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A Note on BSDEs with singular driver coefficients

Monique Jeanblanc∗ Anthony Réveillac†

December 18, 2013

Abstract

In this note we study a class of BSDEs which admits a particular singularity in the
driver. More precisely, we assume that the driver is not integrable and degenerates when
approaching to the terminal time of the equation.

1 Introduction

Since the seminal works of Bismut [2] and of Pardoux and Peng [13], a lot of attention has
been given to the study of Backward Stochastic Differential Equations (BSDEs) as this object
naturally arises in stochastic control problems and was found to be an ad hoc tool for many
financial applications as illustrated in the famous guideline paper [9]. Recall that a BSDE
takes the following form:

Yt = YT −

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ],

where W is a multi-dimensional Brownian motion. The historical natural assumption for
providing existence and uniqueness (in the appropriate spaces) is to assume the driver f
to be Lipschitz plus some integrability conditions on the terminal condition. However, in
applications one may deal with drivers which are not Lipschitz continuous, and which exhibit
e.g. a quadratic growth in z (in the context of incomplete markets in Finance), or only some
monotonicity in the y-variable. One way of relaxing the Lipschitz growth condition in y is
the so-called stochastic Lipschitz assumption which basically consists in replacing the usual
Lipschitz constant by a stochastic process satisfying appropriate integrability conditions. As
noted in Section 2.1.2 ”Pathology” in [8], even in the stochastic linear framework, one has to
be very careful when relaxing the integrability conditions on the driver of the equation. As
an illustration, consider the following example presented in [8] (cf. [8, (2.9)]):

Yt = 0 +

∫ T

t
[rYs + σZs + γYs(e

γ(T−s) − 1)−1]ds +

∫ T

t
ZsdWs, t ∈ [0, T ], (1)

where W is a one-dimensional Brownian motion, r, σ, γ > 0 and T is a fixed positive real
number. It is proved in [8] that the BSDE (1) has an infinite number of solutions. Note that
here the driver is not Lipschitz continuous in y due to the exploding term (eγ(T−t) − 1)−1 as
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t goes to T , and completely escapes the existing results of the literature.

The aim of this note is to elaborate on the pathology mentioned in [8] and to try to under-
stand better what kind of behavior can appear as soon as the usual integrability conditions
are relaxed. In light of Example (1), multiple solutions is one of the behaviour which can be
observed. However, is it the only type of problem that can occur ? For instance is it clear
that existence is guaranteed? This note is an attempt in this direction and is motivated by
the work in preparation [11] where equations with this specific pathology appear naturally in
the financial application under interest in [11].

We proceed as follows. First we make precise the context of our study and we explain
what is the notion of solution we use for dealing with non-integrable drivers. Then we deal
with the particular case of affine equations in Section 3. These equations already allow us to
present several type of pathologic behaviour. We then study in Section 4 a class of non-linear
drivers which will be of interest for a specific financial application presented in [11]. In par-
ticular, in our main result Theorem 4.4 we provide an existence and uniqueness result under
a monotonicty assumption on the mapping f in (2) defined below.

2 Preliminaries

In this note T denotes a fixed positive real number and d a given positive integer. We set
(Wt)t∈[0,T ] := (W 1

t , . . . ,W
d
t )t∈[0,T ] a d-dimensional standard Brownian motion defined on a

filtered probability space (Ω,F ,F := (Ft)t∈[0,T ],P) where F denotes the natural filtration of
W (completed and right-continuous) and F = FT . Throughout this paper ”F-predictable”
(rep. F-adapted) processes will be referred to predictable (resp. adapted) processes. For later
use we set for p ≥ 1:

S
p :=

{

(Yt)t∈[0,T ] continuous adapted one dimensional process , E

[

sup
t∈[0,T ]

|Yt|
p

]

< +∞

}

,

H
p(Rm) :=

{

(Zt)t∈[0,T ] predictable m-dimensional process , E

[(∫ T

0
‖Zt‖

2dt

)p/2
]

< +∞

}

,

where ‖ · ‖ denotes the Euclidian norm on R
m (m ≥ 1). For any element Z of H1(Rd), we set

∫ ·
0 ZsdWs :=

∑d
i=1

∫ ·
0 Z

i
sdW

i
s . We also set Lp := Lp(Ω,FT ,P).

Let λ : (λt)t∈[0,T ] be a one-dimensional non-negative predictable process. For convenience

we set Λt :=
∫ t
0 λsds, t ∈ [0, T ]. We make the following

Standing assumption on λ:

Λt < +∞, ∀t < T, and ΛT = +∞, P− a.s.

