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Abstract

In this article, we describe a methodology that aims at either breaking or proving the security of

CRT-RSA implementations against fault injection attacks. In the specific case-study of the BellCoRe

attack, our work bridges a gap between formal proofs and implementation-level attacks. We apply our

results to three implementations of CRT-RSA, namely the unprotected one, that of Shamir, and that of

Aumüller et al. Our findings are that many attacks are possible on both the unprotected and the Shamir

implementations, while the implementation of Aumüller et al. is resistant to all single-fault attacks. It is

also resistant to double-fault attacks if we consider the less powerful threat-model of its authors.

Keywords. RSA (Rivest, Shamir, Adleman [RSA78]) CRT (Chinese Remainder Theorem) fault in-

jection BellCoRe (Bell Communications Research) attack formal proof OCaml

1 Introduction

It is known since 1997 that injecting faults during the computation of CRT-RSA could yield to malformed

signatures that expose the prime factors (p and q) of the public modulus (N = p · q). Notwithstanding,

computing without the fourfold acceleration conveyed by the CRT is definitely not an option in practical

applications. Therefore, many countermeasures have appeared that consist in step-wise internal checks

during the CRT computation. To our best knowledge, none of these countermeasures have been proven

formally. Thus without surprise, some of them have been broken, and then patched. The current state-of-

the-art in computing CRT-RSA without exposing p and q relies thus on algorithms that have been carefully

scrutinized by cryptographers. Nonetheless, neither the hypotheses of the fault attack nor the security itself

have been unambiguously modeled.

This is the purpose of this paper. The difficulties are a priori multiple: in fault injection attacks, the

attacker has an extremely high power because he can fault any variable. Traditional approaches thus seem

to fall short in handling this problem. Indeed, there are two canonical methodologies: formal and compu-

tational proofs. Formal proofs (e.g., in the so-called Dolev-Yao model) do not capture the requirement for

faults to preserve some information about one of the two moduli; indeed, it considers the RSA as a black-

box with a key pair. Computational proofs are way too complicated (in terms of computational complexity)

since the handled numbers are typically 2,048 bit long.

The state-of-the-art contains one reference related to the formal proof of a CRT-RSA implementation:

it is the work of Christofi, Chetali, Goubin and Vigilant [CCGV13]. For tractability purposes, the proof is
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conducted on reduced versions of the algorithms parameters. One fault model is chosen authoritatively (the

zeroization of a complete intermediate data), which is a strong assumption. In addition, the verification is

conducted on a pseudo-code, hence concerns about its portability after its compilation into machine-level

code. Another reference related to formal proofs and fault injection attacks is the work of Guo, Mukhopad-

hyay, and Karri. In [GMK12], they explicit an AES implementation that is provably protected against

differential fault analyses [BS97]. The approach is purely combinational, because the faults propagation in

AES concerns 32-bit words called columns; consequently, all fatal faults (and thus all innocuous faults) can

be enumerated.

Contributions. Our contribution is to reach a full fault coverage of the CRT-RSA algorithm, thereby keep-

ing the proof valid even if the code is transformed (e.g., compiled or partitioned in software/hardware). To

this end we developed a tool called finja1 based on symbolic computation in the framework of modular

arithmetic, which enables formal analysis of CRT-RSA and its countermeasures against fault injection at-

tacks. We apply our methods on three implementations: the unprotected one, the one protected by Shamir’s

countermeasure, and the one protected by Aumüller et al.’s countermeasure. We find many possible fault in-

jections that enable a BellCoRe attack on the unprotected implementation of the CRT-RSA computation, as

well as on the one protected by Shamir’s countermeasure. We formally prove the security of the Aumüller

et al.’s countermeasure against the BellCoRe attack, under a fault model that considers permanent faults

(in memory) and transient faults (one-time faults, even on copies of the secret key parts), with or without

forcing at zero, and with possibly faults at various locations.

Organization of the paper. We recall the CRT-RSA cryptosystem and the BellCoRe attack in Sec. 2; still

from an historical perspective, we explain how the CRT-RSA implementation has been amended to with-

stand more or less efficiently the BellCoRe attack. Then, in Sec. 3, we define our approach. Sec. 4, Sec. 5,

and Sec. 6 are case studies using the methods developed in Sec. 3 of respectively an unprotected version

of the CRT-RSA computation, a version protected by Shamir’s countermeasure, and a version protected by

Aumüller et al.’s countermeasure. Conclusions and perspectives are in Sec. 7.

2 CRT-RSA and the BellCoRe Attack

This section recaps known results about fault injection attacks on CRT-RSA (see also [Koç94] and [TW12,

Chap. 3]). Its purpose is to settle the notions and the associated notations that will be used in the later

sections (that contain novel contributions).

2.1 CRT-RSA

RSA is both an encryption and a signature scheme. It relies on the identity that for all message 0 ≤ m < N,

(md)e ≡ m mod N, where d ≡ e−1 mod ϕ(N), by Euler’s theorem. In this equation, ϕ is Euler’s totient

function, equal to ϕ(N) = (p−1) · (q−1) when N = p ·q is a composite number, product of two primes p

and q. For example, if Alice generates the signature S = md mod N, then Bob can verify it by computing

Se mod N, which must be equal to m unless Alice is pretending to know d although she does not. Therefore

the pair (N,d) is called the private key, while the pair (N,e) is called the public key. In this paper, we are

not concerned about the key generation step of RSA, and simply assume that d is an unknown number in

1http://pablo.rauzy.name/sensi/finja.html
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J1,ϕ(N) = (p− 1) · (q− 1)J. Actually, d can also be chosen equal to the smallest value e−1 mod λ (n),

where λ (n) = (p−1)·(q−1)
gcd(p−1,q−1) is the Carmichael function. The computation of md mod N can be speeded-

up by a factor four by using the Chinese Remainder Theorem (CRT). Indeed, figures modulo p and q are

twice as short as those modulo N. For example, for 2,048 bit RSA, p and q are 1,024 bit long. The CRT-

RSA consists in computing Sp = md mod p and Sq = md mod q, which can be recombined into S with a

limited overhead. Due to the little Fermat theorem (special case of the Euler theorem when the modulus

is a prime), Sp = (m mod p)d mod (p−1) mod p. This means that in the computation of Sp, the processed

data have 1,024 bit, and the exponent itself has 1,024 bits (instead of 2,048 bits). Thus the multiplication is

four times faster and the exponentiation eight times faster. However, as there are two such exponentiations

(modulo p and q), the overall CRT-RSA is roughly speaking four times faster than RSA computed modulo

N.

