Γ with vertex γv(s) (where γv is the
geodesic starting at x with initial speed v), axis γ̇v(s) and angle θ is called the s-shifted cone
of Γx(v, θ). The following is a special case of the Ancona’s inequality at infinity ([Anc]).

Lemma 4.11. Let L and G be as in Lemma 4.10. Let Γ := Γx0(v,
π
2 ) be a cone in M̃ with

vertex x0, axis v and angle π
2 . Let Γ1 be the 1-shifted cone of Γ and x1 be the vertex of Γ1.

There exists a constant c1 such that for any v ∈ SM̃ , any Γ, all x ∈ M̃\Γ and z ∈ Γ1,

Gv(x, z) ≤ c1Gv(x, x1)Gv(x0, z).(4.13)

We may assume c1 = c−1
0 , where c0 is as in Lemma 4.10. As a consequence of Lemma

4.10 and Lemma 4.11, G is related to the distance d in the following way.

Lemma 4.12. Let L and G be as in Lemma 4.10. There exist positive numbers c2, c3, α2, α3

such that for any v ∈ SM̃ and any x, z ∈ M̃ with d(x, z) ≥ 1,

(4.14) c2e
−α2d(x,z) ≤ Gv(x, z) ≤ c3e

−α3d(x,z).



26 FRANÇOIS LEDRAPPIER AND LIN SHU

Proof. The upper bound of (4.14) was shown in [H2, Corollary 4.8] using Ancona’s in-
equality at infinity (cf. Lemma 4.11). For the lower bound, we first observe that Lemma
4.10 also holds true if x, y, z satisfies d(x, z) > 1 and d(x, y) = 1. Indeed, by the clas-

sical Harnack inequality ([LY]), there exists c4 ∈ (0, 1) such that for any v ∈ SM̃ and

x, y, z ∈ M̃ with d(x, z) > 1 and d(x, y) ≤ 1,

(4.15) c4Gv(y, z) ≤ Gv(x, z) ≤ c−1
4 Gv(y, z).

Since d(x, y) = 1, by [Anc, Proposition 7], there is c5 ∈ (0, 1) (independent of x, y) with

(4.16) c5 ≤ Gv(x, y) ≤ c−1
5 .

So, if c0 ≤ c4c5, then (4.12) holds true for x, y, z ∈ M̃ with d(x, z) > 1 and d(x, y) = 1. Now,

for x, z ∈ M̃ with d(x, z) > 1, choose a sequence of points xi, 1 ≤ i ≤ n, on the geodesic
segment γx,z with x0 = x, xn = z, d(xi, xi+1) = 1, i = 0, · · · , n− 2, and d(xn−1, z) ∈ [1, 2).
Applying (4.12) successively for xi, xi+1, z, we obtain

Gv(x, z) ≥ Gv(xn−1, z)(c0c5)
n−1 ≥ c4c5(c0c5)

n−1 ≥ c4c5(c0c5)
d(x,y),

where, to derive the second inequality, we use (4.15) and the fact that the lower bound

of (4.16) holds for any x, y ∈ M̃ with d(x, y) ≤ 1. The lower bound estimation of (4.14)
follows for c2 = c4c5 and α2 = − ln c0c5. �

We may assume the constants c2, c3 in Lemma 4.12 are such that c2 is smaller than 1

and c3 = c−1
2 . For each v ∈ SM̃ , x, z ∈ M̃ , let

dGv
(x, z) :=

{
− ln (c2Gv(x, z)) , if d(x, z) > 1;
− ln c2, otherwise.

Although dGv
is always greater than the positive number min{α3,− ln c2} by (4.14), we

still call it a “Green metric” for Lv (after [BHM] for the hyperbolic groups case) since it
satisfies an almost triangle inequality in the following sense.

Lemma 4.13. There exists a constant c6 ∈ (0, 1) such that for all x, y, z ∈ M̃ ,

(4.17) dGv
(x, z) ≤ dGv

(x, y) + dGv
(y, z)− ln c6.

Proof. If d(x, z) ≤ 1, then (4.17) holds for c6 = c2. If x, y, z have mutual distances greater
than 1, then (4.17) holds for c6 = c0 by Lemma 4.10. If d(x, z) > 1 and d(y, z) ≤ 1, using
the classical Harnack inequality (4.15), we have

Gv(x, z) ≥ c4Gv(x, y)

and hence (4.17) holds with c6 = c4 if, furthermore, d(x, y) > 1 or with c6 = c4c5 otherwise.
The case that d(x, z) > 1, d(x, y) ≤ 1 can be treated similarly. �

By Lemma 4.12, dGv
is comparable to the metric d for any x, z ∈ M̃ with d(x, z) > 1:

(4.18) α3d(x, z) ≤ dGv
(x, z) ≤ α2d(x, z) − 2 ln c2.

Using Lemma 4.11, we can further obtain that dGv
is almost additive along the geodesics.
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Lemma 4.14. Let L and G be as in Lemma 4.10. There exists a constant c7 such that

for any v ∈ SM̃ , any x, z ∈ M̃ and y in the geodesic segment γx,z connecting x and z,

(4.19) |dGv
(x, y) + dGv

(y, z) − dGv
(x, z)| ≤ − ln c7.

Proof. Let x, z ∈ M̃ and y belong to the geodesic segment γx,z. If d(x, y), d(y, z) ≤ 1,
then d(x, z) ≤ 2 and, using (4.18), we obtain (4.19) with c7 = c22e

−2α2 . If d(x, y) ≤ 1 and
d(y, z) > 1 (or d(y, z) ≤ 1 and d(x, y) > 1), using Harnack’s inequality (4.15), we have
(4.19) with c7 = c2c4. Finally, if x, y, z have mutual distances greater than 1, we have by
Lemma 4.10 and Lemma 4.11 (where we can use Harnack’s inequality to replace Gv(x, x1)
in (4.13) by c−1

4 Gv(x, x0)) that

|lnGv(x, y) + lnGv(y, z)− lnGv(x, z)| ≤ − ln(c1c4)

and consequently,

|dGv
(x, y) + dGv

(y, z)− dGv
(x, z)| ≤ − ln(c1c2c4).

�

More is true, as we can see from Lemma 4.11 and Lemma 4.13 as well.

Lemma 4.15. Let L and G be as in Lemma 4.10. There exists a constant c8 such that

for any v ∈ SM̃ , if x, y, z ∈ M̃ are such that x and z are separated by some cone Γ with

vertex y and angle π
2 , and Γ1, the 1-shifted cone of Γ, i.e., x ∈ M̃\Γ, z ∈ Γ1, then

|dGv
(x, y) + dGv

(y, z) − dGv
(x, z)| ≤ − ln c8.

Since the constants ci, 0 ≤ i ≤ 8, and α2, α3 only depend on the geometry of M̃ and the
coefficients of L, we may assume they are such that Lemmas 4.10–4.15 hold true for every
couple Lλ,Gλ with λ ∈ (−1, 1).

For each λ, β ∈ (−1, 1), following the proof of Proposition 3.1, we obtain a constant hλ,0

such that for m̃λ-a.e. v and P
λ
v-a.e. ω ∈ Ω+,

lim
t→+∞

1

t
dG0

v

(ω̃(0), ω̃(t)) = lim
t→+∞

−1

t
lnG0

v(ω̃(0), ω̃(t)) = hλ,β,

where the first equality holds since for P
λ
v-a.e. ω, ω̃(t) converges to a point in ∂M̃ as t

tends to infinity. Using (4.18), we see that

E
P
λ

(
sup
t∈[0,1]

[dG0
v

(ω̃(0), ω̃(t))]2

)
≤ 2α2

2EP
λ

(
sup
t∈[0,1]

[dW(ω(0), ω(t))]2

)
+ 8(ln c2)

2 < +∞,

where P
λ
=
∫
P
λ
v dm̃

λ(v) is the shift invariant measure on Ω+ corresponding to m̃λ. Using
(4.17), we have by the Subadditive Ergodic Theorem that for λ, β ∈ (−1, 1),

lim
t→+∞

1

t
E
P
λ

(
d
G

β
v

(ω̃(0), ω̃(t))
)
= hλ,β.
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By Proposition 3.1, hλ = hλ,λ and h0 = h0,0. The main strategy to prove Theorem 4.9 is

to split (hλ − h0)/λ into two terms:

1

λ
(hλ − h0) =

1

λ
(hλ,λ − hλ,0) +

1

λ
(hλ,0 − h0,0) =: (I)λh + (II)λh,

then show limλ→0 (I)
λ
h = 0 and limλ→0 (II)

λ
h = limt→+∞(1/t)E

Q
0(Z0

h,tM
0
t ) successively.