The typical example we have in mind is a coefficient λ of the form λt := (eγ(T−t) − 1)−1 as
in the introducing example (1), or when λ is the intensity process related to a prescribed
random time τ in the context of enlargement of filtration as presented in [11]. In this note,
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we aim in studying BSDEs of the form:

Yt = A−

∫ T

t
[ϕs + λsf(Ys)]ds−

∫ T

t
ZsdWs, t ∈ [0, T ], (2)

where A is a regular enough FT -measurable random variable, f : R → R is a deterministic
map and ϕ is a predictable processes with some integrability conditions to be specified. Before
going further, we would like to stress that in contradistinction to the classical case where λ is
bounded (and A and ϕ are square-integrable), the space S

2 ×H
2(Rd) is no more the natural

space for solutions of our BSDEs. For instance if f(x) := x, the fact that (Y,Z) belongs to
S
2 ×H

2(Rd) does not guarantee that

E

[∫ T

0
|λsYs|

pds

]

< +∞

for some p ≥ 1 (which would be immediately satisfied with p = 2 if λ were bounded) leading
to a possible definition problem for the term

∫ t
0 λsYsds in equation (2). For this reason we

make very precise the notion of solution in our context.

Definition 2.1 (Solution). Let A be an element of L1 and f : Ω × [0, T ] × R × Rd → R

such that for any (y, z) in R×R
d the stochastic process (t, ω) 7→ f(t, y, z) (where as usual we

omit the ω-variable in the expression of f) is progressively measurable. We say that a pair of
predictable processes (Y,Z) with values in R× R

d is a solution to the BSDE

Yt = A−

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ], (3)

if

E

[
∫ T

0
|f(t, Yt, Zt)|dt+

(∫ T

0
‖Zt‖

2dt

)1/2
]

< +∞, (4)

and Relation (3) is satisfied for any t in [0, T ], P-a.s.

Remark 2.2. This notion of solution is related to the theory of L1-solution (see e.g. [3,
Definition 2.1] or [5, 4]) where in Relation (4) the expectation is replaced by a P-a.s. criterion.
The fact that Z is an element of H1(Rd) implies that the martingale

∫ ·
0 ZsdWs is uniformly

integrable. Combining this property with the (Ω × [0, T ],P ⊗ dt)-integrability of f(·, Y, Z), it
immediately follows that the solution process Y is of class (D) (which then finds similarities
with the notion of solution used in [3]).

Remark 2.3. We would like to stress that even in the case where the terminal condition A
is in L2 we do not require Y to be an element of S2. This fact bears some similarities with
the papers [5, 4] and with [3, Section 6].

Remark 2.4 (Classical L2 setting). If f is uniformly (in time) Lipschitz in (y, z) and if

E

[

|A|2 +
∫ T
0 |f(s, 0, 0)|2ds

]

< +∞, then the fact that there exists (Y,Z) in S
2 × H

2(Rd)

satisfying (3) implies that the process f(·, Y·, Z·) is in H
2(Rd) and thus Relation (4) is satisfied.

Another important issue in our context is uniqueness. The uniqueness for the Z component
will be understood in the H1(Rd) sense. Concerning the Y component, since we do not impose
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Y to belong to S
1 we will say that Y 1 = Y 2 if the processes are indistinguishable (by definition

of a solution, both processes are continuous, and hence uniqueness boils down to require Y 1 to
be a modification of Y 2). This definition for uniqueness in our very special setting coincides
with the notion of uniqueness with respect to a particular norm. More precisely, according to
Remark 2.2 a solution process Y is of class (D). This space can be naturally equipped with
the norm ‖ · ‖(D) defined as1:

‖X‖(D) := sup
τ∈T

E[|Xτ |], X of class (D),

where T denotes the set of stopping time smaller or equal to T . By [6, Theorem IV.86],
uniqueness with respect to the norm ‖ · ‖(D) is equivalent to indistinguishability.

From now on, by solution to a BSDE we mean a solution in the sense of Definition 2.1.
For any pair of (FT -measurable) random variables (A,B), we write A 6≡ B if P[A 6= B] > 0.
Similarly, A = B, P-a.s. will be denoted as A ≡ B. Throughout this paper C will denote a
generic constant which can differ from line to line.

3 Affine equations with exploding coefficients

As the reader will figure out later, it seems pretty complicated to define a general theory since
many situations (non-existence, non-uniqueness) can be found under our assumption on λ for
BSDEs of the form (2). These very different behaviours can be clearly illustrated by studying
affine equations, that is when f in (2) stands for the identity (or minus the identity). In some
sense, our results find immediate counterparts in the deterministic realm while considering
the corresponding ODEs when all the coefficients of the equation are deterministic. However,
for this latter case, techniques of time-reversion can be employed to provide immediate results
which unfortunately can not be applied in the stochastic framework due to the measurability
feature of the solution to a BSDE calling for different techniques.