This acceleration justifies that CRT-RSA is always used if the factorization of N as p · q is known. In

CRT-RSA, the private key is a more rich structure than simply (N,d): it is actually comprised of the 5-tuple

(p,q,dp,dq, iq), where:

• dp
.
= d mod (p−1),

• dq
.
= d mod (q−1),

• iq
.
= q−1 mod p.

The unprotected CRT-RSA algorithm is presented in Alg. 1. It takes advantage of the CRT recombination

proposed by Garner in [Gar65]. It is straightforward to check that the signature computed at line 3 belongs

to J0, p ·q−1K. Consequently, no reduction modulo N is necessary before returning S.

Algorithm 1: Unprotected CRT-RSA

Input : Message m, key (p,q,dp,dq, iq)
Output: Signature md mod N

1 Sp = mdp mod p /* Signature modulo p */

2 Sq = mdq mod q /* Signature modulo q */

3 S = Sq +q · (iq · (Sp −Sq) mod p) /* Recombination */

4 return S

2.2 BellCoRe Attack on CRT-RSA

In 1997, an dreadful remark has been made by Boneh, DeMillo and Lipton [BDL97], three staff members of

BellCoRe: Alg. 1 could reveal the secret primes p and q if the computation is faulted, even in a very random

way. The attack can be expressed as the following proposition.

Proposition 1 (Orignal BellCoRe attack). If the intermediate variable Sp (resp. Sq) is returned faulted

as Ŝp (resp. Ŝq)2, then the attacker gets an erroneous signature Ŝ, and is able to recover p (resp. q) as

gcd(N,S− Ŝ) (with an overwhelming probability).

Proof. For all integer x, gcd(N,x) can only take 4 values:

• 1, if N and x are coprime,

2In other papers related to faults, the faulted variables (such as X) are noted either with a star (X∗) or a tilde (X̃); in this paper,

we use a hat, as it can stretch, hence cover the adequate portion of the variable. For instance, it allows to make an unambiguous

difference between a faulted data raised at some power and a fault on a data raised at a given power (contrast X̂e with X̂e).
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• p, if x is a multiple of p but not of q,

• q, if x is a multiple of q but not of p,

• N, if x is a multiple of both p and q, i.e., of N.

In Alg. 1, if Sp is faulted (i.e., replaced by Ŝp 6= Sp), then

S− Ŝ = q · ((iq · (Sp −Sq) mod p)− (iq · (Ŝp −Sq) mod p)),

and thus gcd(N,S− Ŝ) = q.

If Sq is faulted (i.e., replaced by Ŝq 6= Sq), then

S− Ŝ ≡ (Sq − Ŝq)− (q mod p) · iq · (Sq − Ŝq)≡ 0 mod p because (q mod p) · iq ≡ 1 mod p. Thus S− Ŝ is

a multiple of p. Additionally, S− Ŝ is not a multiple of q.

So gcd(N,S− Ŝ) = p.

In both cases, the greatest common divisor could yield N. However, (S− Ŝ)/q in the first case (resp.

(S− Ŝ)/p in the second case) is very unlikely to be a multiple of p (resp. q). Indeed, if the random fault is

uniformly distributed, the probability that gcd(N,S− Ŝ) is equal to p (resp. q) is negligible3.

This version of the BellCoRe attack requires that two identical messages with the same key can be

signed; indeed, one signature that yields the genuine S and an other that is perturbed and thus returns Ŝ are

needed. Little later, the BellCoRe attack has been improved by Joye, Lenstra and Quisquater [JLQ99]. This

time, the attacker can recover p or q with one only faulty signature, provided the input m of RSA is known.

Proposition 2 (One faulty signature BellCoRe attack). If the intermediate variable Sp (resp. Sq) is returned

faulted as Ŝp (resp. Ŝq), then the attacker gets an erroneous signature Ŝ, and is able to recover p (resp. q)

as gcd(N,m− Ŝe) (with an overwhelming probability).

Proof. By proposition 1, if a fault occurs during the computation of Sp, then gcd(N,S− Ŝ) = q (most likely).

This means that:

• S 6≡ Ŝ mod p, and thus Se 6≡ Ŝe mod p (indeed, if the congruence was true, we would have e|p− 1,

which is very unlikely);

• S ≡ Ŝ mod q, and thus Se ≡ Ŝe mod q;

As Se ≡ m mod N, this proves the result. A symmetrical reasoning can be done if the fault occurs during

the computation of Sq.

2.3 Protection of CRT-RSA Against the BellCoRe Attack

Several protections against the BellCoRe attack have been proposed. A non-exhaustive list is given below,

and then, the most salient features of these countermeasures are described:

• Obvious countermeasures: no CRT optimization, or with signature verification;

• Shamir [Sha99];

• Aumüller et al. [ABF+02];

• Vigilant, original [Vig08] and with some corrections by Coron et al. [CGM+10];

• Kim et al. [KKHH11].

3If it nonetheless happens that gcd(N,S − Ŝ) = N, then the attacker can simply retry another fault injection, for which the

probability that gcd(N,S− Ŝ) ∈ {p,q} increases.
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2.3.1 Obvious Countermeasures

Fault attacks on RSA can be thwarted simply by refraining from implementing the CRT.

