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Abstract

Availability of day-ahead production forecast is an important step towards better dispatchability of wind
power production. However, the stochastic nature of forecast errors prevents a wind farm operator from
holding a firm production commitment. In order to mitigate the deviation from the commitment, an energy
storage system connected to the wind farm is considered. One statistical characteristic of day-ahead forecast
errors has a major impact on storage performance: errors are significantly correlated along several hours. We
thus use a data-fitted autoregressive model that captures this correlation to quantify the impact of correlation
on storage sizing.

With a Monte Carlo approach, we study the behavior and the performance of an energy storage system
(ESS) using the autoregressive model as an input. The ability of the storage system to meet a production
commitment is statistically assessed for a range of capacities, using a mean absolute deviation criterion. By
parametrically varying the correlation level, we show that disregarding correlation can lead to an underes-
timation of a storage capacity by an order of magnitude. Finally, we compare the results obtained from the
model and from field data to validate the model.

Nomenclature

Ppre Forecasted wind power production (day-ahead)

Pprod Actual wind power production

P∗grid Power commitment to the grid (day-ahead)

Pgrid Power actually delivered to the grid

Pdev Deviation from the commitment

Esto Energy stored in the energy storage system (ESS)

Erated Capacity of the ESS

SoE State of Energy of the ESS

P∗sto Ideal storage power request for the ESS

Psto Power actually absorbed by the ESS

σP Standard deviation of the forecast error
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Figure 1: Wind-storage system controlled to fulfill a day-ahead commitment

1 Introduction

In small islands with no interconnection with the power grid of a mainland, electricity production is often
based on fossil fuels that are imported at a high cost. In such a context of expensive bulk electricity, wind
turbines can be a profitable solution for electric power generation, wherever there is a strong enough wind
power potential. Reducing CO2 emissions induced by electricity generation is an additional motivation for
a continuing growth of wind power in these islands.

However, the lack of grid interconnection makes the power systems of small islands rather weak. The
stochastic nature of wind power production is a source of uncertainty in the grid energy balance which has
a negative effect on grid stability. While wind power integration is already an issue for the large 300 GW
European grid [15], maintaining grid stability becomes even more complicated for smaller grids because of
their smaller inertia. Therefore, the growth of wind power, being labeled as non-dispatchable, is significantly
hindered in some islands [11].

In addition, the wind induced energy unbalance is mainly mitigated by keeping extra spinning reserve,
mostly fossil fuels based. Besides the investment cost issue of this additional generation capacity, the use of
this spinning reserve generates CO2 emissions which reduce the environmental benefit of wind power.

One first way to cut this costly need for spinning reserve is the use of production forecasts [3]. Because
forecasting can significantly increase wind power dispatchability, this subject has received much academic
and industrial attention for more than a decade, with numerous statistical and physical forecasting methods
having been developed. A thorough review by Giebel et al. is available as part of the ANEMOS.plus
European research project which focused on this subject [12].

Still, prediction is never perfect and the error magnitude, qualified in the sense of either Root Mean Square
Error (RMSE) or Mean Absolute Error (MAE), is often about 10 % of the installed power capacity [12].
Prediction quality generally increases with the size of the region and the number of wind farms being
considered. Small islands can thus suffer from larger prediction errors. For instance we report a 16 % RMS
forecast error in the real field data used in this article, which comes from a wind farm in Guadeloupe, a
French Caribbean island (see figure 2 for a week long data extract). A technical description of the farm can
found in appendix 6.

Besides the forecast error magnitude, we want to show in this paper that a second parameter of major
importance is the correlation along time of this error.

1.1 Energy Storage to Increase Wind Power Dispatchability

Energy storage is one way to mitigate the effect of prediction error. Compared to fossil fuel based spinning
reserve, it is expected to be cleaner in terms of life cycle CO2 emissions. Grid connected storage is an active
research topic by itself [1], with specific attention being paid to wind-related storage [2].
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In this article we study the wind-storage system of figure 1 which combines wind power generation with
an energy storage system and day-ahead wind power forecasts to fulfill a production commitment to the grid
operator. This system will be further described in the next sections.

A remarkable field demonstration of a wind-storage system is under construction on the island of El
Hierro (Canarian archipelago) where a pumped-hydro storage coupled to wind generation was sized to
reach a tremendous 80 % share of the yearly electricity production [8]. Pumped-hydro is very well adapted
where a large storage time constant (the ratio of rated capacity to rated power) is required as this is the case
on the island of El Hierro since the storage system is sized to supply the island during two full days without
any wind, and as a further step, upgrading the autonomy to eight days is planned.

Electrochemical storage is another option. Depending on the technology, a wide interval of time con-
stant, from minutes to many hours, is achievable. The electrochemical storage market potential is driven
by both the availability of new technologies like Lithium-ion batteries and the increase in storage needs.
Balancing the errors of wind generation forecasts is one of those. At the timescale of day-ahead wind power
forecast, other technologies with smaller typical time constants like super-capacitors and flywheels are not
appropriate. They are however well-adapted when smoothing out fast variations is at stake [5].

A country-wide analysis to assess how storage could help compensate for the difference between pre-
dicted and actual wind production was recently conducted by Hartmann and Dán for the Hungarian power
grid [14]. Their data-driven simulation tool benefits from the availability of both production and forecast data
for a long enough period (one full year). Unfortunately, such field data is not always easily available, es-
pecially prediction data because, at the moment, forecasting tools are not widespread in operational wind
farms. In our case, field production/prediction data was only made available under a non-disclosure agree-
ment which prevents data sharing which would be useful for creating an open benchmark for researchers.

