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(NON-)WEAKLY MIXING OPERATORS AND
HYPERCYCLICITY SETS

F. BAYART AND É. MATHERON

Abstract. We study the frequency of hypercyclicity of hypercyclic, non–weakly
mixing linear operators. In particular, we show that on the space `1(N), any
sublinear frequency can be realized by a non–weakly mixing operator. A weaker
but similar result is obtained for c0(N) or `p(N), 1 < p <∞. Part of our results is
related to some Sidon-type lacunarity properties for sequences of natural numbers.

1. Introduction

The present paper is a contribution to the study of the dynamics of linear oper-
ators. More specifically, we are interested in the behaviour of individual orbits of a
continuous linear operator. Most of the paper is devoted to the following question:
how “frequently” can such an orbit visit each nonempty open set without forcing the
operator to be topologically weakly mixing?

Let X be a separable F -space over K = R or C, and let us denote by L(X) the
set of all continuous linear operators on X. An operator T ∈ L(X) is said to be
hypercyclic if there exists some vector x ∈ X whose T -orbit {T n(x); n ∈ N} is dense
in X. Equivalently, T is hypercyclic if and only if it is topologically transitive, which
means that for any pair (V, V ′) of nonempty open subsets of X, one can find some
integer n ∈ N such that T n(V )∩V ′ 6= ∅. An operator T is said to be (topologically)
weakly mixing if the operator T × T is hypercyclic on the product space X ×X.

Of course, hypercyclicity and weak mixing make sense for arbitrary continuous
maps, and they are basic notions in topological dynamics. In the linear setting,
weak mixing is particularly significant because it is closely related to the so-called
Hypercyclicity Criterion. A linear operator T ∈ L(X) is said to satisfy the Hyper-
cyclicity Criterion with respect to some increasing sequence of integers (nk) if one
can find dense sets D,D′ ⊂ X such that

(a) T nk(x)→ 0 for each x ∈ D;
(b) for each x′ ∈ D′, one can find a sequence (zk) ⊂ X such that zk → 0 and

T nk(zk)→ x′.
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It is not difficult to show that operators satisfying the Hypercyclicity Criterion are
indeed hypercyclic, and hence weakly mixing because T × T satisfies the criterion
whenever T does. By a nice result of J. Bès and A. Peris ([BeP]), the converse is
also true: a linear operator satisfies the Hypercyclicity Criterion if and only if it is
weakly mixing.

For many years, all known examples of hypercyclic operators were also known to
satisfy the Hypercyclicity Criterion. Thus, it looked quite reasonable to conjecture
that for linear operators, hypercyclicity and weak mixing are in fact equivalent.
Nevertheless, M. De La Rosa and C. Read have shown very recently that hypercyclic
operators need not be weakly mixing ([DR]). More precisely, they constructed a
Banach space X on which a counterexample exists. Building on their ideas, the
authors of the present paper have proved that one can construct hypercyclic operators
which are not weakly mixing on many classical Banach spaces (including all `p-
spaces), and also on the space of entire functions H(C) ([BaM]).

On the other hand, several authors have observed that hypercyclicity combined
with some qualitative property automatically yields weak mixing. One noteworthy
example is a recent result of K. -G. Grosse-Erdmann and A. Peris ([GEP]), ac-
cording to which every frequently hypercyclic operator is weakly mixing. Frequent
hypercyclicity is defined as follows ([BaGr]). Let T ∈ L(X). For x ∈ X and V ⊂ X
nonempty open, set

N(x, V ) := {n ∈ N; T n(x) ∈ V } .
The operator T is said to be frequently hypercyclic if there exists some vector x ∈ X
such that all sets N(x, V ) have positive lower density; equivalently, if each set N(x, V )
can be enumerated as an increasing sequence (nk) with nk = O(k) as k →∞.

In view of [GEP], it is not surprising that the operators constructed in [DR] and
[BaM] seem very far from being frequently hypercyclic. The aim of the present paper
is to try to fill the gap between frequently hypercyclic operators and these somewhat
extreme examples, by investigating the frequency of hypercyclicity of non–weakly
mixing operators.

Before formulating any result, we first have to give a precise meaning to the rather
vague expression “frequency of hypercyclicity”. The next definition is the most
obvious generalization of frequent hypercyclicity.

Definition 1.1. Let (mk)k∈N be an increasing sequence of natural numbers. An
operator T ∈ L(X) is said to be (mk)-hypercyclic if there exists some vector x ∈ X
such that each set N(x, V ) can be enumerated as an increasing sequence (nk)k∈N
with nk = O(mk) as k →∞.

Thus, the frequently hypercyclic operators are exactly the (k)-hypercyclic ones.
The following theorem shows that, at least if one is allowed to choose the space X,
the result of Grosse-Erdmann and Peris mentionned above is essentially optimal.
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Theorem 1.2. If (mk) is any increasing sequence of natural numbers such that
limk→∞

mk
k

= ∞, then one can construct an operator on X = `1(N) which is (mk)-
hypercyclic, but not weakly mixing.

Corollary 1.3. For any ε > 0, there exist non–weakly mixing operators on `1(N)
which are (k1+ε)-hypercyclic.

As stated, Theorem 1.2 just asserts the largeness of some sets of natural numbers
N(x, V ), without indicating any relation between these sets. However, if x ∈ X is
a hypercyclic vector for some operator T ∈ L(X), then the sets N(x, V ) are in fact
closely related to each other. More precisely, it is easily checked that if V1, V2 are

two nonempty open subsets of X, then one can find a nonempty open set Ṽ1 ⊂ V1

and some natural number N such that N + N(x, Ṽ1) ⊂ N(x, V2): choose N ∈ N
such that TN(V1) ∩ V2 6= ∅, and set Ṽ1 := V1 ∩ (TN)−1(V2). Moreover, one can find
an infinite set B ⊂ N such that, for each neighbourhood U of x, the set N(x, U)
contains all but finitely many n ∈ B: just consider an increasing sequence (bn) ⊂ N
such that T bn(x)→ x and set B := {bn; n ∈ N}. From these two remarks, it follows
in particular that each set N(x, V ) contains a translate of some cofinite subset of B.
This suggests the following definition.

Definition 1.4. Let T ∈ L(X). An infinite set B ⊂ N is said to be a hypercyclicity
set for T if there exists some vector x ∈ X such that each set N(x, V ) contains a
translate of some cofinite subset of B.

This definition is connected to the previous one in an obvious way: if B is an
infinite subset of N whose increasing enumeration (bn) satisfies bk+N = O(mk) as
k → ∞ for each fixed N ∈ N, and if B is a hypercyclicity set for some operator T ,
then this operator is (mk)-hypercyclic. And in fact, we will prove Theorem 1.2 by
producing a set B ⊂ N with the required growth property, to which one can associate
some non–weakly mixing operator T in such a way that B is a hypercyclicity set for
T . Thus, we will have some vector x ∈ X such that all sets N(x, V ) are not merely
large, but in fact large in exactly the same way.

It is not hard to convince oneself that the rate of growth of a hypercyclicity set
cannot be arbitrary. In fact, we will prove below (Theorem 5.4) that an infinite set
B ⊂ N is a hypercyclicity set for some F -space operator T if and only if its increasing
enumeration (bn) satisfies limn→∞(bn+1 − bn) =∞. But if one requires the operator
T to be non–weakly mixing, then the arithmetic properties of B come into play. This
is apparent from [GEP], because what is actually proved there can be formulated
as follows: If T ∈ L(X) and if there exists some vector x ∈ X such that for each
nonempty open set V ⊂ X, the difference set N(x, V )−N(x, V ) has bounded gaps (as
it happens if N(x, V ) has positive density), then T is weakly mixing. For example,
this rules out the possibility for the set B = {n2; n ∈ N} to be a hypercyclicity
set for any non–weakly mixing operator, even though its rate of growth is a priori
admissible by 1.2.
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Since arithmetical largeness of the sets N(x, V ) entails weak mixing, it should
not look very surprising that if, on the contrary, a set B ⊂ N has some lacunarity
property of arithmetical nature, then it turns out to be a hypercyclicity set for some
non–weakly mixing operator. Recall that an increasing sequence of natural numbers
(bn)n∈N is said to be a Sidon sequence if all sums bk + bl with k < l are distinct. We
will need the following stronger Sidon-type property.

Definition 1.5. Let (∆l)l∈N be a sequence of natural numbers. An increasing se-
quence of natural numbers (bn)n∈N is said to be a (∆l)-Sidon sequence if the sets of
natural numbers Jl :=

⋃
k≤l[bl + bk , bl + bk + ∆l] are pairwise disjoint.

We now have the following result.

Theorem 1.6. Let (bn)n∈N be an increasing sequence of natural numbers. Assume
that (bn) is (∆l)-Sidon, for some sequence (∆l) tending to ∞. Then, for any infinite
set I ⊂ N, the set B := {bn;n ∈ N \ I} is a hypercyclicity set for some non–weakly
mixing operator on X = `1(N).

Notice that one cannot hope to use this result to recover Theorem 1.2. Indeed, it
is well known that the rate of growth of any Sidon sequence (bn) is at least n2 (see
[Hal]). On the other hand, Theorem 1.6 gives a large and natural class of subsets
of N which are hypercyclicity sets for non–weakly mixing operators, while the set
constructed in our proof of Theorem 1.2 seems to be a very peculiar one.

The two above theorems are stated for the space X = `1(N), and we are very far
from being able to prove them on any separable Banach space. Yet, we do have some
similar, though less satisfactory results on a rather large class of Banach spaces. Let
us say that a linearly independent sequence (ei)i∈N ⊂ X is shift-admissible if the
forward shift S associated to (ei) is continuous. Recall that S is the linear map on
span{ei; i ∈ N} defined by S(ei) = ei+1.

