
HAL Id: hal-00863829
https://hal.science/hal-00863829v2

Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Degenerate Parabolic Stochastic Partial Differential
Equations: Quasilinear case

Arnaud Debussche, Martina Hofmanova, Julien Vovelle

To cite this version:
Arnaud Debussche, Martina Hofmanova, Julien Vovelle. Degenerate Parabolic Stochastic Partial Dif-
ferential Equations: Quasilinear case. Annals of Probability, 2016, 44 (3), pp.1916-1955. �10.1214/15-
AOP1013�. �hal-00863829v2�

https://hal.science/hal-00863829v2
https://hal.archives-ouvertes.fr


The Annals of Probability
2016, Vol. 44, No. 3, 1916–1955
DOI: 10.1214/15-AOP1013
© Institute of Mathematical Statistics, 2016

DEGENERATE PARABOLIC STOCHASTIC PARTIAL
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IRMAR CNRS et ENS Rennes, Max Planck Institute for Mathematics
in the Sciences and Université Lyon 1

In this paper, we study the Cauchy problem for a quasilinear degener-
ate parabolic stochastic partial differential equation driven by a cylindrical
Wiener process. In particular, we adapt the notion of kinetic formulation and
kinetic solution and develop a well-posedness theory that includes also an L1-
contraction property. In comparison to the previous works of the authors con-
cerning stochastic hyperbolic conservation laws [J. Funct. Anal. 259 (2010)
1014–1042] and semilinear degenerate parabolic SPDEs [Stochastic Process.
Appl. 123 (2013) 4294–4336], the present result contains two new ingredients
that provide simpler and more effective method of the proof: a generalized
Itô formula that permits a rigorous derivation of the kinetic formulation even
in the case of weak solutions of certain nondegenerate approximations and
a direct proof of strong convergence of these approximations to the desired
kinetic solution of the degenerate problem.

1. Introduction. We consider the Cauchy problem for a quasilinear degener-
ate parabolic stochastic partial differential equation

du + div
(
B(u)

)
dt = div

(
A(u)∇u

)
dt + �(u)dW, x ∈ T

N, t ∈ (0, T ),
(1.1)

u(0) = u0,

where W is a cylindrical Wiener process. Equations of this type model the phe-
nomenon of convection-diffusion of ideal fluids and, therefore, arise in a wide
variety of important applications, including, for instance, two or three phase flows
in porous media or sedimentation–consolidation processes (for a thorough exposi-
tion of this area given from a practical point of view we refer the reader to [11] and
the references therein). The addition of a stochastic noise to this physical model
is fully natural as it represents external perturbations or a lack of knowledge of
certain physical parameters. Toward the applicability of the results, it is necessary
to treat the problem (1.1) under very general hypotheses. Particularly, without the
assumption of positive definiteness of the diffusion matrix A, the equation can be
degenerate which brings the main difficulty in the problem solving. We assume
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the matrix A to be positive semidefinite and, as a consequence, it can, for instance,
vanish completely which leads to a hyperbolic conservation law. We point out that
we do not intend to employ any form of regularization by the noise to solve (1.1),
and thus the deterministic equation is included in our theory as well.

In order to find a suitable concept of solution for our model problem (1.1), we
observe that already in the case of deterministic hyperbolic conservation law it is
possible to find simple examples supporting the two following claims (see, e.g.,
[23]):

(i) classical C1 solutions do not exist,
(ii) weak (distributional) solutions lack uniqueness.

The first claim is a consequence of the fact that any smooth solution has to be con-
stant along characteristic lines, which can intersect in finite time (even in the case
of smooth data) and shocks can be produced. The second claim demonstrates the
inconvenience that often appears in the study of PDEs and SPDEs: the usual way
of weakening the equation leads to the occurrence of nonphysical solutions and,
therefore, additional assumptions need to be imposed in order to select the physi-
cally relevant ones and to ensure uniqueness. Hence, one needs to find some bal-
ance that allows to establish existence of a unique (physically reasonable) solution.

Toward this end, we adapt the notion of kinetic formulation and kinetic solution.
This concept was first introduced by Lions, Perthame, Tadmor [22] for determin-
istic hyperbolic conservation laws. In comparison to the notion of entropy solution
introduced by Kružkov [17], kinetic solutions seem to be better suited particularly
for degenerate parabolic problems since they allow us to keep the precise structure
of the parabolic dissipative measure, whereas in the case of entropy solution part of
this information is lost and has to be recovered at some stage. This technique also
supplies a good technical framework to establish a well-posedness theory which is
the main goal of the present paper.

Other references for kinetic or entropy solutions in the case of deterministic hy-
perbolic conservation laws include, for instance, [4, 15, 21, 25, 26]. Deterministic
degenerate parabolic PDEs were studied by Carrillo [4] and Chen and Perthame
[5] by means of both entropy and kinetic solutions. Also in the stochastic setting
there are several papers concerned with entropy solutions for hyperbolic conser-
vation laws, the first one being [16] then [2, 10, 27]. The first work dealing with
kinetic solutions in the stochastic setting was given by Debussche and Vovelle [7].
Their concept was then further generalized to the case of semilinear degenerate
parabolic SPDEs by Hofmanová [12]. To the best of our knowledge, stochastic
equations of type (1.1) have not been studied in this generality yet, neither by
means of kinetic formulation nor by any other approach. Recently, Bauzet, Vallet
and Wittbold [1] considered entropy solutions for degenerate parabolic–hyperbolic
SPDEs under different assumptions on the data and the nonlinearities and under
stronger assumptions on the noise. There is also a different kind of stochastic con-
servation laws: equations with a stochastic forcing not in the source term but in
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the flux term. Such equations, in the first-order case, have been studied recently by
Lions, Perthame and Souganidis, [19, 20].

In comparison to the previous works of the authors [7] and [12], the present
proof of well-posedness contains two new ingredients: a generalized Itô formula
that permits a rigorous derivation of the kinetic formulation even in the case of
weak solutions of certain nondegenerate approximations (see Appendix) and a di-
rect proof of strong convergence of these approximations to the desired kinetic
solution of the degenerate problem (see Section 6.2). In order to explain these re-
cent developments more precisely, let us recall the basic ideas of the proofs in [7]
and [12].

In the case of hyperbolic conservation laws [7], the authors defined a notion
of generalized kinetic solution and obtained a comparison result showing that any
generalized kinetic solution is actually a kinetic solution. Accordingly, the proof
of existence simplified since only weak convergence of approximate viscous so-
lutions was necessary. The situation was quite different in the case of semilinear
degenerate parabolic equations [12], since this approach was no longer applicable.
The proof of the comparison principle was much more delicate and, consequently,
generalized kinetic solutions were not allowed and, therefore, strong convergence
of approximate solutions was needed in order to prove existence. The limit ar-
gument was based on a compactness method: uniform estimates yielded tightness
and consequently also strong convergence of the approximate sequence on another
probability space and the existence of a martingale kinetic solution followed. The
existence of a pathwise kinetic solution was then obtained by the Gyöngy–Krylov
characterization of convergence in probability.

Due to the second-order term in (1.1), we are for the moment not able to ap-
ply efficiently the method of generalized kinetic solutions. Let us explain why by
considering the Definition 2.2 of solution. We may adapt this definition to intro-
duce a notion of generalized kinetic solution (in the spirit of [7], e.g.), and we
would then easily obtain the equivalent of the kinetic equation (2.6) by passing
to the limit on suitable approximate problems. This works well in the first-order
case, provided uniqueness of generalized solutions can be shown. To prove such a
result here, with second-order terms, we need the second important item in Def-
inition 2.2, the chain-rule (2.5). We do not know how to relax this equality and
we do not know how to obtain it by mere weak convergence of approximations:
strong convergence seems to be necessary. Therefore, it would not bring any sim-
plification here to consider generalized solutions. On the other hand, it would be
possible to apply the compactness method as established in [12] to obtain strong
convergence. However, as this is quite technical, we propose a simpler proof of the
strong convergence based on the techniques developed in the proof of the compar-
ison principle: comparing two (suitable) nondegenerate approximations, we obtain
the strong convergence in L1 directly. Note that this approach does not apply to
the semilinear case as no sufficient control of the second-order term is known.
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Another important issue here was the question of regularity of the approximate
solutions. In both works [7] and [12], the authors derived the kinetic formula-
tion for sufficiently regular approximations only. This obstacle was overcome by
showing the existence of these regular approximations in [13], however, it does not
apply to the quasilinear case where a suitable regularity result is still missing: even
in the deterministic setting the proofs, which can be found in [18], are very diffi-
cult and technical while the stochastic case remains open. In the present paper, we
propose a different way to solve this problem, namely, the generalized Itô formula
(Proposition A.1) that leads to a clear-cut derivation of the kinetic formulation also
for weak solutions, and hence avoids the necessity of regular approximations.

The paper is organized as follows. In Section 2, we introduce the basic set-
ting, define the notion of kinetic solution and state our main result, Theorem 2.7.
Section 3 is devoted to the proof of uniqueness together with the L1-comparison
principle, Theorem 3.3. The remainder of the paper deals with the existence part
of Theorem 2.7 which is divided into four parts. First, we prove existence under
three additional hypotheses: we consider (1.1) with regular initial data, positive
definite diffusion matrix A and Lipschitz continuous flux function B , Section 4.
Second, we relax the hypothesis upon B and prove existence under the remain-
ing two additional hypotheses in Section 5. In Section 6, we proceed to the proof
of existence in the degenerate case while keeping the assumption upon the initial
condition. The proof of Theorem 2.7 is then completed in Section 7. In Appendix,
we establish the above mentioned generalized Itô formula for weak solutions of a
general class of SPDEs.