One consequence of forecast data being generally unavailable is that most academic literature on the
subject of wind-related storage follows what can be called a stochastic approach. This approach generally
involves the use real production data (generally widely available) while the corresponding forecast data
is synthesized from the production by adding a given amount of synthetic random error, thus the name
“stochastic”. We show in the following that this random error must be generated with care to avoid serious
underestimation of the need for storage capacity.

1.2 Stochastic Approach: the Pitfall of Error Independence

The analysis of Teleke et al. [26] is one example of a combined wind-storage dispatching study using a
stochastic approach. In their work, an hourly power dispatch set point was generated by “adding 10 %
noise” to the actual hourly production average. More recently, Dicorato et al. [10], studying the market
operation of a combined wind-storage system needed power forecasts to compute the day-ahead market
bid. Inspired by Teleke, they generated synthetic day-ahead production forecasts at a 5 minutes timestep
by adding a random error. They used a “linear” error distribution with standard deviation set to 10 %
of the average power of that day. In a slight variation, Yao et al. [29] used a normally distributed error
to perturb their measured wind speed data and error standard deviation was set to 10 % of their turbine
rated wind speed. Adding the error to wind speed data instead of power was probably inspired by Lange’s
observations [18] that wind speed forecast errors exhibit more normality than power forecast errors.

In all these papers, as in others, forecast errors between successive instants were assumed to be independent
random variables (error is a “white noise”) even though this hypothesis was not explicitly stated. When fore-
cast is used to make a single-timestep-ahead dispatch [26], this error independence holds true because the
forecasting system can be updated with new information at each step. However, it doesn’t hold true when it
comes to forecasting blocks of upcoming timesteps, most common case being day-ahead dispatch [10]. Field
data from many sources show that the hourly errors of a day-ahead forecast are highly positively correlated,
and thus are not independent.

1.2.1 Motivations for incorporating autocorrelation

Taking into account correlation is important in all situations where wind forecasts are inputs of a dynamical
system (a system with a memory the past). On a power grid, such systems are ubiquitous and include stor-
age systems like hydro plants or batteries but also thermal units due to their commitment timing constraints
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(e.g. minimum uptime). In this article, we quantitatively show that for a fixed amount of forecast standard
error, the positive autocorrelation severely increases the need for storage capacity. Thus, error correlation
should be taken into account for storage sizing in order to avoid what we may call the “error independence
pitfall”.

Because of its impact on power system analysis in general, forecast error correlation is already incorpo-
rated in some of the early studies on wind integration like Söder’s pioneering 1994 report. In the dedicated
chapter [24, p. 43-131] he describes with details how to model correlated wind forecast errors using an
autoregressive model. Besides autocorrelation, his model can include the cross-correlations of errors between
multiple production site. This work was subsequently expanded [6, 25] for the WILMAR wind integration
project to generate scenarios (in particular scenario trees) which are an important input for certain dispatch
algorithms. The autoregressive approach was also used for wind integration studies in Netherlands [28] or
in California [9], the latter entering the details on their modeling method.

In relation to research on probabilistic forecasting tools, error interdependence was also underlined by
Pinson et al. [21]. They were able to derive statistically generated production scenarios that indeed integrate
correlated forecast errors. These scenarios were later used to study a dynamic storage sizing [22]. Their
modeling approach is based on a time-adaptive dependence model. Also, the conditional error distribution
is built with adaptive quantile regression so that it adapts to both the production level and the weather
situation. On one hand, such a model has the advantage to be flexible enough to be applied to variety of
geographical situations and to adapt to varying weather conditions. On the other hand, the large number of
coefficients in this model requires the availability of an even larger amount of training data for model fitting.
Therefore, there may be space for a simpler, approximate model that can be built on a limited amount of
data and still give useful trends for storage sizing.

1.2.2 Motivations for a simple autocorrelation model

The analysis conducted in this article is based on a simple parametric model which incorporates error
correlation, namely a first order autoregressive process [7] quite similar to Söder’s [24]. Shortened “AR(1)”, this
model is detailed in section 3. It has only two parameters : one for the error magnitude and one that shapes
an exponentially decaying autocorrelation. While its simplicity may prevent this model from properly
representing any type of forecast error, it does appropriately fit the field data we have. Most importantly,
despite some limitations (section 3.4), the model can reproduce the performance of an Energy Storage System
fed with a field dataset for validation (section 4.5). This means it captures the most important statistical
characteristics of forecast error for this application. In the end, the simplicity of the model enables a fast
parametric sizing analysis from which a system designer can obtain a sensible direction for the choice of a
storage capacity, even if only limited field data is available. Given the high unit cost of an energy storage,
such a preliminary analysis does not preclude further studies when more data can be collected.

1.3 Scope of this Article

In this article, we take the stochastic approach we explained above to study the behavior of an Energy Storage
System (hereafter ESS) associated with wind power generation of figure 1. A dedicated Python program
was written to simulate the stochastic model using the Monte Carlo method. We parametrically assess the
ESS performance by varying the coefficients of the stochastic AR(1) input model. Performance is assessed
using power quality criterions detailed below, namely quadratic and absolute mean value (similarly to
Teleke’s Performance Index [26]). The parametric variation enables the quantitative assessment of the impact
of forecast error correlation on the storage performance. This is our main contribution and we hope that this
study can serve as a “quantitative argument” for taking correlation into account in all future wind-storage
studies. Eventually, we translate the parametric analysis into a preliminary ESS sizing method which allows
a designer to find which ESS capacity can match a chosen performance level.