Lemma 4.16. limλ→0 (I)
λ
h = 0.

Proof. By the same the proof as for Proposition 3.1, we see that for each pair λ, β ∈ (−1, 1),

hλ,β = lim
t→+∞

−1

t

∫ (
ln pβv(t, x, y)

)
pλv(t, x, y) dy

holds true for m̃λ-almost every v = (x, ξ) ∈ SM̃ . So we have lim supλ→0+ (I)λh ≤ 0 since

hλ,λ − hλ,0 = lim
t→+∞

−1

t

∫ (
ln
pλv(t, x, y)

p0v(t, x, y)

)
pλv(t, x, y) dy(4.20)

≤ lim
t→+∞

1

t

∫
p0v(t, x, y)

pλv(t, x, y)
pλv(t, x, y) dy

= 0,

where we use − ln a ≤ a−1 − 1 for a > 0 to derive the second inequality.

To show lim infλ→0+ (I)λh ≥ 0, we proceed to estimate ln(pλv(t, x, y)/p
0
v(t, x, y)) using the

Girsanov-Cameron-Martin formula in Sec. 4.1. For v,w ∈ SM̃ , let Ωv,w,t be the collection

of ω ∈ Ω+ such that ω(0) = v, ω(t) = w. Since the space Ω+ is separable, the measure Pλ

disintegrates into a class of conditional probabilities {Pλ
v,w,t}v,w∈SM̃ on Ωv,w,t’s such that

(4.21) EPλ
v,w,t

(
dP0

t

dPλ
t

)
=

p0(t,v,w)

pλ(t,v,w)
.

Letting v = (x, ξ),w = (y, ξ) in (4.21), we obtain

(4.22) ln
p0v(t, x, y)

pλv(t, x, y)
= ln

(
EPλ

v,w,t

(
dP0

v,t

dPλ
v,t

))
≥ EPλ

v,w,t

(
ln

(
dP0

v,t

dPλ
v,t

))
.

Recall that

dP
0
v,t

dP
λ
v,t

(yλ
v,[0,t]) = EQλ

(
M

λ
t

∣∣F(yλ
v,[0,t])

)
,

where yλ = (yλ
v,t)v∈SM,t∈R+ is the diffusion process on (Θ,Q

λ
) corresponding to Lλ and

M
λ
t (ω) = exp

{
−1

2

∫ t

0
〈Zλ(yλ

v,s(ω)),u
λ
v,s(ω)dBs(ω)〉yλ

v,s(ω)
− 1

4

∫ t

0
‖ − Zλ(yλ

v,s(ω))‖2 ds
}
.
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So we can further deduce from (4.22) that

ln
p0v(t, x, y)

pλv(t, x, y)
≥ EPλ

v,w,t

(
EQλ

((
−1

2

∫ t

0
〈Zλ(yλ

v,s),u
λ
v,sdBs〉yλ

v,s
− 1

4

∫ t

0
‖Zλ(yλ

v,s)‖2 ds
) ∣∣F(yλ

v,[0,t])

))

= −EPλ
v,w,t

(
EQλ

((
1

4

∫ t

0
‖Zλ(yλ

v,s)‖2 ds
) ∣∣F(yλ

v,[0,t])

))

≥ −1

4
(λC)2t,

where the first equality holds true since
∫ t

0 〈Zλ(yλ
v,s),u

λ
v,sdBs〉yλ

v,s
is a centered martingale

and C is some constant which bounds the norm of dZλ/dλ. Reporting this in (4.20) gives

lim inf
λ→0+

(I)λh = lim inf
λ→0+

1

λ

(
hλ,λ − hλ,0

)
≥ −1

4
lim sup
λ→0+

(λC2) = 0.

�

The analysis of (II)λh is analogous to that was used for (II)ℓ. Let λ = 1/
√
t and write

(III)th :=

(
E
P
λ

t

(
1√
t
dG0

v

(ω̃(0), ω̃(t))

)
− E

P
0
t

(
1√
t
dG0

v

(ω̃(0), ω̃(t))

))
.(4.23)

We claim that if limt→+∞ (III)th exists, so does limλ→0 (II)
λ
h and the limits are equal. It

suffices to find a finite number Dh such that for λ ∈ [−δ1, δ1] (where δ1 is from Lemma
4.4) and all t ∈ R+,

(4.24)
∣∣E

P
λ

(
dG0

v

(ω̃(0), ω̃(t))
)
− thλ,0

∣∣ ≤ Dh.

Using again the fact that the Lλ-diffusion has leafwise infinitesimal generator Lλ
v and Pλ

is stationary, we have

E
P
λ

(
− ln k0v(ω̃(t), ξ)

)
= E

P
λ

(
−
∫ t

0

∂

∂s
(ln k0v(ω̃(s), ξ)) ds

)

= E
P
λ

(
−
∫ t

0
Lλ
v(ln k

0
v)(ω̃(s)) ds

)

= −t
∫

M0×∂M̃

Lλ
v(ln k

0
v) dm̃

λ

= thλ,0.

So (4.24) will be a simple consequence of the following lemma.

Lemma 4.17. There exists a finite number D̃3 such that for all λ ∈ [−δ1, δ1] and t ∈ R+,

E
P
λ

(∣∣dG0
v

(ω̃(0), ω̃(t)) + ln k0v(ω̃(t), ξ)
∣∣2
)
< D̃3.
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Proof. For v = (x, ξ) ∈ SM̃ , ω ∈ Ω+ starting from v, t ≥ 0, let zt(ω̃) be the point on the
geodesic ray γω̃(t),ξ closest to x. We will divide Ω+ into four events A′

i(t), 1 ≤ i ≤ 4, and

show there exists a finite D̃′
3 such that

Ii := E
P
λ

(∣∣dG0
v

(ω̃(0), ω̃(t)) + ln k0v(ω̃(t), ξ)
∣∣2 · 1A′

i(t)

)
≤ D̃′

3.

Let A′
1(t) be the event that d(ω̃(0), ω̃(t)) > 1 and d(ω̃(0), zt(ω̃)) ≤ 1. For ω ∈ A′

1(t),
using Harnack’s inequality (4.15) and Lemma 4.14, we easily specify the constant ratios
involved in (3.14) and obtain I1 ≤ (ln(c2c

2
4c7))

2.

Let A′
2(t) be the collection of ω such that both d(ω̃(0), ω̃(t)) and d(ω̃(0), zt(ω̃)) are

greater than 1 and zt(ω̃) 6= ω̃(t). For such ω, we first have by Lemma 4.15 that

(4.25)
∣∣dG0

v

(ω̃(0), ω̃(t))− dG0
v

(ω̃(0), zt(ω̃))− dG0
v

(ω̃(t), zt(ω̃))
∣∣ ≤ − ln c8.

For dG0
v

(ω̃(t), zt(ω̃)), it is true by Lemma 4.14 that

∣∣dG0
v

(ω̃(t), zt(ω̃)) + lnG0
v(y, ω̃(t))− lnG0

v(y, zt(ω̃))
∣∣ ≤ − ln c7,

where y is an arbitrary point on γzt(ω̃),ξ far away from zt(ω̃). Then we can use Lemma 4.15

to replace lnG0
v(y, zt(ω̃)) by lnG0

v(y, ω̃(0)) − lnG0
v(zt(ω̃), ω̃(0)), which, by letting y tend

to ξ, gives
∣∣dG0

v

(ω̃(t), zt(ω̃)) + ln k0v(ω̃(t), ξ)
∣∣ ≤ − ln(c7c8) +

∣∣lnG0
v(ω̃(0), zt(ω̃))

∣∣ .

This, together with (4.25), further implies
∣∣dG0

v

(ω̃(0), ω̃(t)) + ln k0v(ω̃(t), ξ)
∣∣ ≤ − ln(c2c7c

2
8) + 2

∣∣lnG0
v(ω̃(0), zt(ω̃))

∣∣

≤ − ln(c52c7c
2
8) + 2α2d(ω̃(0), zt(ω̃)).

Since M̃ is δ-Gromov hyperbolic for some δ > 0, it is true (cf. [K2, Proposition 2.1]) that

d(x, γy,z) ≤ (y|z)x + 4δ, for any x, y, z ∈ M̃ .