2. Hypotheses and the main result.

2.1. Hypotheses. We now give the precise assumptions on each of the
terms appearing in the above equation (1.1). We work on a finite-time interval
[0, T ], T > 0, and consider periodic boundary conditions: x ∈ T

N where T
N is

the N -dimensional torus. The flux function

B = (B1, . . . ,BN) :R−→ R
N

is supposed to be of class C2 with a polynomial growth of its derivative, which is
denoted by b = (b1, . . . , bN). The diffusion matrix

A = (Aij )
N
i,j=1 :R−→ R

N×N

is symmetric and positive semidefinite. Its square-root matrix, which is also sym-
metric and positive semidefinite, is denoted by σ . We assume that σ is bounded
and locally γ -Hölder continuous for some γ > 1/2, that is,∣∣σ(ξ) − σ(ζ )

∣∣ ≤ C|ξ − ζ |γ ∀ξ, ζ ∈ R, |ξ − ζ | < 1.(2.1)

Regarding the stochastic term, let (�,F , (Ft )t≥0,P) be a stochastic basis
with a complete, right-continuous filtration. Let P denote the predictable σ -
algebra on � × [0, T ] associated to (Ft )t≥0. The initial datum may be random



1920 A. DEBUSSCHE, M. HOFMANOVÁ AND J. VOVELLE

in general, that is, F0-measurable, and we assume u0 ∈ Lp(�;Lp(TN)) for all
p ∈ [1,∞). The process W is a cylindrical Wiener process: W(t) = ∑

k≥1 βk(t)ek

with (βk)k≥1 being mutually independent real-valued standard Wiener processes
relative to (Ft )t≥0 and (ek)k≥1 a complete orthonormal system in a separable
Hilbert space U. In this setting, we can assume without loss of generality that
the σ -algebra F is countably generated and (Ft )t≥0 is the filtration generated by
the Wiener process and the initial condition. For each z ∈ L2(TN), we consider
a mapping �(z) :U → L2(TN) defined by �(z)ek = gk(·, z(·)). In particular, we
suppose that gk ∈ C(TN ×R) and the following conditions:

G2(x, ξ) = ∑
k≥1

∣∣gk(x, ξ)
∣∣2 ≤ C

(
1 + |ξ |2)

,(2.2)

∑
k≥1

∣∣gk(x, ξ) − gk(y, ζ )
∣∣2 ≤ C

(|x − y|2 + |ξ − ζ |h(|ξ − ζ |)),(2.3)

are fulfilled for every x, y ∈ T
N, ξ, ζ ∈ R, where h is a continuous nondecreasing

function on R+ satisfying, for some α > 0,

h(δ) ≤ Cδα, δ < 1.(2.4)

The conditions imposed on �, particularly assumption (2.2), imply that

� :L2(
T

N ) −→ L2
(
U;L2(

T
N ))

,

where L2(U;L2(TN)) denotes the collection of Hilbert–Schmidt operators from
U to L2(TN). Thus, given a predictable process u ∈ L2(�;L2(0, T ;L2(TN))),
the stochastic integral t 	→ ∫ t

0 �(u)dW is a well-defined process taking values in
L2(TN) (see [6] for detailed construction).

Finally, we define the auxiliary space U0 ⊃ U via

U0 =
{
v = ∑

k≥1

αkek;
∑
k≥1

α2
k

k2 < ∞
}
,

endowed with the norm

‖v‖2
U0

= ∑
k≥1

α2
k

k2 , v = ∑
k≥1

αkek.

Note that the embedding U ↪→ U0 is Hilbert–Schmidt. Moreover, trajectories of W

are P-a.s. in C([0, T ];U0) (see [6]).
In this paper, we use the brackets 〈·, ·〉 to denote the duality between the space of

distributions over TN ×R and C∞
c (TN ×R) and the duality between Lp(TN ×R)

and Lq(TN × R). If there is no danger of confusion, the same brackets will also
denote the duality between Lp(TN) and Lq(TN). The differential operators of
gradient ∇ , divergence div and Laplacian � are always understood with respect to
the space variable x.
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2.2. Definitions. As the next step, we introduce the kinetic formulation
of (1.1) as well as the basic definitions concerning the notion of kinetic solution.
The motivation for this approach is given by the nonexistence of a strong solution
and, on the other hand, the nonuniqueness of weak solutions, even in simple cases.
The idea is to establish an additional criterion—the kinetic formulation—which
is automatically satisfied by any weak solution to (1.1) in the nondegenerate case
and which permits to ensure the well-posedness.

DEFINITION 2.1 (Kinetic measure). A mapping m from � to M+
b ([0, T ] ×

T
M ×R), the set of nonnegative bounded measures over [0, T ] ×T

N ×R, is said
to be a kinetic measure provided:

(i) m is measurable in the following sense: for each ψ ∈ C0([0, T ]×T
N ×R)

the mapping m(ψ) :� →R is measurable,
(ii) m vanishes for large ξ : if Bc

R = {ξ ∈ R; |ξ | ≥ R} then

lim
R→∞Em

([0, T ] ×T
N × Bc

R

) = 0,

(iii) for any ψ ∈ C0(T
N ×R)∫

TN×[0,t]×R

ψ(x, ξ)dm(s, x, ξ) ∈ L2(
� × [0, T ])

admits a predictable representative.1

DEFINITION 2.2 (Kinetic solution). Assume that, for all p ∈ [1,∞),

u ∈ Lp(
� × [0, T ],P,dP⊗ dt;Lp(

T
N )) ∩ Lp(

�;L∞(
0, T ;Lp(

T
N )))

is such that:

(i) div
∫ u

0 σ(ζ )dζ ∈ L2(� × [0, T ] ×T
N),

(ii) for any φ ∈ Cb(R) the following chain rule formula holds true:

div
∫ u

0
φ(ζ )σ (ζ )dζ = φ(u)div

∫ u

0
σ(ζ )dζ in D′(

T
N )

a.e. (ω, t).(2.5)

Let n1 :� → M+
b ([0, T ]×T

M ×R) be defined as follows: for any ϕ ∈ C0([0, T ]×
T

N ×R)

n1(ϕ) =
∫ T

0

∫
TN

∫
R

ϕ(t, x, ξ)

∣∣∣∣div
∫ u

0
σ(ζ )dζ

∣∣∣∣
2

dδu(t,x)(ξ)dx dt.

Then u is said to be a kinetic solution to (1.1) with initial datum u0 provided there
exists a kinetic measure m ≥ n1, P-a.s., such that the pair (f = 1u>ξ ,m) satisfies,

1Throughout the paper, the term representative stands for an element of a class of equivalence.
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for all ϕ ∈ C∞
c ([0, T ) ×T

N ×R), P-a.s.,
∫ T

0

〈
f (t), ∂tϕ(t)

〉
dt + 〈

f0, ϕ(0)
〉 +

∫ T

0

〈
f (t), b · ∇ϕ(t)

〉
dt

+
∫ T

0

〈
f (t),A : D2ϕ(t)

〉
dt

(2.6)

= − ∑
k≥1

∫ T

0

∫
TN

gk

(
x,u(t, x)

)
ϕ

(
t, x, u(t, x)

)
dx dβk(t)

− 1

2

∫ T

0

∫
TN

G2(
x,u(t, x)

)
∂ξϕ

(
t, x, u(t, x)

)
dx dt + m(∂ξϕ).

We have used the notation A :B = ∑
i,j aij bij for two matrices A = (aij ), B =

(bij ) of the same size.

REMARK 2.3. We emphasize that a kinetic solution is, in fact, a class of equiv-
alence in Lp(�×[0, T ],P,dP⊗ dt;Lp(TN)) so not necessarily a stochastic pro-
cess in the usual sense. Nevertheless, it will be seen later (see Corollary 3.4) that,
in this class of equivalence, there exists a representative with good continuity prop-
erties, namely, u ∈ C([0, T ];Lp(TN)), P-a.s. and, therefore, it can be regarded as
a stochastic process.

By f = 1u>ξ we understand a real function of four variables, where the addi-
tional variable ξ is called velocity. In the deterministic case, that is, corresponding
to the situation � = 0, the equation (2.6) in the above definition is a weak form of
the so-called kinetic formulation of (1.1)

∂t1u>ξ + b · ∇1u>ξ − A : D21u>ξ = ∂ξm,

where the unknown is the pair (1u>ξ ,m) and it is solved in the sense of distribu-
tions over [0, T ) ×T

N ×R. In the stochastic case, we write formally2

∂t1u>ξ + b · ∇1u>ξ − A : D21u>ξ = δu=ξ�(u)Ẇ + ∂ξ

(
m − 1

2G2δu=ξ

)
.(2.7)

It will be seen later that this choice is reasonable since for any u being a weak
solution to (1.1) that belongs to Lp(�;C([0, T ];Lp(TN))) ∩ L2(�;L2(0, T ;
H 1(TN))), ∀p ∈ [2,∞), the pair (1u>ξ , n1) satisfies (2.6), and consequently u

is a kinetic solution to (1.1). The measure n1 relates to the diffusion term in (1.1)
and so is called parabolic dissipative measure.

We proceed with two related definitions.

2Hereafter, we employ the notation which is commonly used in papers concerning the kinetic
solutions to conservation laws and write δu=ξ for the Dirac measure centered at u(t, x).
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DEFINITION 2.4 (Young measure). Let (X,λ) be a finite measure space.
A mapping ν from X to the set of probability measures on R is said to be a Young
measure if, for all ψ ∈ Cb(R), the map z 	→ νz(ψ) from X into R is measurable.
We say that a Young measure ν vanishes at infinity if, for all p ≥ 1,

∫
X

∫
R

|ξ |p dνz(ξ)dλ(z) < ∞.

DEFINITION 2.5 (Kinetic function). Let (X,λ) be a finite measure space.
A measurable function f :X × R → [0,1] is said to be a kinetic function if there
exists a Young measure ν on X vanishing at infinity such that, for λ-a.e. z ∈ X, for
all ξ ∈ R,

f (z, ξ) = νz(ξ,∞).

REMARK 2.6. Note, that if f is a kinetic function then ∂ξf = −ν for λ-a.e.
z ∈ X. Similarly, let u be a kinetic solution of (1.1) and consider f = 1u>ξ . We
have ∂ξf = −δu=ξ , where ν = δu=ξ is a Young measure on � × [0, T ] × T

N .
Therefore, (2.6) can be rewritten as follows: for all ϕ ∈ C∞

c ([0, T ) × T
N × R),

P-a.s.,
∫ T

0

〈
f (t), ∂tϕ(t)

〉
dt + 〈

f0, ϕ(0)
〉 +

∫ T

0

〈
f (t), b · ∇ϕ(t)

〉
dt

+
∫ T

0

〈
f (t),A : D2ϕ(t)

〉
dt

= − ∑
k≥1

∫ T

0

∫
TN

∫
R

gk(x, ξ)ϕ(t, x, ξ)dνt,x(ξ)dx dβk(t)

− 1

2

∫ T

0

∫
TN

∫
R

G2(x, ξ) ∂ξϕ(t, x, ξ)dνt,x(ξ)dx dt + m(∂ξϕ).

For a general kinetic function f with corresponding Young measure ν, the above
formulation leads to the notion of generalized kinetic solution as introduced in [7].
Although this concept is not established here, the notation will be used throughout
the paper, that is, we will often write νt,x(ξ) instead of δu(t,x)=ξ .

2.3. Derivation of the kinetic formulation. Let us now clarify that the kinetic
formulation (2.6) represents a reasonable way to weaken the original model prob-
lem (1.1). In particular, we show that if u is a weak solution to (1.1) such that
u ∈ Lp(�;C([0, T ];Lp(TN))) ∩ L2(�;L2(0, T ;H 1(TN))), ∀p ∈ [2,∞), then
f = 1u>ξ satisfies

df + b · ∇f dt − A : D2f dt = δu=ξ�dW + ∂ξ

(
n1 − 1

2G2δu=ξ

)
dt
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in the sense of D′(TN ×R), where

dn1(t, x, ξ) = ∣∣σ(u)∇u
∣∣2 dδu=ξ dx dt.