Theorem 1.7. Let X be a separable Banach space, and assume X has a normalized
unconditional basis which is shift-admissible. Let also (bn) be an increasing sequence
of natural numbers. Assume that (bn) is (∆l)-Sidon, for some nondecreasing sequence
(∆l) satisfying the following property:

∑∞
0 exp (−ψ(∆l)) < ∞, where ψ : (0 ,∞) →

(0 ,∞) is a nondecreasing function such that
∫∞

1
ψ(t)
t2
dt <∞. Then, for any infinite

set I ⊂ N, the set B := {bn;n ∈ N \ I} is a hypercyclicity set for some non–weakly
mixing operator on X.

For any given ε > 0, it is not hard to construct a sequence (bn) as above with
bk = O(k3+ε); see Lemma 3.2 below. Setting I = 2N, we get the following corollary.

Corollary 1.8. Let the Banach space X be as above. Then, for any ε > 0 one can
find an operator T ∈ L(X) which is (k3+ε)-hypercyclic, but not weakly mixing.

Since, as we mentionned above, Sidon sequences cannot grow too slowly, it is very
likely that this result does not give the optimal frequency of hypercyclicity for a
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non–weakly mixing operator on e.g. c0(N) or `p(N). It is quite plausible that one
can still go down to 1 + ε, as in the `1 case. However, we were not able to adapt our
proof of Theorem 1.2 to this more general setting.

This paper is organized as follows. In Section 2, we describe our strategy for
proving Theorems 1.2, 1.6 and 1.7. We introduce there the notations and give some
preliminaries which will be useful throughout the whole paper. Section 3 is devoted
to the proofs of Theorems 1.6 and 1.7. Theorem 1.2 is proved in section 4. In
Section 5, we give further informations on hypercyclicity sets. In particular, we give
a criterion for an operator to admit a given set as a hypercyclicity set. In Section
6, we prove two results similar to 1.2 and 1.8 for a class of non-Banach Fréchet
spaces. We conclude the paper by an expository section where we give unified proofs
of several known results related to the Hypercyclicity Criterion.

2. General framework

2.1. The strategy. The following lemma from [BaM] isolates the basic idea used in
[DR] and [BaM] to check that the operators considered there are not weakly mixing.
Here and in the rest of the paper, we will use the following notations. If T is a linear
map defined on some vector space Z and if e0 ∈ Z, we denote by K[T ]e0 the linear
span of the vectors T i(e0), i ∈ N. In other words,

K[T ]e0 = {P (T )e0; P polynomial} .
Using the commutativity of the product of polynomials, it is easily checked that

one can unambiguously define a product on K[T ]e0 by the identities

(P (T )e0) · (Q(T )e0) = (PQ)(T )e0 .

Lemma 2.1. Let X be an F -space, and let T ∈ L(X) be hypercyclic with hypercyclic
vector e0. Assume there exists a nonzero linear functional φ : K[T ]e0 → K such that
the map (x, y) 7→ φ(x · y) is continuous on K[T ]e0 × K[T ]e0. Then T is not weakly
mixing.

This lemma is essentially the same as Corollary 2.3 in [BaM]. Its proof is not
difficult, but it seems unnecessary to give any detail at this point. We will say a few
words on it in section 7.

We can now describe our strategy for proving Theorems 1.2, 1.6 and 1.7. We start
with a Banach space X having a normalized, shift-admissible unconditional basis
(ei)i∈N, and we set

c00 = span {ei; i ∈ N} .
We denote by ‖ · ‖1 the `1-norm on c00: if x =

∑
i xiei ∈ c00, then ‖x‖1 =

∑
i |xi|.

We will define a linear map T : c00 → c00 depending on an increasing sequence of
positive integers (bn), an infinite set I, and a number of additional parameters. By
its very definition, the linear map T will satisfy the following three properties.
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(i) span {T i(e0); 0 ≤ i ≤ N} = span {ei; 0 ≤ i ≤ N} for all N ∈ N, so that in
particular K[T ]e0 = c00.

(ii) Each vector z = P (T )e0 ∈ K[T ]e0 is in the closure of the set {T bn(e0); n ∈ I}.
(iii) lim

n→∞
n∈N\I

T bn(e0) = e0.

It follows from (i) and (ii) that the set {T bn(e0); n ∈ N} is dense in X. Hence, as
soon as the linear map T has been shown to be continuous, it extends to an operator
on X (still denoted by T ) which is hypercyclic with hypercyclic vector e0. Then
property (iii) implies that the set B = {bn; n ∈ N \ I} is a hypercyclicity set for T .

The strategy is now clear. To prove Theorems 1.6 and 1.7, we will show that, under
the assumptions on (bn) stated therein and given the infinite set I, it is possible
to choose the parameters involved in the definition of T in such a way that T is
continuous, and one can define a linear functional φ satisfying the continuity property
of Lemma 2.1. To prove Theorem 1.2, we will show that given the sequence (mk),
one can choose the sequence (bn), the infinite set I and the other parameters in
such a way that T is continuous, the linear functional φ can be constructed, and
the increasing enumeration of any cofinite subset of B does not grow faster than the
sequence (mk).

2.2. The parameters. The parameters involved in the construction of T are the
following:

• an increasing sequence of integers b = (bn)n∈N, with b0 = 0;
• an infinite set I ⊂ N, with 0 ∈ I;
• a sequence of polynomials P = (Pn)n∈N, with P0 = 0;
• a nondecreasing sequence of positive numbers a = (an) tending to ∞, with
a0 = 1;
• a nondecreasing sequence of positive numbers (w(i))i≥1.

We will always assume that the following properties hold.

• Pn = 1 for all n ∈ N \ I, and the sequence (Pn)n∈I enumerates (not in a 1-1
way) the set of all polynomials with coefficients in some fixed countable dense
set Q ⊂ K.
• Setting dn := deg(Pn), we have dn < bn for all n.
• The sequence (w(i)) has the form

w(i) = K(1− ξ(i)) ,

where K ≥ 4 and (ξ(i))i≥1 is a nonincreasing sequence of positive numbers
tending to 0, with 0 < ξ(i) ≤ 1

2
for all i. In particular, we have 2 ≤ K

2
≤

w(i) ≤ K for all i.

If P is a polynomial, we denote by |P |1 the sum of the moduli of its coefficients.
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2.3. The operator T . Since deg(Pn) < bn for all n, there is a uniquely defined
linear map T : c00 → c00 satisfying the following properties: T (ei) = w(i+ 1)ei+1 if i ∈

⋃
n≥1[bn−1, bn − 2];

T bn(e0) = Pn(T )e0 +
1

an
ebn for all n.

A simple computation shows that one can write

(1) T (ebn−1) = εnebn + fn ,

where

(2) εn =
an−1

anw(bn−1 + 1) · · ·w(bn − 1)

and

(3) fn =
an−1

w(bn−1 + 1) · · ·w(bn − 1)

(
Pn(T )e0 − T bn−bn−1Pn−1(T )e0

)
.

Since dn < bn and dn−1 < bn−1, the vector fn is supported on [0 , bn). Thus, the
operator T satisfies property (i) stated above when describing our strategy. Moreover,
(ii) and (iii) are also satisfied by definition of T , thanks to the assumptions made on
the sequence (Pn). The next lemma will be our main tool for checking the continuity
of T . We set

Dn := bn − bn−1 .

Lemma 2.2. The following properties hold.

(a) εn ≤ 1 for all n ∈ N∗.
(b) If n ∈ N∗ and if ‖fk‖1 ≤ 1 for all k < n, then

‖fn‖1 ≤ Cn(K, a,P)

[
(K/2)−Dn + exp

(
−

Dn−1∑
i=1

(ξ(i+ dn−1)− ξ(i+ bn−1))

)]
,

where Cn(K, a,P) = Kmax(dn,dn−1)+1|an−1| (|Pn|1 + |Pn−1|1) .

Proof. Part (a) is obvious. To prove (b), let us fix n and assume ‖fk‖1 ≤ 1 for all
k < n. For each j ∈ N, set Ej := span(e0, . . . , ej). Since the sequence (w(i)) is
nondecreasing and w(i) ≥ 2 for all i, it follows from our assumption that if j < bn
and x ∈ Ej, one has ‖Tx‖1 ≤ w(j + 1)‖x‖1. From this, we deduce that

‖T j(e0)‖1 ≤
j∏
i=1

w(i)

for all j < bn. Looking at (3), this gives the inequality

‖fn‖1 ≤ |an−1| |Pn|1
∏dn

i=1 w(i)∏Dn−1
i=1 w(i+ bn−1)

+ |an−1||Pn−1|1
∏Dn+dn−1

i=1 w(i)∏Dn−1
i=1 w(i+ bn−1)

·
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Since K/2 ≤ w(i) ≤ K for all i, the first term in the right-hand side of this
inequality is not greater than

Kdn

(K/2)Dn−1
|an−1| |Pn|1 ;

and the second term does not exceed

Kdn−1+1|an−1| |Pn−1|1
Dn−1∏
i=1

1− ξ(i+ dn−1)

1− ξ(i+ bn−1)
,

as can be seen by writing the product in the numerator as
∏Dn−1

i=1 w(i + dn−1) ×
w(Dn + dn−1)×

∏dn−1

i=1 w(i) .
Taking the logarithm of the last product, using the inequality

log

(
1− v
1− u

)
≤ u− v

(0 ≤ u ≤ v < 1) and adding the two estimates, we get (b). �

2.4. The linear functional. Unlike the operator T , the linear functional φ we are
looking for is not necessarily well-defined from the very beginning. What we need
is a linear functional satisfying some special recurrence properties, which may very
well be incompatible with each other. The precise definition is as follows.