Consequently, we have

(4.26) d(ω̃(0), zt(ω̃)) ≤ (ω̃(t)|ξ)ω̃(0) + 4δ =
1

2
|d(ω̃(0), ω̃(t))− bv(ω̃(t))| + 4δ.

Using Lemma 4.6, we finally obtain

I2 ≤ 2
(
8α2δ − ln(c52c7c

2
8)
)2

+ 2α2
2D3.

Let A′
3(t) be the collection of ω such that d(ω̃(0), ω̃(t)) > 1 and zt(ω̃) = ω̃(t). Let γ′

ω̃(t),ξ

be the two sided extension of the geodesic γω̃(t),ξ and let z′t(ω̃) ∈ γ′
ω̃(t),ξ be the point closet

to ω̃(0). Then z′t(ω̃) � zt(ω̃) on γ
′
ω̃(t),ξ . For ω ∈ A′

3(t), using (4.15) if d(z′t(ω̃), ω̃(t)) < 1 (or
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using Lemma 4.15, otherwise), we see that

dG0
v

(ω̃(0), ω̃(t)) ≤ dG0
v

(ω̃(0), z′t(ω̃)) + dG0
v

(z′t(ω̃), ω̃(t))− ln(c4c8)

≤ α2

(
d(ω̃(0), z′t(ω̃)) + d(z′t(ω̃), ω̃(t))

)
− ln(c42c4c8)

≤ 3α2d(ω̃(0), γω̃(t),ξ)− ln(c42c4c8)

≤ 3

2
α2 |d(ω̃(0), ω̃(t))− bv(ω̃(t))|+ 12α2δ − ln(c42c4c8),

where we use (4.26) to derive the last inequality. Choose y ∈ γω̃(t),ξ with d(ω̃(0), y) and
d(ω̃(t), y) are greater than 1. Similarly, using Lemma 4.15, and then Lemma 4.14, we have

∣∣∣∣ln
G0

v(ω̃(t), y)

G0
v(ω̃(0), y)

∣∣∣∣ =
∣∣dG0

v

(ω̃(0), y) − dG0
v

(ω̃(t), y)
∣∣

≤ − ln c8 +
∣∣dG0

v

(ω̃(0), z′t(ω̃)) + dG0
v

(z′t(ω̃), y)− dG0
v

(ω̃(t), y)
∣∣

≤ − ln(c7c8) + dG0
v

(ω̃(0), z′t(ω̃)) + dG0
v

(z′t(ω̃), ω̃(t))

≤ 3

2
α2 |d(ω̃(0), ω̃(t))− bv(ω̃(t))| + 12α2δ − ln(c42c7c8).

Letting y tend to ξ, we obtain

∣∣ln k0v(ω̃(t), ξ)
∣∣ ≤ 3

2
α2 |d(ω̃(0), ω̃(t))− bv(ω̃(t))| + 12α2δ − ln(c42c7c8).

Thus, using Lemma 4.6 again, we obtain

I3 ≤ E
P
λ

((
3α2 |d(ω̃(0), ω̃(t))− bv(ω̃(t))|+ 24α2δ − ln(c82c4c7c

2
8)
)2)

≤ 18α2
2D3 + 2

(
24α2δ − ln(c82c4c7c

2
8)
)2
.

Finally, let A′
4(t) be the event that d(ω̃(0), ω̃(t)) ≤ 1. Then I4 ≤ (− ln(c2c4))

2 by the
classical Harnack inequality (4.15). �

We finish the proof of Theorem 4.9 by showing limt→+∞ (III)th = limt→+∞(1/t)E
Q

0(Z0
h,tM

0
t ).

The proof is completely parallel to the computation of (II)ℓ. We prove Proposition 4.2 first.

Proof of Proposition 4.2. Let (Z1
t )t∈R+ , u1 be as in Proposition 3.7. The process (Z1

t )t∈R+

is a centered martingale with stationary increments and its law under P
0
is the same as

the law of (Z
1
t )t∈R+ under Q

0
, where (Z

1
t )t∈R+ on (Θ,Q

0
) is given by

Z
1
t (v, ω) = ln kv(πM̃ (yv,t(ω)), ξ) + th0 + u1 (πSM (yv,t(ω))))− u1 (πSM (v)) .

The pair (−Z
1
t ,M

0
t ) is a centered martingale on (Θ,Q

0
) with stationary increments

and integrable increasing process function. As before, it follows that for (a, b) ∈ R2,

−aZ1
t/
√
t+bM0

t /
√
t converge in distribution in Q

0
to a centered Gaussian law with variance

Σh[a, b] = (a, b)Σh(a, b)
T for some matrix Σh. Therefore, (−Z

1
t /
√
t,M0

t /
√
t) converge in
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distribution to a centered Gaussian vector with covariance Σh. Since both Z
1
t and M0

t have
stationary increments, we also have

Σh[a, b] =
1

t
E
Q

0

[
(−aZ1

t + bM0
t )

2
]
, for all t ∈ R+.

Finally, for P
0
v-a.e. orbits ω ∈ Ω+, ω̃, the projection of ω to M̃ , is such that

lim sup
t→+∞

| lnGv(x, ω̃(t))− ln kv(ω̃(t), ξ)| < +∞.

Moreover, we have by Lemma 4.17 that

sup
t

E
P
λ(
∣∣Z0

h,t + Z
1
t

∣∣2) < +∞

and hence

E
P
λ(
1

t

∣∣Z0
h,t + Z

1
t

∣∣2) → 0, as t→ +∞.

Consequently, (Z0
h,t/

√
t,M0

t /
√
t) has the same limit Gaussian law as (−Z

1
t/
√
t,M0

t /
√
t)

and its covariance matrix under Q
0
converges to Σh as t goes to infinity. �

Lemma 4.18. The (III)th defined in (4.23) equals to limt→+∞(1/t)E
Q

0(Z0
h,tM

0
t ).

Proof. Since for P
0
-a.e. ω, ω̃(t) tends to a boundary point as t goes to infinity, so(

dG0
v

(ω̃(0), ω̃(t))− th0
)
/
√
t and −

(
lnG0(ω(0), ω(t)) + th0

)
/
√
t have the same asymptotic

distribution, which is a centered Gaussian distribution by Proposition 3.6. Thus,

lim
t→+∞

(III)th

= lim
t→+∞

E
P
λ

t

(
1√
t

(
dG0

v

(ω̃(0), ω̃(t))− th0
))

− lim
t→+∞

E
P
0

(
1√
t

(
dG0

v

(ω̃(0), ω̃(t))− th0
))

= lim
t→+∞

E
P
λ

t

(
1√
t

(
dG0

v

(ω̃(0), ω̃(t))− th0
))

=: (IV)h,

providing the last limit exists. Let y = (yt)t∈R+ = (yv,t)v∈SM,t∈R+ be the diffusion process

on (Θ,Q
λ
) corresponding to Lλ defined in Sec. 4.1. Using the Girsanov-Cameron-Martin

formula for dP
λ
v,t/dP

0
v,t (see (4.5)), we have

(IV)h = lim
t→+∞

E
P
0


 1√

t

(
dG0

v

(ω̃(0), ω̃(t))− th0
) dPλ

ω(0),t

dP
0
ω(0),t




= lim
t→+∞

E
Q

0

(
1√
t

(
dG0

v

(y0(v, ω),yt(v, ω))− th0
)
·Mλ

t (ω)

)

= lim
t→+∞

E
Q

0

(
1√
t
Z0
h,t ·M

λ
t

)
,
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where we identify yt(v, ω)) ∈ M̃ × {ξ} with its projection point on M̃ . As before, by

Proposition 4.2, the variables 1√
t
Z0
h,t · M

λ
t converge in distribution to Z0

he
M0− 1

2
E
Q
0 ((M0)2)

.

Again, we have by Proposition 4.2 and the same reasoning as in the proof of Lemma 4.8
that

sup
t

E
Q

0

(∣∣∣∣
1√
t
Z0
h,t ·M

λ
t

∣∣∣∣
3
2

)
< +∞.

It follows from Lemma 4.7 that

lim
t→+∞

(III)th = lim
t→+∞

E
Q

0

(
1√
t
Z0
h,t ·M

λ
t

)
= E

Q
0

(
Z0
he

M0− 1
2
E
Q
0((M0)2)

)
.

Finally, using the fact that (Z0
h,M

0) has a bivariate normal distribution, we have

E
Q

0

(
Z0
he

M0− 1
2
E
Q
0 ((M0)2)

)
= E

Q
0(Z0

hM
0),

which is limt→+∞(1/t)E
Q

0(Z0
h,tM

0
t ) by Proposition 4.2. �

5. Proof of the main theorems

In this section, we show Theorem 1.1 and Theorem 1.2 in the introduction.