Indeed, it follows from Proposition A.1, for ϕ ∈ C2(R), ψ ∈ C1(TN),
〈
ϕ

(
u(t)

)
,ψ

〉 = 〈
ϕ(u0),ψ

〉 −
∫ t

0

〈
ϕ′(u)div

(
B(u)

)
,ψ

〉
ds

−
∫ t

0

〈
ϕ′′(u)∇u · (

A(u)∇u
)
,ψ

〉
ds

+
∫ t

0

〈
div

(
ϕ′(u)A(u)∇u

)
,ψ

〉
ds

+ ∑
k≥1

∫ t

0

〈
ϕ′(u)gk(u),ψ

〉
dβk(s)

+ 1

2

∫ t

0

〈
ϕ′′(u(s)

)
G2(u),ψ

〉
ds.

Afterward, we proceed term by term and employ the chain rule for functions from
Sobolev spaces. We obtain the following equalities that hold true in D′(TN):

ϕ′(u)div
(
B(u)

) = ϕ′(u)b(u) · ∇u

= div
(∫ u

−∞
b(ξ)ϕ′(ξ)dξ

)
= div

〈
b1u>ξ , ϕ

′〉
ξ ,

ϕ′′(u)∇u · (
A(u)∇u

) = −〈
∂ξn1, ϕ

′〉
ξ ,

div
(
ϕ′(u)A(u)∇u

) = D2 :
(∫ u

−∞
A(ξ)ϕ′(ξ)dξ

)
= D2 :

〈
A1u>ξ , ϕ

′〉
ξ ,

ϕ′(u)gk(u) = 〈
gkδu=ξ , ϕ

′〉
ξ ,

ϕ′′(u)G2(u) = 〈
G2δu=ξ , ϕ

′′〉
ξ = −〈

∂ξ

(
G2δu=ξ

)
, ϕ′〉

ξ .

Moreover, 〈
ϕ

(
u(t)

)
,ψ

〉 = 〈
1u(t)>ξ , ϕ

′ψ
〉
x,ξ

hence setting ϕ(ξ) = ∫ ξ
−∞ φ(ζ )dζ for some φ ∈ C∞

c (R) yields the claim.

2.4. The main result. To conclude this section, we state our main result.

THEOREM 2.7. Let u0 ∈ Lp(�;Lp(TN)), for all p ∈ [1,∞). Under the
above assumptions, there exists a unique kinetic solution to (1.1) and it has al-
most surely continuous trajectories in Lp(TN), for all p ∈ [1,∞). Moreover, if
u1, u2 are kinetic solutions to (1.1) with initial data u1,0 and u2,0, respectively,
then for all t ∈ [0, T ]

E
∥∥u1(t) − u2(t)

∥∥
L1(TN) ≤ E‖u1,0 − u2,0‖L1(TN).
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3. Comparison principle. Let us start with the question of uniqueness. As the
first step, we follow the approach of [7] and [12] and obtain an auxiliary property
of kinetic solutions, which will be useful later on in the proof of the comparison
principle in Theorem 3.3.

PROPOSITION 3.1 (Left- and right-continuous representatives). Let u be a
kinetic solution to (1.1). Then f = 1u>ξ admits representatives f − and f + which
are almost surely left- and right-continuous, respectively, at all points t∗ ∈ [0, T ]
in the sense of distributions over TN ×R. More precisely, for all t∗ ∈ [0, T ] there
exist kinetic functions f ∗,± on �×T

N ×R such that setting f ±(t∗) = f ∗,± yields
f ± = f almost everywhere and〈

f ±(
t∗ ± ε

)
,ψ

〉 −→ 〈
f ±(

t∗
)
,ψ

〉
, ε ↓ 0,∀ψ ∈ C2

c

(
T

N ×R
)
,P-a.s.

Moreover, f + = f − for all t∗ ∈ [0, T ] except for some at most countable set.

PROOF. A detailed proof of this result can be found in [12], Proposition 3.1.
�

From now on, we will work with these two fixed representatives of f and we
can take any of them in an integral with respect to time or in a stochastic integral.

As the next step toward the proof of uniqueness, we need a technical proposition
relating two kinetic solutions of (1.1). We will also use the following notation: if
f :X × R → [0,1] is a kinetic function, we denote by f̄ the conjugate function
f̄ = 1 − f .

PROPOSITION 3.2 (Doubling of variables). Let u1, u2 be kinetic solutions
to (1.1) and denote f1 = 1u1>ξ , f2 = 1u2>ξ . Then for all t ∈ [0, T ] and any non-
negative functions � ∈ C∞(TN), ψ ∈ C∞

c (R) we have

E

∫
(TN)2

∫
R2

�(x − y)ψ(ξ − ζ )f ±
1 (x, t, ξ)f̄ ±

2 (y, t, ζ )dξ dζ dx dy

≤ E

∫
(TN)2

∫
R2

�(x − y)ψ(ξ − ζ )f1,0(x, ξ)f̄2,0(y, ζ )dξ dζ dx dy

+ I + J + K,

where

I = E

∫ t

0

∫
(TN)2

∫
R2

f1f̄2
(
b(ξ) − b(ζ )

)·∇x�(x − y)ψ(ξ − ζ )dξ dζ dx dy ds,

J = E

∫ t

0

∫
(TN)2

∫
R2

f1f̄2
(
A(ξ) + A(ζ )

)
: D2

x�(x − y)ψ(ξ − ζ )dξ dζ dx dy ds

−E

∫ t

0

∫
(TN)2

∫
R2

�(x − y)ψ(ξ − ζ )dν1
x,s(ξ)dx dn2,1(y, s, ζ )

−E

∫ t

0

∫
(TN)2

∫
R2

�(x − y)ψ(ξ − ζ )dν2
y,s(ζ )dy dn1,1(x, s, ξ),
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K = 1

2
E

∫ t

0

∫
(TN)2

∫
R2

�(x − y)ψ(ξ − ζ )

× ∑
k≥1

∣∣gk(x, ξ) − gk(y, ζ )
∣∣2 dν1

x,s(ξ)dν2
y,s(ζ )dx dy ds.

PROOF. The proof follows the ideas developed in [7], Proposition 9, and [12],
Proposition 3.2, and is left to the reader. �

THEOREM 3.3 (Comparison principle). Let u be a kinetic solution to (1.1).
Then there exist u+ and u−, representatives of u, such that, for all t ∈ [0, T ],
f ±(t, x, ξ) = 1u±(t,x)>ξ for a.e. (ω, x, ξ). Moreover, if u1, u2 are kinetic solutions
to (1.1) with initial data u1,0 and u2,0, respectively, then for all t ∈ [0, T ] we have

E
∥∥u±

1 (t) − u±
2 (t)

∥∥
L1(TN) ≤ E‖u1,0 − u2,0‖L1(TN).(3.1)

PROOF. Let (�ε), (ψδ) be approximations to the identity on T
N and R, respec-

tively, that is, let � ∈ C∞(TN),ψ ∈ C∞
c (R) be symmetric nonnegative functions

such as
∫
TN � = 1,

∫
R

ψ = 1 and suppψ ⊂ (−1,1). We define

�ε(x) = 1

εN
�

(
x

ε

)
,

ψδ(ξ) = 1

δ
ψ

(
ξ

δ

)
.

Then

E

∫
TN

∫
R

f ±
1 (x, t, ξ)f̄ ±

2 (x, t, ξ)dξ dx

= E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f ±
1 (x, t, ξ)f̄ ±

2 (y, t, ζ )dξ dζ dx dy

+ ηt (ε, δ),

where limε,δ→0 ηt (ε, δ) = 0. With regard to Proposition 3.2 we need to find suit-
able bounds for terms I, J,K.

Since b has at most polynomial growth, there exist C > 0,p > 1 such that
∣∣b(ξ) − b(ζ )

∣∣ ≤ Γ (ξ, ζ )|ξ − ζ |,
Γ (ξ, ζ ) ≤ C

(
1 + |ξ |p−1 + |ζ |p−1)

.

Hence,

|I| ≤ E

∫ t

0

∫
(TN)2

∫
R2

f1f̄2Γ (ξ, ζ )|ξ − ζ |ψδ(ξ − ζ )dξ dζ
∣∣∇x�ε(x − y)

∣∣ dx dy ds.
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As the next step, we apply integration by parts with respect to ζ, ξ . Focusing only
on the relevant integrals, we get∫

R

f1(ξ)

∫
R

f̄2(ζ )Γ (ξ, ζ )|ξ − ζ |ψδ(ξ − ζ )dζ dξ

=
∫
R

f1(ξ)

∫
R

Γ
(
ξ, ζ ′)∣∣ξ − ζ ′∣∣ψδ

(
ξ − ζ ′) dζ ′ dξ

−
∫
R2

f1(ξ)

∫ ζ

−∞
Γ

(
ξ, ζ ′)∣∣ξ − ζ ′∣∣ψδ

(
ξ − ζ ′) dζ ′ dξ dν2

y,s(ζ )

=
∫
R2

f1(ξ)

∫ ∞
ζ

Γ
(
ξ, ζ ′)∣∣ξ − ζ ′∣∣ψδ

(
ξ − ζ ′) dζ ′ dξ dν2

y,s(ζ )

=
∫
R2

ϒ(ξ, ζ )dν1
x,s(ξ)dν2

y,s(ζ ),

where

ϒ(ξ, ζ ) =
∫ ξ

−∞

∫ ∞
ζ

Γ
(
ξ ′, ζ ′)∣∣ξ ′ − ζ ′∣∣ψδ

(
ξ ′ − ζ ′) dζ ′ dξ ′.

Therefore, we get

|I| ≤ E

∫ t

0

∫
(TN)2

∫
R2

ϒ(ξ, ζ )dν1
x,s(ξ)dν2

y,s(ζ )
∣∣∇x�ε(x − y)

∣∣ dx dy ds.

The function ϒ can be estimated using the substitution ξ ′′ = ξ ′ − ζ ′

ϒ(ξ, ζ ) =
∫ ∞
ζ

∫
|ξ ′′|<δ,ξ ′′<ξ−ζ ′

Γ
(
ξ ′′ + ζ ′, ζ ′)∣∣ξ ′′∣∣ψδ

(
ξ ′′) dξ ′′ dζ ′

≤ Cδ

∫ ξ+δ

ζ
max

|ξ ′′|<δ,ξ ′′<ξ−ζ ′ Γ
(
ξ ′′ + ζ ′, ζ ′) dζ ′

≤ Cδ

∫ ξ+δ

ζ

(
1 + |ξ |p−1 + ∣∣ζ ′∣∣p−1)

dζ ′

≤ Cδ
(
1 + |ξ |p + |ζ |p)

so

|I| ≤ Ctδε−1.

In order to estimate the term J, we observe that

J = E

∫ t

0

∫
(TN)2

∫
R2

f1f̄2
(
σ(ξ) − σ(ζ )

)2 : D2
x�ε(x − y)ψδ(ξ − ζ )dξ dζ dx dy ds

+ 2E
∫ t

0

∫
(TN)2

∫
R2

f1f̄2σ(ξ)σ (ζ ) : D2
x�ε(x − y)ψδ(ξ − ζ )dξ dζ dx dy ds
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−E

∫ t

0

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )dν1
x,s(ξ)dx dn2,1(y, s, ζ )

−E

∫ t

0

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )dν2
y,s(ζ )dy dn1,1(x, s, ξ)

= J1 + J2 + J3 + J4.