Definition 2.3. Let ∆ = ((∆0
l )l∈N, (∆

1
l )l∈N) be a pair of sequences of natural num-

bers, with ∆i
0 = 0. For each l ∈ N, set

Jl := [bl , bl + ∆0
l ] ∪

⋃
1≤k≤l

[bl + bk , bl + bk + ∆1
l ] .

We will say that a linear functional φ : K[T ]e0 → K is ∆-compatible if it has the
following properties: φ(e0) = 1, φ(T ie0) = 0 for all i ∈ (0 , b1), and

φ(T ie0) =

{
φ(Pl(T )T i−ble0) if i ∈ Jl for some l ≥ 1;
0 otherwise.

Notice that there is at most one ∆-compatible linear functional. This allows to
speak of the ∆-compatible linear functional, even though it is perhaps not well-
defined. The existence of this linear functional will depend on the properties of the
sequence (bn). However, we can still list some of its properties assuming it is indeed
well-defined. This is the content of the next lemma.

Lemma 2.4. Let ∆ = ((∆0
l ), (∆

1
l )) be a pair of sequences of natural numbers with

∆i
0 = 0, and assume the ∆-compatible linear functional φ is well-defined. For each

l ∈ N, set ∆l = min(∆0
l ,∆

1
l ). Assume that dk := deg(Pk) ≤ ∆l/2 whenever 0 ≤ k ≤

l, and that max(∆0
l ,∆

1
l ) + 2dl < min(bl, bl+1 − bl) for all l ≥ 1. Then the following

holds for max(1, k) ≤ l and p = bk + u ∈ [bk , bk+1), q = bl + v ∈ [bl , bl+1).
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(a) φ(ep · eq) = 0 if u+ v ≤ ∆l

2
.

(b) |φ(ep · eq)| ≤
Ml(b, a,P)

(K/2)u+v
if u+ v > ∆l

2
, where

Ml(b, a,P) = 4a2
l

2bl+1∏
j=1

max(1, |Pj|1)4 .

Proof. By definition of T , we have

ep · eq =
akal

w(bk + 1) · · ·w(bk + u)w(bl + 1) · · ·w(bl + v)
y(k,u)(l,v) ,

where

y(k,u)(l,v) = (T bl − Pl(T ))(T bk − Pk(T ))T u+ve0 .

Assume u+v ≤ ∆l

2
. Then z := T bkT u+ve0 is supported on [bk , bk+ ∆l

2
] ⊂ Jl−bl and

z′ := Pk(T )T u+ve0 is supported on [0 , dk + ∆l

2
] ⊂ [0 ,∆l] ⊂ Jl − bl. By assumption

on φ, it follows that φ((T bl − Pl(T ))z) = 0 = φ((T bl − Pl(T ))z′), which gives (a).

We now turn to part (b). Notice that we have J0 = {0}.

Claim 1. For any l ≥ 0, we have sup
i∈Jl
|φ(T i(e0))| ≤

l∏
j=0

max(1, |Pj|1)2.

Proof of Claim 1. This is done by induction on l. The statement holds for l = 0.
Assume this has been proved for all l′ < l, and let i ∈ Jl. It is easy to check that

|φ(T i(e0))| ≤ |Pl|1 max
m≤i−bl+dl

|φ(Tm(e0))|.

Now, if m ≤ i − bl + dl, then m ≤ bl + max(∆0
l ,∆

1
l ) + dl < bl+1 because i ∈ Jl

and max(∆0
l ,∆

1
l ) + dl < bl+1 − bl. Hence, we have either φ(Tme0) = 0 or m ∈ Jl′

for some l′ ≤ l. If m ∈
⋃
l′<l Jl′ , the induction hypothesis gives |φ(Tm(e0))| ≤∏

j<l max(1, |Pj|1)2. If m ∈ Jl, then

|φ(Tm(e0))| ≤ |Pl|1 max
j≤m−bl+dl

|φ(T j(e0))|

≤ |Pl|1
∏
j<l

max(1, |Pj|1)2 ,

where the second inequality follows from the induction hypothesis, since m−bl+dl ≤
i− 2bl + 2dl ≤ max(∆0

l ,∆
1
l ) + 2dl < bl. In either case, we get the required estimate

for |φ(T i(e0))|. �

Claim 2. We have |φ(y(k,u)(l,v))| ≤ 4

2bl+1∏
j=0

max(1, |Pj|1)4.
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Proof of Claim 2. This follows directly from Claim 1 using the inequalities

|(tbk − Pk)(tbl − Pl)|1 ≤ (1 + |Pk|1)(1 + |Pl|1)

≤ 4 max(1, |Pk|1) max(1, |Pl|1)

and

bk + bl + u+ v ≤ 2bl+1 ≤ b2bl+1
.

�

The estimate (b) in 2.4 is now an immediate consequence of Claim 2.
�

Remark. The above proof also gives the following estimate, which will be useful in
Section 6. Set i(l) := min{i; bi+1 − bi > ∆l

4
}. If u+ v > ∆l

2
, then

|φ(ep · eq)| ≤
Ml(b, a,P)

w(bi(l))∆l/4
·

Indeed, one has either u > ∆l

4
or v > ∆l

4
, whereas u < bk+1 − bk and v < bl+1 − bl.

3. Strong Sidon sequences

3.1. What we have to do. In this section, we prove Theorems 1.6 and 1.7. So
we start with a sequence (bn) which is (∆l)-Sidon and with an infinite set I ⊂ N.
Without loss of generality, we may assume that b0 = 0 = ∆0 and 0 ∈ I.

Having fixed (bn) and I, we have at hand a linear map T : c00 → c00 depending
on several parameters. Our goal is to show that, in each of the two considered cases,
one can choose these parameters in such a way that T is continuous, and a linear
functional φ : K[T ]e0 → K with the required continuity property can be constructed.

By assumption, the sets Jl =
⋃
k≤l[bl+bk , bl+bk+∆l] are pairwise disjoint. Setting

∆ := ((∆l), (∆l)), it follows that, whatever the choice of the parameters may be, the
∆-compatible linear functional φ : K[T ]e0 → K is well-defined. Thus, it remains to
show that if the parameters are suitably chosen, then T is continuous and the map
(x, y) 7→ φ(x · y) is continuous on K[T ]e0 × K[T ]e0. With the notations of Lemmas
2.2 and 2.4, it is enough to ensure:

• in the `1-case, that the sequence (‖fn‖1)n≥1 is bounded as well as the double
sequence (φ(ep · eq))p,q∈N;
• in the “general” case, that

∑∞
1 ‖fn‖1 <∞ and

∑
p,q |φ(ep · eq)| <∞.

Indeed, the operator T has the form

T = R + L ,
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where R is a forward shift with bounded weights, and L is defined on c00 by

L

(∑
i

xiei

)
=
∑
n

xbn−1fn .

Since the basis (ei) is shift-admissible and unconditional, the operator R is con-
tinuous. And since (ei) is normalized, it is readily seen that the operator L is
continuous if the appropriate condition on (fn) is satisfied. Likewise, the bilinear
map (x, y) 7→ φ(x · y) is continuous if the corresponding condition on (φ(ep · eq)) is
fulfilled.

3.2. Proof of Theorem 1.6. We first isolate a lemma ensuring the continuity of T
on `1(N). This lemma will also be needed in section 4.

Lemma 3.1. Assume that bn − bn−1 → ∞, and that limi→∞ i [ξ(2i) − ξ(3i)] = ∞.
Then one can find a sequence (un) tending to ∞ such that the following holds: when-
ever the sequences (Pn) and (an) are chosen in such a way that an ≤ un, dn ≤ un
and |Pn|1 ≤ un for all n ∈ N, it follows that T is continuous on `1(N).

Proof. We first choose another sequence (D̃n) tending to infinity and such that D̃n <

min ( bn−1

3
, bn − bn−1) for all n ≥ 1.

Assume that the sequence of polynomials (Pn) satisfies dn−1 < D̃n for all n ≥ 1.

With the notations of Lemma 2.2 and since Dn := bn − bn−1 > D̃n, we have

Dn−1∑
i=1

(ξ(i+ dn−1)− ξ(i+ bn−1)) ≥
D̃n∑
i=1

(ξ(i+ dn−1)− ξ(i+ bn−1))

≥ D̃n × (ξ(2D̃n)− ξ(3D̃n)) .

By assumption on ξ, it follows that

lim
n→∞

Dn−1∑
i=1

(ξ(i+ dn−1)− ξ(i+ bn−1)) =∞ .

By Lemma 2.2, it is now clear that since K > 2, one can find a sequence (un)
tending to ∞ such that the following holds: whenever the sequences (Pn) and (an)
are chosen in such a way that an ≤ un, dn ≤ un and |Pn|1 ≤ un for all n ∈ N, it
follows that ‖fn‖1 ≤ 1 for any n. �

Remark. The conclusion of Lemma 3.1 does not hold if bn − bn−1 does not go to ∞.
Indeed, if bn − bn−1 ≤ C along some increasing sequence (nk) and if we choose (Pn)
in such a way that Pnk = 1 and Pnk−1 = 0 for all k, then we get ‖fnk‖1 ≥

ank−1

KC−1 ,
whence lim sup ‖fn‖ =∞.

Proof of Theorem 1.6. First observe that since (bn) is (∆l)-Sidon, we have bn−bn−1 >
∆n−1 for all n ≥ 1, so that bn−bn−1 goes to infinity. Thus, we may call on the previous
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lemma to get that T is continuous, provided (an) and (Pn) are suitably controlled
by some sequence (un) and e.g. ξ(i) = 1

2
√
i
.