In this section, we consider stochastic affine BSDEs of one of the following forms:

Yt = A−

∫ T

t
(ϕs − λsYs)ds−

∫ T

t
ZsdWs; t ∈ [0, T ], (5)

Yt = A−

∫ T

t
(ϕs + λsYs)ds−

∫ T

t
ZsdWs; t ∈ [0, T ], (6)

We start with Equation (5).

Proposition 3.1. Let A be in L1 and ϕ := (ϕt)t∈[0,T ] be an element of H1(R). The Brownian
BSDE

dYt = (ϕt − λtYt)dt+ ZtdWt; YT = A. (7)

admits no solution if A 6≡ 0. If A ≡ 0, the BSDE (7) may admit infinitely many solutions.

1This norm is referred as ‖ · ‖1 in [7, Definition VI.20], we do not use this notation here to avoid any
confusion.
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Proof. Step 1: non-existence of solution if A 6≡ 0

Let (Y,Z) be a solution to (7). Assume there exists a set A in FT such that A > 0 on
A. By definition of a solution, it holds that

∫ T

0
|λsYs|ds < ∞, P-a.s. (8)

since ∫ T

0
|λsYs|ds ≤

∫ T

0
|ϕs − λsYs|ds +

∫ T

0
|ϕs|ds.

For ω in A, let t0(ω) := sup{t ∈ [0, T ], Yt(ω) < A/2}. By continuity of Y and the fact that
YT = A, for P-almost all ω in A, t0(ω) < T and Yt(ω)1[t0(ω),T ](t) ≥ A/2. Note that t0 is not a
stopping time but only a FT -measurable random variable. As a consequence, on A, it holds
that ∫ T

0
|λsYs|ds ≥

∫ T

t0

λsYsds ≥ A/2

∫ T

t0

λsds

︸ ︷︷ ︸

=+∞

,

which contradicts (8). As a consequence, A ≤ 0, P-a.s.. Similarly, one proves that A ≥ 0,
P-a.s..

Step 2: Multiplicity of solutions if A ≡ 0

If A ≡ 0, we will provide examples of non-uniqueness of solution. Remark that if (Y,Z)
is a particular solution to the BSDE and that (Y,Z) is a solution to the (fundamental)
BSDE:

dYt = −λtYtdt+ ZtdWt, YT = 0, (9)

then as for ODEs, the sum of any of these fundamental solutions and Y is a solution to (7)
(together with the sum of the associated Z processes). In addition, Equation (9) admits an in-
finite number of solutions (like Yt = Y0e

−Λt and Z ≡ 0 which is an adapted continuous solution

to the BSDE satisfying E

[∫ T
0 λs|Ys|ds

]

= |Y0| for any chosen real number Y0). An example

of particular solution can be given by the process Yt := −E

[∫ T
t e

∫ s

t
λuduϕsds|Ft

]

if it is well-

defined, such that Relation (4) is satisfied. In that case, the existence of E
[∫ T

t ϕse
Λsds|Ft

]

entails that it converges to 0 as t goes to T , and hence that YT = 0. One can check
that Y together with the process Z := Z̃e−Λ is solution to (7), where Z̃ is such that

E

[∫ T
0 ϕse

Λsds|Ft

]

= E

[∫ T
0 ϕse

Λsds
]

−
∫ t
0 Z̃sdWs (t ∈ [0, T ]). We conclude the proof with an

example: set ϕt := e−Λt . With this choice, the process Y satisfies all the requirements above
providing infinitely many solutions to (7).

Note that in the previous proof the non-existence when A 6≡ 0 relies on the assumption
that

∫ T
0 |ϕs|ds < +∞, P−a.s. If the latter is not satisfied, one may find existence of solutions

for A 6≡ 0 as the following proposition illustrates in the deterministic case.

Proposition 3.2. Let A be a given constant and ϕ := (ϕt)t∈[0,T ] be a deterministic map.

We assume that λ is a deterministic function such that Λt =
∫ t
0 λsds < +∞, for t < T , and

∫ T
0 λsds = +∞. Then
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(i) If e−Λt
∫ t
0 e

Λsϕsds converges to C when t goes to T , then the ODE

dYt = (ϕt − λtYt)dt; YT = A. (10)

admits no solution if A 6= C. If A = C, the ODE (10) admits infinitely many solutions

given by Yt = e−Λt

(

Y0 +
∫ t
0 e

Λsϕsds
)

provided that
∫ T
0 |ϕt − λtYt|dt < ∞.