If this is not affordable, then the signature can be verified before being outputted. If S = md mod N

is the signature, this straightforward countermeasure consists in testing Se ?
≡ m mod N. Such protection is

efficient in practice, but is criticized for three reasons. First of all, it requires an access to e, which is not

always present in the secret key structure, as in the 5-tuple example given in Sec. 2.1. Nonetheless, we attract

the author’s attention on paper [Joy09] for a clever embedding of e into [the representation of] d. Second, the

performances are incurred by the extra exponentiation needed for the verification. In some applications, the

public exponent can be chosen small (for instance e can be equal to a number such as 3, 17 or 65537), and

then d is computed as e−1 mod λ (N) using the extended Euclidean algorithm or better alternatives [JP03].

But in general, e is a number possibly as large as d (both are as large as N), thus the obvious countermeasure

doubles the computation time (which is really non-negligible, despite the CRT fourfold acceleration). Third,

this protection is not immune to a fault injection that would target the comparison. Overall, this explains

why other countermeasures have been devised.

2.3.2 Shamir

The CRT-RSA algorithm of Shamir builds on top of the CRT and introduces, in addition to the two primes

p and q, a third factor r. This factor r is random4 and small (less than 64 bit long), and thus co-prime with

p and q. The computations are carried out modulo p′ = p · r (resp. modulo q′ = q · r), which allows for

a retrieval of the intended results by reducing them modulo p (resp. modulo q), and for a verification by

a reduction modulo r. Alg. 2 describes one version of Shamir’s countermeasure. This algorithm is aware

of possible fault injections, and thus can raise an exception if an incoherence is detected. In this case, the

output is not the (purported faulted) signature, but a specific message “error”.

2.3.3 Aumüller

The CRT-RSA algorithm of Aumüller et al. is a variation of that of Shamir, that is primarily intended to fix

two shortcomings. First it removes the need for d in the signature process, and second, it also checks the

recombination step. The countermeasure, given in Alg. 3, introduces, in addition to p and q, a third prime

t. The computations are done modulo p′ = p · t (resp. modulo q′ = q · t), which allows for a retrieval of the

intended results by reducing them modulo p (resp. modulo q), and for a verification by a reduction modulo

t. However, the verification is more subtle than for the case of Shamir. In Shamir’s CRT-RSA (Alg. 2),

the verification is symmetrical, in that the computations modulo p · r and q · r operate on the same object,

namely md . In Aumüller et al.’s CRT-RSA (Alg. 3), the verification is asymmetrical, since the computations

modulo p·t and q·t operate on two different objects, namely mdp mod (t−1) and mdq mod (t−1). The verification

consists in an identity that resembles that of ElGamal for instance: is (mdp mod (t−1))dq mod (t−1) equivalent

to (mdq mod (t−1))dp mod (t−1) modulo t? Specifically, if we note S′p the signature modulo p′, then Sp = S

mod p is equal to S′p mod p. Furthermore, let us denote

• Spt = S′p mod t,

• Sqt = S′q mod t,

• dpt = dp mod (t −1), and

• dqt = dq mod (t −1).

4The authors notice that in Shamir’s countermeasure, r is a priori not a secret, hence can be static and safely divulged.
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Algorithm 2: Shamir CRT-RSA

Input : Message m, key (p,q,d, iq),
32-bit random prime r

Output: Signature md mod N,

or error if some fault injection has been detected.

1 p′ = p · r
2 dp = d mod (p−1) · (r−1)
3 S′p = mdp mod p′ // Signature modulo p′

4 q′ = q · r
5 dq = d mod (q−1) · (r−1)
6 S′q = mdq mod q′ // Signature modulo q′

7 Sp = S′p mod p

8 Sq = S′q mod q

// Same as in line 3 of Alg. 1

9 S = Sq +q · (iq · (Sp −Sq) mod p)

10 if S′p 6≡ S′q mod r then

11 return error

12 else

13 return S

14 end
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It can be verified that those figures satisfy the identity: S
dqt

pt ≡ S
dpt

qt mod t, because both terms are equal to

mdpt ·dqt mod t. The prime t is referred to as a security parameter, as the probability to pass the test (at line 23

of Alg. 3) is equal to 1/t (i.e., about 2−32), assuming a uniform distribution of the faults. Indeed, this is the

probability to find a large number that, once reduced modulo t, matches a predefined value.

Alg. 3 does some verifications during the computations, and reports an error in case a fault injection can

cause a malformed signature susceptible of unveiling p and q. More precisely, an error is returned in either

of these seven cases:

1. p′ is not a multiple of p (because this would amount to faulting p in the unprotected algorithm)

2. d′
p = dp + random1 · (p− 1) is not equal to dp mod (p− 1) (because this would amount to faulting

dp in the unprotected algorithm)

3. q′ is not a multiple of q (because this would amount to faulting q in the unprotected algorithm)

4. d′
q = dq + random2 · (q−1) is not equal to dq mod (q−1) (because this would amount to faulting dq

in the unprotected algorithm)

5. S−S′p mod p is nonzero (because this would amount to faulting the recombination modulo p in the

unprotected algorithm)

6. S− S′q mod q is nonzero (because this would amount to faulting the recombination modulo q in the

unprotected algorithm)

7. S
dq

pt mod t is not equal to S
dp

qt mod t (this checks simultaneously for the integrity of S′p and S′q)

Notice that the last verification could not have been done on the unprotected algorithm, it constitutes

the added value of Aumüller et al.’s algorithm. These seven cases are informally assumed to protect the

algorithm against the BellCoRe attack. The criteria for fault detection is not to detect all faults; for instance,

a fault on the final return of S (line 26) is not detected. However, of course, such a fault is not exploitable by

a BellCoRe attack.