With the notations of Lemma 2.4 and since ∆l →∞, one can choose the sequences
(an) and (Pn) in such a way that deg(Pk) ≤ ∆l whenever k ≤ l and Ml(a,b,P) ≤
2∆l/2 for all l ≥ 1; and of course, this choice can be made consistently with the
above control by the sequence (un). Since K ≥ 4, it follows that the double sequence
(φ(ep · eq)) is bounded. This concludes the proof of 1.6. �

3.3. Proof of Theorem 1.7. Since (bn) is (∆l)-Sidon, we have Dn := bn − bn−1 >

∆n−1 for all n ≥ 1. Moreover, replacing ∆l by ∆̃l := min(∆l ,
[bl]
3

) and ψ(t) by

ψ̃(t) := max(ψ(t),
√
t) if necessary, we may also assume that ∆n−1 ≤ bn−1

3
for all

n ≥ 1. Then, exactly as in the proof of Theorem 1.6, we get the estimate

Dn−1∑
i=1

(ξ(i+ dn−1)− ξ(i+ bn−1)) ≥ ∆n−1 × (ξ(2∆n−1)− ξ(3∆n−1)) .

Now, we choose a continuous decreasing function ξ : (0 ,∞) → (0 ,∞) such that
0 < ξ(t) ≤ 1

2
for all t and

ξ(t) = 6

∫ ∞
t

ψ(s/2)

s2
ds

for large enough t. Since ψ is nondecreasing, we have

ξ(2∆n−1)− ξ(3∆n−1) = 6

∫ 3∆n−1

2∆n−1

ψ(s/2)

s2
ds

≥ 6ψ(∆n−1)×
(

1

2∆n−1

− 1

3∆n−1

)
for large enough n, hence

Dn−1∑
i=1

(ξ(i+ dn−1)− ξ(i+ bn−1)) ≥ ψ(∆n−1) .

Moreover, we have
∫∞
t

ψ(s)
s2

ds ≥ ψ(t)
t

for all t ≥ 1, so that ψ(t) = o(t) as t → ∞.
Consequently, we have

∑∞
0 c∆n <∞ for any c ∈ (0 , 1), and hence

∑∞
1 cDn <∞. By

Lemma 2.2 and since K > 2, it follows that one can find some sequence (un) tending
to∞ such that

∑∞
1 ‖fn‖1 <∞ whenever the sequences (an) and (Pn) are controlled

by (un) as in Lemma 3.1.

Finally, we show that φ has the required continuity property if the parameters are
suitably chosen. Since ∆l clearly goes to infinity, one can assume that deg(Pk) ≤ ∆l/2
whenever k ≤ l, consistently with the control by the sequence (un). Applying Lemma
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2.4, we get∑
p,q

|φ(ep · eq)| ≤ 2
∑
k≥0

∑
l≥k

Ml(a,b,P)
∑

u+v>
∆l
2

(
K

2

)−(u+v)

≤ 2
∑
k≥0

∑
l≥k

Ml(a,b,P)
∑
j>

∆l
2

(j + 1)×
(
K

2

)−j

≤ C
∑
k≥0

∑
l≥k

Ml(a,b,P)

(
K

4

)−∆l/2

for some absolute constant C <∞. Hence, we get∑
p,q

|φ(ep · eq)| ≤

(∑
k≥0

(
K

4

)−∆k/4
)
×

(∑
l≥0

Ml(a,b,P)

(
K

4

)−∆l/4
)
,

where we have used the fact that the sequence (∆l) is nondecreasing. Now, fix
c ∈ (0 , 1). We observed above that

∑∞
0 c∆n < ∞, so one can always choose the

sequences (Pn) and (an) in such a way that
∑

l≥0Ml(a,b,P)c∆l < ∞, consistently

with the control by the sequence (un). It follows that if K > 4c−4, then one can
ensure

∑
p,q |φ(ep · eq)| <∞. �

3.4. The greedy algorithm. If we want Theorems 1.6 and 1.7 to be meaningful,
we certainly have to exhibit some (∆l)-Sidon sequences. We use a variant of the naive
greedy algorithm for Sidon sequences (see [Hal]), which yields immediately Corollary
1.8.

Lemma 3.2. Let ε > 0 be given. If 0 < α < ε
2
, then one can find an increasing

sequence of natural numbers (bn)n∈N with b0 = 0, which is ([lα])-Sidon and such that
bn = O(n3+ε).

Proof. Let b0 = 0. We build the sequence (bn) by setting for n ≥ 1:

An := {bk + bl + u− (bm + v); k ≤ l ≤ n− 1 , u ≤ [lα] , m ≤ n− 1 , v ≤ [nα]},
Bn := {bk + bl + u− v; k ≤ l ≤ n− 1 , u ≤ [lα] , v ≤ [nα]}, and

bn := min

(
N\(An ∪

1

2
Bn)

)
.

By its very definition, the sequence (bn) is increasing and ([lα])-Sidon. Indeed, sup-
pose that an equality bn + bm + v = bl + bk + u holds, with m ≤ n, k ≤ l ≤ n− 1 and
u ≤ [lα], v ≤ [nα]. Then if m < n, this equality is impossible because bn /∈ An; and
if m = n, this is also impossible because 2bn /∈ Bn.

Moreover, since ]An ≤ n3 × (1 + [nα])2 and ]Bn ≤ n2 × (1 + [nα])2 for all n, we
have bn = O(n3+ε). �
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Remark 1. The best known admissible upper bound for the growth of a Sidon se-

quence is O(n
1√
2−1

+ε
) for any ε > 0; this is due to I. Rusza [Rus]. One could try

to adapt his method for getting a better bound for (∆l)-Sidon sequences, but as we
already mentionned, this approach would most likely not give the best frequency of
hypercyclicity on e.g. c0(N) or `p(N).

Remark 2. In addition, one can also require that bn ≥ n3+ε for all n: just set Cn :=
[0 , n3+ε) and bn = min

(
N \ (An ∪ 1

2
Bn ∪ Cn)

)
. This will be needed in section 6.

3.5. Comparison with the operator defined in [BaM]. The operator T has
formally the same definition as the one introduced in [BaM], except that in the
present paper we allow the weights w(i) to vary, while in [BaM] we had w(i) = 2 for
all i. However, there is an important difference in the proof of continuity. In [BaM],
the sequences (Pn) and (an) were fixed, and we were able to prove the continuity
of T provided (bn) was sufficiently fast increasing. Here, the rule of the game is
that the sequence (bn) is given a priori. Then we try to choose (Pn) and (an) in
such a way that T is continuous. In spite of this, the proof of continuity given in
the present paper (in particular that of Lemma 3.1) is rather less technical than the
corresponding one in [BaM], because one can take advantage of the freedom allowed
on the weights w(i).

4. The optimal frequency of hypercyclicity on `1(N)

4.1. The sequence (bn). The aim of this section is to prove Theorem 1.2. So we fix
an increasing sequence of natural numbers (mk) such that limk→∞

mk
k

=∞. We will
first define the increasing sequence (bn) and the infinite set I ⊂ N, and then show
that the other parameters involved in the definition of T can be suitably chosen.

Lemma 4.1. Let (qp)p∈N be an increasing sequence of natural numbers with q0 = 0,
and set I := {qp; p ∈ N}. If the sequence (qp)p≥1 is sufficiently fast increasing, then
one can construct an increasing sequence of natural numbers (bn)n∈N such that:

(1) b0 = 0 = q0;
(2) bn+1 ≥ 4bn if n = qp − 1 or qp for some p ≥ 1;
(3) the following congruences modulo 3 hold:{

bn ≡ 0 (mod 3) for all n ∈ N \ I
bqp ≡ 1 (mod 3) for all p ≥ 1;

(4) for each p, the following congruences modulo 2p+1 hold:{
bqp ≡ 2p (mod 2p+1) if p ≥ 1
bn ≡ 0 (mod 2p+1) whenever n > qp ≥ 0;

(5) b2k = O(mk).
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Proof. By the Chinese Remainder Theorem, one can construct inductively a se-
quence (bn) satisfying properties (1), . . . , (4) above and the following additional
requirements: bqp ≤ 4bqp−1 + Cp for all p ≥ 1, and bqp+j ≤ 4bqp + Cpj if p ≥ 0
and 1 ≤ j < qp+1 − qp − 1, where Cp = 3 × 2p+1. Then bk ≤ Ap(k) + Bp(k)k for
all k ∈ N, where the sequences (Ap), (Bp) are independent of (qp) and (bn), and
p(k) = max{p; qp ≤ k}. Since mk

k
→ ∞, we conclude that (5) is satisfied if the

sequence (qp) is sufficiently fast increasing. �

4.2. The ∆-compatible linear functional. From now on, we fix a fast increasing
sequence of natural numbers (qp)p∈N with q0 = 0, and a sequence (bn) satisfying
properties (1), . . . , (5) stated in Lemma 4.1. As in 4.1, we set I = {qp; p ∈ N}.
At this point, the situation is rather more complicated than for Theorems 1.6 and
1.7: since (bn) is not at all a Sidon sequence, there is a priori no reason why any
∆-compatible linear functional should be well-defined. But since Pn is often equal
to 1 and because the bqp ’s are well identified and separated in the sequence (bn), one
can overcome this difficulty. This is the content of the next lemma.

Lemma 4.2. One can find a pair ∆ of nondecreasing sequences of natural numbers
tending to ∞ such that the ∆-compatible linear functional φ is well-defined.

Proof. Let (α(r))r∈N and (β(r))r∈N be two increasing sequences of natural numbers
satisfying the following properties:

• α(0) = 0 = β(0);
• β(r − 1) ≤ α(r) ≤ β(r) for all r ≥ 1;
• β(r) ≥ bqα(r)

:= θ(r) and 2β(r) > r + bqθ(r) for all r.