(ii) If e−Λt
∫ t
0 e

Λsϕsds does not converge, the ODE (10) has no solution.

Remark 3.3. Note that the assumption in (i) of Proposition 3.2 when C = 0, can be met

only if
∫ T
0 |ϕs|ds = +∞. Indeed, assume that

∫ T
0 |ϕs|ds < ∞. Let ε > 0 and t < T . We have:

e−Λt

∣
∣
∣
∣

∫ t

0
eΛsϕsds

∣
∣
∣
∣
≤ e−Λt

∫ t−ε

0
eΛs |ϕs|ds+ e−Λt

∫ t

t−ε
eΛs |ϕs|ds

≤ e−ΛteΛt−ε

∫ T

0
|ϕs|ds+

∫ t

t−ε
|ϕs|ds.

Hence as t goes to T , we have that limt→T e−Λt

∣
∣
∣

∫ t
0 e

Λsϕsds
∣
∣
∣ ≤

∫ T
T−ε |ϕs|ds, and hence

lim
t→T

e−Λt

∣
∣
∣
∣

∫ t

0
eΛsϕsds

∣
∣
∣
∣
= 0,

which contradicts the assumption of (i).

Remark 3.4. Since λ is unbounded, assuming A,λ and ϕ to be deterministic in Equation (5)
does not lead to deterministic solutions (and so differs from the ODE framework of Proposition
3.2) as the following example illustrates. Assume A ≡ 0, ϕ ≡ 0 and λ is a deterministic
mapping. Then for any element β := (βt)t∈[0,T ] in H

1(Rd), the pair of adapted processes
(Y,Z) defined as:

Yt := Y0e
−Λt + e−Λt

∫ t

0
βsdWs, Zt := e−Λtβt, t ∈ [0, T ]

is a solution to (5). This provides in turn a generalization of the fundamental solution to
Equation (9).

We continue with the BSDE:

dYt = (ϕt + λtYt)dt+ ZtdWt; YT = A.

Proposition 3.5. Let A be in L1 and ϕ := (ϕt)t∈[0,T ] be a bounded predictable process. The
Brownian BSDE

dYt = (ϕt + λtYt)dt+ ZtdWt; YT = A. (11)

admits no solution unless A ≡ 0. If A ≡ 0, then the BSDE admits a unique solution.

Proof. Let (Y,Z) be a solution and set Ỹ := Y e−Λ −
∫ ·
0 e

−Λsϕsds. We have that

dỸt = e−ΛtZtdWt, and ỸT = −

∫ T

0
e−Λsϕsds.
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Hence Ỹ is a L1-martingale and

Ỹt = −E

[∫ T

0
e−Λsϕsds|Ft

]

, t ∈ [0, T ],

leading to

Yt = −E

[∫ T

t
e−

∫
s

t
λuduϕsds|Ft

]

, t ∈ [0, T ]. (12)

In particular, YT = 0. Indeed, since ϕ is bounded

eΛt

∣
∣
∣
∣

∫ T

t
e−Λsϕsds

∣
∣
∣
∣
≤ eΛte−Λt

∫ T

t
|ϕs|ds ≤ ‖ϕ‖∞(T − t).

This proves that there is no solution to the equation unless A ≡ 0. We now assume that
A ≡ 0. In that case, we prove that the process given by (12) together with a suitable process
Z is a solution to the BSDE. We begin with the integrability condition

E

[∫ T

0
|λsYs|ds

]

< +∞.

We have

E

[∫ T

0
|λsYs|ds

]

= E

[∫ T

0

∣
∣
∣
∣
λsE

[∫ T

s
e−

∫ u

s
λrdrϕudu|Fs

]∣
∣
∣
∣
ds

]

≤ E

[∫ T

0
λse

Λs

∫ T

s
e−Λu |ϕu|duds

]

= E

[

lim
s→T,s<T

[eΛs

∫ T

s
e−Λu |ϕu|du]−

∫ T

0
e−Λu |ϕu|du+

∫ T

0
eΛse−Λs |ϕs|ds

]

< +∞,

where we have used the estimate e−Λu ≤ e−Λs for u ≥ s. We now turn to the definition of
the Z process in the equation. Consider the L2 martingale L̂ defined as:

L̂t := E

[∫ T

0
e−Λsϕsds|Ft

]

, t ∈ [0, T ].