Energy storage being a wide and complex issue, a lot of underlying questions were kept out of the
scope of this article despite their importance. For instance, the issue of storage profitability is not thoroughly
addressed because it depends on several parameters such as ESS investment cost (technology-dependent),
ESS replacement cost (related to aging, which is an issue by itself). Profitability also depends on the business
model that may be enabled by country specific laws adopted to encourage storage adoption. One way

4



to price stored energy is to require day-ahead production schedules from wind energy producers while
putting financial penalties on schedule deviations. This kind of rule is already implemented country-wide
in Hungary [14] and is being proposed for new farms in French islands like Guadeloupe (see below).
However, a commonly shared rule to compute deviation penalties is yet to be defined, unless relying on the
price fixing of an electricity balancing market.

The issue of storage losses is also not addressed in this article. Losses are often treated by simply consid-
ering a storage round-trip efficiency smaller than unity. However, we believe that the amount of losses is
strongly coupled to the ESS technology, its capacity and to the amount of power flowing in and out (es-
pecially true for charging/discharging losses). Therefore we think that using a simple constant efficiency
coefficient would bring little value to our study while a more complex treatment would bring us too far.
However, for a particular storage technology (grid-scale sodium-sulfur batteries), we build upon the present
work to include the technology-specific losses and costs models [13].

Finally, we do not model the interaction of the wind farm under study with neighbor farms (multisites
correlations) or with the consumption (wind-load correlations). Indeed these important interactions are kept
outside the industrial context considered here (see next section) because the policy of the local grid operator
is to deal with independent commitment agreements with each wind power producer.

2 Description of the Wind-Storage System under Study

2.1 Regulatory Context of Wind Power in French Islands

All French islands like Guadeloupe (Caribbean) are subject to a national regulation which requires that, at
any time of the day, uncertain electricity generation (i.e. wind and photovoltaic) should never exceed 30 % of
the overall electricity consumption. Any excess of uncertain power generation is curtailed by disconnecting
producers on a Last In, First Out basis. This regulation would weaken the profitability of any new wind farms
in Guadeloupe so it may partly explain the significant slow down in new commissioning since 2008 [11],
despite a high wind power potential.

In order to overcome this 30 % limit, a request for proposal was launched in November 2010 by the French
Electricity Regulation Commission (CRE). It calls for the installation of a new kind of wind generation
system, that would be more reliable (that is, dispatchable) as well as provide some ancillary services to the
grid. Selected projects were announced in February 2012, for a total rated power of 95 MW. Those projects
are now to be built in the near future.

2.2 Description of the Production Commitment Mechanism

The increase in production reliability is mainly based on a mechanism of day-ahead production commitment
implemented by the wind-storage system of figure 1. Each day, before 5pm, the wind production operator
has to announce a power production schedule for each half-hour interval in the following day. This schedule
P∗grid(t), based on a production forecast Ppre(t), is taken by the grid system operator as a firm production
commitment. The actual power delivered to the grid Pgrid(t) should be kept as close as possible to this
commitment. This rule is, to some extent, similar to the country-wide Hungarian requirements for wind
power [14].

On the next day, the actual wind power production Pprod(t) won’t exactly match the commitment P∗grid(t),
since forecasting is never perfect. In order to stay close to the commitment, an Energy Storage System is used.
The ESS absorbs a certain amount of power Psto(t) so that the power delivered to the grid can be adjusted
to some extent:

Pgrid(t) = Pprod(t)− Psto(t) (1)

These three power flows are represented on figure 1 with bold lines. In this study, we do not integrate
the possibility to curtail the production, that is the on-demand reduction of wind power generation, (e.g. by
acting on the pitch angle of the blades). Thus Pprod(t) is considered as a fixed input of the study. Therefore,
Psto(t) is the only degree of freedom in equation (1). It is a bidirectional power flow: ESS charges when Psto > 0
whereas it discharges when Psto < 0.
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Figure 2: One week extract of production and day-ahead prediction data, with a timestep of 1 hour.

2.3 Deviation from the Commitment

In order to assess the performance of the storage scheme, the deviation from commitment is defined :

Pdev(t) = Pgrid(t)− P∗grid(t) (2)

From this deviation signal, a performance index can be derived, for instance by taking the quadratic or
absolute mean value. The question of the criterion choice is discussed in section 4.2 below.

In order to ensure that this deviation is zero, the storage should absorb the exact difference between
production and commitment. Therefore the ideal storage power request is expressed:

P∗sto(t) = Pprod(t)− P∗grid(t) (3)

This request is “ideal” in the sense that whenever the actually stored power matches this ideal request
(Psto = P∗sto) then, combining (1) and (3), the commitment is perfectly respected: Pgrid = P∗grid and therefore
the deviation Pdev is zero. The computation of both P∗sto and Pdev signals is illustrated on figure 1.

For this article the production commitment P∗grid is chosen equal to the production forecast Ppre (e.g.
no advanced bidding strategy is used). Therefore the ideal storage request P∗sto defined by (3) falls back
to Pprod − Ppre which is the forecast error. Thus we will use “forecast error” and “ideal storage request”
interchangeably. The objective of the storage system is to compensate for this error by “absorbing” it.

A week long extract of actual production and prediction data (normalized to the rated power of the farm)
is represented on figure 2. The difference between the two curves (the forecast error) is thus the ideal storage
request P∗sto, represented on the upper panel of figure 5. The standard deviation of P∗sto being 16 % of the
rated power, the need for storage capacity for this farm is expected to be large. More quantitative data about
the forecast error is given when AR(1) modeling is applied in section 3.