We define the two sequences (∆0
l ) and (∆1

l ) as follows:{
∆0
l = r if l ∈ [qp , qp+1) and p ∈ [α(r) , α(r + 1))

∆1
l = r if l ∈ [qp , qp+1) and p ∈ [β(r) , β(r + 1))

Observe that ∆1
l ≤ ∆0

l (since β(r) ≥ α(r)) and ∆0
l ≤ bl because the sequences

(bn), (qj), (α(r)) and (β(r)) are increasing.

With the usual notation

Jl := [bl , bl + ∆0
l ] ∪

⋃
1≤k≤l

[bl + bk , bl + bk + ∆1
l ] ,

we have to show that it is possible to define φ(T i(e0)) for all i ∈ N in such a way
that φ(e0) = 1, φ(T i(e0)) = 0 for i ∈ (0 , b1) and

φ(T i(e0)) = φ(Pl(T )T i−ble0)

whenever i ∈ Jl for some l ≥ 1.
We prove that by induction on i. There is nothing to do if i < b1, so let us fix

i ≥ b1, and assume φ(T j(e0)) has been consistently defined for all j < i. We have
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to show that if i belongs to several sets Jl, then the possible definitions of φ(T i(e0))
coincide. In other words, we need to check that if 1 ≤ l < l′ and i can be written as

bl + bk + u = i = bl′ + bk′ + v ,

where k ≤ l, k′ ≤ l′ and u ≤ ∆
min(k,1)
l , v ≤ ∆

min(k′,1)
l′ , then the “compatibility

equation”
φ(Pl(T )T bk+ue0) = φ(Pl′(T )T bk′+ve0)

is satisfied (the two terms of this equation are well-defined since deg(Pl) < bl and
deg(Pl′) < bl′). Let us fix two such triples (l, k, u) and (l′, k′, v).

Fact 1. There exists some integer p ∈ N such that l, l′ ∈ (qp , qp+1). In particular,
both l and l′ belong to N \ I.

Proof of Fact 1. Otherwise, one can find an integer m ≥ 1 such that either l ≤
qm < l′ or l < qm ≤ l′. In any case, property (2) of Lemma 4.1 gives bl′ ≥ 4bl,
whence bl′ > bl + bk + u because bk ≤ bl and u ≤ ∆0

l ≤ bl. Thus, the equation
bl + bk + u = bl′ + bk′ + v cannot be satisfied. �

Since Pn = 1 for all n ∈ N \ I, it follows from Fact 1 that the compatibility
equation can now be rewritten as

φ(T bk+ue0) = φ(T bk′+ve0) .

Fact 2. Let r ∈ N be defined by p ∈ [β(r) , β(r + 1)). Then ∆1
l = r = ∆1

l′ , and
∆0
l = ∆0

l′ ≤ r + 1 .

This is obvious by the definition of ∆i
l and since α(r + 2) ≥ β(r + 1). �

Fact 3. We have bk − bk′ > bqθ(r). In particular, k > k′ and k > qθ(r).

Proof of Fact 3. By Fact 2, we have bk− bk′ ≥ bl′− bl−u ≥ bl′− bl−r−1. Moreover,
since qp < l < l′, it follows from (4) in Lemma 4.1 that bl′ − bl is a nonzero multiple
of 2p+1, whence bl′ − bl ≥ 2β(r)+1 > r + 1 + bqθ(r) . �

We now distinguish two cases.

Case 1. k′ > qα(r).

In that case, k and k′ are both nonzero, so that u, v ≤ r by Fact 2. From the
equation bl + bk + u = bl′ + bk′ + v, Fact 3 and property (4) in Lemma 4.1, we get

u ≡ v mod 2α(r)+1 .

Since |u − v| ≤ r and 2α(r)+1 > r, it follows that u = v, hence bl + bk = bl′ + bk′ .
Now l, l′ does not belong to I and Lemma 4.1 ensures that bk ≡ bk′ (mod 3). By
Lemma 4.1 again and since k, k′ 6= 0, this implies that either k and k′ both belong
to I, or they both belong to N \ I. If k, k′ ∈ I, then k = qm and k′ = qm′ , where
0 < m′ < m ≤ p. Applying 4.1 once more, we get bl, bl′ , bk ≡ 0 (mod 2m

′+1) and
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bk′ ≡ 2m
′

(mod 2m
′+1), which is impossible since bl + bk = bl′ + bk′ . Thus, k and

k′ both belong to N \ I, whence Pk = 1 = Pk′ . Moreover, since k > k′ > qα(r), we
have ∆0

k,∆
0
k′ ≥ r, and since u, v ≤ r, it follows that bk + u ∈ Jk and bk′ + v ∈ Jk′ .

Therefore, we get by the induction hypothesis

φ(T bk+ue0) = φ(T ue0) = φ(T ve0) = φ(T bk′+ve0) .

Case 2. k′ ≤ qα(r).

Since l, l′ > qβ(r), we have bl, b
′
l ≡ 0 (mod 2β(r)+1); and since k > qθ(r) by Fact 3,

we have bk ≡ 0 (mod 2θ(r)+1). From the equation bl + bk + u = bl′ + bk′ + v and since
β(r), θ(r) ≥ bqα(r)

, it follows that

u ≡ bk′ + v (mod 2
bqα(r)+1) .

But bk′ ≤ bqα(r)
and u, v ≤ r + 1 ≤ bqα(r)

+ 1, so that |bk′ + v − u| ≤ 2bqα(r)
+ 1 <

2
bqα(r)

+1
. Therefore, we have in fact u = bk′ + v.

Looking at the equation bl + bk = bl′ modulo 3, we see that k ∈ N \ I, whence
Pk = 1. Moreover, since k > qθ(r) ≥ qα(r), we have ∆0

k ≥ r. Finally, since k is
nonzero, we have u ≤ ∆1

l , i.e. u ≤ r by Fact 2. Hence u ≤ ∆0
k, so that u ∈ Jk.

Therefore, we get

φ(T bk+ue0) = φ(T ue0) = φ(T bk′+ve0) .

This concludes the proof of Lemma 4.2 �

4.3. Proof of Theorem 1.2. The sequence (bn) clearly satisfies limn→∞(bn−bn−1) =
∞, and we have just proved that one can find some pair ∆ of nondecreasing sequences
tending to ∞ such that the ∆-compatible linear functional φ is well-defined. Since
we are working on `1(N), we can then use Lemmas 3.1 and 2.4 exactly as in the proof
of Theorem 1.6 to conclude that for a suitable choice of parameters, the operator
T extends to a continuous, non–weakly-mixing operator on X for which the set
B = {bn; n ∈ N \ I} is a hypercyclicity set.

The only point that remains to be checked is that the increasing enumeration of
any cofinite subset of B does not grow faster than (mk). But such an enumeration
has the form (bjk), where jk ≤ 2k for large k if the sequence (qp) is sufficiently fast
increasing. Thus, the result is clear since we know that b2k = O(mk).

5. More on hypercyclicity sets

In this section, we collect some further results on hypercyclicity sets.

5.1. A criterion for B-hypercyclicity. In the spirit of [BaGr, Thm 2.1] and
[BonGE, Thm 2.1], one can give a criterion for an operator to admit a given set
B ⊂ N as a hypercyclicity set. Our setting is a separable F -space X endowed with
a translation-invariant metric d. For notational simplicity, we set ‖x‖ := d(x, 0).
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Theorem 5.1. Let (bn) be an increasing sequence of integers such that bn+1 − bn →
∞, and let T ∈ L(X). Assume that there exist a dense set D ⊂ X and a map
S : D → D such that:

(1) lim
i→∞

sup
J⊂[0,i)

∥∥∑
k∈J T

bi−bk(x)
∥∥ = 0 for all x ∈ D;

(2) for any x ∈ D and every ε > 0, one can find A = A(x, ε) > 0 such that
whenever i ≤ j < j′ and bj − bi ≥ A, one has∥∥∥∥∥ ∑

j≤k≤j′
Sbk−bi(x)

∥∥∥∥∥ < ε;

(3) TS(x) = x for all x ∈ D.

Then B = {bn; n ∈ N} is a hypercyclicity set for T .

Proof. The operator T is hypercyclic, because it satisfies the hypercyclicity criterion
with respect to the sequence (bk+1 − bk). Let us fix a vector z ∈ HC(T ). To show
that B is a hypercyclicity set for T , it is enough to find some vector x ∈ X such that
T bi(x)→ z.

First, we note that, replacing bn by bn − b0 and z by T b0(z), which is also a
hypercyclic vector for T , we may and do assume that b0 = 0.

Let (xp)p∈N be a sequence in D such that ‖xp − z‖ < 2−p for all p. Then, let us
choose an increasing sequence of integers (ip) such that

k ≥ ip =⇒ bk − bk−1 ≥ A(xp, 2
−p);

∀i ≥ ip

p∑
q=1

sup
J⊂[0 ,i)

∥∥∥∥∥∑
k∈J

T bi−bk(xq)

∥∥∥∥∥ < 2−p .

Finally, let us define a sequence (yk)k∈N by putting yk := xp for k ∈ [ip, ip+1), and

set x :=
∞∑
k=0

Sbk(yk). This series is indeed convergent, because if ip ≤ j < j′, then we

get by (2) ∥∥∥∥∥ ∑
j≤k≤j′

Sbk(yk)

∥∥∥∥∥ ≤
∞∑
q=p

∥∥∥∥∥∥
∑

[iq ,iq+1)∩[j,j′]

Sbk−b0(xq)

∥∥∥∥∥∥ ≤ 2−p+1.