By the martingale representation theorem, there exists a process Ẑ in H
2(Rd) such that

L̂t = L̂0 +
∫ t
0 ẐsdWs. Now let Zt := −eΛtẐt and Lt :=

∫ t
0 ZsdWs which is a local martingale.

With this definition, it is clear that the pair (Y,Z) has the dynamics:

dYt = (ϕt + λtYt)dt+ ZtdWt, t ∈ [0, T ].

Note that a priori
∫ ·
0 ZsdWs is only a local martingale. From the equation, there exists a

constant C > 0 such that

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
ZsdWs

∣
∣
∣
∣

]

≤ C

(

2E[ sup
t∈[0,T ]

|Yt|] + T‖ϕ‖∞ + E

[∫ T

0
|λsYs|ds

])

< ∞,

since by definition Y is bounded. Hence Z is an element of H1(Rd) by Burkholder-Davis-
Gundy’s inequality. Finally note that this argument provides uniqueness of the solution since
we have characterized any solution via the process Ỹ .
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Remark 3.6. Up to a Girsanov transformation, the previous result can be generalized to
equations of the form:

Yt = A−

∫ T

t
(ϕs + σtZt − λsYs)ds−

∫ T

t
ZsdWs; t ∈ [0, T ],

Yt = A−

∫ T

t
(ϕs + σtZt + λsYs)ds−

∫ T

t
ZsdWs; t ∈ [0, T ],

where σ := (σt)t∈[0,T ] is any bounded predictable process. In particular, our results contain
the motivating example (2) from [8].

4 A class of non-linear equations

From the results of Section 3 it appears clearly that there is no hope to provide a general
theory for equations of the form (2) with a non-integrable coefficient λ. However, motivated
by financial applications, we need to prove that the particular equation (2) with f(x) :=
α−1(1− e−αx) admits a unique solution if and only if YT = 0. In addition, in order to provide
a complete answer to the financial problem associated to this equation, we need to prove that
the process Y is bounded and that the martingale

∫ ·
0 ZsdWs is a BMO-martingale (whose

definition will be recalled below). This section is devoted to the study of a class of equations
which generalizes this particular case. We start with a generalization of Proposition 3.1.

Proposition 4.1. Let ϕ be an element of H1(R) and A in L1. Let f : R → R be an increasing
(respectively decreasing) map with f(0) = 0. The BSDE

Yt = A−

∫ T

t
[ϕs + λsf(Ys)]ds −

∫ T

t
ZsdWs, t ∈ [0, T ] (13)

admits no solution if A 6≡ 0.

Proof. The proof follows the lines of the one of Proposition 3.1 and of Proposition 3.5.

Remark 4.2. Note that the previous result does not contradict the conclusion of Proposi-
tion 3.2 in the deterministic setting, since according to Remark 3.3 the assumption of (i) in
Proposition 3.2 on λ is not compatible with the H

1(R)-requirement of Proposition 4.1.

The following lemma will be of interest for proving the main result of this section.

Lemma 4.3. Let f : R → R satisfying f(0) = 0, f is non-decreasing and f(x)−x ≤ 0, ∀x ∈
R. Then the equation

Yt = 0−

∫ T

t
λsf(Ys)ds−

∫ T

t
ZsdWs, t ∈ [0, T ] (14)

admits (0, 0) as unique solution.

Proof. It is clear that (0, 0) solves (14). Let (Y,Z) be any solution and Ỹ := e−ΛY . It holds
that ỸT = 0 and that

dỸt = λte
−Λt(−Yt + f(Yt))dt+ e−ΛtZtdWt.

8



Since f(x)−x ≤ 0, for all x ∈ R, Ỹt ≥ 0. Hence by definition, Yt ≥ 0, ∀t ∈ [0, T ], P-a.s. From
Equation (14), since Y ≥ 0 we have that f(Yt) ≥ 0 which implies that

Yt = 0− E

[∫ T

t
λsf(Ys)ds|Ft

]

≤ 0, ∀t ∈ [0, T ], P− a.s.

As a consequence Yt = 0 for all t, P-a.s. which in turn gives Z = 0 (in H
1(Rd)), which

concludes the proof.

We now consider a class of nonlinear BSDEs.

Theorem 4.4. Let ϕ be a non-negative bounded predictable process and f : R → R a contin-
uously differentiable map satisfying: f(0) = 0, f is non-decreasing, there exists δ > 0 such
that

f(x)− x ≤ 0, ∀x ∈ R and f ′(x) ≥ δ, ∀x ≤ 0.