Remark 1. Some parts of the Aumüller algorithm are actually not intended to protect against fault injection

attacks, but against side-channel analysis, such as the simple power analysis (SPA). This is the case of lines 2

and 8 in Alg. 3. These SPA attacks consist in monitoring via a side-channel the activity of the chip, in a view

to extract the secret exponent, using generic methods described in [KJJ99] or more accurate techniques such

as wavelet transforms [SED+11, DSE+12]. They can be removed if a minimalist protection against only

fault injection attacks is looked for; but as they do not introduce weaknesses (in this very specific case), they

are simply kept as such.

2.3.4 Vigilant

The CRT-RSA algorithm of Vigilant [Vig08] also considers computations in a larger ring than Zp (abbrevi-

ation for Z/pZ) and Zq, to enable verifications. In this case, a small random number r is cast, and compu-

tations are carried out in Zp·r2 and Zq·r2 . In addition, the computations are now conducted not on the plain

message m, but on an encoded message m′, built using the CRT as the solution of those two requirements:

i: m′ ≡ m mod N, and

ii: m′ ≡ 1+ r mod r2.
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Algorithm 3: Aumüller CRT-RSA

Input : Message m, key (p,q,dp,dq, iq),
32-bit random prime t

Output: Signature md mod N,

or error if some fault injection has been detected.

1 p′ = p · t
2 d′

p = dp + random1 · (p−1) // Against SPA, not fault attacks

3 S′p = md′
p mod p′ // Signature modulo p′

4 if (p′ mod p 6= 0) or (d′
p 6≡ dp mod (p−1)) then

5 return error

6 end

7 q′ = q · t
8 d′

q = dq + random2 · (q−1) // Against SPA, not fault attacks

9 S′q = md′
q mod q′ // Signature modulo q′

10 if (q′ mod q 6= 0) or (d′
q 6≡ dq mod (q−1)) then

11 return error

12 end

13 Sp = S′p mod p

14 Sq = S′q mod q

15 S = Sq +q · (iq · (Sp −Sq) mod p) // Same as in line 3 of Alg. 1

16 if (S−S′p 6≡ 0 mod p) or (S−S′q 6≡ 0 mod q) then

17 return error

18 end

19 Spt = S′p mod t

20 Sqt = S′q mod t

21 dpt = d′
p mod (t −1)

22 dqt = d′
q mod (t −1)

23 if S
dqt

pt 6≡ S
dpt

qt mod t then

24 return error

25 else

26 return S

27 end
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This system of equations has a single solution modulo N × r2, because N and r2 are coprime. Such a

representation allows to conduct in parallel the functional CRT-RSA (line i) and a verification (line ii). The

verification is elegant, as it leverages this remarkable equality: (1+ r)dp = ∑
dp

i=0

(
dp

i

)
· ri ≡ 1+dp · r mod r2.

Thus, as opposed to Aumüller et al.’s CRT-RSA, which requires one exponentiation (line 23 of Alg. 3), the

verification of Vigilant’s algorithm adds only one affine computation (namely 1+dp mod r2).

The original description of Vigilant’s algorithm involves some trivial computations on p and q, such as

p− 1, q− 1 and p× q. Those can be faulted, in such a way the BellCoRe attack becomes possible despite

all the tests. Thus, a patch by Coron et al. has been released in [CGM+10] to avoid the reuse of p̂−1, q̂−1

and p̂×q in the algorithm.

2.3.5 Kim

Kim, Kim, Han and Hong propose in [KKHH11] a CRT-RSA algorithm that is based on a collaboration

between a customized modular exponentiation and verifications at the recombination level based on Boolean

operations. The underlying protection concepts being radically different from the algorithms of Shamir,

Aumüller and Vigilant, we choose not to detail this interesting countermeasure.

2.3.6 Other Miscellaneous Fault Injections Attacks

When the attacker has the power to focus its fault injections on specific bits of sensitive resources, then more

challenging security issues arise [BCDG12]. These threats require a highly qualified expertise level, and are

thus considered out of the scope of this paper.

Besides, for completeness, we mention that other fault injections mitigating techniques have been pro-

moted, such as the infective computation scheme (refer to the seminal paper [BOS03]). This family of

protections, although interesting, is neither covered by this article.

In this paper, we will focus on three implementations, namely the unprotected one (Sec. 4), the one

protected by Shamir’s countermeasure (Sec. 5), and the one protected by Aumüller et al.’s countermeasure

(Sec. 6).

3 Formal Methods

For all the countermeasures presented in the previous section (Sec. 2), we can see that no formal proof

of resistance against attacks is claimed. Informal arguments are given, that convince that for some attack

scenarii, the attack attempts are detected hence harmless. Also, an analysis of the probability that an attack

succeeds by chance (with a low probability of 1/t) is carried out, however, this analysis strongly relies on

assumptions on the faults distribution. Last but not least, the algorithms include protections against both

passive side-channel attacks (typically SPA) and active side-channel attacks, which makes it difficult to

analyze for instance the minimal code to be added for the countermeasure to be correct.

3.1 CRT-RSA and Fault Injections

Our goal is to prove that a given countermeasure works, i.e., that it delivers a result which does leak infor-

mation about neither p nor q even when the implementation is subject to fault injections and to a BellCoRe

attack. In addition, we wish to reach this goal with the two following assumptions:
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• our proof applies to a very general attacker model, and

• our proof applies to any implementation that is a (strict) refinement of the abstract algorithm.

First, we must define what computation is done, and what is our threat model.

Definition 1 (CRT-RSA). The CRT-RSA computation takes as input a message m, assumed known by the

attacker, and a secret key (p,q,dp,dq, iq). Then, the implementation is free to instantiate any variable, but

must return a result equal to S = Sq +q · (iq · (Sp −Sq) mod p), where:

• Sp = mdp mod p, and

• Sq = mdq mod q.