2.4 System Simplification for Simulation Purpose

The wind-storage system of figure 1 has two input variables, namely Pprod and Ppre. However, only their
difference, P∗sto, is an input of the storage system. We can thus model and simulate an ESS with P∗sto as the
single output, without the need of production and the forecast variables. Figure 3 shows this simplified
system, where P∗sto, the forecast error, is generated by a random time series model, thus following the
stochastic approach we introduced in section 1.2.

Furthermore, the assessment of the storage performance with Pdev defined by (2) can be conducted without
the need of Pgrid and P∗grid which can thus be also removed from the simulation. Indeed, both can be
substituted using (1) and (3) to obtain an equivalent definition of the deviation from the commitment:

Pdev(t) = P∗sto(t)− Psto(t) (4)

With this additional transformation, the system of figure 3 becomes purely single-input single-output
which enables a very lightweight simulation code. Notice that this wouldn’t be possible if we dropped the
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Figure 3: Simplified representation of the ESS for simulation purpose which behavior is described by (10) in
section 4.1

assumption that a) the production Pprod cannot be curtailed and that b) the commitment is taken equal to
the forecast.

3 Stochastic Modeling of Forecast Errors

The ideal storage request P∗sto is the input of the storage system of figure 3. We’ve seen that it is equal to
the forecast error which has a stochastic behavior. We now study its statistical properties and introduce a
stochastic process that captures these properties. This statistical study, and especially time series analysis,
was conducted with the free software R [23].

Since this article is based on hourly field data, we use discrete-time models, with a timestep ∆t = 1 h.
Also, all power values starting from here will be average values over that time step, i.e. equivalent to energy
values.

3.1 Description and Statistical Study of Field Data

We study field data from the 1.375 MW “Grand Maison” wind farm, Guadeloupe island (see Appendix 6).
A day-ahead production forecast system has been running there since 2010, along with a continuous

recording of power production at a 10 minutes timestep. Power production data was aggregated by averag-
ing to match the 1 hour timestep of the forecast. Out of 327 days of available data, there was a significant
proportion of missing values and/or period of weak power production. We then selected an extract of 50
days between June 3rd and July 23rd 2010 where power production was well measured. The first week of
production and prediction (normalized with respect to the rated power) is depicted on figure 2 while the
corresponding forecast error P∗sto and is depicted on the upper panel of figure 5.

The standard deviation (std) σP of this forecast error over 50 days is found to be about 220 kW, that is
16 % of the rated power of the farm, while the average error, being 8 kW, is not significantly different from
zero. This reassuringly shows that the forecast is not biased.

3.2 Dependence along Time of Forecast Errors

A simple way to analyze the dependence along time of a stationary process {P(k)} is the use of the auto-
correlation function, ratio of autocovariance and variance of the time series:

ρP(h) =
Cov

(
P(k), P(k + h)

)
Var

(
P(k)

) , h ∈ Z (5)

The estimated autocorrelation (acf function in R) of forecast errors P∗sto is plotted on figure 4. Autocorrela-
tion is as large as 0.8 for a single hour time lag and then decays exponentially. It stays significantly different
from zero for up to 12 hours of lag and then enters the dotted blue 95 % confidence interval around zero.

We chose to capture the shape of this correlation structure with a process within the autoregressive moving
average (ARMA) family [7]. ARMA processes are parametric linear models which parameters can be easily
estimated using the arima function from R.
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Figure 4: Autocorrelation of day-ahead forecast errors from the Grand Maison wind farm, compared with
the theoretical autocorrelation (8) of an AR(1) model for three different values of the correlation
coefficient φ.

3.3 Autoregressive Model Definition and Fitting

A zero-mean stochastic process {P(k)} is called an ARMA(p, q) process if it satisfies the difference equation

P(k)− φ1P(k− 1)− · · · − φpP(k− p) =

ε(k) + θ1ε(k− 1) + · · ·+ θqε(t− q),
(6)

where {ε(k)} is a sequence of independently and identically distributed (IID) zero-mean random variables.
Polynomials φ(z) = 1 − φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · · + θqzq with real coefficients have no
common zeros and neither φ(z) nor θ(z) has zeros in the closed unit disk {z ∈ C : |z| ≤ 1}. There is a
unique stationary solution {P(k)} to eq (6).

Fitting an ARMA model to a given time series consists in selecting appropriate orders (p, q) and estimat-
ing the parameters. This is a statistical model selection problem which can be solved using information
criterions such as AIC or BIC [7][section 9.3].

For our data P∗sto(k), these criterions choose the orders (1, 0) which corresponds to the simple AR(1) model

P∗sto(k) = φP∗sto(k− 1) + ε(k) (7)

and the estimated value of φ is 0.78 (using the Gaussian conditional maximum likelihood method) with a
95 % confidence interval being [0.75, 0.82]. This confidence interval would have been thinner if a longer
time series was considered. The estimated standard deviation σ̂P of {P∗sto(k)} is 0.16 pu, that is 220 kW. The
analysis of the residuals showed that there are uncorrelated, as expected.

It is easy to show that (7) implies

ρP∗sto
(h) = φ|h|, h ∈ Z (8)

and therefore φ is the correlation coefficient of P∗sto(k) between two successive instants. Observe that the
empirical autocorrelation of the data (figure 4) decays exponentially with the time lags h, which is in good
agreement with (8). In the case of our data, h is expressed in hours.

On figure 5 we present a side by side comparison of forecast error P∗sto from both field data (upper panel)
and stochastic simulations from AR(1) models (2nd and 3rd panels) with φ = 0.78 and φ = 0 respectively.