Assume in addition that E[Λt] < +∞, ∀t < T . Then the BSDE

Yt = A−

∫ T

t
(ϕs + λsf(Ys))ds−

∫ T

t
ZsdWs, t ∈ [0, T ]. (15)

admits a solution if and only if A ≡ 0. In that case, the solution is unique, Y is bounded and
∫ ·
0 ZsdWs is a BMO-martingale, that is:

esssupτ∈T E

[∫ T

τ
‖Zs‖

2ds|Fτ

]

< ∞,

where we recall that T denotes the set of stopping time smaller or equal to T .

Proof. We have seen in Proposition 4.1 that the only possible value for A to admit a solution
is 0. From now on, we assume that A ≡ 0.

Step 1: some estimates

We start with some estimates on the (possible) solution to the BSDE. Assume that there
exists a solution (Y,Z) to Equation (15). Since ϕ is non-negative, (Y,Z) is a sub-solution to
the BSDE:

Yt = 0−

∫ T

t
λsf(Ys)ds −

∫ T

t
ZsdWs, t ∈ [0, T ],

which admits (0, 0) as unique solution by Lemma 4.3. Indeed, this sub-solution property is
classical for (L2) Lipschitz BSDE and follows from the comparison theorem. However, here
the BSDE (14) is not Lipschitz due to the unboundedness of λ. In our context the result can
be proved explicitly. Since f(0) = 0 the BSDE (15) can be written as2

Yt = 0−

∫ T

t
λ̃sYsds−

∫ T

t
ZsdWs −

∫ T

t
ϕsds, t ∈ [0, T ], (16)

with λ̃t := λt

∫ 1
0 f ′(θYt)dθ which is non-negative. Following the lines of Proposition 3.5 with

λ replaced by λ̃, and using the non-negativity of ϕ, we get that

Yt = −E

[∫ T

t
e−

∫ s

t
λ̃uduϕsds|Ft

]

≤ 0.

2by: f(x)− f(y) = (x− y)
∫

1

0
f ′(y + θ(x− y))dθ, (x, y) ∈ R

2
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From the non-positivity of Y , we can deduce that λ̃ ≥ δλ from which we get that

Yt ≥ −E

[∫ T

t
e−δ

∫ s

t
λuduϕsds|Ft

]

, t ∈ [0, T ].

To summarize, we have proven that

−(T − t)‖ϕ‖∞ ≤ −E

[∫ T

t
e−δ

∫ s

t
λuduϕsds|Ft

]

≤ Yt ≤ 0, ∀t ∈ [0, T ], P− a.s.. (17)

We now prove that the process
∫ ·
0 ZsdWs is a BMO-martingale. Let τ be any stopping time

such that τ ≤ T . By Itô’s formula, we have that

|Yτ |
2 = 0− 2

∫ T

τ
ϕsYsds− 2

∫ T

τ
YsZsdWs −

∫ T

τ
‖Zs‖

2ds − 2

∫ T

τ
Ysf(Ys)λsds.

Since Y is bounded and Z is an element of H1(Rd), the stochastic integral process is a true
martingale, and since Y is non-positive, the last term of the previous expression is non-
positive. As a consequence, it holds that

E

[∫ T

τ
‖Zs‖

2ds|Fτ

]

≤ −2E

[∫ T

τ
ϕsYsds|Fτ

]

≤ 2T 2‖ϕ‖2∞,

So the claim is proved.

Step 2: existence

Now, we prove the existence of a solution for the BSDE (15). For any positive integer n, we
set λn

· := λ·∧n, f̃(x) := f(x)1{[−T‖ϕ‖∞,0]}(x)+ f(−T‖ϕ‖∞)1{(−∞,−T‖ϕ‖∞]}(x), and (Y n, Zn)

the unique (classical) solution in S
2 ×H

2(Rd) to the BSDE

Y n
t = 0−

∫ T

t
(ϕs + f̃(Y n

s )λn
s )ds −

∫ T

t
Zn
s dWs, t ∈ [0, T ]. (18)

It is clear that this equation admits a unique solution since f̃ is Lipschitz continuous and λn is
bounded. In addition, by definition, f̃(Y n

s ) ≤ 0, and so Y n
t ≥ −‖ϕ‖∞(T − t). Thus (Y n, Zn)

solves the same equation with f̃ replaced by f̂(x) := f(x)1{x≥0}. Note that f̂(x) ≤ x for
any x in R. Since ϕ is non-negative, Y n is a classical sub-solution to the BSDE (14) with f
replaced by f̂ , and so by Lemma 4.3 we deduce that Y n

t ≤ 0. Thus

|Y n
t | ≤ (T − t)‖ϕ‖∞, ∀t ∈ [0, T ], P− a.s.. (19)

Hence we can re-write Equation (18) as:

Y n
t = 0−

∫ T

t
(ϕs + f(Y n

s )λn
s )ds −

∫ T

t
Zn
s dWs, t ∈ [0, T ]. (20)

Repeating the same argument used in the previous step we can prove that

sup
n

E

[∫ T

0
‖Zn

t ‖
2dt

]

< ∞. (21)
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By comparison theorem for Lipschitz BSDEs the sequence (Y n)n is non-decreasing. Hence
it converges pointwise to some element Y := lim supn→∞ Y n. We would like to point out at
this stage that by construction Y takes values in [−T‖ϕ‖∞, 0]. In view of Dini’s theorem, to
obtain convergence uniformly in time, we need to prove that Y is continuous. This is done
in two steps. Fix 0 < t0 < T , n ≥ 1 and p, q ≥ n. We show that the sequence (Yn1[0,t0])n is
a Cauchy sequence in S

2. Let δY := Y p − Y q, δZ := Zp − Zq. Itô’s formula gives for every
t ∈ [0, t0] that

|δYt|
2 +

∫ t0

t
‖Zs‖

2ds ≤ |δYt0 |
2 − 2

∫ t0

t
δYsf(Y

q
s )(λ

p
s − λq

s)ds− 2

∫ t0

t
δYsδZsdWs, (22)

where we have used the fact that δYs(f(Y
p
s ) − f(Y q

s )) ≥ 0 since f is non-decreasing. From
this relation we deduce in particular for t = 0 that

E

[∫ t0

0
‖Zs‖

2ds

]

≤ CE

[

|δYt0 |
2 +

∫ t0

0
|λp

s − λq
s|ds

]

, (23)

since Y p and Y q are uniformly (in p, q) bounded. Taking the supremum over [0, t0] in Relation
(22) leads to

E[ sup
t∈[0,t0]

|δYt|
2]

≤ C

(

E[|δYt0 |
2] + E

[
∫ t0

0
|δYsf(Y

q
s )||λ

p
s − λq

s|ds+ sup
t∈[0,t0]

∣
∣
∣
∣

∫ t0

t
δYsδZsdWs

∣
∣
∣
∣

])

≤ C

(

E[|δYt0 |
2] + E

[∫ t0

0
|λp

s − λq
s|ds

]

+ E

[(∫ t0

0
|δYs|

2‖δZs‖
2ds

)1/2
])

≤ C

(

E[|δYt0 |
2] + E

[∫ t0

0
|λp

s − λq
s|ds

])

+
1

2
E

[

sup
t∈[0,t0]

|δYt|
2

]

+
C2

2
E

[∫ t0

0
‖δZs‖

2ds

]

,

where we have used the fact that |δYsf(Y
q
s )| is bounded uniformly in p, q, the Burkholder

inequality and the inequality Cab ≤ 1
2a

2 + C2b2

2 . Combining the previous estimate with
Estimate (23) proves that

E[ sup
t∈[0,t0]

|δYt|
2] ≤ C

(

E[|δYt0 |
2] + E

[∫ t0

0
|λp

s − λq
s|ds

])

,

where C does not depend on p, q. Recalling the definition of δY = Y p − Y q it follows that

lim
n→∞

sup
p,q≥n

E[ sup
t∈[0,t0]

|δYt|
2] ≤ C lim

n→∞

(

E[|Y n
t0 − Yt0 |

2] + E

[∫ t0

0
|λn

s − λs|ds

])

= 0,

by Lebesgue’s dominated convergence Theorem (since E[Λt0 ] < ∞)3. Hence (Y n1[0,t0])n is a
Cauchy sequence in S

2 which thus converges to Y 1[0,t0]. So Y is continuous on [0, t0] for any

3Here we did not use the classical a priori estimates for Lipschitz BSDEs since they would lead to an

estimate of the form E

[

∫ t0

0
|λp

s − λq
s|

2ds
]

which is not compatible with our L1 assumption: E[Λt0 ] < ∞.
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t0 < T . It remains to prove that Y is continuous at T . Let ε > 0. By Inequality (19) it holds
that

|YT−ε| = lim
n→∞

|Y n
T−ε| ≤ ε‖ϕ‖∞,

proving that Y is continuous at T . Hence, (Y n)n is a non-decreasing sequence of continuous
bounded processes converging to a continuous process Y , thus by Dini’s Theorem, (Yn)n con-
verges in S

2 to Y .