Since σ is locally γ -Hölder continuous due to (2.1), it holds

|J1| ≤ Ctδ2γ ε−2.

Next, we will show that J2 + J3 + J4 ≤ 0. From the definition of the parabolic
dissipative measure in Definition 2.2, we have

J3 + J4 = −E

∫ t

0

∫
(TN)2

�ε(x − y)ψδ(u1 − u2)

∣∣∣∣divy

∫ u2

0
σ(ζ )dζ

∣∣∣∣
2

dx dy ds

−E

∫ t

0

∫
(TN)2

�ε(x − y)ψδ(u1 − u2)

∣∣∣∣divx

∫ u1

0
σ(ξ)dξ

∣∣∣∣
2

dx dy ds.

Moreover, due to the chain rule formula (2.5) we deduce

div
∫
R

f φ(ξ)σ (ξ)dξ = div
∫
R

χf φ(ξ)σ (ξ)dξ = div
∫ u

0
φ(ξ)σ (ξ)dξ

= φ(u)div
∫ u

0
σ(ξ)dξ,

where χf = 1u>ξ − 10>ξ . With this in hand, we obtain

J2 = 2E
∫ t

0

∫
(TN)2

∫
R2

(∇xf1)
∗σ(ξ)σ (ζ )(∇yf2)�ε(x − y)ψδ(ξ − ζ )dξ dζ dx dy ds

= 2E
∫ t

0

∫
(TN)2

�ε(x − y)

× divy

∫ u2

0
σ(ζ ) · divx

∫ u1

0
σ(ξ)ψδ(ξ − ζ )dξ dζ dx dy ds

= 2E
∫ t

0

∫
(TN)2

�ε(x − y)ψδ(u1 − u2)

× divx

∫ u1

0
σ(ξ)dξ · divy

∫ u2

0
σ(ζ )dζ dx dy ds.

And, therefore,

J2 + J3 + J4 = −E

∫ t

0

∫
(TN)2

�ε(x − y)ψδ(u1 − u2)

×
∣∣∣∣divx

∫ u1

0
σ(ξ)dξ − divy

∫ u2

0
σ(ζ )dζ

∣∣∣∣
2

dx dy ds

≤ 0.
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The last term is, due to (2.3), bounded as follows:

K ≤ CE

∫ t

0

∫
(TN)2

�ε(x − y)|x − y|2
∫
R2

ψδ(ξ − ζ )dν1
x,s(ξ)dν2

y,s(ζ )dx dy ds

+ CE

∫ t

0

∫
(TN)2

�ε(x − y)

×
∫
R2

ψδ(ξ − ζ )|ξ − ζ |h(|ξ − ζ |) dν1
x,s(ξ)dν2

y,s(ζ )dx dy ds

≤ Ctδ−1ε2 + Cth(δ).

As a consequence, we deduce for all t ∈ [0, T ]
E

∫
TN

∫
R

f ±
1 (x, t, ξ)f̄ ±

2 (x, t, ξ)dξ dx

≤ E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f1,0(x, ξ)f̄2,0(y, ζ )dξ dζ dx dy

+ Ctδε−1 + Ctδ2γ ε−2 + Ctδ−1ε2 + Cth(δ) + ηt (ε, δ).

Taking δ = εβ with β ∈ (1/γ,2) and letting ε → 0 yields

E

∫
TN

∫
R

f ±
1 (t)f̄ ±

2 (t)dξ dx ≤ E

∫
TN

∫
R

f1,0f̄2,0 dξ dx.

Let us now consider f1 = f2 = f . Since f0 = 1u0>ξ we have the identity f0f̄0 = 0
and, therefore, f ±(1 − f ±) = 0 a.e. (ω, x, ξ) and for all t . The fact that f ± is a
kinetic function and Fubini’s theorem then imply that, for any t ∈ [0, T ], there ex-
ists a set �t ⊂ �×T

N of full measure such that, for (ω, x) ∈ �t , f ±(ω, x, t, ξ) ∈
{0,1} for a.e. ξ ∈ R. Therefore, there exist u± :� × T

N × [0, T ] → R such that
f ± = 1u±>ξ for a.e. (ω, x, ξ) and all t . In particular, u± = ∫

R
(f ± − 10>ξ )dξ for

a.e. (ω, x) and all t . It follows now from Proposition 3.1 and the identity

|α − β| =
∫
R

|1α>ξ − 1β>ξ |dξ, α,β ∈ R,

that u+ = u− = u for a.e. t ∈ [0, T ]. Since∫
R

1u±
1 >ξ 1u±

2 >ξ dξ = (
u±

1 − u±
2

)+
we obtain the comparison principle (3.1). �

As a consequence, we obtain the continuity of trajectories in Lp(TN) whose
proof is given in [12], Corollary 3.4.

COROLLARY 3.4 (Continuity in time). Let u be a kinetic solution to (1.1).
Then there exists a representative of u which has almost surely continuous trajec-
tories in Lp(TN), for all p ∈ [1,∞).
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4. Existence for nondegenerate case—B Lipschitz continuous. As the first
step toward the existence part of Theorem 2.7, we prove existence of a weak so-
lution to (1.1) under three additional hypotheses. Recall that once this claim is
verified, Theorem 2.7 follows immediately as any weak solution to (1.1) is also a
kinetic solution to (1.1), due to Section 2.3. Throughout this section, we suppose
that:

(H1) u0 ∈ Lp(�;C5(TN)), for all p ∈ [1,∞),
(H2) A is positive definite, that is, A ≥ τ I,
(H3) B is Lipschitz continuous hence it has linear growth |B(ξ)| ≤ L(1 + |ξ |).

In the following sections, we will show how we may relax all these assumptions
one after the other.

Let us approximate (1.1) by
du + div

(
Bη(u)

)
dt = div

(
Aη(u)∇u

)
dt − η�2udt + �η(u)dW,

(4.1)
u(0) = u0,

where Bη,Aη,�η are smooth approximations of B,A and �, respectively, with
bounded derivatives. Then the following existence result holds true.

THEOREM 4.1. For any η ∈ (0,1), there exists a unique strong solution
to (4.1) that belongs to

Lp(
�;C([0, T ];C4,λ(

T
N ))) ∀λ ∈ (0,1),∀p ∈ [1,∞).

PROOF. The second-order term in (4.1) can be rewritten in the following way:

div
(
Aη(u)∇u

) =
N∑

i,j=1

∂2
xixj

Ā
η
ij (u), Āη(ξ) =

∫ ξ

0
Aη(ζ )dζ,

hence [13], Corollary 2.2, applies. �

REMARK 4.2. Due to the fourth-order term −η�2u there are no a priori es-
timates of the Lp(TN)-norm for solutions of the approximations (4.1) and that is
the reason why we cannot deal directly with (1.1) if the coefficients have polyno-
mial growth. To overcome this difficulty, we proceed in two steps and avoid the
additional assumption upon B in the next section. Note that the linear growth hy-
pothesis is satisfied for the remaining coefficients, that is, for Ā(ξ) = ∫ ξ

0 A(ζ )dζ

since A ∈ Cb(R) and for � due to (2.2).

PROPOSITION 4.3. For any p ∈ [2,∞), the solution to (4.1) satisfies the fol-
lowing energy estimate:

E sup
0≤t≤T

∥∥uη(t)
∥∥p

L2(TN)
+ pτE

∫ T

0

∥∥uη
∥∥p−2
L2(TN)

∥∥∇uη
∥∥2
L2(TN) ds

(4.2) ≤ C
(
1 +E‖u0‖p

L2(TN)

)
,

where the constant C does not depend on η, τ and L.
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PROOF. Let us apply the Itô formula to the function f (v) = ‖v‖p

L2(TN)
. We

obtain

∥∥uη(t)
∥∥p

L2(TN)
= ‖u0‖p

L2(TN)
− p

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

〈
uη,div

(
Bη(

uη))〉
ds

+ p

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

〈
uη,div

(
Aη(

uη)∇uη)〉
ds

− pη

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

〈
uη,�2uη〉

ds

+ p
∑
k≥1

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

〈
uη, g

η
k

(
uη)〉

dβk(s)

+ p

2

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

∥∥Gη

(
uη)∥∥2

L2(TN) ds

+ p(p − 2)

2

∑
k≥1

∫ t

0

∥∥uη
∥∥p−4
L2(TN)

〈
uη, g

η
k

(
uη)〉2 ds

= J1 + · · · + J7.

Setting H(ξ) = ∫ ξ
0 Bη(ζ )dζ , we conclude that the second term on the right-hand

side vanishes, the third one as well as the fourth one is nonpositive

J3 + J4 ≤ −pτ

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

∥∥∇uη
∥∥2
L2(TN) ds

− pη

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

∥∥�uη
∥∥2
L2(TN) ds,

the sixth and seventh term are estimated as follows:

J6 + J7 ≤ C

(
1 +

∫ t

0

∥∥uη
∥∥p

L2(TN)
ds

)
,

and since expectation of J5 is zero, we get

E
∥∥uη(t)

∥∥p

L2(TN)
+ pτE

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

∥∥∇uη
∥∥2
L2(TN) ds

≤ E‖u0‖p

L2(TN)
+ C

(
1 +

∫ t

0
E

∥∥uη(s)
∥∥p

L2(TN)
ds

)
.

Application of the Gronwall lemma now yields

E
∥∥uη(t)

∥∥p

L2(TN)
+ pτE

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

∥∥∇uη
∥∥2
L2(TN) ds

≤ C
(
1 +E‖u0‖p

L2(TN)

)
.
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In order to obtain an estimate of E sup0≤t≤T ‖uη(t)‖p

L2(TN)
, we proceed simi-

larly as above to get

E sup
0≤t≤T

∥∥uη(t)
∥∥p

L2(TN)
≤ E‖u0‖p

L2(TN)
+ C

(
1 +

∫ T

0
E

∥∥uη
∥∥p

L2(TN)
ds

)

+ pE sup
0≤t≤T

∣∣∣∣
∑
k≥1

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

〈
uη, g

η
k

(
uη)〉

dβk(s)

∣∣∣∣
and for the stochastic integral we employ the Burkholder–Davis–Gundy and the
Schwartz inequality, the assumption (2.2) and the weighted Young inequality

E sup
0≤t≤T

∣∣∣∣
∑
k≥1

∫ t

0

∥∥uη
∥∥p−2
L2(TN)

〈
uη, g

η
k

(
uη)〉

dβk(s)

∣∣∣∣

≤ CE

(∫ T

0

∥∥uη
∥∥2p−4
L2(TN)

∑
k≥1

〈
uη, g

η
k

(
uη)〉2 ds

)1/2

≤ CE

(∫ T

0

∥∥uη
∥∥2p−2
L2(TN)

∑
k≥1

∥∥gη
k

(
uη)∥∥2

L2(TN) ds

)1/2

≤ CE

(
sup

0≤t≤T

∥∥uη(t)
∥∥p

L2(TN)

)1/2
(

1 +
∫ T

0

∥∥uη
∥∥p

L2(TN)
ds

)1/2

≤ 1

2
E sup

0≤t≤T

∥∥uη(t)
∥∥p

L2(TN)
+ C

(
1 +

∫ T

0
E

∥∥uη
∥∥p

L2(TN)
ds

)
.