One can visualize the effect of the correlation coefficient φ on the roughness of the stochastic trajectories
(this roughness is quantitatively assessed by the autocorrelation). The model with φ = 0.78 and field data
indeed share a similar roughness, as opposed to the model with φ = 0.
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Figure 5: Comparison between forecast error P∗sto from field observations and two stochastic simulations
(AR(1) model with σP = 0.16 in both cases while φ = 0.78 and φ = 0, in the middle and bottom
panels respectively)

3.4 Analysis of Extra Data Sets, Model limitations

Beyond modeling the forecast error from the Grand Maison wind farm considered so far, we also analyzed
some openly available data sets. From MAVIR, the Hungarian grid operator, we collected the year 2011 data
used by Hartmann and Dán [14] (rated wind power of about 300 MW in 2011). We also collected data from
Bonneville Power Administration (BPA) which openly provides wind power forecasts starting June 2012 for
its area (rated wind power of about 4.5 GW in 2012). We give more details on this valuable dataset in the
Appendix.

All time series are aggregated if necessary to hourly averages. Then, we compute the difference between
day-ahead forecasts and actual production. RMS forecast error is 13 % of the rated power for MAVIR, while
it is 8.5 % for BPA.

For the error interdependence, we observe that:

1. day-ahead forecasts errors are always highly positively correlated,

2. this autocorrelation is exponentially decaying (approximately),

3. fitting an AR(1) model yields a φ coefficient of 0.87 for MAVIR, 0.85 for BPA. In addition, De Mello et
al. [9] report an hourly correlation coefficient of 0.93 for Californian ISO data.

To a good extent, these results generalize what is observed with the Grand Maison farm, with slightly
higher correlation though. However, deeper analysis underlines some limitations of the AR(1) model, which
are in fact classical limitations of the ARMA class in general.

First, an ARMA model is stationary and cannot incorporate some daily patterns which can be observed
in the autocorrelation of BPA data for example. Daily patterns can be related to the fact that day-ahead
forecast series are not generated hour by hour, but rather once a day as blocks of 24 hours. One possible
solution is to simulate blocks of errors as in the WILMAR project [6] which enables a reset of the error at
the start of each new day. However, when day-ahead forecast must be delivered several hours in advance (7
hours according to French TSO rules, 14 hours in De Mello et al. [9]), the RMS error at each first hour of the
day is not zero (see fig 5) and the correlation with the last hour of the previous day is still positive.
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Second, it is particularly visible with BPA data that the magnitude of forecast errors is quite correlated with
the power production: low wind conditions yield low errors while strong winds yield large errors (“gusts of
errors”). An ARMA model cannot capture such a switching behavior, but this could be addressed by adding
an underlying Hidden Markov chain. Indeed, Markov-switching autoregressive (MSAR) models have been
used to capture the wind regime changes [4] by many authors since at least 2004. MSAR was also used to
model short term variability of wind power [20].

Third, the marginal distribution of an ARMA is Gaussian while power forecast errors are generally not
[18]. For example, BPA errors are quite Laplacian, with a clustering of values around zero. Despite the
existence of “Laplacian AR” models, we believe that Markov-switching AR processes are more promising
because the clustering around zero is probably related to the gusts of errors. Therefore MSAR models are
a promising path to expand forecast error modeling since they can address both the stationarity and the
marginal density issues.

This being said, each model is forged for a purpose and for us it is the evaluation of the performance of an
energy storage set up to absorb the forecast error. Therefore, after presenting the storage model, we perform
a quantitative model checking (section 4.5) using Tsay’s parametric bootstrap approach [27]. It shows that
storage simulations fed with either field data or AR(1) trajectories indeed yield comparable performance
results (performance criterion for the storage is defined in section 4.2.2).

3.5 About Stochastic Simulation of Day-ahead Forecast Errors

Autocorrelation coefficient φ obtained from AR(1) fitting is found to be in the 0.8–0.9 range in different data
sets. Therefore, using an AR(1) model with φ in this range can be a good starting point when no or few real
data is available. It is certainly better than sampling independent errors (equivalent to φ = 0.0) as seen in
figure 5, but one should be aware of the quite steep increase of deviation criterions when φ rises from 0.8 to
0.9 (see fig. 7). Hence, collecting an at least minimal dataset of a few month is still recommended.

For simulation purpose, one also need to choose σP, the std of the forecast error which relates to the
“quality” of the forecast (in the RMSE sense). To match a given σP, it is useful to recall that the variances of
ε(k) and P∗sto(k) are linked because of eq (6). Therefore, one can prove that the std of ε(k) should be set to
σP
√

1− φ2.
The value of σP should be chosen with respect to the size and location of the wind farm(s) being consid-

ered since it was found to vary between cases (16 % for the single farm in Guadeloupe down to 8.5 % for
the aggregated production in the BPA area). Literature provides guidelines for selecting a sensible RMSE
value [12].

Finally, we should again warn potential users of a forecast error model that every model is to some extent
application specific. Indeed, forecast error models and the related models of wind power scenarios [21],
can serve as inputs for a wide variety of systems like multistage optimizers or, in our case, a storage
system simulation. Depending on the application, different features of the scenarios (like ramps or extreme
production levels) may be influential. Therefore, a significant part of the quality checking of stochastic
production scenarios should be done with application specific criterions. For our storage simulation, we
use parametric bootstrap (section 4.5). For other use cases, Pinson & Girard [19] describe an event-based
verification approach which can be used to track generic production events like ramps.

4 Behavior of the Storage System

We have developed a Python tool to simulate the storage system of figure 3 using the AR model described
by (7) to generate the stochastic input. This tools builds upon the open computing packages NumPy and
SciPy [17] and the plotting package Matplotlib [16].