If i ∈ N and ip ≤ i < ip+1, then

‖T bi(x)− z‖ ≤

∥∥∥∥∥∑
k<i

T bi−bk(yk)

∥∥∥∥∥+ 2−p +

∥∥∥∥∥∑
k>i

Sbk−bi(yk)

∥∥∥∥∥ .
The first term in the right-hand side is easily controlled by

p∑
q=1

∥∥∥∥∥∥
∑

[iq ,iq+1∧i)

T bi−bk(xq)

∥∥∥∥∥∥ < 2−p.
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For the third term, we write∥∥∥∥∥∑
k>i

Sbk−bi(yk)

∥∥∥∥∥ ≤
∞∑
q=p

∥∥∥∥∥∥
∑

(i,∞)∩[iq ,iq+1)

Sbk−bi(xq)

∥∥∥∥∥∥
≤ 2−p.

Thus, we have shown that T bi(x)→ z as i→∞, which concludes the proof. �

Corollary 5.2. Let T ∈ L(X). Assume there exist D ⊂ X dense and S : D → D
satisfying, for any x ∈ D:

(1)
∑

n≥0 ‖T nx‖ < +∞;
(2)

∑
n≥0 ‖Snx‖ < +∞;

(3) TS(x) = x.

Then any sequence (bn) such that bn+1 − bn →∞ defines a hypercyclicity set for T .

Observe that an operator which satisfies the previous assumptions is in fact fre-
quently hypercyclic (see [BaGr, Theorem 2.1]). Notice also that even in that case,
one must assume that bn+1 − bn →∞; see Theorem 5.4 below.

Example 5.3. Let B be the Bergman backward shift. For any δ > 0, the set
Bδ := {[n1+δ]; n ∈ N} is a hypercyclicity set for B. Yet, B is not frequently
hypercyclic.

Proof. The operator B can be defined as the backward shift on `2(N) with weights

ωi =
√

i+1
i

. That is, B(e0) = 0 and B(ei) = ωiei−1 for any i ≥ 1, where (ei) is the

canonical basis of `2(N). It is proved in [BaGr, Example 2.9] that B is not frequently
hypercyclic. We fix δ > 0, and we apply 5.1 to show that Bδ is a hypercyclicity set
for B.

The operator S will be the forward shift defined by S(ei) = 1
ωi+1

ei+1 and we take

as D the set of finitely supported sequences c00. Since D =
⋃
n∈N Ker(Bn), condition

(1) in Theorem 5.1 is clearly satisfied, so we just have to prove that (2) holds for any
x ∈ D. We do that for x = e0, the proof for an arbitrary x ∈ D being the same.

Since ω1 · · ·ωn =
√
n+ 1, we have Sn(e0) =

√
1

n+1
en for all n ≥ 1. Thus, we

must show that for any ε > 0, there exists A > 0 such that, whenever i, j ∈ N and
[j1+δ]− [i1+δ] ≥ A, one has ∑

k≥j

1

[k1+δ]− [i1+δ]
< ε.

This follows from the elementary result

lim
j→+∞

∑
k>j

1

k1+δ − j1+δ
= 0.
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To obtain that, we write∑
k>j

1

k1+δ − j1+δ
=

∑
k>j

∑
m≥0

j(1+δ)m

k(1+δ)(m+1)

≤
∑
m≥0

j(1+δ)m

(
1

(j + 1)(1+δ)(m+1)
+

∫ ∞
j+1

dt

t(1+δ)(m+1)

)

≤ 1

(j + 1)1+δ − j1+δ
+

1

δ jδ

∑
m≥0

1

m+ 1

(
j

j + 1

)(1+δ)m

≤ 1

(j + 1)1+δ − j1+δ
+ 2

log (j + 1)

δ jδ
·

�

5.2. Which sets are hypercyclicity sets. Using Theorem 5.1, it is now very
easy to determine which sets of natural numbers can be hypercyclicity sets for some
(perhaps weakly mixing) operator.

Theorem 5.4. Let B be an infinite subset of N, and let (bn) be the increasing enu-
meration of B. The following are equivalent.

(1) B is a hypercyclicity set for some F -space operator.
(2) B is a hypercyclicity set for T = 2B, where B is the usual backward shift on

`2(N).
(3) limn→∞(bn+1 − bn) =∞.

Proof. That (3) implies (2) follows Corollary 5.2, so it remains to show that (1)
implies (3). Assume that B is a hypercyclicity set for some operator T ∈ L(X), and
that bj+1− bj ≤M for some finite constant M and infinitely many j. Choose x ∈ X
such that each set N(x, V ) contains a translate of some cofinite subset of B. Then x
cannot be a periodic point for T , so one can find a neighbourhood U of x such that
T r(U) ∩ U = ∅ for r = 0, . . . ,M . By the choice of x, there exist a, j0 ∈ N such that
T bj+a(x) ∈ U for all j ≥ j0. Writing bj+1 − bj = (a+ bj+1)− (a+ bj), it follows that
T bj+1−bj(U) ∩ U 6= ∅ for any j ≥ j0. Since bj+1 − bj ≤ M for infinitely many j, this
contradicts the choice of U . �

5.3. Weak mixing and difference sets. By Theorem 5.4, being a hypercyclicity
set for some operator T is just a matter of growth. On the other hand, as we
already observed in the very beginning of the paper, the situation is quite different
if one requires T to be non–weakly mixing. We restate here the result from [GEP]
mentionned in the introduction. Recall that an infinite set of natural numbers N is
said to be syndetic (or to have bounded gaps) if there exists some fixed K > 0 such
that N meets each interval of length K; equivalently, if N can be enumerated as an
increasing sequence (nk) with supk(nk+1 − nk) <∞.
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Proposition 5.5. Let T ∈ L(X). Assume one can find x ∈ X such that for every
nonempty open set V ⊂ X, the difference set N(x, V ) −N(x, V ) is syndetic. Then
T is weakly mixing.

As an immediate consequence, we get:

Corollary 5.6. Let B be an infinite subset of N whose difference set B − B is
syndetic. Then B cannot be a hypercyclicity set for any non–weakly mixing operator.

This clearly illustrate the well-established fact weak mixing is closely related to
arithmetical properties of sets of integers. It also points out that the operator con-
structed in Section 2 can be weakly mixing. Indeed, if we take X = `1(N), bn = n2

and I = 2N, then we can arrange (Pn) and (an) so that T is a continuous hyper-
cyclic operator with ((2n+1)2) as a hypercyclicity sequence. From Corollary 5.6, we
deduce that T is weakly mixing.

6. Some non-Banach examples

It is proved in [BaM] that hypercyclic non–weakly mixing operators can be con-
structed on the space of entire functions H(C). We were not able to show that
Theorem 1.2 holds in H(C). However, we will now show that our methods still give
some results in a Fréchet space setting.

We will consider sequences spaces of the form

Xw :=

{
x = (xi) ∈ KN; ∀r ≥ 0 Nr(x) :=

∞∑
i=0

w(i)r|xi| <∞

}
,

where w = (w(i))i∈N is an increasing sequence of positive numbers tending to ∞.
The space Xw is endowed with the topology generated by the norms Nr, r ≥ 0.

For example, the space of entire functions H(C) can be identified with the space
Xw where w(i) = ei; and if we take w(i) = i+ 1, then we get the space

A∞(T) := H(D) ∩ C∞(T) .

As usual, we denote by (ei)i∈N the canonical basis of Xw, and by c00 the linear
span of the ei’s. The next lemma shows that, as far as the continuity of linear or
bilinear maps is concerned, the space Xw behaves more or less like `1(N).

Lemma 6.1. Let c00 be equipped with the topology induced by Xw.

(a) Let R : c00 → c00 be a linear map such that R(ei) ∈ span {ej; j ≤ i} for all
i ∈ N. If the sequence (R(ei)) is ‖ · ‖1-bounded, then R is continuous.

(b) If B : c00 × c00 → K is a bilinear functional such that the double sequence
(B(ep, eq)) is bounded, then B is continuous.
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Proof. Part (b) is obvious because B is continuous with respect to the the `1-norm
and ‖ · ‖1 = N0. To prove (a), observe that since the sequence w is increasing,
we have Nr(z) ≤ w(i)r‖z‖1 for each i ∈ N and all z ∈ span {ej; j ≤ i}. Setting
C := supi ‖R(ei)‖1, it follows that Nr(R(x)) ≤ C Nr(x) for each r and all x ∈ c00. �

¿From now on, we will only consider sequences w such that supi∈N
w(i+1)
w(i)

< ∞.

This property ensures that the forward shift S with weight sequence (w(i))i≥1 is
continuous on Xw. Recall that S is the linear map defined on c00 by the identities
S(ei) = w(i+ 1)ei+1.

In the present setting, the “linear map with parameters” T : c00 → c00 is still well-
defined, but there are two important changes. The first one is that the space on which
T is supposed to act becomes itself a parameter, since it is defined by the sequence
w; and of course, w(i) has no longer the form K(1 − ξ(i)). The second change is
that, since we require 1

an
ebn to tend to 0 for the topology of Xw, the sequence (an)

can no longer be chosen independently of bn. We will assume that (an) has the form

an = cw(bn)rn ,

for some constant c > 0 and some nondecreasing sequence of natural numbers (rn)
tending to ∞.

In view of Lemma 6.1, all we have to do if we want to show that T extends to a
non–weakly mixing operator on Xw having B := {bn; n ∈ N \ I} as a hypercyclicity
set, is to check that (i) the sequence (fn) is ‖ · ‖1-bounded; and (ii) one can construct
as usual a linear functional φ such that the double sequence ((φ(ep · eq)) is bounded.