Let (M,g) be a negatively curved closed connected m-dimensional Riemannian manifold

as before. Let ∂M̃ be the geometric boundary of the universal cover space (M̃ , g̃). We can

identify M̃ × ∂M̃ with SM̃g̃, the unit tangent bundle of M̃ in metric g̃, by sending (x, ξ)

to X g̃(x, ξ), the unit tangent vector of the g̃-geodesic starting at x pointing at ξ.

Let λ ∈ (−1, 1) 7→ gλ be a one-parameter family of C3 metrics onM of negative curvature

with g0 = g. Denote by g̃λ the lift of gλ in M̃ . For each λ, the geometric boundary of

(M̃, g̃λ), denoted ∂M̃g̃λ , can be identified with ∂M̃ since the identity isomorphism from

G = π1(M) to itself induces a homeomorphism between ∂M̃g̃λ and ∂M̃ . So each (x, ξ) ∈
M̃ × ∂M̃ is also associated with a tangent vector X g̃λ(x, ξ) ∈ TM̃ , which is the unit

tangent vector of the g̃λ-geodesic starting at x pointing at ξ. Our very first step to study
the differentiability of the linear drift under a one-parameter family of conformal changes
gλ of g is to understand the differentiable dependence of X g̃λ(x, ξ) on the parameter λ.

For each gλ, there exist (g, gλ)-Morse correspondence ([Ano, Gro, Mor]), the homeo-
morphisms from SMg to SMgλ preserving the geodesics on M . The (g, gλ)-Morse corre-
spondence is not unique, but any two such maps only differ by shifts in the geodesic flow
directions (i.e., if F1, F2 are two (g, gλ)-Morse correspondence maps, then there exists a
real valued function t(·) on SMg such that F−1

1 ◦ F2(v) = Φt(v)(v) for v ∈ SMg), where Φ
is the geodesic flow map on SMg ([Ano, Gro, Mor], see [FF, Theorem 1.1]).

Let us construct a (g, gλ)-Morse correspondence map by lifting the systems to their

universal cover spaces as in [Gro]. For an oriented geodesic γ in (M̃, g̃), denote by ∂+(γ) ∈
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∂M̃g̃ and ∂−(γ) ∈ ∂M̃g̃ the asymptotic classes of its positive and negative directions. The

map γ 7→ (∂+(γ), ∂−(γ)) ∈ ∂M̃g̃ × ∂M̃g̃ establishes a homeomorphism between the set of

all oriented geodesics in (M̃, g̃) and ∂2(M̃g̃) = (∂M̃g̃ × ∂M̃g̃)\{(ξ, ξ) : ξ ∈ ∂M̃g̃}. So the

natural homeomorphism Dλ : ∂2(M̃g̃) → ∂2(M̃g̃λ) induced from the identity isomorphism
from G to itself can be viewed as a homeomorphism between the sets of oriented geodesics

in (M̃, g̃) and (M̃, g̃λ). Realize points from SM̃g̃ by pairs (γ, y), where γ is an oriented

geodesic and y ∈ γ, and define a map F̃ λ : SM̃g̃ → SM̃g̃λ by sending (γ, y) ∈ SM̃g̃ to

F̃ λ(γ, y) = (Dλ(γ), y′),

where y′ is the intersection point of Dλ(γ) and the hypersurface {expg̃ Y : Y⊥v}, where
v is the vector in SyM̃g̃ pointing at ∂+(γ). The map F̃ λ is a homeomorphism since both

g and gλ are of negative curvature. Returning to SMg and SMgλ , we obtain a map F λ.

Given any sufficiently small ǫ, if gλ is in a sufficiently small C3-neighborhood of g, then
F λ is the only (g, gλ)-Morse correspondence map such that the footpoint of F λ(v) belongs
to the hypersurface of points {expg Y : Y⊥v, ‖Y ‖g < ǫ}.

Regard SMgλ as a subset of TM and let πλ : SMgλ → SMg be the projection map

sending v to v/‖v‖g . The map πλ records the direction information of the vectors of SMgλ

in SMg. Let F λ : SMg → SMgλ be the (g, gλ)-Morse correspondence map obtained as

above. We obtain a one-parameter family of homeomorphisms πλ ◦F λ from SMg to SMg.
By using the implicit function theorem, de la Llave-Marco-Moriyón [LMM, Theorem A.1]
improved the differentiable dependence of πλ ◦ F λ on the parameter λ.

Theorem 5.1. (cf. [FF, Theorem 2.1]) There exists a C3 neighborhood of g so that for
any C3 one-parameter family of C3 metrics λ ∈ (−1, 1) 7→ gλ in it with g0 = g, the map
λ 7→ πλ ◦ F λ is C3 with values in the Banach manifold of continuous maps SMg → SMg.

The tangent to the curve πλ ◦ F λ is a continuous vector field Ξλ on SMg.

Following Fathi-Flaminio [FF], we will call Ξ := Ξ0 in Theorem 5.1 the infinitesimal
Morse correspondence at g for the curve gλ. It was shown in [FF] that the vector field Ξ
only depends on g and the differential of gλ in λ at 0.

Theorem 5.2. ([FF, Proposition 2.7]) Let Ξ be the infinitesimal Morse correspondence
at g for the curve gλ and let Ξγ be the restriction of the projection of Ξ in TM to a unit
speed g-geodesic γ. Then Ξγ is the unique bounded solution of the equation

(5.1) ∇2
γ̇Ξγ +R(Ξγ , γ̇)γ̇ + Γγ̇ γ̇ − 〈Γγ̇ γ̇, γ̇〉γ̇ = 0

satisfying 〈Ξγ , γ̇〉 = 0 along γ, where γ̇(t) = d
dt
γ(t), ∇ and R are the Levi-Civita connection

and curvature tensor of metric g, ∇λ is the Levi-Civita connection of the metric gλ and
Γ = ∂λ∇λ|λ=0. The vertical component of Ξ in T (SMg) is given by ∇γ̇Ξγ.
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We will still denote Ξ the lift to T (SM̃g̃) of the infinitesimal Morse-correspondence at g

for the curve gλ. For any geodesic γ in (M̃, g̃), let N(γ) be the normal bundle of γ:

N(γ) = ∪t∈RNt(γ), where Nt(γ) = (γ̇(t))⊥ = {E ∈ Tγ(t)M̃ : 〈E, γ̇(t)〉 = 0}.

The one-parameter family of vectors along γ arising from the infinitesimal Morse corre-
spondence:

Υ(t) := (Γγ̇ γ̇ − 〈Γγ̇ γ̇, γ̇〉γ̇) (γ(t)), t ∈ R,

is such that Υ(t) belongs to Nt(γ) for all t. The restriction of the infinitesimal Morse
correspondence to γ is (Ξγ ,∇γ̇Ξγ), with both Ξγ and ∇γ̇Ξγ belonging to N(γ) as well. In
the following, we will specify Ξγ and ∇γ̇Ξγ using Υ and a special coordinate system of
Nt(γ)’s arising from the stable and unstable Jacobi fields along γ.

Let v = (x, v) be a point in TM̃ . The tangent vectors in TvTM̃ correspond to variations
of geodesics and can be represented by Jacobi fields along the geodesic γv. A Jacobi field
J(t), t ∈ R, along γv satisfies the Jacobian equation

(5.2) J ′′ +R(J, γ̇v)γ̇v = 0,

with R being the curvature tensor, and is uniquely determined by the values of J(0) and

J ′(0). So we can describe tangent vectors in TvTM̃ by the associated pair (J(0), J ′(0)) of
vectors in TxM̃ . The metric on TvTM̃ is given by ‖(J0, J ′

0)‖2 = ‖J0‖2 + ‖J ′
0‖2. Assume

v ∈ SM̃ . Horizontal vectors in TvSM̃ correspond to pairs (J(0), 0). In particular, the
geodesic spray Xv at v is the horizontal vector associated with (v, 0). A vertical vector in

TvSM̃ is a vector tangent to SxM̃ . It corresponds to a pair (0, J ′(0)), with J ′(0) orthogonal
to v. The orthogonal space to Xv is preserved by the differential DΦt of the geodesic flow.

Indeed, the Jacobi fields representation of TTM̃ satisfies DvΦt(J(0), J
′(0)) = (J(t), J ′(t)).