It enables Monte Carlo simulations which involve generating many time series samples from the AR model
and thus compute many trajectories of the system variables like Pdev. These trajectories are used to statis-
tically assess the performance of the system, according to criterion defined in section 4.2. This performance
assessment could not be performed analytically because of the non-linear behavior of the storage (saturation
when empty or full).
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Figure 6: Stochastic simulation of an ESS, with two different correlation values for the autoregressive input
model: φ = 0 on the left while φ = 0.80 on the right. In both cases, σP = 0.16 pu and Enorm

rated = 15

4.1 Modeling of the Storage System

It appears that the ESS is defined by three parameters: σP and φ for the input power and Erated, its capacity.
In addition to these numbers, an energy management policy must be chosen. For this article, we assume the
use of a simple policy which is “store the ideal storage request P∗sto whenever it is feasible”, where feasibility
means that the storing action should not break the two constraints satisfied by the stored energy Esto:

0 6 Esto and Esto 6 Erated (9)

with Esto = 0 and Esto = Erated meaning that the storage is respectively empty or full. This energy manage-
ment policy leads to the following dynamical model of the storage system:

Esto(k + 1) = fsat

(
Esto(k) + P∗sto(k + 1)∆t

)
(10)

with fsat, a saturation function, being defined as

fsat(E) =


0 if E < 0
E if 0 6 E 6 Erated

Erated if E > Erated

(11)

Then, the power Psto that is actually stored is

Psto(k + 1) =
Esto(k + 1)− Esto(k)

∆t
(12)

and it matches the storage request (i.e. Psto = P∗sto) whenever the storage is not saturated, that is neither
empty nor full. When this condition is met, the deviation from schedule Pdev defined by (4) is zero and
therefore the wind operator perfectly fulfills his commitment. We are now to further describe the behavior
of the storage governed by this policy.

4.2 Performance Assessment

4.2.1 Qualitative Assessment

In order to get a feeling of what is the storage behavior, we represent two different stochastic simulations
on figure 6. The forecast error standard deviation σP is set to 0.16 pu as observed in Grand Maison. The
storage capacity Erated is set to 15σP∆t = 3.3 MWh, with this choice being detailed in the next section. For
comparison purpose, the correlation coefficient φ takes two different values: φ = 0 (no correlation) on the
left pane while φ = 0.8 (as observed in field data) on the right.
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In the 1st sub-panel the State of Energy (SoE) of the storage is represented:

SoE =
Esto

Erated
(13)

which is always kept between 0 and 1 thanks to the saturation defined in (11). One can see that SoE is
rising when the storage request P∗sto (2nd sub-panel) is positive since the storage should absorb an excess of
power production with regard to the production commitment. Accordingly, SoE is falling when the storage
request is negative because the storage should compensate a lack of wind power production.

As long as the storage doesn’t reach saturation (0 < SoE < 1), the storage request P∗sto and the actually
stored power Psto are superimposed and thus the deviation Pdev (3rd sub-panel) is zero. Otherwise, there is
an excess of power delivered to the grid (Pdev > 0) when the battery is full, and a lack of power (Pdev < 0)
when the storage is empty.

When comparing the two panes, the amount of deviation is significantly bigger when the input is highly
correlated (φ = 0.8). Indeed, this high input correlation means that the forecast error can stay positive
or negative for several consecutive timesteps. Therefore, there is less compensation between positive and
negative errors.

After this visual assessment, we are now to quantitatively assess this deviation.

4.2.2 Performance Criterion

For our quantitative assessment, we need to choose a performance criterion which describes how the power
deviation Pdev is not always zero as it should ideally be. Since the input of the storage system P∗sto is a
random variable, so is Pdev which requires the use of the expectation operator E[·] to obtain non-random
values. In the context of Monte Carlo simulations, estimating the expectation falls back to computing an
average over many realizations.

Several criterions could be chosen but taking a norm of the random variable Pdev(k) is simple and com-
mon. For this study, we restrict ourselves to the mean absolute deviation (MAD) ‖Pdev‖1 = E[|Pdev(k)|] but
a quadratic norm, ‖Pdev‖2 = E[|Pdev(k)|2]1/2, could be used as well. It would give more weights to bigger
deviations which may be suitable in some applications.

With simulations yielding a series {Pdev(n)} of N observations, MAD is estimated by:

‖P̂dev‖1 =
1
N

N

∑
n=1
|Pdev(n)| (14)

If a wind operator must pay penalties for every kWh out of the commitment (with no tolerance range),
this criterion is proportional to the average penalty paid by the operator.

For example, the penalty in Hungary is about 17 EUR/MWh [14], however, a ±30 % tolerance range is
applied. The Performance Index defined by Teleke [26] is similarly based on a MAD criterion with some
tolerance.

In order to better quantify the improving effect of the storage, we normalize the criterion ‖Pdev‖1 with
respect to its value ‖Pdev‖0

1 if there were no storage. This normalization factor can be easily computed.
Indeed, in the absence of storage, the deviation Pdev defined by (4) is simply equal to the forecast error P∗sto
and since the latter is governed by the Gaussian process (7) we have:

‖Pdev‖0
1 = E[|P∗sto|] =

√
2
π

σP ≈ 0.80 σP (15)

with the coefficient
√

2
π being simply the natural ratio of MAD to standard deviation for a Gaussian random

variable. The normalized deviation criterion ‖Pdev‖norm
1 is thus defined by

‖Pdev‖norm
1 =

‖Pdev‖1√
2/πσP

(16)

so that a value ‖Pdev‖norm
1 = 0.5 for example would mean that the storage has reduced the effect of the

forecast error by a factor of 2.
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4.2.3 Statistical Estimation of the Performance

The MAD criterion (14) is an average of N observations of Pdev which is a random variable since the input
P∗sto is random. Therefore, the estimation must be conducted with some care to get good enough estimates.
We detail here the most important aspects of the computation.