We now prove that Y together with a suitable process Z solves the BSDE (15). To this end,
we aim at applying [1, Theorem 1]. We have obtained already that limn→∞ E[supt∈[0,T ] |Y

n
t −

Yt|] = 0. To satisfy the assumptions of [1, Theorem 1], we have to prove that for every n

sup
n

E

[(∫ T

0
‖Zn

s ‖
2ds

)1/2
]

≤ C (24)

(which by Burkholder’s inequality implies that E

[

supt∈[0,T ]

∣
∣
∣

∫ t
0 Z

n
s dWs

∣
∣
∣

]

≤ C for every n)

and that

sup
n

E

[∫ T

0
|λn

s f(Y
n
s )| ds

]

≤ C, ∀n ≥ 1, (25)

since the process
∫ ·
0 λ

n
s f(Y

n
s )ds is non-increasing (recall that Y n ≤ 0 and the assumptions on

f). Relation (24) is a direct consequence of (21). With this estimate at hand we can deduce
Relation (25). Indeed, using Equation (20) and the uniform estimates on the Y n obtained
above we deduce that

E

[∫ T

0
|λn

s f(Y
n
s )|ds

]

= E

[∣
∣
∣
∣

∫ T

0
λn
s f(Y

n
s )ds

∣
∣
∣
∣

]

= E

[∣
∣
∣
∣
Y n
0 +

∫ T

0
ϕsds+

∫ T

0
Zn
s dWs

∣
∣
∣
∣

]

≤ C, n ≥ 1,

where C depends only on T and ‖ϕ‖∞ (and not on n). Thus, by [1, Theorem 1], Y writes
down as Yt = At +

∫ t
0 ϕsds+

∫ t
0 ZsdWs, with Z ∈ H

1(Rd), and

lim
n→∞

E[ sup
t∈[0,T ]

|At −

∫ t

0
λn
s f(Y

n
s )ds|] = 0. (26)

We now identify the process A. We proceed in two steps: first we prove that At =
∫ t
0 f(Ys)λsds

for t < T and then we prove the relation for t = T . Fix t < T . We have that
∣
∣
∣
∣

∫ t

0
f(Y n

s )(λn
s − λs)ds

∣
∣
∣
∣

≤ C

∫ t

0
|λn

s − λs|ds →n→∞ 0, P− a.s.

by the monotone convergence theorem, since the Y n are uniformly bounded and Λt < ∞,
P-a.s. Hence up to a subsequence,

lim
n→∞

∣
∣
∣
∣
At −

∫ t

0
f(Y n

s )λsds

∣
∣
∣
∣
= 0.
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Recalling that Y n ≤ Y , we have that

∣
∣
∣
∣

∫ t

0
(f(Y n

s )− f(Ys))λsds

∣
∣
∣
∣

≤ C

∫ t

0
|Y n

s − Ys|λsds →n→∞ 0

where once again we have used monotone convergence Theorem. This leads to

At =

∫ t

0
f(Ys)λsds, P− a.s.

for any t < T . The relation for t = T follows from the continuity of A by (26). Finally
according to Definition 2.1 it remains to prove Relation (4). This is done as follows by
combining the monotone convergence theorem together with (25) and (26):

E

[∫ T

0
|f(Ys)|λsds

]

= lim
t→T

E

[∫ t

0
|f(Ys)|λsds

]

= lim
t→T

E[|At|] < ∞.

Step 3: uniqueness

Assume there exist two solutions (Y 1, Z1) and (Y 2, Z2) to the BSDE (15). Then, the difference
processes (δY := Y 1 − Y 2, δZ := Z1 − Z2) satisfies

δYt = 0−

∫ T

t
λs(f(Y

1
s )− f(Y 2

s ))ds −

∫ T

t
δZsdWs, t ∈ [0, T ].

From the existence part we know that both processes Y 1 and Y 2 are uniformly bounded. As
a consequence the mapping f restricted to the set [−T‖ϕ‖∞, 0] has a non-negative derivative.
Hence the equation re-writes as:

δYt = 0−

∫ T

t
λ̃sδYsds−

∫ T

t
δZsdWs, t ∈ [0, T ],

where λ̃t := λt

∫ 1
0 f ′(Y 2

t +θ(Y 1
t −Y 2

t ))dθ is a non-negative process which satisfies
∫ t
0 λ̃sds < ∞

for t < T , P-a.s. and
∫ T
0 λ̃sds = ∞, P-a.s. Similarly to Proposition 3.5 with λ replaced with

λ̃, we deduce that (δY, δZ) = (0, 0) is the unique solution.

Remark 4.5. Note that our previous result is not contained in the theory of monotonic
drivers for BSDEs (see e.g. [12, 3] or [10]) where conditions of the form [3, (H5) and (H1”)]
are not satisfied in our setting due to the non-integrability at T of Λ.
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