It is easy to deduce from (5.2) that the Wronskian of two Jacobi fields J and J̃ along γ:

W (J, J̃) := 〈J ′, J̃〉 − 〈J, J̃ ′〉

is constant. Hence 〈J ′(t), γ̇(t)〉 remains the same for a Jacobi field J along γ, which implies
that if J ′(t0) is in Nt0(γ) for some t0, then J ′(t) is in Nt(γ) for all t. Similarly, if both
J(t0), J

′(t0) are in Nt0(γ) for some t0, then J(t), J
′(t) are in Nt(γ) for all t.

A (1,1) tensor along γ is a family V = V (t), t ∈ R, where V (t) is an endomorphism
of Nt such that for any family Et of parallel vectors along γ, the covariant derivative
V ′(t)Et := ∇γ̇(t)V (t)Et exists. Endow N(γ) with Fermi orthonormal coordinates given by
a parallel frame field along γ. A (1,1) tensor along γ is parallel if V ′(t) = 0 for all t. It
is then given by a constant matrix in Fermi coordinates. The curvature tensor R induces
a symmetric (1,1) tensor along γ by R(t)E = R(E, γ̇(t))γ̇(t). A (1,1) tensor V (t) along γ
is called a Jacobi tensor if it satisfies V ′′ + RV = 0. If V (t) is a Jacobi tensor along γ,
then J(t) := V (t)Et is a Jacobi field for any parallel field Et. Consider the Jacobi tensors
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determined by two initial conditions:

Sv,s(t) is such that Sv,s(0) = Id and Sv,s(s) = 0,

Uv,s(t) is such that Uv,s(0) = Id and Uv,s(−s) = 0.

It is known ([Gre]) that the limits

Sv = lim
s→∞

Sv,s and Uv = lim
s→∞

Uv,s

exist, which are called the stable and unstable tensors, respectively. For each v ∈ SM̃ , the
vectors (Y, S′

v(0)Y ), Y ∈ N0(γ), (or (Y,U
′
v(0)Y )) generate TW ss

v (or TW su
v ).

Since the operator (U ′
v(0) − S′

v(0)) is positive and symmetric, we can choose vectors
~x1, · · · , ~xm−1 to form a basis of N0(γv) so that

(5.3) 〈(U ′
v(0) − S′

v(0))~xi, ~xj〉 = δij .

Let J1, · · · , J2m−2 be the Jacobi fields with

(Ji(0), J
′
i(0)) =

{
(~xi, S

′
v(0)~xi), if i ∈ {1, · · · ,m− 1};

(~xi+1−m, U
′
v(0)~xi+1−m), if i ∈ {m, · · · , 2m− 2}.

Since the Wronskian of two Jacobi fields remains constant along geodesics, we have

(5.4) W (Ji, Jj) =

{
0, if i, j ∈ {1, · · · ,m− 1} or i, j ∈ {m, · · · , 2m− 2};
−δi,j+1−m, if i ∈ {1, · · · ,m− 1} and j ∈ {m, · · · , 2m− 2}.

Equivalently, if we write Js := (J1, · · · , Jm−1), Ju := (Jm, · · · , J2m−2), then (5.4) gives

(5.5) J∗
wJ

′
w = (J′

w)
∗Jw, w = s or u, and J∗

uJ
′
s − (J′

u)
∗Js = −Id.

The collection J1(t), · · · , J2m−2(t) provides a basis for each Nt(γ) ×Nt(γ). Consequently,

any V (t) = (V1(t), V2(t)) ∈ TTM̃ along γ with Vi(t) ∈ Nt(γ), i = 1, 2, can be expressed as

(Js(t)~a(t),J
′
s(t)~a(t))+ (Ju(t)~b(t),J

′
u(t)

~b(t)) with ~a(t),~b(t) being two Rm−1 vector variables
in t. To specify the infinitesimal Morse correspondence Ξ at g for the curve gλ, it suffices

to find the coefficients ~a(t),~b(t) for the restriction of Ξ along any g̃-geodesic γ.

Proposition 5.3. Let Ξ be the infinitesimal Morse correspondence at g for a C3 one-
parameter family of C3 metrics gλ with g0 = g. Then the restriction of Ξ to a g̃-geodesic

γ is (Js(t)~a(t),J
′
s(t)~a(t)) + (Ju(t)~b(t),J

′
u(t)

~b(t)) with

(5.6) ~a(t) =

∫ t

−∞
J∗
u(s)Υ(s) ds, ~b(t) =

∫ +∞

t

J∗
s (s)Υ(s) ds.

Proof. By the construction of Morse correspondence, for any g̃-geodesic γ, the value of Ξ

along γ, denoted Ξ(γ), belongs to N(γ)×N(γ). So, there are ~a(t),~b(t), t ∈ R, such that

(5.7) Ξ(γ) = (Js(t)~a(t),J
′
s(t)~a(t)) + (Ju(t)~b(t),J

′
u(t)

~b(t)).

In particular, the vertical part of Ξ(γ) is J′
s(t)~a(t) + J′

u(t)
~b(t), which, by Theorem 5.2, is

also
∇γ̇Ξγ = J′

s(t)~a(t) + J′
u(t)

~b(t) + Js(t)~a
′(t) + Ju(t)~b

′(t).
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So we must have
Js(t)~a

′(t) + Ju(t)~b
′(t) = 0.

Differentiating ∇γ̇Ξγ = J′
s(t)~a(t) + J′

u(t)
~b(t) along γ and reporting it in (5.1), we obtain

J′
s(t)~a

′(t) + J′
u(t)

~b′(t) + J′′
s (t)~a(t) + J′′

u(t)
~b(t) + R(t)Js(t)~a(t) + R(t)Ju(t)~b(t) = −Υ(t),

which simplifies to

(5.8) J′
s(t)~a

′(t) + J′
u(t)

~b′(t) = −Υ(t)

by the defining property of Jacobi fields. Using (5.5), we solve ~a′,~b′ from (5.7), (5.8) with

(5.9) ~a′ = J∗
uΥ,

~b′ = −J∗
sΥ.

Note that Ju(−∞) = Js(∞) = 0. Finally, we recover ~a(t),~b(t) from (5.9) by integration. �

For any s ∈ R, let (Ks,K
′
s) be the unique Jacobi field along a g̃-geodesic γ such that

K′
s(s) = Υ(s) and Ks(s) = 0.

Then (
Ks(0),K

′
s(0)

)
= (DΦs)

−1 (0,Υ(s)) .

We further express Ξ using Ks’s by specifying the value of Ξ(γ(0)) for any g̃-geodesic γ.

Proposition 5.4. Let Ξ be the infinitesimal Morse correspondence at g for a C3 one-
parameter family of C3 metrics gλ with g0 = g. Then for the g̃-geodesic γ with γ̇(0) = v:

Ξγ(0) = (U ′
v(0)− S′

v(0))
−1
[ ∫ 0

−∞
(K′

s(0)− U ′
v(0)Ks(0)) ds

+

∫ +∞

0
(K′

s(0)− S′
v(0)Ks(0)) ds

]
,

(∇γ̇Ξγ)(0) = S′
v(0)(U

′
v(0)− S′

v(0))
−1

∫ 0

−∞
(K′

s(0)− U ′
v(0)Ks(0)) ds

+U ′
v(0)(U

′
v(0)− S′

v(0))
−1

∫ +∞

0
(K′

s(0)− S′
v(0)Ks(0)) ds.

Proof. By Proposition 5.3, for any g̃-geodesic γ,

Ξ(γ(0)) = (Ξγ(0), (∇γ̇Ξγ)(0)) =
(
Js(0)~a(0) + Ju(0)~b(0),J

′
s(0)~a(0) + J′

u(0)
~b(0)

)
,

where ~a(0),~b(0) are given by (5.6). We first express ~a(0) using Ks’s. Let s ≤ 0. The
Wronskian between Ks and any unstable Jacobi fields are preserved along the geodesics
and must have the same value at γ(s) and γ(0). This gives

J∗
u(s)Υ(s) = J∗

u(0)K
′
s(0)− (J′

u)
∗(0)Ks(0).

Consequently,

(J∗
u)

−1(0)J∗
u(s)Υ(s) = K′

s(0)− (J∗
u)

−1(0)(J′
u)

∗(0)Ks(0) = K′
s(0)− U ′

v(0)Ks(0),
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where we use the fact that J′
u(0) = U ′

v(0)Ju(0) for the second equality. So we have

~a(0) = J∗
u(0)

∫ 0

−∞
(K′

s(0) − U ′
v(0)Ks(0)) ds.