Definition 2 (fault injection). An attacker is able to request RSA computations, as per Def. 1. During the

computation, the attacker can modify any intermediate value by setting it to either a random value or zero.

At the end of the computation the attacker can read the result.

Of course, the attacker cannot read the intermediate values used during the computation, since the secret

key and potentially the modulus factors are used. Such “whitebox” attack would be too powerful; nonethe-

less, it is very hard in practice for an attacker to be able to access intermediate variables, due to specific

protections (e.g., blinding) and noise in the side-channel leakage (e.g., power consumption, electromagnetic

emanation). Remark that our model only takes into account fault injection on data; the control flow is

supposed not to be mutable.

As a side remark, we notice that the fault injection model of Def. 2 corresponds to that of Vigilant

([Vig08]), with the exception that the conditional tests can also be faulted. To summarize, an attacker can:

• modify a value in memory (permanent fault), and

• modify a value in a local register, cache, or bus (transient fault),

but cannot

• inject a permanent fault in the input data (message and secret key), nor

• modify the algorithm control flow graph.

The independence of the proofs on the algorithm implementation demands that the algorithm is de-

scribed at a high level. The two properties that characterize the relevant level are as follows:

1. The description should be low level enough for the attack to work if protections are not implemented.

2. Any additional intermediate variable that would appear during refinement could be the target of an

attack, but such a fault would propagate to an intermediate variable of the high level description,

thereby having the same effect.

From those requirements, we deduce that:

1. The RSA description must exhibit the computation modulo p and q and the CRT recombination;

typically, a completely blackbox description, where the computations would be realized in one go

without intermediate variables, is not conceivable.

2. However, it can remain abstract, especially for the computational parts5.

In our approach, the protections must thus be considered as an augmentation of the unprotected code,

i.e., a derived version of the code where additional variables are used. The possibility of an attack on the

unprotected code attests that the algorithm is described at the adequate level, while the impossibility of an

attack (to be proven) on the protected code shows that added protections are useful in terms of resistance to

attacks.

5For example, a fault in the implementation of the multiplication is either inoffensive, and we do not need to care about it, or it

affects the result of the multiplication, and our model take it into account without going into the details of how the multiplication’s

is computed
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Remark 2. The algorithm only exhibits evidence of safety. If after a fault injection, the algorithm does not

simplify to an error detection, then it might only reveal that some simplification is missing. However, if it

does not claim safety, it produces a simplified occurrence of a possible weakness to be investigated further.

3.2 finja

Several tools are a priori suitable for a formal analysis of CRT-RSA. PARI/GP is a specialized computer

algebra system, primarily aimed at solving number theory problems. Although PARI/GP can do a fair

amount of symbolic manipulation, it remains limited compared to systems like Axiom, Magma, Maple,

Mathematica, Maxima, or Reduce. Those last software also fall short to implement automatically number

theoretic results like Euler’s theorem. This explains why we developed from scratch a system to reason

on modular numbers from a formal point of view. Our system is not general, in that it cannot for instance

factorize terms in an expression. However, it is able to simplify recursively what is simplifiable from a set

of unambiguous rules. This behavior is suitable to the problem of resistance to fault attacks, because the

redundancy that is added in the computation is meant to be simplified at the end (if no faults happened).

Our tool finja works within the framework of modular arithmetic, which is the mathematical framework

of CRT-RSA computations. The general idea is to represent the computation term as a tree which encodes the

computation properties. This term can be simplified by finja, using rules from arithmetic and the properties

encoded in the tree. Fault injections in the computation term are simulated by changing the properties of

a subterm, thus impacting the simplification process. An attack success condition is also given and used

on the term resulting from the simplification to check whether the corresponding attack works on it. The

outputs of finja are in HTML form: easily readable reports are produced, which contains all the information

about the possible fault injections and their outcome.

3.2.1 Computation Term

The computation is expressed in a convenient statement-based input language. This language’s Backus

Normal Form (BNF) is given in Fig. 1.

A computation term is defined by a list of statements finished by a return statement. Each statement

can either:

• declare a variable with no properties (line 3);

• declare a variable which is a prime number (line 4);

• declare a variable by assigning it a value (line 5), in this case the properties of the variable are the

properties of the assigned expression;

• perform a verification (line 6).

As can be seen in lines 9 to 15, an expression can be:

• zero, one, or an already declared variable;

• the sum (or difference) of two expressions;

• the product of two expressions;

• the exponentiation of an expression by another;

11



1 term ::= ( stmt )* ’return’ mp_expr ’;’

2 stmt ::= ( decl | assign | verif ) ’;’

3 decl ::= ’noprop’ mp_var ( ’,’ mp_var )*

4 | ’prime’ mp_var ( ’,’ mp_var )*

5 assign ::= var ’:=’ mp_expr

6 verif ::= ’if’ mp_cond ’abort with’ mp_expr

7 mp_expr ::= ’{’ expr ’}’ | expr

8 expr ::= ’(’ mp_expr ’)’

9 | ’0’ | ’1’ | var

10 | ’-’ mp_expr

11 | mp_expr ’+’ mp_expr

12 | mp_expr ’-’ mp_expr

13 | mp_expr ’*’ mp_expr

14 | mp_expr ’^’ mp_expr

15 | mp_expr ’mod’ mp_expr

16 mp_cond ::= ’{’ cond ’}’ | cond

17 cond ::= ’(’ mp_cond ’)’

18 | mp_expr ’=’ mp_expr

19 | mp_expr ’!=’ mp_expr

20 | mp_expr ’=[’ mp_expr ’]’ mp_expr

21 | mp_expr ’!=[’ mp_expr ’]’ mp_expr

22 | mp_cond ’/\’ mp_cond

23 | mp_cond ’\/’ mp_cond

24 mp_var ::= ’{’ var ’}’ | var

25 var ::= [a-zA-Z][a-zA-Z0-9_’]*

Figure 1: BNF of finja’s input language.
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• the modulus of an expression by another.