Proposition 6.2. Let (mk) be an increasing sequence of natural numbers such that
mk/k → ∞. If the sequence w is sufficiently slowly increasing, then there exists a
non–weakly mixing, (mk)-hypercyclic operator on Xw.

Proof. Let (bn) and I = {qp; p ∈ N} be the increasing sequence of integers and
the infinite set given by Lemma 4.1. Let also ∆ = ((∆0

l ), (∆
1
l )) be the pair of

nondecreasing sequences of natural numbers given by Lemma 4.2. We show that if
the sequences (|Pn|1), (dn) and (rn) are suitably controlled, then our operator T and
the map (x, y) 7→ φ(x · y) are continuous.

The proof of Lemma 2.2 has shown that if n ∈ N and ‖fk‖1 ≤ 1 for all k < n,
then (with the usual notation Dn = bn − bn−1)

‖fn‖1 ≤ |an−1| |Pn|1
∏dn

i=1w(i)∏Dn−1
i=1 w(i+ bn−1)

+ |an||Pn−1|1
∏Dn+dn−1

i=1 w(i)∏Dn−1
i=1 w(i+ bn−1)

·

Assume that bn−1 ≥ dn. Then, since an−1 = cw(bn−1)rn−1 and since w is increasing,
the first term I in the right-hand side of the above inequality is not greater than

c |Pn|1w(bn−1)−(Dn−1−rn−1−dn) .
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To estimate the second term II, we write it as

c |Pn−1|1
w(bn)rn∏bn−1
i=bn−rn w(i)

∏Dn+dn−1

i=1 w(i)∏Dn−2rn−1
i=1 w(i+ bn−1)

1∏bn−rn−1
i=bn−2rn

w(i)
·

We know that w is increasing with w(i+1) ≤ Cw(i) for some fixed constant C <∞.
Thus, we have w(bn − j) ≥ C−jw(bn) for all j ≤ bn. If we assume that bn−1 ≥
dn−1 + 2rn + 1, it follows that

II ≤ c |Pn−1|1 × C1+···+rn ×
(dn−1+2rn+1)∏

i=1

w(i)× C(rn+1)+···+2rn

w(bn)rn

≤ c |Pn−1|1
w(dn−1 + 2rn + 1)dn−1+2rn+1C4r2

n

w(bn)rn
·

Since Dn → ∞ and w(bn) → ∞, it is now clear that if c is small enough to take
care of the first fn’s and if the sequences (Pn) and (rn) are suitably controlled by
some sequence (un) tending to ∞, then the sequence (fn) is ‖ · ‖1-bounded.

Now, let φ be the ∆-compatible linear functional, and set ∆l = min(∆0
l ,∆

1
l ). If

p ≤ q ∈ [bl , bl+1), then, by the remark following Lemma 2.4 and since al = w(bl)
rl ,

we have

|φ(ep · eq)| ≤ 4

2bl+1∏
j=1

max(1, |Pj|1)× w(bl)
2rl

w(bi(l))∆l/4
,

where i(l) := min{i; bi+1−bi > ∆l

4
}. Since i(l)→∞, it follows that if w is sufficiently

slowly increasing, then one can choose (rl) in such a way that the double sequence
(φ(ep · eq)) is bounded.

�

Proposition 6.3. Assume that the sequence w has at most a polynomial growth

and satisfies lim inf w(i)
iβ

> 0 for some β > 0. Then for any ε > 0, there exists a
non–weakly mixing, (k3+ε)-hypercyclic operator on Xw.

Proof. By Lemma 3.2, one can find an increasing sequence (bn) which is ([lα])-Sidon
for some α > 0 and satisfies bn = O(n3+ε). Moreover, one can also require that
bn ≥ n3+ε for all n (see Remark 2 just after 3.2); in particular, we have bn+1 = O(bn).
The proof of Proposition 6.2 has established that the operator T associated to (bn)
and I := 2N is continuous if the sequences (rn) and (Pn) are suitably controlled.
Therefore (looking at the proof of 6.2 again), the only thing that remains to be done
is to show that if the sequence (rn) is suitably chosen, then

τl :=
w(bl)

2rl

w(bi(l))∆l/4
→ 0 as l→∞,
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where ∆l = [lα]. Now, we have bi(l)+1 ≥ bi(l)+1 − bi(l) > [lα]
4

by definition of i(l), and

since bi(l)+1 = O(bi(l)) we get lim inf
bi(l)
[lα]

> 0. Since lim inf w(i)
iβ

> 0 and both w and

(bl) have polynomial growth, it follows that

τl ≤
lCrl

[lα]c[lα]
= exp (Crl log l − c[lα] log[lα]) ,

for some constants c > 0 and C < ∞. Thus, one can clearly choose (rl) so that
τl → 0. �

Corollary 6.4. There exists a non–weakly mixing, (k3+ε)-hypercyclic operator on
A∞(T).

Proof. The space A∞(T) can be identified with Xw, where w(i) = i+ 1. �

Remark. Unfortunately, the above proof breaks down in the space of entire functions
H(C), which corresponds to w(i) = ei.

7. Sets of integers

It has been known for quite a long time that there are strong connections between
topological dynamics and some natural classes of subsets of N; see e.g. [F] or [GlW].
The aim of this final section is to briefly illustrate the usefulness of this point of view
in the linear setting as well.

For the sake of clarity, we will not assume from the beginning that we are dealing
with linear maps. The most general setting is that of a continuous map T : X → X
acting on some Hausdorff topological space X. Then hypercyclicity, topological
transitivity and weak mixing make sense with the same definitions. Topological
transitivity implies hypercyclicity if X is a second countable Baire space, and the
converse implication holds if X has no isolated point. We will assume that X is
separable, completely metrizable and without isolated points.

7.1. Some notations. For any point x ∈ X and any nonempty open set V ⊂ X,
we set as usual

N(x, V ) = {n ∈ N; T n(x) ∈ V } .
If V and V ′ are nonempty open subsets of X, we set

N(V, V ′) = {n; T n(V ) ∩ V ′ 6= ∅} ,
and we also define

C(V, V ′) = {n; T n(V ) ⊂ V ′} .
If N and N′ are two subsets of N, the difference-set N′ −N is defined by

N′ −N = {n′ − n; (n, n′) ∈ N×N′ , n′ ≥ n} ,
and the sum-set N + N′ is defined in the obvious way.
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It is easy to check that if x ∈ X is a hypercyclic point for T , then

N(V, V ′) = N(x, V ′)−N(x, V )

for any open sets V, V ′ ⊂ X.
Finally, the following identies are also easily verified, for any open sets A,B,C:

N(A,B) + C(B,C) ⊂ N(A,C) ,

N(A,C)−C(A,B) ⊂ N(B,C) .

7.2. Back to the linear functional φ. The statement of Lemma 2.1 may look a
bit strange, since the continuity property of the linear functional φ does not seem
very intuitive. We intend to show here that properties of that kind are in fact very
natural when dealing with weak mixing. In what follows, we denote by OT (x) the
T -orbit of a point x ∈ X; that is OT (x) = {T n(x); n ∈ N}.

Observe that if φ is a linear functional as 2.1, then one can find two nonempty
open sets W , W ′ in OT (e0) × OT (e0) such that the sets {x · y; (x, y) ∈ W} and
{x′ · y′; (x′, y′) ∈ W ′} are disjoint: just set W := {(u, v); |φ(u · v)| < 1} and W ′ :=
{(u, v); |φ(u ·v)| > 1}. Now, one can find four nonempty open sets V1, V2, V3, V4 ⊂ X
such that W ⊃ (V1×V4)∩(OT (e0)×OT (e0)) and W ′ ⊃ (V2×V3)∩(OT (e0)×OT (e0)),
so that the above information may be translated purely in terms of sets of integers,
as follows: (N(e0, V1) + N(e0, V4)) ∩ (N(e0, V3) + N(e0, V2)) = ∅. This has in fact
nothing to do with the linearity of φ: it is enough to have some nonconstant map
f : OT (e0) → Y , where Y is a Hausdorff topological space, such that the map
(x, y) 7→ f(x · y) is continuous.

In view of these remarks, Lemma 2.1 is now an immediate consequence of the next
proposition, which also explains in some sense why Sidon-type properties come up
naturally in the questions we are looking at.

Proposition 7.1. Assume that T is hypercyclic with hypercyclic point x. The fol-
lowing are equivalent.

(1) T is not weakly mixing.
(2) There exist nonempty open sets V1, V2, V3, V4 ⊂ X such that the equation

n1 + n4 = n3 + n2 has no solution (n1, n2, n3, n4) with ni ∈ N(x, Vi) and
n1 ≤ n3.

If X is an F -space, T ∈ L(X) and T is moreover invertible, these properties are
equivalent to

(2’) The same as (2) without the restriction n1 ≤ n3: there exist V1, . . . , V4 with
(N(x, V1) + N(x, V4)) ∩ (N(x, V3) + N(x, V2)) = ∅.

Proof. By the identity N(V, V ′) = N(x, V ′)−N(x, V ), condition (2) is equivalent to
the existence of four nonempty open sets Vi such that N(V1, V3) ∩ N(V2, V4) = ∅;
that is, (T × T )k(V1 × V2) ∩ V3 × V4 = ∅ for all k ∈ N. This means exactly that
T × T is not topologically transitive.
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Now, assume that X is an F -space and that T ∈ L(X) is invertible and not
weakly mixing. We claim that one can find nonempty open sets V1, V2, V3, V4 ⊂ X
such that (T × T )k(V1 × V2) ∩ V3 × V4 = ∅ for all k ∈ Z. Indeed, otherwise a
Baire category argument gives a vector z ∈ X × X whose two-sided (T × T )-orbit
{(T×T )k(z); k ∈ Z} is dense in X×X. By the Bourdon-Feldman Theorem ([BouF])
and since an invertible operator is hypercyclic if and only if its inverse is, it follows
that T × T is hypercyclic, a contradiction. Replacing the sets N(x, V ) and N(V, V ′)
by the analogous subsets of Z, we now get in the same way as above that (2’) is
satisfied. �

7.3. Thick sets and weak mixing. A set B ⊂ N is said to be thick if it contains
arbitrarily long intervals. Equivalently, B is thick iff it intersects every syndetic set.