Similarly, for any s ≥ 0, a comparison of the Wronskian between Ks and any stable Jacobi
fields at time s and 0 gives

J∗
s (s)Υ(s) = J∗

s (0)K
′
s(0) − (J′

s)
∗(0)Ks(0).

As a consequence, we have

(J∗
s )

−1(0)J∗
s (s)Υ(s) = K′

s(0)− (J∗
s )

−1(0)(J′
s)

∗(0)Ks(0) = K′
s(0) − S′

v(0)Ks(0),

which gives

~b(0) = J∗
s (0)

∫ +∞

0
(K′

s(0) − S′
v(0)Ks(0)) ds.

The formula for Ξ(γ(0)) follows by using Js(0) = Ju(0) and Ju(0)J
∗
u(0) = (U ′

v(0)−S′
v(0))

−1.
�

A dynamical point of view of the integrability of the integrals in Proposition 5.4 is that
(K′

s(0) − U ′
v(0)Ks(0)) (s ≤ 0) is the stable vertical part of (DΦs)

−1 (0,Υ(s)) and hence
decays exponentially when s goes to −∞, while (K′

s(0)−S′
v(0)Ks(0)) (s ≥ 0) is the unstable

vertical part of (DΦs)
−1 (0,Υ(s)) and thus decays exponentially when s goes to ∞.

For any curve λ ∈ (−1, 1) 7→ ̥λ ∈ N for some Riemannian manifold N, we write
(̥λ)

′
0 := (d̥λ/dλ)|λ=0 whenever the differential exists and similarly for ̥λ. We can put

a formula concerning
(
X g̃λ

)′
0
for any C3 curve gλ in ℜ(M) with g0 = g.

Proposition 5.5. Let (M,g) be a negatively curved closed connected m-dimensional Rie-
mannian manifold. Then for any C3 one-parameter family of C3 metrics λ ∈ (−1, 1) 7→ gλ

in it with g0 = g, the map λ 7→ X g̃λ(x, ξ) is differentiable at λ = 0 for each v = (x, ξ) with

(
X g̃λ

)′
0
(x, ξ) =

(
0,
(
‖X g̃λ‖g̃

)′
0
(v)v +

∫ +∞

0
(K′

s(0) − S′
v(0)Ks(0)) ds

)
.

Proof. Express the homeomorphism F̃ λ as a map from M̃ × ∂M̃ to M̃ × ∂M̃g̃λ with

F̃ λ(x, ξ) = (fλξ (x), ξ), ∀(x, ξ) ∈ SM̃,
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where fλξ records the change of footpoint of the (g, gλ)-Morse correspondence F̃ λ. We have

1

λ

(
X g̃λ(x, ξ)−X g̃(x, ξ)

)

=
1

λ

(
X g̃λ(x, ξ)−

X g̃λ(x, ξ)

‖X g̃λ(x, ξ)‖g̃

)
+

1

λ

(
X g̃λ(x, ξ)

‖X g̃λ(x, ξ)‖g̃
−X g̃((f

λ
ξ )

−1(x), ξ)

)

+
1

λ

(
X g̃((f

λ
ξ )

−1(x), ξ)−X g̃(x, ξ)
)

=: (a)λ + (b)λ + (c)λ.

When λ tends to zero, (a)λ tends to (0,
(
‖X g̃λ‖

)′
0
(v)v). By Theorem 5.1 and Theorem 5.2,

(b)λ tends to (Ξγv(0),∇γ̇vΞγv(0)), which is also (Js(0)~a(0),J
′
s(0)~a(0))+(Ju(0)~b(0),J

′
u(0)

~b(0))

with ~a(0),~b(0) from Proposition 5.3. Finally, the quantity (c)λ describes the variation of
the unit tangent vectors of asymptotic g̃-geodesics starting at fλξ (x) pointing at ξ and its

limit (as λ goes to 0) is − (Ξγv(0), S
′
v(0)Ξγv (0)). So,

lim
λ→0

((b)λ + (c)λ) = (∇γ̇vΞγv)(0) − S′
v(0)Ξγv(0) = (U ′

v(0) − S′
v(0))Ju(0)~b(0),

which, by our choice of Ju(0) = Js(0) and the defining property of Ju(0) in (5.3), is

(J∗
s )

−1(0)~b(0) =

∫ +∞

0
(K′

s(0) − S′
v(0)Ks(0)) ds.

�

Corollary 5.6. Let (M,g) be a negatively curved closed connected Riemannian manifold
and let λ ∈ (−1, 1) 7→ gλ ∈ ℜ(M) be a C3 curve of C3 conformal changes of the metric
g0 = g. The map λ 7→ X g̃λ(x, ξ) is differentiable for each v = (x, ξ) with

(
X g̃λ

)′
0
(x, ξ) =

(
0,−ϕv +

∫ +∞

0
(K′

s(0)− S′
v(0)Ks(0)) ds

)
,

where ϕ : M → R is such that gλ = e2λϕ+O(λ2)g and (Ks(0),K
′
s(0)) = (DΦs)

−1 (0,Υ(s))
with Υ = −∇ϕ+ 〈∇ϕ, γ̇v〉γ̇v.

Proof. Let λ ∈ (−1, 1) 7→ ϕλ be such that gλ = e2ϕ
λ
g. Clearly, ‖X g̃λ‖g̃ = e−ϕλ

and hence(
‖X g̃λ‖g̃

)′
0
(v)v = −ϕv. Let ∇λ denote the Levi-Civita connection of (M̃, g̃). It is true by

Koszul’s formula that

∇λ
XY −∇XY = (DXϕ

λ)Y + (DY ϕ
λ)X − 〈X,Y 〉g∇ϕλ

for any two smooth vector fields X,Y on M̃ . As a consequence, we have

ΓXY = (DXϕ)Y + (DY ϕ)X − 〈X,Y 〉g∇ϕ.
In particular, Γγ̇ γ̇ = −∇ϕ+ 2〈∇ϕ, γ̇〉γ̇ and the equation (5.1) reduces to

∇2
γ̇Ξγ +R(Ξγ , γ̇)γ̇ −∇ϕ+ 〈∇ϕ, γ̇〉γ̇ = 0.
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The formula for
(
X g̃λ

)′
0
(x, ξ) follows immediately by Proposition 5.5. �

Next, let us recall some basic notations for harmonic measures and Brownian motions to
be used in this section. Let (M,g) be a negatively curved closed connected m-dimensional
Riemannian manifold as before. The laminated Laplacian ∆ is subordinate to the stable

foliation and has a unique harmonic measure m. The lift of m to SM̃ , denoted m̃, has

the expression m̃ = kξ(x)(dx× ν(dξ)) for some finite measure ν on ∂M̃ , where kξ(x) is the
Martin kernel function of the Laplacian and dx is proportional to the volume. We use P to
denote the invariant probability measure on Ω+ associated with m̃ as in Proposition 2.1.

Let Bt = (B1
t , · · · , Bm

t ) be an m-dimensional Brownian motion on a probability space

(Θ,F ,Ft,Q) with generator ∆ as before. For each v ∈ SM̃ , the Brownian motion
(xv,t)t∈R+ on W s(v) is a diffusion process on (Θ,Q) which can be obtained as the pro-
jection on W s(v) of the Brownian motion wv,t in O(W s(v)) for any choice of wv,0 which

projects to v. Consider the space Θ = SM̃ ×Θ with product σ-algebra and probability Q,

dQ(v, ω) = dQ(ω)× dm̃(v). Let xt : SM̃ ×Θ → SM̃ be such that xt(v, ω) = xv,t(ω), for

(v, ω) ∈ SM̃ ×Θ and let

Zℓ,t := [dW(x0,xt)− tℓ0] ,

Zh,t := −
[
1{d(x0,xt)>1} · lnG(x0,xt) + th0

]
.

We have by Proposition 3.6 that both Zℓ,t/
√
t and Zh,t/

√
t are asymptotic to centered

Gaussian distributions with respect to Q as t goes to infinity.

Let λ ∈ (−1, 1) 7→ gλ ∈ ℜ(M) be a C3 curve of conformal changes of the metric g0 = g.
We simply use the superscript λ (λ 6= 0) for X,m, m̃, kξ,P to indicate that the metric used

is gλ, for instance, mλ is the harmonic measure for the laminated Laplacian in metric gλ.

Let ℓλ and hλ be the linear drift and entropy for (M,gλ) as were defined in Sec. 1. Their
differentiability in λ at 0 (Theorem 1.1) will be a consequence of the following Theorem.