This gives (4.2). �

PROPOSITION 4.4. For all λ ∈ (0,1/2), there exists a constant C > 0 such
that for all η ∈ (0,1)

E
∥∥uη

∥∥
Cλ([0,T ];H−3(TN)) ≤ C.

PROOF. Recall that due to Proposition 4.3, the set {uη;η ∈ (0,1)} is bounded
in L2(�;L2(0, T ;H 1(TN))). Since the coefficients Bη, Āη have linear growth
uniformly in η we conclude, in particular, that{

div
(
Bη(

uη))}
,

{
div

(
Aη(

uη)∇uη)}
,

{
η�2uη}

are bounded in L2(�;L2(0, T ;H−3(TN))), and consequently

E

∥∥∥∥uη −
∫ ·

0
�η(

uη)
dW

∥∥∥∥
C1/2([0,T ];H−3(TN))

≤ C.

Moreover, for all λ ∈ (0,1/2), paths of the above stochastic integral are λ-
Hölder continuous L2(TN)-valued functions and

E

∥∥∥∥
∫ ·

0
�η(

uη)
dW

∥∥∥∥
Cλ([0,T ];L2(TN))

≤ C.
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Indeed, it is a consequence of the Kolmogorov continuity theorem (see [6], Theo-
rem 3.3) since the following uniform estimate holds true. Let a > 2, s, t ∈ [0, T ],
then

E

∥∥∥∥
∫ t

s
�η(

uη)
dW

∥∥∥∥
a

≤ CE

(∫ t

s

∥∥�η(
uη)∥∥2

L2(U;L2(TN)) dr

)a/2

≤ C|t − s|a/2−1
E

∫ t

s

(∑
k≥1

∥∥gη
k

(
uη)∥∥2

L2(TN)

)a/2

dr

≤ C|t − s|a/2
(
1 +E sup

0≤t≤T

∥∥uη(t)
∥∥a
L2(TN)

)

≤ C|t − s|a/2(
1 +E‖u0‖a

L2(TN)

)
,

where we made use of the Burkholder–Davis–Gundy inequality, (2.2) and Propo-
sition 4.3. �

4.1. Compactness argument. Let us define the path space X = Xu × XW ,
where

Xu = L2(
0, T ;L2(

T
N )) ∩ C

([0, T ];H−4(
T

N ))
, XW = C

([0, T ];U0
)
.

Let us denote by μuη the law of uη on Xu, η ∈ (0,1), and by μW the law of W

on XW . Their joint law on X is then denoted by μη.

PROPOSITION 4.5. The set {μη;η ∈ (0,1)} is tight and, therefore, relatively
weakly compact in X .

PROOF. First, we prove tightness of {μuη;η ∈ (0,1)} which follows directly
from Propositions 4.3 and 4.4 by making use of the embeddings

Cλ([0, T ];H−3(
T

N ))
↪→ Hα(

0, T ;H−3(
T

N ))
, α < λ,

Cλ([0, T ];H−3(
T

N )) c
↪→ C

([0, T ];H−4(
T

N ))
,

L2(
0, T ;H 1(

T
N )) ∩ Hα(

0, T ;H−3(
T

N )) c
↪→ L2(

0, T ;L2(
T

N ))
.

Indeed, for R > 0 we define the set

BR = {
u ∈ L2(

0, T ;H 1(
T

N )) ∩ Cλ([0, T ];H−3(
T

N ));
‖u‖L2(0,T ;H 1(TN)) + ‖u‖Cλ([0,T ];H−3(TN)) ≤ R

}
which is thus relatively compact in Xu. Moreover, by Propositions 4.3 and 4.4

μuη

(
BC

R

) ≤ P

(∥∥uη
∥∥
L2(0,T ;H 1(TN)) >

R

2

)
+ P

(∥∥uη
∥∥
Cλ([0,T ];H−3(TN)) >

R

2

)

≤ 2

R

(
E

∥∥uη
∥∥
L2(0,T ;H 1(TN)) +E

∥∥uη
∥∥
Cλ([0,T ];H−3(TN))

) ≤ C

R
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hence given ϑ > 0 there exists R > 0 such that

μuη(BR) ≥ 1 − ϑ.

Besides, since the law μW is tight as being a Radon measure on the Polish
space XW , we conclude that also the set of their joint laws {μη;η ∈ (0,1)} is tight
and Prokhorov’s theorem therefore implies that it is relatively weakly compact.

�

Passing to a weakly convergent subsequence μn = μηn (and denoting by μ the
limit law), we now apply the Skorokhod embedding theorem to infer the following
result.

PROPOSITION 4.6. There exists a probability space (�̃, F̃ , P̃) with a se-
quence of X -valued random variables (ũn, W̃ n), n ∈ N, and (ũ, W̃ ) such that:

(i) the laws of (ũn, W̃ n) and (ũ, W̃ ) under P̃ coincide with μn and μ, respec-
tively,

(ii) (ũn, W̃ n) converges P̃-almost surely to (ũ, W̃ ) in the topology of X .

Finally, let (F̃t ) be the P̃-augmented canonical filtration of the process (ũ, W̃ ),
that is

F̃t = σ
(
σ(�t ũ, �tW̃ ) ∪ {

N ∈ F̃ ; P̃(N) = 0
})

, t ∈ [0, T ],
where �t is the operator of restriction to the interval [0, t], that is, if E is a Banach
space and t ∈ [0, T ], we define

�t :C
([0, T ];E) −→ C

([0, t];E)
,

k 	−→ k|[0,t].

Clearly, �t is a continuous mapping.

4.2. Identification of the limit. The aim of this subsection is to prove the fol-
lowing.

PROPOSITION 4.7. ((�̃, F̃ , (F̃t ), P̃), W̃ , ũ) is a weak martingale solution
to (1.1) provided (H1), (H2) and (H3) are fulfilled.

The proof is based on a new general method of constructing martingale solu-
tions of SPDEs that does not rely on any kind of martingale representation theorem
and, therefore, holds independent interest especially in situations where these rep-
resentation theorems are no longer available. For other applications of this method,
we refer the reader to [3, 12, 14, 24].
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Let us define for all t ∈ [0, T ] and a test function ϕ ∈ C∞(TN)

Mn(t) = 〈
un(t), ϕ

〉 − 〈u0, ϕ〉 +
∫ t

0

〈
div

(
Bn(

un))
, ϕ

〉
ds

−
∫ t

0

〈
div

(
An(

un)∇un)
, ϕ

〉
ds + ηn

∫ t

0

〈
�2un,ϕ

〉
ds, n ∈ N,

M̃n(t) = 〈
ũn(t), ϕ

〉 − 〈u0, ϕ〉 +
∫ t

0

〈
div

(
Bn(

ũn))
, ϕ

〉
ds

−
∫ t

0

〈
div

(
An(

ũn)∇ũn)
, ϕ

〉
ds + ηn

∫ t

0

〈
�2ũn, ϕ

〉
ds, n ∈ N,

M̃(t) = 〈
ũ(t), ϕ

〉 − 〈u0, ϕ〉 +
∫ t

0

〈
div

(
B(ũ)

)
, ϕ

〉
ds −

∫ t

0

〈
div

(
A(ũ)∇ũ

)
, ϕ

〉
ds.

Hereafter, times s, t ∈ [0, T ], s ≤ t , and a continuous function

γ :C
([0, s];H−4(

T
N )) × C

([0, s];U0
) −→ [0,1]

will be fixed but otherwise arbitrary. The proof is an immediate consequence of
the following two lemmas.

LEMMA 4.8. The process W̃ is a (F̃t )-cylindrical Wiener process, that is,
there exists a collection of mutually independent real-valued (F̃t )-Wiener pro-
cesses {β̃k}k≥1 such that W̃ = ∑

k≥1 β̃kek .

PROOF. Obviously, W̃ is a U0-valued cylindrical Wiener process and is (F̃t )-
adapted. According to the Lévy martingale characterization theorem, it remains to
show that it is also a (F̃t )-martingale. It holds true

Ẽγ
(
�sũ

n, �sW̃
n)[

W̃n(t) − W̃n(s)
] = Eγ

(
�su

n,�sW
)[

W(t) − W(s)
] = 0

since W is a martingale and the laws of (ũn, W̃ n) and (un,W) coincide. Next, the
uniform estimate

sup
n∈N

Ẽ
∥∥W̃n(t)

∥∥2
U0

= sup
n∈N

E
∥∥W(t)

∥∥2
U0

< ∞

and the Vitali convergence theorem yields

Ẽγ (�sũ, �sW̃ )
[
W̃ (t) − W̃ (s)

] = 0

which completes the proof. �

LEMMA 4.9. The processes

M̃, M̃2 − ∑
k≥1

∫ ·
0

〈
gk(ũ), ϕ

〉2 dr, M̃β̃k −
∫ ·

0

〈
gk(ũ), ϕ

〉
dr

are (F̃t )-martingales.
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PROOF. Here, we use the same approach as in the previous lemma. Let us
denote by β̃n

k , k ≥ 1 the real-valued Wiener processes corresponding to W̃n, that is
W̃n = ∑

k≥1 β̃n
k ek . For all n ∈N, the process

Mn =
∫ ·

0

〈
�n(

un)
dW(r),ϕ

〉 = ∑
k≥1

∫ ·
0

〈
gn

k

(
un)

, ϕ
〉
dβk(r)

is a square integrable (Ft )-martingale by (2.2) and (4.2) and, therefore,
(
Mn)2 − ∑

k≥1

∫ ·
0

〈
gn

k

(
un)

, ϕ
〉2 dr, Mnβk −

∫ ·
0

〈
gn

k

(
un)

, ϕ
〉
dr

are (Ft )-martingales. Besides, it follows from the equality of laws that

Ẽγ
(
�sũ

n, �sW̃
n)[

M̃n(t) − M̃n(s)
]

(4.3)
= Eγ

(
�su

n,�sW
)[

Mn(t) − Mn(s)
] = 0,

Ẽγ
(
�sũ

n, �sW̃
n)[(

M̃n)2
(t) − (

M̃n)2
(s) − ∑

k≥1

∫ t

s

〈
gn

k

(
ũn)

, ϕ
〉2 dr

]

= Eγ
(
�su

n,�sW
)[(

Mn)2
(t) − (

Mn)2
(s) − ∑

k≥1

∫ t

s

〈
gn

k

(
un)

, ϕ
〉2 dr

]
(4.4)

= 0,

Ẽγ
(
�sũ

n, �sW̃
n)[

M̃n(t)β̃n
k (t) − M̃n(s)β̃n

k (s) −
∫ t

s

〈
gn

k

(
ũn)

, ϕ
〉
dr

]

= Eγ
(
�su

n,�sW
)[

Mn(t)βk(t) − Mn(s)βk(s) −
∫ t

s

〈
gn

k

(
un)

, ϕ
〉
dr

]
(4.5)

= 0.