The condition in a verification can be (lines 18 to 23):

• the equality or inequality of two expressions;

• the equivalence or non-equivalence of two expressions modulo another (lines 20 and 21);

• the conjunction or disjunction of two conditions.

Optionally, variables (when declared using the prime or noprop keywords), expressions, and conditions

can be protected (lines 3, 4, 7 and 16, mp stands for “maybe protected”) from fault injection by surrounding

them with curly braces. This is useful for instance when it is needed to express the properties of a variable

which cannot be faulted in the studied attack model. For example, in CRT-RSA, the definitions of variables

dp, dq, and iq are protected because they are seen as input of the computation.

Finally, line 25 gives the regular expression that variable names must match (they start with a letter and

then can contain letters, numbers, underscore, and simple quote).

After it is read by finja, the computation expressed in this input language is transformed into a tree

(just like the abstract syntax tree in a compiler). This tree encodes the arithmetical properties of each of

the intermediate variable, and thus its dependencies on previous variables. The properties of intermediate

variables can be everything that is expressible in the input language. For instance, being null or being the

product of other terms (and thus, being a multiple of each of them), are possible properties.

3.2.2 Fault Injection

A fault injection on an intermediate variable is represented by changing the properties of the subterm (a

node and its whole subtree in the tree representing the computation term) that represent it. In the case of

a fault which forces at zero, then the whole subterm is replaced by a term which only has the property of

being null. In the case of a randomizing fault, by a term which have no properties.

finja simulates all the possible fault injections of the attack model it is launched with. The parameters

allow to choose:

• how many faults have to be injected (however, the number of tests to be done is impacted by a factorial

growth with this parameter, as is the time needed to finish the computation of the proof);

• the type of each fault (randomizing or zeroing);

• if transient faults are possible or if only permanent faults should be performed.

3.2.3 Attack Success Condition

The attack success condition is expressed using the same condition language as presented in Sec. 3.2.1.

It can use any variable introduced in the computation term, plus two special variables and @ which are

respectively bound to the expression returned by the computation term as given by the user and to the

expression returned by the computation with the fault injections. This success condition is checked for each

possible faulted computation term.

13



3.2.4 Simplification Process

The simplification is implemented as a recursive traversal of the term tree, based on pattern-matching. It

works just like a naive interpreter would, except it does symbolic computation only, and reduces the term

based on rules from arithmetic. Simplifications are carried out in Z ring, and its ZN subrings. The tool

knows how to deal with most of the Z ring axioms:

• the neutral elements (0 for sums, 1 for products);

• the absorbing element (0, for products);

• inverses and opposites (only if N is prime);

• associativity and commutativity.

However, it does not implement distributivity as it is not confluent. Associativity is implemented by flatten-

ing as much as possible (“removing” all unnecessary parentheses), and commutativity is implemented by

applying a stable sorting algorithm on the terms of products or sums.

The tool also knows about most of the properties that are particular to ZN rings and applies them when

simplifying a term modulo N:

• identity:

– (a mod N) mod N = a mod N,

– Nk mod N = 0;

• inverse:

– (a mod N)× (a−1 mod N) mod N = 1,

– (a mod N)+ (−a mod N) mod N = 0;

• associativity and commutativity:

– (b mod N)+ (a mod N) mod N = a+b mod N,

– (a mod N)× (b mod N) mod N = a×b mod N;

• subrings: (a mod N ×m) mod N = a mod N.

In addition to those properties a few theorems are implemented to manage more complicated cases

where the properties are not enough when conducting symbolic computations:

• Fermat’s little theorem;

• its generalization, Euler’s theorem.
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Example. If we have the term t := a + b * c, it can be faulted in five different ways (using the ran-

domizing fault):

1. t := Random, the final result is faulted;

2. t := Random + b * c, a is faulted;

3. t := a + Random, the result of b× c is faulted;

4. t := a + Random * c, b is faulted;

5. t := a + b * Random, c is faulted.

If the properties that interest us is to know whether t is congruent with a modulo b, we can use t =[b] a

as the attack success condition. Of course it will be true for t, but it will only be true for the fifth version of

faulted t. If we had used the zeroing fault, it would also have been true for the third and fourth versions.

4 Study of an Unprotected CRT-RSA Computation

The description of the unprotected CRT-RSA computation in finja code is given in Fig. 2 (note the similarity

of finja’s input code with Alg. 1).

1 noprop m, e ;

2 prime {p}, {q} ;

3

4 dp := { e^-1 mod (p-1) } ;

5 dq := { e^-1 mod (q-1) } ;

6 iq := { q^-1 mod p } ;

7

8 Sp := m^dp mod p ;

9 Sq := m^dq mod q ;

10

11 S := Sq + (q * (iq * (Sp - Sq) mod p)) ;

12

13 return S ;

14

15 %%

16

17 _ != @ /\ ( _ =[p] @ \/ _ =[q] @ )

Figure 2: finja code for the unprotected CRT-RSA computation.

As we can see, the definitions of dp, dq, and iq are protected so the computation of the values of these

variables cannot be faulted (since they are seen as inputs of the algorithm). After that, Sp and Sq are com-

puted and then recombined in the last expression, as in Def. 1.

To test whether the BellCoRe attack works on a faulted version Ŝ, we perform the following tests (we

note |S| for the simplified version of S):

1. is |S| equal to |Ŝ|?
2. is |S mod p| equal to |Ŝ mod p|?
3. is |S mod q| equal to |Ŝ mod q|?
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If the first test is false and at least one of the second and third is true, we have a BellCoRe attack, as seen

in Sec. 2. This is what is described in the attack success condition (after the %% line).