Theorem 5.7. Let (M,g) be a negatively curved compact connected m-dimensional Rie-
mannian manifold and let λ ∈ (−1, 1) 7→ gλ ∈ ℜ(M) be a C3 curve of conformal changes
of the metric g0 = g with constant volume. For each λ ∈ (−1, 1), let ϕ be such that

gλ = e2λϕ+O(λ2)g. With the above notations, the following holds true.

i) The function λ 7→ ℓλ is differentiable at 0 with

(ℓλ)
′
0 =

∫

M0×∂M̃

〈ϕX +

∫ +∞

0
(K′

s(0)− S′
(x,ξ)(0)Ks(0)) ds,∇ ln k〉 dm̃

+(m− 2)

∫

M0×∂M̃

ϕ〈∇u0 +X,∇ ln k〉 dm̃,(5.10)

where (Ks(0),K
′
s(0)) = (DΦs)

−1 (0,Υ(s)) with Υ = −∇ϕ + 〈∇ϕ, γ̇〉γ̇ along the
g̃-geodesic γ with γ̇(0) = (x, ξ) and u0 is the function defined before Proposition
3.7.
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ii) The function λ 7→ hλ is differentiable at 0 with

(5.11) (hλ)
′
0 = (m− 2)

∫

SM

ϕ〈∇(u1 + ln k),∇ ln k〉 dm,

where u1 is the function defined before Proposition 3.7.

Proof. We derive the formula for (hλ)
′
0 first. We will omit the subscript of

∫
M0×∂M̃

whenever

there is no ambiguity. Let λ ∈ (−1, 1) 7→ ϕλ be such that gλ = e2ϕ
λ
g. For each λ, we have

∆λ = e−2ϕλ
(
∆+ (m− 2)∇ϕλ

)
=: e−2ϕλ

Lλ.

Let L̂λ := ∆+Zλ with Zλ being the horizontal lift of (m− 2)∇ϕλ to the tangent space of

SM and let m̂λ be the lift to SM̃ of the harmonic measure corresponding to L̂λ with respect

to metric g. Then dm̂λ = e−2ϕλ

dm̃λ, where ϕλ also denotes its lift to M̃ ×∂M̃ . Moreover,
since there is only a time change between the diffusion processes with infinitesimal operators

∆λ and Lλ, the Martin kernel function corresponding to L̂λ is the same as that of L̂λ for the

laminated Laplacian in the metric gλ. Note that the ĥλ defined in the introduction is just

the stochastic entropy for the operator L̂λ with respect to metric g. So, using Proposition
3.5, we obtain

(5.12) ĥλ =

∫
‖∇0 ln kλξ (x)‖20 dm̂λ =

∫
e−2ϕλ‖∇ ln kλξ (x)‖2 dm̃λ.

For (hλ)
′
0, we have

(hλ)
′
0 = lim

λ→0

1

λ
(hλ − ĥλ) + lim

λ→0

1

λ
(ĥλ − h0) =: (I)h + (II)h,

if both limits exist. It is easy to see (I)h = 0 since by Proposition 3.5 and (5.12),

(I)h = lim
λ→0

1

λ

(∫
‖∇λ ln kλξ (x)‖2λ dm̃λ −

∫
‖∇0 ln kλξ (x)‖20 dm̂λ

)

= lim
λ→0

∫
1

λ
(e−2ϕλ − e−2ϕλ

)‖∇ ln kλξ (x)‖2 dm̃λ

= 0,

where we use ∇λ ln kλξ (x) = e−2ϕλ∇ ln kλξ (x) and ‖∇λ ln kλξ (x)‖2λ = e−2ϕλ‖∇ ln kλξ (x)‖2. For
(II)h, we have by Theorem 4.9 that it equals to limt→+∞(1/t)E

Q
(Zh,tMt). Let

Z̃1
t = f1(xt)− f1(x0)−

∫ t

0
(∆f1)(xs) ds,(5.13)

where f1 = − ln kξ − u1 ◦ πSM is the martingale with increasing process 2‖∇ ln kξ +
∇u1‖2(πM̃ (xt)) dt and the function u1 is such that

(5.14) ∆u1 = ‖∇ ln kξ‖2 − h0.
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It is true by Proposition 4.2 that

lim
t→+∞

1

t
EQ(Zh,tMt) = lim

t→+∞
1

t
EQ(Z̃

1
tMt),

where

Mt =
1

2

∫ t

0
〈(Zλ)′0(xs),wsdBs〉xs .

Note that (Zλ)′0, the lift of (m− 2)∇ϕ to the tangent space of SM , is a gradient field. So,
if we write ψ = 1

2 (m− 2)ϕ, we have by Ito’s formula that

(5.15) Mt = ψ(xt)− ψ(x0)−
∫ t

0
(∆ψ)(xs) ds

is a martingale with increasing process 2‖∇ψ‖2. Using (5.13), (5.15) and a straightforward

computation using integration by parts formula for (aZ̃1
t + bMt)

2, a, b = 0 or 1, we obtain

Z̃1
tMt = 2

∫ t

0
〈∇f1,∇ψ〉(xs) ds

and hence

lim
t→+∞

1

t
EQ(Z̃

1
tMt) = 2

∫
〈∇f1,∇ψ〉 dm̃ = −2

∫
〈∇ ln k,∇ψ〉 dm̃− 2

∫
〈∇u1,∇ψ〉 dm̃,

where we still denote u1, ϕ, ψ their lifts to M0 × ∂M̃. Here,

−2

∫
〈∇ ln k,∇ψ〉 dm̃ = 2

∫

SM

Div(∇ψ) dm = (m− 2)

∫

SM

∆ϕ dm = 0,

where the first equality is the integration by parts formula and the last one holds because
m is ∆-harmonic. We finally obtain

(hλ)
′
0 = −(m− 2)

∫

SM

〈∇u1,∇ϕ〉 dm.

Observe that:

2〈∇u1,∇ϕ〉 = ∆(u1ϕ)−∆(u1)ϕ− u1∆ϕ

= ∆(u1ϕ)− ϕ‖∇ ln k‖2 + h0ϕ− u1∆ϕ,(5.16)

where we use the defining property (5.14) of u1. When we take the integral of (5.16) with
respect to m, the first term vanishes because m is ∆ harmonic, the second term gives
−
∫
ϕ‖∇ ln k‖2 dm, the third term vanishes because the volume is constant. Finally for

the last term, by using the integration by parts formula:

(5.17)

∫

SM

u∆v dm =

∫

SM

v∆u dm+ 2

∫

SM

v〈∇u,∇ ln k〉 dm,
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we have ∫

SM

u1∆ϕ dm =

∫

SM

ϕ(∆u1 + 2〈∇u1,∇ ln k〉) dm

=

∫

SM

ϕ(‖∇ ln k‖2 + 2〈∇u1,∇ ln k〉) dm.

Next, we derive the formula for (ℓλ)
′
0. Clearly,

(ℓλ)
′
0 = lim

λ→0

1

λ
(ℓλ − ℓ̂λ) + lim

λ→0

1

λ
(ℓ̂λ − ℓ0) =: (I)ℓ + (II)ℓ,

if both limits exist. Here the ℓ̂λ defined in the introduction is just the linear drift for the

operator L̂λ with respect to metric g. The (II)ℓ term can be analyzed similarly as above
for (II)h. Indeed, by Theorem 4.3, (II)ℓ = limt→+∞(1/t)EQ(Zℓ,tMt). Let

Z̃0
t = f0(xt)− f0(x0)−

∫ t

0
(∆f0)(xs) ds,(5.18)

where f0 = bv−u0◦πSM , be the martingale with increasing process 2‖X+∇u0‖2(πM̃ (xt)) dt
and the function u0 is such that

(5.19) ∆u0 = −Div(X)− ℓ0.