Thick sets are always present (at least implicitely) when one is dealing with weak
mixing. This is apparent in the following theorem, which collects several well-known
characterizations of weak mixing.

Theorem 7.2. The following are equivalent.

(1) T is weakly mixing.
(2) The sets N(V, V ′) form a filter basis: each N(V, V ′) is nonempty, and given

V1, V
′

1 , V2, V
′

2 , one can find V3, V
′

3 such that N(V3, V
′

3) ⊂ N(V1, V
′

1)∩N(V2, V
′

2)
(3) For any k ≥ 1, the k-fold product map T × · · · × T is topologically transitive.
(4) Each set N(V, V ′) is thick.
(5) For any V, V ′ and each m ∈ N, one can find k ∈ N such that T k(V )∩V ′ 6= ∅

and T k+m(V ) ∩ V ′ 6= ∅.
(6) For any V, V1, V2, one has N(V, V1) ∩N(V, V2) 6= ∅.

Proof. The implications (1)⇒(2) and (6)⇒(1) are proved in [Gl, Theorem 1.11], and
the implications (2)⇒ · · · ⇒(5) are trivial. We show that (5) implies (6). Let
V, V1, V2 be given. Since T is topologically transitive, one can find m ∈ N and an
open set V ′ ⊂ V1 such that Tm(V ′) ⊂ V2. Applying (5), one gets k ∈ N such that
T k(V ) ∩ V ′ 6= ∅ and T k+m(V ) ∩ V ′ 6= ∅. Then k + m ∈ N(V, V ′) ⊂ N(V, V1), and
k +m ∈ N(V, V ′) + C(V ′, V2) ⊂ N(V, V2). �

Natural examples of thick sets are provided by the following lemma.

Lemma 7.3. Assume that X is an F -space and T ∈ L(X).

(a) If T is topologically transitive, then, for any (open) neighbourhood W of 0,
all sets N(V,W ) and N(W,V ′) are thick.

(b) For W neighbourhood of 0 and V, V ′ open, set N(V,W, V ′) := N(V,W ) ∩
N(W,V ′). If all sets N(V,W, V ′) are nonempty, then all these sets are thick.

Proof. To prove (a), assume that T is topologically transitive. Let us fix V,W, V ′ and

some positive number L. Since T (0) = 0, one can find an open neighbourhood W̃ of

0 such that T k(W̃ ) ⊂ W for all k ∈ {0 ; . . . ;L}. Since T is topologically transitive,
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one can find n, n′ ∈ N such that T n(V ) ∩ W̃ 6= ∅ and T n
′
(W̃ ) ∩ T−L(V ′) 6= ∅.

If k ∈ {0 ; . . . ;L}, then n + k ∈ N(V, W̃ ) + C(W̃ ,W ) ⊂ N(V,W ), and n′ + k =

(n′+L)− (L− k) ∈ N(W̃ , V ′)−C(W̃ ,W ) ⊂ N(W,V ′). Thus N(V,W ) contains the
interval [n , n+L] and N(W,V ′) contains [n′ , n′ +L]. This proves (a). The proof of
(b) is exactly the same: just note that in that case one may take n = n′. �

Part (b) of the above lemma immediately yields that if X is an F -space, then a
linear operator T ∈ L(X) is weakly mixing iff it satisfies the so-called three open sets
condition:

(7) for any V, V ′ ⊂ X nonempty open and each W neighbourhood of 0, one can
find n ∈ N such that T n(V ) ∩W 6= ∅ and T n(W ) ∩ V ′ 6= ∅.

The main point is that since T is a linear map, we have

N(A,W ) ∩N(W,A′) ⊂ N(A+W,A′ +W ) ,

for any A,A′,W . Since for any V, V ′, one can find nonempty open sets A,A′ and a
neighbourhood W of 0 such that A+W ⊂ V and A′ +W ⊂ V ′, it follows indeed at
once from (b) above that (7) entails weak mixing.

Lemma 7.3 also gives the result of Grosse-Erdmann and Peris Proposition 5.5:
since each set N(V,W ) is thick, it intersects all N(W,V ′) if the latter are syndetic
(which is the case under the assumption of Proposition 5.5), so that T satisfies the
three open sets condition (7).

It should be added that some authors call topologically ergodic a continuous map
T : X → X for which all sets N(V, V ′) are syndetic (see [GlW]). Thus, Proposition
5.5 says that if a linear operator is topologically ergodic, then it is weakly mixing.
This is false in the nonlinear setting.

7.4. Two examples. We now illustrate the usefulness of Theorem 7.2 by giving
rather transparent proofs of two recent results in linear dynamics. The first one is
due to S. Grivaux ([Gr]). In [Gr], it was the main step for showing that an operator
T ∈ L(X) is weakly mixing if and only if the sequence (T nk) is universal, for any
syndetic sequence (nk) ⊂ N. The latter result was obtained independently by A.
Peris and L. Saldivia ([PS]) as a consequence of Theorem 7.2. Observe in particular
that in condition (8) below, linearity is not needed.

Proposition 7.4. Weak mixing of T is equivalent to the following property.

(8) For any V, V ′, one can find k ∈ N with T k(V )∩V ′ 6= ∅ and T k+1(V )∩V ′ 6= ∅.

If X is an F -space and T ∈ L(X), this is also equivalent to

(8’) There exists some fixed positive integer p such that: for any V, V ′, one can
find k ∈ N with T k(V ) ∩ V ′ 6= ∅ and T k+p(V ) ∩ V ′ 6= ∅
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Proof. Clearly, weak mixing implies (8). Conversely, assume that (8) holds; in other
words, that

1 ∈ N(V, V ′)−N(V, V ′)

for any nonempty open sets V, V ′ ⊂ X.
All sets N(V, V ′) are nonempty, hence T is hypercyclic; let x ∈ X be a hypercyclic

point for T . Then

N(V, V ′)−N(V, V ′) = [N(x, V ′)−N(x, V )]− [N(x, V ′)−N(x, V )]

= N(V ′, V ′)−N(V, V ),

so that, for any V, V ′ we also have

(∗) 1 ∈ N(V ′, V ′)−N(V, V ) .

Now we show by induction on m ∈ N that property (5) in Theorem 7.2 is satisfied;
that is, we show that for any V, V ′, one can find k ∈ N such that T k(V ) ∩ V ′ 6= ∅
and T k+m(V ) ∩ V ′ 6= ∅. The result holds for m = 0 because T is topologically
transitive. Assume the result has been proved form, and let us fix V, V ′. By induction
hypothesis, one can find k ∈ N and two open sets V1, V2 ⊂ V such that T k(V1) ⊂ V ′

and T k+m(V2) ⊂ V ′. Then, by (∗), one can find l ∈ N such that T l(V1) ∩ V1 6= ∅
and T l+1(V2) ∩ V2 6= ∅. Thus, we get l + k ∈ N(V1, V1) + C(V1, V

′) ⊂ N(V, V ′), and
likewise (l+ k) + (m+ 1) = (l+ 1) + (k+m) ∈ N(V, V ′), which proves (5) for m+ 1.
This concludes the proof for (8).

Now, assume that (8’) holds in the linear setting, for some positive integer p. Then
T is still hypercyclic, whence T p is also hypercyclic, by Ansari’s Theorem ([A]). One
can then show exactly as above that (5) holds for T p. Thus, T p is weakly mixing,
hence so is T . �

Our second illustration is a result due to G. Costakis and M. Sambarino ([CS]).
Recall that a continuous map T is said to be mixing if all sets N(V, V ′) are cofinite.
This should be compared with 7.2 (2), which yields by a simple diagonal argument
that weak mixing is equivalent to the following property: each set N(V, V ′) contains
a cofinite subset of some fixed infinite set N ⊂ N. In case T is linear and satisfies
the hypercyclicity criterion with respect to some sequence (nk), one can take N =
{nk; k ∈ N}.

Proposition 7.5. Assume that X is an F -space and that T ∈ L(X). If T satisfies
the Hypercyclicity Criterion with respect to some syndetic sequence (nk), then T is
mixing.

Proof. Set N := {nk; k ∈ N}, and let us denote by F the family of all subsets of
N containing some cofinite subset of N. Then F is a filter of subsets of N, and by
assumption we have N(V, V ′) ∈ F for any V, V ′. Moreover, there exists some fixed
K > 0 such that the following holds: for each each set F ∈ F , one can find a ∈ N
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such that F meets every interval I of length K with min(I) ≥ a. In short, we shall
say that the sets in F are K-syndetic.

Now, let us fix V, V ′. For each k ∈ {0 ; . . . ;K}, one can find some nonempty open

set Vk such that T k(Vk) ⊂ V ′. Then F :=
⋂K
k=0 N(V, Vk) ∈ F because F is a filter.

Therefore, F is K-syndetic, so that
⋃K
k=0(F + k) is a cofinite subset of N. But

K⋃
k=0

(F + k) ⊂
K⋃
k=0

(N(V, Vk) + C(Vk, V
′)) ⊂ N(V, V ′) ,

hence N(V, V ′) is cofinite as well. �

Remark. What was really used in the above proof is the following fact: one can
find some filter F such that N(V, V ′) ∈ F for any V, V ′, and each set F ∈ F is
K-syndetic. Once this is known, linearity is not needed.
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