Without transient faults enabled, and in a single fault model, there are 12 different fault injections of

which 8 enable a BellCoRe attack with a randomizing fault, and 9 with a zeroing fault. As an example,

replacing the intermediate variable holding the value of iq · (Sp − Sq) mod p in the final expression with

zero or a random value makes the first and second tests false, and the last one true, and thus allows a

BellCoRe attack.

5 Study of Shamir’s Countermeasure

The description, using finja’s formalism, of the CRT-RSA computation allegedly protected by Shamir’s

countermeasure is given in Fig. 3 (again, note the similarity with Alg. 2).

1 noprop error, m, d ;

2 prime {p}, {q}, r ;

3 iq := { q^-1 mod p } ;

4

5 p’ := p * r ;

6 dp := d mod ((p-1) * (r-1)) ;

7 Sp’ := m^dp mod p’ ;

8

9 q’ := q * r ;

10 dq := d mod ((q-1) * (r-1)) ;

11 Sq’ := m^dq mod q’ ;

12

13 Sp := Sp’ mod p ;

14 Sq := Sq’ mod q ;

15

16 S := Sq + (q * (iq * (Sp - Sq) mod p)) ;

17

18 if Sp’ !=[r] Sq’ abort with error ;

19

20 return S ;

21

22 %%

23

24 _ != @ /\ ( _ =[p] @ \/ _ =[q] @ )

Figure 3: finja code for the Shamir CRT-RSA computation.

Using the same settings as for the unprotected implementation of CRT-RSA, we find that among the 31

different fault injections, 10 enable a BellCoRe attack with a randomizing fault, and 9 with a zeroing fault.

This is not really surprising, as the test which is done on line 18 does not verify if a fault is injected during

the computations of Sp or Sq, nor during their recombination in S. For instance zeroing or randomizing

the intermediate variable holding the result of Sp − Sq during the computation of S (line 16) results in a

BellCoRe attack. To explain why there is this problem in Shamir’s countermeasure, some context might be

necessary. It can be noted that the fault to inject in the countermeasure must be more accurate in timing

(since it targets an intermediate variable obtained by a subtraction) than the faults to achieve a BellCoRe

attack on the unprotected CRT-RSA (since a fault during an exponentiation suffices). However, there is

today a consensus to believe that it is very easy to pinpoint in time any single operation of a CRT-RSA
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algorithm, using a simple power analysis method [KJJ99]. Besides, timely fault injection benches exist.

Therefore, the weaknesses in Shamir’s countermeasure can indeed be practically exploited.

If the attacker can do transient faults, there are a lot more attacks: 66 different possible fault injections

of which 24 enable a BellCoRe attack with a randomizing fault and 22 with a zeroing fault. In practice,

a transient faults would translate into faulting the variable when it is read (e.g., in a register or on a bus),

rather than in (persistent) memory. This behavior could also be the effect of a fault injection in cache, which

is later replaced with the good value when it is read from memory again. To the authors knowledge, these

are not impossible situations. Nonetheless, growing the power of the attacker to take that into account break

some very important assumptions that are classical (sometimes even implicit) in the literature. It does not

matter that the parts of the secret key are stored in a secure “key container” if their values can be a faulted

at read time. Indeed, we just saw that allowing this kind of fault enable even more possibilities to carry out

a BellCoRe attack successfully on a CRT-RSA computation protected by the Shamir’s countermeasure. For

instance, if the value of p is randomized for the computation of the value of Sp (line 13), then we have S 6= Ŝ,

but also S ≡ Ŝ mod q, which enables a BellCoRe attack, as seen in Sec. 2.

It is often asserted that the countermeasure of Shamir is unpractical due to its need for d (as mentioned

in [ABF+02] and [Vig08]), and because there is a possible fault attack on the recombination, i.e., line 16

(as mentioned in [Vig08]). However, the attack on the recombination can be checked easily, by testing

that S − Sp 6≡ 0 mod p and S− Sq 6≡ 0 mod q before returning the result. Notwithstanding, to our best

knowledge, it is difficult to detect all the attacks our tool found, and so the existence of these attacks (new, in

the sense they have not all been described previously) is a compelling reason for not implementing Shamir’s

CRT-RSA.

6 Study of Aumüller et al.’s Countermeasure

The description of the CRT-RSA computation protected by Aumüller et al.’s countermeasure is given in

Fig. 4 (here too, note the similarity with Alg. 3)

Using the same method as before, we can prove that on the 52 different possible faults, none of which

allow a BellCoRe attack, whether the fault is zero or random. This is a proof that the Aumüller et al.’s

countermeasure works when there is one fault6.

Since it allowed more attacks on the Shamir’s countermeasure, we also tested the Aumüller et al.’s

countermeasure against transient faults such as described in Sec. 5. There are 120 different possible fault

injections when transient faults are activated, and Aumüller et al.’s countermeasure is resistant against such

fault injections too.

We also used finja to confirm that the computation of dp, dq, and iq (in terms of p, q, and d) must not

be part of the algorithm. The countermeasure effectively needs these three variables to be inputs of the

algorithm to work properly. For instance there is a BellCoRe attack if dq happens to be zeroed. However,

even with dp, dq, and iq as inputs, we can still attempt to attack a CRT-RSA implementation protected by

the Aumüller et al.’s countermeasure by doing more than one fault.

We then used finja to verify whether Aumüller et al.’s countermeasure would be resistant against high

order attacks, starting with two faults. We were able to break it if at least one of the two faults was a

zeroing fault. We found that this zeroing fault was used to falsify the condition of a verification, which

6This result is worthwhile some emphasis: the genuine algorithm of Aumüller is thus proved resistant against single-fault

attacks. At the opposite, the CRT-RSA algorithm of Vigilant is not immune to single fault attacks (refer to [CGM+10]), and the

corrections suggested in the same paper by Coron et al. have not been proved yet.
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is possible in our threat-model, but which was not in the one of the authors of the countermeasure. If we

protect the conditions against fault injection, then the computation is immune two double-fault attacks too.