Moreover, since the coefficients B, Ā,
∑

k≥1 gk have linear growth, we can pass to
the limit in (4.3)–(4.5) due to (4.2) and the Vitali convergence theorem. We obtain

Ẽγ (�sũ, �sW̃ )
[
M̃(t) − M̃(s)

] = 0,

Ẽγ (�sũ, �sW̃ )

[
M̃2(t) − M̃2(s) − ∑

k≥1

∫ t

s

〈
gk(ũ), ϕ

〉2 dr

]
= 0,

Ẽγ (�sũ, �sW̃ )

[
M̃(t)β̃k(t) − M̃(s)β̃k(s) −

∫ t

s

〈
gk(ũ), ϕ

〉
dr

]
= 0,

which gives the (F̃t )-martingale property. �

PROOF OF PROPOSITION 4.7. Once the above lemmas established, we infer
that 〈〈

M̃ −
∫ ·

0

〈
�(ũ)dW̃ ,ϕ

〉〉〉 = 0,
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where 〈〈·〉〉 denotes the quadratic variation process. Accordingly,

〈
ũ(t), ϕ

〉 = 〈u0, ϕ〉 −
∫ t

0

〈
div

(
B(ũ)

)
, ϕ

〉
ds +

∫ t

0

〈
div

(
A(ũ)∇ũ

)
, ϕ

〉
ds

+
∫ t

0

〈
�(ũ)dW̃ ,ϕ

〉
, t ∈ [0, T ], P̃-a.s.,

and the proof is complete. �

4.3. Pathwise solutions. As a consequence of pathwise uniqueness established
in Section 3 and existence of a martingale solution that follows from the previous
subsection, we conclude from the Gyöngy–Krylov characterization of convergence
in probability that the original sequence un defined on the initial probability space
(�,F ,P) converges in probability in the topology of Xu to a random variable u

which is a weak solution to (1.1) provided (H1), (H2) and (H3) are fulfilled. For
further details on this method, we refer the reader to [12], Section 4.5.

Moreover, it follows from Proposition 4.3 that

u ∈ L2(
�;L∞(

0, T ;L2(
T

N ))) ∩ L2(
�;L2(

0, T ;H 1(
T

N )))
and one can also establish continuity of its trajectories in L2(TN). Toward this end,
we observe that the solution to

dz = �z dt + �(u)dW,

z(0) = u0,

belongs to L2(�;C([0, T ];L2(TN))). Setting r = u − z, we obtain

∂t r = �r − div
(
B(u)

) + div
((

A(u) − I
)∇u

)
,

r(0) = 0,

hence it follows by semigroup arguments that r ∈ C([0, T ];L2(TN)) a.s. and,
therefore,

u ∈ L2(
�;C([0, T ];L2(

T
N ))) ∩ L2(

�;L2(
0, T ;H 1(

T
N )))

.

5. Existence for nondegenerate case—polynomial growth of B . In this
section, we relax the additional hypothesis upon B and prove existence of a weak
solution to (1.1) under the remaining two additional hypotheses of Section 4, that
is, (H1) and (H2).

First, we approximate (1.1) by

du + div
(
BR(u)

)
dt = div

(
A(u)∇u

)
dt + �(u)dW,

(5.1)
u(0) = u0,
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where BR is a truncation of B . According to the previous section, for all R ∈ N

there exists a unique weak solution to (5.1) such that, for all p ∈ [2,∞),

E sup
0≤t≤T

∥∥uR(t)
∥∥p

L2(TN)
+ 2τE

∫ T

0

∥∥∇uR
∥∥2
L2(TN) ds ≤ C

(
1 +E‖u0‖p

L2(TN)

)
,

where the constant C is independent of R and τ . Furthermore, we can also obtain
a uniform estimate of the Lp(TN)-norm that is necessary in order to deal with
coefficients having polynomial growth.

PROPOSITION 5.1. For all p ∈ [2,∞), the solution to (5.1) satisfies the fol-
lowing estimate:

E sup
0≤t≤T

∥∥uR(t)
∥∥p

Lp(TN)
≤ C

(
1 +E‖u0‖p

Lp(TN)

)
,(5.2)

where the constant C does not depend on R and τ .

PROOF. As the generalized Itô formula (A.2) cannot be applied directly to
ϕ(ξ) = |ξ |p , p ∈ [2,∞), and ψ(x) = 1, we follow the approach of [8] and in-
troduce functions ϕn ∈ C2(R) that approximate ϕ and have quadratic growth at
infinity as required by Proposition A.1. Namely, let

ϕn(ξ) =
⎧⎨
⎩

|ξ |p, |ξ | ≤ n,

np−2
[
p(p − 1)

2
ξ2 − p(p − 2)n|ξ | + (p − 1)(p − 2)

2
n2

]
, |ξ | > n.

It is now easy to see that∣∣ξϕ′
n(ξ)

∣∣ ≤ pϕn(ξ),∣∣ϕ′
n(ξ)

∣∣ ≤ p
(
1 + ϕn(ξ)

)
,∣∣ϕ′

n(ξ)
∣∣ ≤ |ξ |ϕ′′

n(ξ),(5.3)

ξ2ϕ′′
n(ξ) ≤ p(p − 1)ϕn(ξ),

ϕ′′(ξ) ≤ p(p − 1)
(
1 + ϕn(ξ)

)
hold true for all ξ ∈ R, n ∈ N,p ∈ [2,∞). Then by Proposition A.1∫

TN
ϕn

(
uR(t)

)
dx =

∫
TN

ϕn(u0)dx −
∫ t

0

∫
TN

ϕ′
n

(
uR)

div
(
BR(

uR))
dx ds

+
∫ t

0

∫
TN

ϕ′
n

(
uR)

div
(
A

(
uR)∇uR)

dx ds

+ ∑
k≥1

∫ t

0

∫
TN

ϕ′
n

(
uR)

gk

(
uR)

dx dβk(s)

+ 1

2

∫ t

0

∫
TN

ϕ′′
n

(
uR)

G2(
uR)

dx ds.
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Setting H(ξ) = ∫ ξ
0 ϕ′′

n(ζ )BR(ζ )dζ it can be seen that the second term on the right-
hand side vanishes due to the boundary conditions. The third term is nonpositive
as the matrix A is positive definite

∫ t

0

∫
TN

ϕ′
n

(
uR)

div
(
A

(
uR)∇uR)

dx ds = −
∫ t

0

∫
TN

ϕ′′
n

(
uR)∣∣σ (

uR)∇uR
∣∣2 dx ds.

The last term is estimated by (5.3)

1

2

∫ t

0

∫
TN

ϕ′′
n

(
uR)

G2(
uR)

dx ds ≤ C

2

∫ t

0

∫
TN

ϕ′′
n

(
uR)(

1 + ∣∣uR
∣∣2)

dx ds

≤ Cp(p − 1)

2

∫ t

0

∫
TN

(
1 + ϕn

(
uR))

dx ds,

and, therefore, by Gronwall’s lemma we obtain

E

∫
TN

ϕn

(
uR(t)

)
dx ≤ C

(
1 +E

∫
TN

ϕ(u0)dx

)
.(5.4)

As a consequence, a uniform estimate of E sup0≤t≤T ‖uR(t)‖p

Lp(TN)
follows.

Indeed, we proceed similarly as before only for the stochastic term we apply
the Burkholder–Davis–Gundy and the Schwartz inequality, (5.3) and the weighted
Young inequality

E sup
0≤t≤T

∣∣∣∣
∑
k≥1

∫ t

0

∫
TN

ϕ′
n

(
uR)

gk

(
uR)

dx dβk(s)

∣∣∣∣

≤ CE

(∫ T

0

∑
k≥1

(∫
TN

∣∣ϕ′
n

(
uR)∣∣∣∣gk

(
uR)∣∣ dx

)2

ds

)1/2

≤ CE

(∫ T

0

∥∥∣∣ϕ′
n

(
uR)∣∣1/2∣∣uR

∣∣1/2∥∥2
L2(TN)

× ∑
k≥1

∥∥∣∣ϕ′
n

(
uR)∣∣1/2∣∣uR

∣∣−1/2∣∣gk

(
uR)∣∣∥∥2

L2(TN) ds

)1/2

≤ CE

(∫ T

0

∫
TN

ϕn

(
uR)

dx

(
1 +

∫
TN

ϕn

(
uR)

dx

)
ds

)1/2

≤ CE

(
sup

0≤t≤T

∫
TN

ϕn

(
uR)

dx

)1/2(
1 +

∫ T

0

∫
TN

ϕn

(
uR)

dx ds

)1/2

≤ 1

2
E sup

0≤t≤T

∫
TN

ϕn

(
uR)

dx + C

(
1 +

∫ T

0
E

∫
TN

ϕn

(
uR)

dx ds

)

which together with (5.4) and Fatou’s lemma yields (5.2). �
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Having Proposition 5.1 in hand, the proof of Propositions 4.4 as well as all the
proofs in Sections 4.1, 4.2, 4.3 can be repeated with only minor modifications and,
consequently, the following result deduced.

THEOREM 5.2. Under the additional hypotheses (H1), (H2), there exists a
unique weak solution to (1.1) such that, for all p ∈ [2,∞),

E sup
0≤t≤T

∥∥u(t)
∥∥p

Lp(TN)
+ p(p − 1)E

∫ T

0

∫
TN

|u|p−2∣∣σ(u)∇u
∣∣2

(5.5)
≤ C

(
1 +E‖u0‖p

Lp(TN)

)
and the constant C is independent of τ .

SKETCH OF THE PROOF. Following the approach of the previous section, we
obtain:

(i) For all λ ∈ (0,1/2) there exists C > 0 such that for all R ∈ N

E
∥∥uR

∥∥
Cλ([0,T ];H−1(TN)) ≤ C.

(ii) The laws of {uR;R ∈ N} form a tight sequence on

L2(
0, T ;L2(

T
N )) ∩ C

([0, T ];H−2(
T

N ))
.

(iii) There exists ((�̃, F̃ , (F̃t ), P̃), W̃ , ũ) that is a weak martingale solution
to (1.1).

(iv) There exists u ∈ L2(�;C([0, T ];L2(TN)))∩Lp(�;L∞(0, T ;Lp(TN)))∩
L2(�;L2(0, T ;H 1(TN))) that is a weak solution to (1.1).

(v) By the approach of Proposition 5.1, we obtain (5.5). �

6. Existence for degenerate case—smooth initial data. As the next step in
the existence proof of Theorem 2.7, we can finally proceed to the degenerate case.
Throughout this section, we only assume the additional hypothesis upon the initial
condition, that is, (H1).

Consider the following nondegenerate approximations of (1.1):

du + div
(
B(u)

)
dt = div

(
A(u)∇u

)
dt + τ�udt + �(u)dW,

(6.1)
u(0) = u0.