It is true by Proposition 4.1 that

lim
t→+∞

1

t
E
Q
(Zh,tMt) = lim

t→+∞
1

t
E
Q
(Z̃0

tMt),

whereMt, by (5.15), is a martingale with increasing process 2‖∇ψ‖2. So using (5.15), (5.18)
and a straightforward computation using integration by parts formula for (aZ̃0

t + bMt)
2,

a, b = 0 or 1, we obtain

Z̃0
tMt = 2

∫ t

0
〈∇f0,∇ψ〉(xs) ds

and hence

lim
t→+∞

1

t
EQ(Z̃

0
tMt) = 2

∫
〈∇f0,∇ψ〉 dm̃ = −(m− 2)

(∫
〈X,∇ϕ〉 dm̃+

∫
〈∇u0,∇ϕ〉 dm̃

)
,

where we still denote u0, ϕ, ψ their lifts to M0 × ∂M̃ . Using the formula Div(ϕX) =
ϕDivX + 〈∇ϕ,X〉, we obtain

∫
〈X,∇ϕ〉 dm̃ =

∫ (
Div(ϕX)− ϕDivX

)
dm̃ = −

∫
ϕ
(
〈X,∇ ln k〉+DivX

)
dm̃

Observe that:

2〈∇u0,∇ϕ〉 = ∆(u0ϕ)−∆(u0)ϕ− u0∆ϕ

= ∆(u0ϕ) + ϕDiv(X) + ℓ0ϕ− u0∆ϕ,

where we use the defining property (5.19) of u0. When we report in the integration
2
∫
〈∇u0,∇ϕ〉 dm̃, the first term vanishes because m is ∆ harmonic, the second term
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is −
∫
ϕ∆u0 dm̃ by (5.19) and the third term vanishes because the volume is constant.

Again, using the integration by parts formula (5.17) for
∫
u0∆ϕ dm̃, we have

∫
〈∇u0,∇ϕ〉 dm̃ = −

∫
ϕ(∆u0 + 〈∇u0,∇ ln k〉) dm̃

Finally, we obtain

(II)ℓ = (m− 2)

∫
ϕ
(
∆u0 +DivX + 〈∇u0 +X,∇ ln k〉

)
dm̃

= (m− 2)

∫
ϕ〈∇u0 +X,∇ ln k〉 dm̃,

where the last equality holds by using (5.19) and the fact that the volume is constant.

For (I)ℓ, we first observe the convergence of Martin kernels and harmonic measures.

For any ξ ∈ ∂M̃ , the Martin kernel function kλξ (x) converges to kξ(x) pointwisely as λ

goes to zero. For small λ, the function ξ 7→ ∇ ln kλξ (x) is Hölder continuous on ∂M̃ for

some uniform exponent ([H1]). As a consequence, we have the convergence of ∇ ln kλξ (x)

(and hence ∇λ ln kλξ (x)) to ∇ ln k0ξ (x) when λ tends to zero. We also obtain the uniform

convergence of kλξ (x) to kξ(x) and∇ ln kλξ (x) to∇ ln k0ξ (x) (as λ→ 0) in ξ. So, the harmonic

measure m̃λ converges weakly to m̃ (λ→ 0) as well. By Proposition 3.5,

ℓλ =

∫
〈Xλ

,∇λ ln kλξ (x)〉λ dm̃λ =

∫
〈Xλ

,∇ ln kλξ (x)〉 dm̃λ.

We have by Proposition 5.5 and the convergence of ∇ ln kλ and m̃λ stated above that

(I)ℓ =

∫
〈(Xλ

)′0,∇ ln k〉 dm̃+ lim
λ→0

1

λ

(∫
〈X,∇ ln kλξ (x)〉 dm̃λ − ℓ̂λ

)

=: (III)ℓ + (IV)ℓ

if (IV)ℓ exists. The quantity (III)ℓ, by Corollary 5.6, is
∫

〈−ϕX +

∫ +∞

0
(K′

s(0) − S′
v(0)Ks(0)) ds,∇ ln k〉 dm̃.

By Proposition 3.5,

ℓ̂λ = −
∫ (

DivX + 〈Zλ,X〉
)
dm̂λ.

For (IV)ℓ, let us first calculate
∫
DivX dm̂. We have

∫
DivX dm̂λ =

∫
e−2ϕλ

DivX dm̃λ

=

∫
e−2ϕλ

DivλX dm̃λ +

∫ (
DivX −DivλX

)
dm̂λ

=

∫
e−2ϕλ

DivλX dm̃λ −m

∫
〈∇ϕλ,X〉 dm̂λ,
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where the last equality holds since (Divλ −Div)(·) = m〈∇ϕλ, ·〉 for gλ = e2ϕ
λ
g. Note that

Divλ(e−2ϕλ

X) = e−2ϕλ

DivλX − 2e−2ϕλ〈∇λϕλ,X〉λ.

So we have
∫

DivX dm̂λ =

∫
Divλ(e−2ϕλ

X) dm̃λ +

∫
2e−2ϕλ〈∇λϕλ,X〉λ dm̃λ −m

∫
〈∇ϕλ,X〉 dm̂λ

= −
∫

〈X,∇λ ln kλξ 〉λ dm̂λ − (m− 2)

∫
〈∇ϕλ,X〉 dm̂λ

= −
∫

〈X,∇ ln kλξ 〉 dm̂λ − (m− 2)

∫
〈∇ϕλ,X〉 dm̂λ,

which gives

ℓ̂λ =

∫
〈X,∇ ln kλξ 〉 dm̂λ.

Finally, we obtain

(IV)ℓ = lim
λ→0

∫
1

λ
(e2ϕ

λ − 1)〈X,∇ ln kλξ 〉 dm̂λ = 2

∫
ϕ〈X,∇ ln k〉 dm̃.

�

Proof of Theorem 1.2. Let (M,g) be a negatively curved compact connected Riemannian
manifold. Define the volume entropy vg by:

vg = lim
r→+∞

lnVol(B(x, r))

r
,

where B(x, r) is the ball of radius r in M̃ . we have ℓg ≤ vg, hg ≤ v2g (see [LS] and the

references within). In particular, if λ ∈ (−1, 1) 7→ gλ ∈ ℜ(M) is a C3 curve of conformal
changes of the metric g0 = g,

ℓgλ ≤ vgλ , hgλ ≤ v2
gλ
.

Assume (M,g0) is locally symmetric. Then ℓg0 = vg0 and hg0 = v2
g0
. Moreover it is

known (Katok [Ka]) that v0 is a global minimum of the volume entropy among metrics g
which are conformal to g0 and have the same volume and (Katok-Knieper-Pollicott-Weiss
[KKPW]) that λ 7→ vgλ is differentiable. In particular vgλ is critical at λ = 0. Since, by
Theorem 1.1, ℓgλ and hgλ are differentiable at λ = 0, they have to be critical as well. �

Remark 5.8. We can also show Theorem 1.2 using the formulas in Theorem 5.7. Indeed,
the conclusion for the stochastic entropy follows from (5.11) since for a locally symmetric
space, the solutions u1 to (5.14) are constant ([L2]). We also see that the stochastic entropy
depends only on the volume for surfaces (m = 2). For the drift ℓ, it is true that for a locally
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symmetric space, ∇ ln kξ = −ℓ∇bξ everywhere. The solutions u0 to (5.19) are constant for
a locally symmetric space as well ([L2]). So (5.10) reduces to

(ℓλ)
′
0 = −

∫

M0×∂M̃

ϕ〈
∫ +∞

0
(K′

s(0)− S′
v(0)Ks(0)) ds,∇ ln k〉 dm̃,

which is zero because the vector
∫ +∞
0 (K′

s(0)−S′
v(0)Ks(0)) ds is orthogonal to v and hence

is orthogonal to ∇ ln k.
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[H2] U. Hamenstädt, Harmonic measures for compact negatively curved manifolds, Acta Math. 178 (1997),

39–107.
[HPS] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer,

Berlin, 1977.
[Hs] E.-P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, 38. American Math-

ematical Society, Providence, RI, 2002.
[K1] V.-A. Kaimanovich, Brownian motion and harmonic functions on covering manifolds. An entropic

approach, Soviet Math. Dokl. 33 (1986), 812–816.
[K2] V.-A. Kaimanovich, Invariant measures for the geodesic flow and measures at infinity on negatively

curved manifolds, Ann. Inst. Henri Poincaré, Physique Théorique 53 (1990), 361–393.



DIFFERENTIATING THE STOCHASTIC ENTROPY IN NEGATIVELY CURVED SPACES 47

[Ka] A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergod. Theory
Dynam. Systems 8 (1988), 139–152.

[KKPW] A. Katok. G. Knieper, M. Pollicott and H. Weiss, Differentiability and analyticity of topological
entropy for Anosov and geodesic flows, Invent. math. 98 (1989), 581–597.

[L1] F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively-curved mani-
folds, Bol. Soc. Bras. Mat. 19 (1988), 115–140.

[L2] F. Ledrappier, Central limit theorem in negative curvature, Ann. Probab. 23 (1995), 1219–1233.
[L3] F. Ledrappier, Profil d’entropie dans le cas continu, Astérisque 236 (1996), 189–198.
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