However, even in this less powerful threat-model, a CRT-RSA computation protected by Aumüller et al.’s

countermeasure is breakable using 3 faults, two of which must be zeroing the computations of dpt and dqt .

7 Conclusions and Perspectives

We have formally proven the resistance of the Aumüller et al.’s countermeasure against the BellCoRe attack

by fault injection on CRT-RSA. To our knowledge, it is the first time that a formal proof of security is done

for a BellCoRe countermeasure.

During our research, we have raised several questions about the assumptions traditionally made by coun-

termeasures. The possibility of fault at read time is, in particular, responsible for many vulnerabilities. The

possibility of such fault means that part of the secret key can be faulted (even if only for one computation).

It allows an interesting BellCoRe attack on a computation of CRT-RSA protected by Shamir’s countermea-

sure. We also saw that the assumption that the result of conditional expression cannot be faulted, which

is widespread in the literature, is a dangerous one as it increased the number of fault necessary to break

Aumüller et al.’s countermeasure from 2 to 3.

The first of these two points demonstrates the lack of formal studies of fault injection attack and their

countermeasures, while the second one shows the importance of formal methods in the field of implemen-

tation security.

As a first perspective, we would like to address the hardening of software codes of CRT-RSA under the

threat of a bug attack. This attack has been introduced by Biham, Carmeli and Shamir [BCS08] at CRYPTO

2008. It assumes that a hardware has been trapped in such a way that there exists two integers a and b, for

which the multiplication is incorrect. In this situation, Biham, Carmeli and Shamir mount an explicit attack

scenario where the knowledge of a and b is leveraged to produce a faulted result, that can lead to a remote

BellCoRe attack. For sure, testing for the correct functionality of the multiplication operation is impractical

(it would amount to an exhaustive verification of 2128 multiplications on 64 bit computer architectures).

Thus, it can be imagined to use a countermeasure, like that of Aumüller, to detect a fault (caused logically).

Our aim would be to assess in which respect our fault analysis formal framework allows to validate the

security of the protection. Indeed, a fundamental difference is that the fault is not necessarily injected at one

random place, but can potentially show up at several places.

As another perspective, we would like to handle the repaired countermeasure of Vigilant [CGM+10] and

the countermeasure of Kim [KKHH11]. Regarding Vigilant, the difficulty that our verification framework

in OCaml [INR] shall overcome is to decide how to inject the remarkable identity (1+ r)dp ≡ 1+ dp · r

mod r2: either it is kept as such such, like an ad hoc theorem (but we need to make sure it is called only

at relevant places, since it is not confluent), or it is made more general (but we must ascertain that the

verification remains tractable). However, this effort is worthwhile7, because the authors themselves say in

the conclusion of their article [CGM+10] that:

“Formal proof of the FA-resistance of Vigilant’s scheme including our countermeasures is still

an open (and challenging) issue.”

7Some results will appear in the proceedings of the 3rd ACM SIGPLAN Program Protection and Reverse Engineering Workshop

(PPREW 2014) [RG14], collocated with POPL 2014.

18



Regarding the CRT-RSA algorithm from Kim, the computation is very detailed (it goes down to the mul-

tiplication level), and involves Boolean operations (and, xor, etc.). To manage that, more expertise about

both arithmetic and logic must be added to our software.

Eventually, we wish to answer a question raised by Vigilant [Vig08] about the prime t involved in

Aumüller et al.’s countermeasure:

“Is it fixed or picked at random in a fixed table?”

The underlying issue is that of replay attacks on CRT-RSA, that are more complicated to handle; indeed,

they would require a formal system such as ProVerif [Bla], that is able to prove interactive protocols.

Concerning the tools we developed during our research, they currently only allow to study fault injection

in the data, and not in the control flow, it would be interesting to enable formal study of fault injections

affecting the control flow.

Eventually, we would like to define and then implement an automatic code mutation algorithm that

could transform an unprotected CRT-RSA into a protected one. We know that with a few alterations (see

that the differences between Alg. 1 and Alg. 3 are enumerable), this is possible. Such promising approach, if

successful, would uncover the smallest possible countermeasure of CRT-RSA against fault injection attacks.
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1 noprop error, m, e, r1, r2 ;

2 prime {p}, {q}, t ;

3

4 dp := { e^-1 mod (p-1) } ;

5 dq := { e^-1 mod (q-1) } ;

6 iq := { q^-1 mod p } ;

7

8 p’ := p * t ;

9 dp’ := dp + r1 * (p-1) ;

10 Sp’ := m^dp’ mod p’ ;

11

12 if p’ !=[p] 0 \/ dp’ !=[p-1] dp abort with error ;

13

14 q’ := q * t ;

15 dq’ := dq + r2 * (q-1) ;

16 Sq’ := m^dq’ mod q’ ;

17

18 if q’ !=[q] 0 \/ dq’ !=[q-1] dq abort with error ;

19

20 Sp := Sp’ mod p ;

21 Sq := Sq’ mod q ;

22

23 S := Sq + (q * (iq * (Sp - Sq) mod p)) ;

24

25 if S !=[p] Sp’ \/ S !=[q] Sq’ abort with error ;

26

27 Spt := Sp’ mod t ;

28 Sqt := Sq’ mod t ;

29 dpt := dp’ mod (t-1) ;

30 dqt := dq’ mod (t-1) ;

31

32 if Spt^dqt !=[t] Sqt^dpt abort with error ;

33

34 return S ;

35

36 %%

37

38 _ != @ /\ ( _ =[p] @ \/ _ =[q] @ )

Figure 4: finja code for the Aumüller et al. CRT-RSA computation.
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