According to the results of Section 5, we have for any fixed τ > 0 the existence
of uτ ∈ L2(�;C([0, T ];L2(TN))) ∩ L2(�;L2(0, T ;H 1(TN))) which is a weak
solution to (6.1) and satisfies [cf. (5.5)]

E sup
0≤t≤T

∥∥uτ (t)
∥∥p

Lp(TN)

+ p(p − 1)E

∫ T

0

∫
TN

∣∣uτ
∣∣p−2(∣∣σ (

uτ )∇uτ
∣∣2 + τ

∣∣∇uτ
∣∣2)

dx dt(6.2)

≤ C
(
1 +E‖u0‖p

Lp(TN)

)
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with a constant that does not depend on τ . As the next step, we employ the
technique of Section 2.3 to derive the kinetic formulation that is satisfied by
f τ = 1uτ >ξ in the sense of D′(TN ×R). It reads as follows:

df τ + b · ∇f τ dt − A : D2f τ dt − τ�f τ dt
(6.3)

= δuτ =ξ�dW + ∂ξ

(
nτ

1 + nτ
2 − 1

2G2δuτ =ξ

)
dt,

where

dnτ
1(t, x, ξ) = ∣∣σ∇uτ

∣∣2 dδuτ =ξ dx dt,

dnτ
2(t, x, ξ) = τ

∣∣∇uτ
∣∣2 dδuτ =ξ dx dt.

6.1. Uniform estimates. Next, we prove a uniform Wλ,1(TN)-regularity of the
approximate solutions uτ . Toward this end, we make use of two seminorms de-
scribing the Wλ,1-regularity of a function u ∈ L1(TN) (see [7], Section 3.4, for
further details). Let λ ∈ (0,1) and define

pλ(u) =
∫
TN

∫
TN

|u(x) − u(y)|
|x − y|N+λ

dx dy,

pλ
�(u) = sup

0<ε<2DN

1

ελ

∫
TN

∫
TN

∣∣u(x) − u(y)
∣∣�ε(x − y)dx dy,

where (�ε) is the approximation to the identity on T
N that is radial, that is,

�ε(x) = 1/εN�(|x|/ε); and by DN we denote the diameter of [0,1]N . The frac-
tional Sobolev space Wλ,1(TN) is defined as a subspace of L1(TN) with finite
norm

‖u‖Wλ,1(TN) = ‖u‖L1(TN) + pλ(u).

According to [7], the following relations holds true between these seminorms. Let
s ∈ (0, λ), there exists a constant C = Cλ,�,N such that for all u ∈ L1(TN)

pλ
�(u) ≤ Cpλ(u), ps(u) ≤ C

λ − s
pλ

�(u).

PROPOSITION 6.1 (Wς,1-regularity). Set ς = min{2γ−1
γ+1 , 2α

α+1}, where γ was
defined in (2.1) and α in (2.4). Then for all s ∈ (0, ς) there exists a constant Cs > 0
such that for all t ∈ [0, T ] and all τ ∈ (0,1)

Eps(uτ (t)
) ≤ Cs

(
1 +Epς(u0)

)
.

In particular, there exists a constant Cs > 0 such that for all t ∈ [0, T ]
E

∥∥uτ (t)
∥∥
Ws,1(TN) ≤ Cs

(
1 +E‖u0‖Wς,1(TN)

)
.
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PROOF. Proof of this statement is based on Proposition 3.2. We have

E

∫
(TN)2

∫
R

�ε(x − y)f τ (x, t, ξ)f̄ τ (y, t, ξ)dξ dx dy

≤ E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f τ (x, t, ξ)f̄ τ (y, t, ζ )dξ dζ dx dy + δ

≤ E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f0(x, ξ)f̄0(y, ζ )dξ dζ dx dy

+ δ + I + J + Jτ + K

≤ E

∫
(TN)2

∫
R

�ε(x − y)f0(x, ξ)f̄0(y, ξ)dξ dx dy + 2δ + I + J + Jτ + K,

where I, J,K are defined similarly to Proposition 3.2, Jτ corresponds to the second-
order term τ�uτ :

Jτ = 2τE

∫ t

0

∫
(TN)2

∫
R2

f τ f̄ τ�x�ε(x − y)ψδ(ξ − ζ )dξ dζ dx dy ds

−E

∫ t

0

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )dντ
x,s(ξ)dx dnτ

2(y, s, ζ )

−E

∫ t

0

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )dντ
y,s(ζ )dy dnτ

2(x, s, ξ)

= −τE

∫ t

0

∫
(TN)2

�ε(x − y)ψδ

(
uτ (x) − uτ (y)

)∣∣∇xu
τ − ∇yu

τ
∣∣2 dx dy ds

≤ 0

and the error term δ was obtained as follows:∣∣∣∣E
∫
(TN)2

∫
R

�ε(x − y)f τ (x, t, ξ)f̄ τ (y, t, ξ)dξ dx dy

−E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f τ (x, t, ξ)f̄ τ (y, t, ζ )dξ dζ dx dy

∣∣∣∣
=

∣∣∣∣E
∫
(TN)2

�ε(x − y)

∫
R

1uτ (x)>ξ

∫
R

ψδ(ξ − ζ )

× [1uτ (y)≤ξ − 1uτ (y)≤ζ ]dζ dξ dx dy

∣∣∣∣
≤ E

∫
(TN)2

∫
R

�ε(x − y)1uτ (x)>ξ

∫ ξ

ξ−δ
ψδ(ξ − ζ )1ζ<uτ (y)≤ξ dζ dξ dx dy

+E

∫
(TN)2

∫
R

�ε(x − y)1uτ (x)>ξ

∫ ξ+δ

ξ
ψδ(ξ − ζ )1ξ<uτ (y)≤ζ dζ dξ dx dy(6.4)



DEGENERATE PARABOLIC SPDE’S: QUASILINEAR CASE 1943

≤ 1

2
E

∫
(TN)2

�ε(x − y)

∫ min{uτ (x),uτ (y)+δ}
uτ (y)

dξ dx dy

+ 1

2
E

∫
(TN)2

�ε(x − y)

∫ min{uτ (x),uτ (y)}
uτ (y)−δ

dξ dx dy ≤ δ.

Hence, by the proof of Theorem 3.3

E

∫
(TN)2

�ε(x − y)
∣∣uτ (x, t) − uτ (y, t)

∣∣dx dy

≤ E

∫
(TN)2

�ε(x − y)
∣∣u0(x) − u0(y)

∣∣ dx dy

+ CT

(
δ + δε−1 + δ2ε−2 + δ−1ε2 + δα)

.

By optimization in δ, that is, setting δ = εβ , we obtain

sup
0<τ<2DN

CT (δ + δε−1 + δ2γ ε−2 + δ−1ε2 + δα)

ες
≤ CT ,

where the maximal choice of the parameter ς is min{2γ−1
γ+1 , 2α

α+1}. As a conse-
quence,

E

∫
(TN)2

�ε(x − y)
∣∣uτ (x, t) − uτ (y, t)

∣∣ dx dy ≤ CT ες (
1 +Epς(u0)

)
.(6.5)

Finally, multiplying the above by ε−1−s , s ∈ (0, ς), and integrating with respect to
ε ∈ (0,2DN) gives the claim. �

6.2. Strong convergence. According to (6.2), the set {uτ ; τ ∈ (0,1)} is
bounded in Lp(�;Lp(0, T ;Lp(TN))) and, therefore, possesses a weakly con-
vergent subsequence. The aim of this subsection is to show that even strong con-
vergence holds true. Toward this end, we make use of the ideas developed in
Section 3.

THEOREM 6.2. There exists u ∈ L1(� × [0, T ],P,dP ⊗ dt;L1(TN)) such
that

uτ −→ u in L1(
� × [0, T ],P,dP⊗ dt;L1(

T
N ))

.

PROOF. By similar techniques as in the proofs of Proposition 3.2 and Theo-
rem 3.3, we obtain for any two approximate solutions uτ ,uσ

E

∫
TN

(
uτ (t) − uσ (t)

)+ dx

= E

∫
TN

∫
R

f τ (x, t, ξ)f̄ σ (x, t, ξ)dξ dx(6.6)
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= E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f τ (x, t, ξ)f̄ σ (y, t, ζ )dξ dζ dx dy

+ ηt (τ, σ, ε, δ).

(Here, ε and δ are chosen arbitrarily and their value will be fixed later.) The idea
now is to show that the error term ηt (τ, σ, ε, δ) is in fact independent of τ, σ .
Indeed, we have

ηt (τ, σ, ε, δ)

= E

∫
TN

∫
R

f τ (x, t, ξ)f̄ σ (x, t, ξ)dξ dx

−E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )f τ (x, t, ξ)f̄ σ (y, t, ζ )dξ dζ dx dy

=
(
E

∫
TN

∫
R

f τ (x, t, ξ)f̄ σ (x, t, ξ)dξ dx

−E

∫
(TN)2

∫
R

�ε(x − y)f τ (x, t, ξ)f̄ σ (y, t, ξ)dξ dx dy

)

+
(
E

∫
(TN)2

∫
R

�ε(x − y)f τ (x, t, ξ)f̄ σ (y, t, ξ)dξ dx dy

−E

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )

× f τ (x, t, ξ)f̄ σ (y, t, ζ )dξ dζ dx dy

)

= H1 + H2,

where

|H1| =
∣∣∣∣E

∫
(TN)2

�ε(x − y)

∫
R

1uτ (x)>ξ [1uσ (x)≤ξ − 1uσ (y)≤ξ ]dξ dx dy

∣∣∣∣
=

∣∣∣∣E
∫
(TN)2

�ε(x − y)
(
uσ (y) − uσ (x)

)
dx dy

∣∣∣∣
≤ Cες

due to (6.5) and |H2| ≤ δ due to (6.4). Therefore, the claim follows, that is,
|ηt (τ, σ, ε, δ)| ≤ Cες + δ. Heading back to (6.6) and using the same calculations
as in Proposition 3.2, we deduce

E

∫
TN

(
uτ (t) − uσ (t)

)+ dx

≤ 2Cες + 2δ + I + J + J# + K.
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The terms I, J,K are defined and can be dealt with exactly as in Proposition 3.2
and Theorem 3.3. The term J# is defined as

J# = (τ + σ)E

∫ t

0

∫
(TN)2

∫
R2

f τ f̄ σ�x�ε(x − y)ψδ(ξ − ζ )dξ dζ dx dy ds

−E

∫ t

0

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )dντ
x,s(ξ)dx dnσ

2 (y, s, ζ )

−E

∫ t

0

∫
(TN)2

∫
R2

�ε(x − y)ψδ(ξ − ζ )dνσ
y,s(ζ )dy dnτ

2(x, s, ξ)

so

J# = (τ + σ)E

∫ t

0

∫
(TN)2

�ε(x − y)ψδ

(
uτ − uσ )∇xu

τ · ∇yu
σ dx dy ds

− τE

∫ t

0

∫
(TN)2

�ε(x − y)ψδ

(
uτ − uσ )∣∣∇xu

τ
∣∣2 dx dy ds

− σE

∫ t

0

∫
(TN)2

�ε(x − y)ψδ

(
uτ − uσ )∣∣∇yu

σ
∣∣2 dx dy ds

= −E

∫ t

0

∫
(TN)2

�ε(x − y)ψδ

(
uτ − uσ )∣∣√τ∇xu

τ − √
σ∇yu

σ
∣∣2 dx dy ds

+ (
√

τ − √
σ)2

E

∫ t

0

∫
(TN)2

�ε(x − y)ψδ

(
uτ − uσ )∇xu

τ · ∇yu
σ dx dy ds

= J#
1 + J#

2.