First, the number of observations N must be big enough so that the variance of the estimator is small
enough thanks to the law of large numbers. Having small enough variance is particularly important for big
values of storage capacity because the deviation ‖Pdev‖norm

1 gets small. For range of values of this article,
we found N = 105 suitable.

Also, for the law of large numbers to apply, the N observations Pdev(n) in (14) should be statistically inde-
pendent. This means it not acceptable to take N consecutive observations since one can clearly see on figure
6 that consecutive deviation values Pdev(k) are not independent. We overcame this problem by running N
independent simulations in parallel, thus ensuring complete independence between the observations.

Finally, the N observations should be independent from the initial conditions of the simulation, that is in
our case the initial State of Energy SoE(0). Therefore, the storage simulation must be run along enough
timesteps so that the effect of the initial state fades away. Again, the bigger values of storage capacity are the
more problematic cases, because the higher amount of stored energy implies a higher amount of memory
from the initial state. Inspired by the diffusion properties of random walks, we derived an empirical rule
to automatically tune the length K of our simulations. Indeed, the stored energy behaves like a random
walk in the absence of saturation. We thus set K to the integral part of (Erated/(σP.∆t))2 which quadratically
increases with the storage capacity. In simulations performed for figure 7, with biggest capacity being
300 σP.∆t, the maximum simulation length was then Kmax = 3002 ≈ 105 points long. Also, our empirical
studies showed that this choice for K was indeed big enough to reach steady state.

4.3 Parametric Study of the Performance

The performance of the storage, in terms of the MAD criterion ‖Pdev‖norm
1 , was computed for a range of

storage capacities Erated so that the results can be used as hints for performance driven storage sizing. Also,
we ran the computation for a range of correlation coefficient φ (between 0 and 0.90) to explore its effect on
the need for capacity.

When studying the parametric behavior of the storage system, one can notice that only the relative value of
the capacity Erated with respect to the magnitude of the forecast error σP has an impact of the system behav-
ior. Therefore, we express our simulations results in terms of a normalized capacity which is a dimensionless
quantity:

Enorm
rated =

Erated
σP.∆t

(17)

We chose 30 points for Enorm
rated , logarithmically spaced between 1 and 300. For Grand Maison, this corre-

sponds to a capacity Erated between 0.22 and 66 MWh, since σP.∆t = 220 kW× 1 h = 220 kWh. We picked
10 values between 0 and 0.9 for the correlation coefficient φ.

For each 30× 10 pair of values (Enorm
rated , φ) on the grid of parameters, we estimated the deviation criterion

‖Pdev‖norm
1 , following the methodology described in section 4.2 using N = 105 independent vectorized

simulations. Longest simulations involved N× Kmax ≈ 1010 samples and took about 12 minutes for a single
pair of parameters. However, running several simulation instances in parallel on a multicore processor
reduced the simulation time of all 300 grid points to a few hours.

Results are plotted on figure 7 as a set of curves, one for each value of φ. Also, we put the parameter
Enorm

rated on the y-axis, while the computation output ‖Pdev‖norm
1 was laid on the x-axis in order make this

curve readable as a storage sizing tool, as demonstrated in the next section.
Looking at the set of curves, one can see how any increase in the correlation coefficient φ severely raisesthe

need for storage capacity. The curve for φ = 0.80 is highlighted as being about equal to the value estimated
on our field data from Grand Maison.
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Figure 7: Storage capacity requirements as a function of the MAD performance criterion, for different values
of the autocorrelation coefficient φ

4.4 Application to a Preliminary Storage Sizing

As an example based on power ratings from the Grand Maison wind farm, we suppose that MAD criterion
‖Pdev‖1 should be reduced from 0.127 pu (its natural value without storage) down to 0.05 pu by a novel grid
code requirement. This is a reduction to 39 % of the no-storage value, that is ‖Pdev‖norm

1 = 0.39. Reading
from figure 7 with φ = 0.8, matching this level of performance requires a relative capacity of 15. Therefore,
Erated = 15σP∆t = 3.3 MWh.

This is a large capacity for a wind farm of 1.375 MW rated power. However, had the correlation not been
taken into account, which is equivalent to say φ = 0.0, the capacity requirement would have been only
Erated = 2σP∆t that is 0.44 MWh, an underestimation by a factor of about 7! Since the investment cost of a
storage is roughly proportional to its capacity, taking into account the autocorrelation of forecast errors is
therefore critical for the correct budgeting a wind storage system.

4.5 Model Checking with Bootstrap

We’ve seen in section 3.4 that the AR(1) model can match several important statistical characteristics of
forecast errors but some others, like the “gusts of errors”, are not represented. Since the purpose of the
model is to simulate the performance of a storage, we use Tsay’s parametric bootstrap [27] approach to
assess the model ability to match this objective.

We implement bootstrap by first running the storage model (10) with the P∗sto input coming from the BPA
dataset. The time series is 7175 hours long and is preferred over Grand Maison because the latter is shorter.
The ESS normalized capacity is set to 15 as in the previous sizing example. The simulation outputs the
Pdev(k) time series and we compute the MAD criterion ‖Pdev‖norm

1 which is 50.8 % as pointed on the left of
figure 8. This is more than the 39 % of the previous example because the correlation coefficient of BPA data
is higher (φ̂ = 0.85).

Then, using the data-fitted AR(1) model, we generate 1000 independent time series P∗sto(k) of the same
length as the data. With the storage simulation, we hence collect 1000 samples of the ‖Pdev‖norm

1 criterion.
The distribution of these bootstrapped samples is also represented on figure 8, with their mean being 46.8 %.

We can observe that there is a significant variability of the deviation criterion within the bootstrapped
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Figure 8: Storage MAD performance simulation with BPA data against 1000 bootstrapped time series of the
same length (7175 h). Bootstrap samples are generated with the AR(1) model, either with data-
fitted correlation (φ=0.85) or no correlation for comparison. Storage normalized capacity Enorm

rated is
15 in all cases. On the right side, same data is plotted in the context of figure 7.

samples. Computing the quantiles, we get a 95 % confidence interval of 41.2 – 52.5. This variability of
the criterion is here solely due to the finite length of the input samples (about 300 days) and leads to two
comments.

First, the criterion obtained from the BPA sample (50.8) is within the 95 % confidence interval of the
bootstrapped samples (41.2 – 52.5), This means that the data and the model are indeed compatible. For
comparison, the bootstrapped samples with φ = 0 are superimposed which shows that this model is clearly
incompatible with the data (underestimation of the deviation criterion by a factor of 5).

Then, as a side result, the variability of the bootstrapped statistics gives a useful indication of the uncer-
tainty which surrounds the data-estimated criterion: we obtain a measure of accuracy. On the right side of
figure 8, the 95 % confidence intervals of the bootstrapped statistics are superimposed with the “capacity
requirement curves” of figure 7 to put these measures of variability in context. Getting information about
the accuracy of an estimate is in fact the main motivation of people using the bootstrap method. Indeed,
because the Pdev(k) series is strongly non Gaussian (see fig 6), the classical formula “±1.96σ” to compute
a confidence interval do not hold true. We can use the width of the bootstrapped samples as a substitute:
52.5− 41.2 = 11.3. This shows that a data-based storage simulation would need a longer data input (more
than 300 days) to yield a precise enough criterion. This will be possible in the near future thanks to BPA
providing new data every month.

5 Conclusion

In the context of wind power production, we use a simple autoregressive model to capture the stochastic
behavior of day-ahead forecast errors, in particular the autocorrelation structure of these errors. This model
fits well field data from several origins (a single farm, a whole country) and the correlation coefficient φ
(between two consecutive hours) is always found in the 80–90 % range.

Based on this model as its input, we use a Monte Carlo simulation tool to analyze the behavior and the
performance of an energy storage system. The ESS is used to mitigate the forecast errors in order to fulfill
a day-ahead production commitment. We parametrically assess the storage performance using a Mean
Absolute Deviation criterion. We compute this criterion as a function of the storage capacity for various
values of the autocorrelation coefficient φ. These curves can be used as a tool for a preliminary storage
sizing driven by the system performance. More important, we show that discarding the autocorrelation in
such an analysis can underestimate the storage capacity by an order of magnitude.

For further studies, we see three directions to improve our stochastic storage simulation tool. The first
one is the improvement of the storage model to include charging and discharging losses, thermal and aging
effects, as this was done for a sodium-sulfur battery [13] but is yet to be done for a battery in the Lithium-ion
family. Then, the simulation should accept more advanced control strategies of the ESS, including the choice
of a production commitment that may be different from the forecasted production (bidding strategy). Third,
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the investment, operational and replacement costs of the storage need to enter the model in order to assess
the economic benefit of an ESS. This includes thinking on which model is the most appropriate to penalize
commitment deviations and this is a wide issue.

Finally, we should underline the importance of the prediction quality, measured by its RMS magnitude
σP. Indeed, the simplest way to decrease the deviation criterion ‖Pdev‖1 at the output of the system is to
decrease the magnitude of the input σP. It can be shown that, if the relative deviation ‖Pdev‖norm

1 is small
enough (< 10 %), any decrease of σP leads to a quadratic decrease of ‖Pdev‖1. On the other hand, the effect
of increasing the storage size is only linear. Therefore, if a system designer must allocate resources between
a better wind power production forecast system and a bigger storage system, the former investment may
prove way more valuable.

6 Wind Farm data detailed description

Aérowatt data used in this article comes from the wind farm of “Grand Maison”, located on the shoreline
of Guadeloupe, one of the French Caribbean islands. Operated by Aérowatt, this 1.375 MW farm consists of
five “Vergnet GEV-MP” 275 kW wind turbines with pitch regulation and two-speed induction generators.
These wind turbines are specifically designed to withstand the frequent hurricanes of this region. To this
end, a specific tower design enables the turbines to be fully laid on the ground in advance, in case of a
weather alert. Wind power forecasts comes from a weather services provider contracted by Aérowatt.

BPA data comes from Bonneville Power Administration, the U.S. operator for the Pacific Northwest region.
The rated wind power in the BPA Balancing Authority is about 4.5 GW in 2013. Wind data used for model
validation comes from two different file sources :

• Wind Generation in the BPA Balancing Authority (transmission.bpa.gov/Business/Operations/Wind/).
Yearly files at a 5 minutes timestep, starting 2007.

• Wind Power forecasting data (www.bpa.gov/Projects/Initiatives/Wind/Pages/Wind-Power-Forecasting-Data.
aspx). Monthly files at a 1 hour timestep, starting June 2012. Forecast provided every hour, up to 72
hours ahead.

Those two sources were assembled and aggregated to obtain the forecast error at a 1 hour timestep, from
June 2012 to March 2013. The forecast time series was extracted from the forecast file by extracting 24 hours
blocks generated at 5pm and covering the next day from 0:00 to 23:00. This choice matches the constraints
of the power commitment for new wind farms in French islands.
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