The first term on the right-hand side is nonpositive and can be thus forgotten; for
the second one, we have

∣∣J#
2
∣∣ ≤ (

√
τ − √

σ)2
E

∫ t

0

∫
(TN)2

∫
R2

f τ f̄ σψδ(ξ − ζ )
∣∣�x�ε(x − y)

∣∣ dξ dζ dx dy ds

and proceeding similarly as in the case of I we get
∣∣J#

2
∣∣ ≤ (

√
τ − √

σ)2

×E

∫ t

0

∫
(TN)2

∫
R2

|ξ − ζ + δ|dντ
x,s(ξ)dνσ

y,s(ζ )
∣∣�x�ε(x − y)

∣∣ dx dy ds

≤ C(
√

τ − √
σ)2ε−2,

where the last inequality follows from (6.2). Consequently, we see that

E

∫ T

0

∫
TN

(
uτ (t) − uσ (t)

)+ dx dt ≤ C
(
ες + δ + δε−1 + δ2γ ε−2 + δ−1ε2 + δα)

+ C(τ + σ)ε−2
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and, therefore, given ϑ > 0 one can fix ε and δ small enough so that the first term
on the right-hand side is estimated by ϑ/2 and then find ι > 0 such that also the
second term is estimated by ϑ/2 for any τ, σ < ι. Thus, we have shown that the set
of approximate solutions {uτ } is Cauchy in L1(� × [0, T ],P,dP⊗ dt;L1(TN)),
as τ → 0. �

COROLLARY 6.3. For all p ∈ [1,∞),

uτ −→ u in Lp(
� × [0, T ],P,dP⊗ dt;Lp(

T
N ))

and the following estimate holds true:

E ess sup
0≤t≤T

∥∥u(t)
∥∥p

Lp(TN)
≤ C

(
1 +E‖u0‖p

Lp(TN)

)
.

PROOF. The claim follows directly from Theorem 6.2 and the estimate (6.2).
�

THEOREM 6.4. The process u constructed in Theorem 6.2 is the unique ki-
netic solution to (1.1) under the additional hypothesis (H1).

PROOF. Let t ∈ [0, T ]. According to Corollary 6.3, there exists a set � ⊂
� × [0, T ] × T

N of full measure and a subsequence still denoted by {un;n ∈ N}
such that un(ω, t, x) → u(ω, t, x) for all (ω, t, x) ∈ �. We infer that

1un(ω,t,x)>ξ −→ 1u(ω,t,x)>ξ(6.7)

whenever

(P⊗LTN ⊗L[0,T ])
{
(ω, x) ∈ �;u(ω, t, x) = ξ

} = 0,

where by LTN and L[0,T ] we denoted the Lebesque measure on T
N and [0, T ],

respectively. However, the set

D = {
ξ ∈ R; (P⊗LTN ⊗L[0,T ])(u = ξ) > 0

}
is at most countable since we deal with finite measures. To obtain a contradiction,
suppose that D is uncountable and denote

Dk =
{
ξ ∈ R; (P⊗LTN ⊗L[0,T ])(u = ξ) >

1

k

}
, k ∈ N.

Then D = ⋃
k∈N Dk is a countable union so there exists k0 ∈ N such that Dk0 is

uncountable. Hence,

(P⊗LTN ⊗L[0,T ])(u ∈ D) ≥ (P⊗LTN ⊗L[0,T ])(u ∈ Dk0)

= ∑
ξ∈Dk0

(P⊗LTN ⊗L[0,T ])(u = ξ) >
∑

ξ∈Dk0

1

k0
= ∞
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and the desired contradiction follows. We conclude that the convergence in (6.7)
holds true for a.e. (ω, t, x, ξ) and obtain by the dominated convergence theorem

f n w∗−→ f in L∞(
� × [0, T ] ×T

N ×R
)
.

As a consequence, we can pass to the limit in all the terms on the left-hand side
of the weak form of (6.3) and obtain the left-hand side of (2.6). Convergence of
the stochastic integral as well as the last term in the weak form (6.3) to the corre-
sponding terms in (2.6) can be verified easily using Corollary 6.3 and the energy
estimate (6.2).

In order to obtain the convergence of the remaining term ∂ξm
τ = ∂ξn

τ
1 + ∂ξn

τ
2

to a kinetic measure, we observe that due to the computations used in the proof
of (6.2), it holds

∫ T

0

∫
TN

∣∣σ (
uτ )∇uτ

∣∣2 dx dt + τ
∣∣∇uτ

∣∣2 dx dt

≤ C‖u0‖2
L2(TN)

+ C
∑
k≥1

∫ T

0

∫
TN

uτgk

(
uτ )

dx dβk(t)

+ C

∫ T

0

∫
TN

G2(
uτ )

dx ds.

Taking square and expectation and finally by the Itô isometry, we deduce

E
∣∣mτ ([0, T ] ×T

N ×R
)∣∣2

= E

∣∣∣∣
∫ T

0

∫
TN

∣∣σ (
uτ )∇uτ

∣∣2 dx dt + τ
∣∣∇uτ

∣∣2 dx dt

∣∣∣∣
2

≤ C.

Hence, the set {mτ ; τ ∈ (0,1)} is bounded in L2
w(�;Mb([0, T ] × T

N ×R)) and,
according to the Banach–Alaoglu theorem, it possesses a weak∗ convergent subse-
quence, denoted by {mn;n ∈ N}. Now, it only remains to show that its weak∗ limit
m is actually a kinetic measure. The first point of Definition 2.1 is straightforward
as it corresponds to the weak∗-measurability of m. The second one giving the be-
havior for large ξ is a consequence of the uniform estimate (6.2). Indeed, let (χδ)

be a truncation on R, then it holds, for p ∈ [2,∞),

E

∫
[0,T ]×TN×R

|ξ |p−2 dm(t, x, ξ)

≤ lim inf
δ→0

E

∫
[0,T ]×TN×R

|ξ |p−2χδ(ξ)dm(t, x, ξ)

= lim inf
δ→0

lim
n→∞E

∫
[0,T ]×TN×R

|ξ |p−2χδ(ξ)dmn(t, x, ξ) ≤ C,
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where the last inequality follows from (6.2). Accordingly, m vanishes for large ξ .
In order to verify the remaining requirement of Definition 2.1, let us define

xn(t) =
∫
[0,t]×TN×R

ψ(x, ξ)dmn(s, x, ξ)

and take the limit as n → ∞. These processes are predictable due to the definition
of measures mn. Let α ∈ L2(�), γ ∈ L2(0, T ), then by the Fubini theorem,

E

(
α

∫ T

0
γ (t)xn(t)dt

)
= E

(
α

∫
[0,T ]×TN×R

ψ(x, ξ)�(s)dmn(s, x, ξ)

)
,

where �(s) = ∫ T
s γ (t)dt . Hence, since � is continuous, we obtain by the weak

convergence of mn to m

E

(
α

∫ T

0
γ (t)xn(t)dt

)
−→ E

(
α

∫ T

0
γ (t)x(t)dt

)
,

where

x(t) =
∫
[0,t]×TN×R

ψ(x, ξ)dm(s, x, ξ).

Consequently, xn converges to x weakly in L2(�×[0, T ]) and, in particular, since
the space of predictable L2-integrable functions is weakly closed, the claim fol-
lows.

Finally, by the same approach as above, we deduce that there exist kinetic mea-
sures o1, o2 such that

nn
1

w∗−→ o1, nn
2

w∗−→ o2 in L2
w

(
�;Mb

([0, T ] ×T
N ×R

))
.

Then from (6.2) we obtain

E

∫ T

0

∫
TN

∣∣∣∣div
∫ un

0
σ(ζ )dζ

∣∣∣∣
2

dx dt ≤ C

hence application of the Banach–Alaoglu theorem yields that, up to subsequence,
div

∫ un

0 σ(ζ )dζ converges weakly in L2(� × [0, T ] × T
N). On the other hand,

from the strong convergence given by Corollary 6.3 and the fact that σ ∈ Cb(R),
we conclude using integration by parts, for all ψ ∈ C1([0, T ] ×T

N), P-a.s.,
∫ T

0

∫
TN

(
div

∫ un

0
σ(ζ )dζ

)
ψ(t, x)dx dt

−→
∫ T

0

∫
TN

(
div

∫ u

0
σ(ζ )dζ

)
ψ(t, x)dx dt,

and, therefore,

div
∫ un

0
σ(ζ )dζ

w−→ div
∫ u

0
σ(ζ )dζ in L2([0, T ] ×T

N )
,P-a.s.(6.8)
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Since any norm is weakly sequentially lower semicontinuous, it follows for all
ϕ ∈ C0([0, T ] ×T

N ×R) and fixed ξ ∈R, P-a.s.,
∫ T

0

∫
TN

∣∣∣∣div
∫ u

0
σ(ζ )dζ

∣∣∣∣
2

ϕ2(t, x, ξ)dx dt

≤ lim inf
n→∞

∫ T

0

∫
TN

∣∣∣∣div
∫ un

0
σ(ζ )dζ

∣∣∣∣
2

ϕ2(t, x, ξ)dx dt

and by the Fatou lemma
∫ T

0

∫
TN

∫
R

∣∣∣∣div
∫ u

0
σ(ζ )dζ

∣∣∣∣
2

ϕ2(t, x, ξ)dδu=ξ dx dt

≤ lim inf
n→∞

∫ T

0

∫
TN

∫
R

∣∣∣∣div
∫ un

0
σ(ζ )dζ

∣∣∣∣
2

ϕ2(t, x, ξ)dδun=ξ dx dt, P-a.s.

In other words, this yields that n1 ≤ o1, P-a.s., hence n2 = o2 + (o1 − n1) is a.s. a
nonnegative measure.

Concerning the chain rule formula (2.5), we observe that it holds true for all un

due to their regularity, that is, for any φ ∈ Cb(R)

div
∫ un

0
φ(ζ )σ (ζ )dζ = φ

(
un)

div
∫ un

0
σ(ζ )dζ in D′(

T
N )

, a.e. (ω, t).(6.9)

Furthermore, as we can easily obtain (6.8) with the integrant σ replaced by φσ ,
we can pass to the limit on the left-hand side and, making use of the strong-weak
convergence, also on the right-hand side of (6.9). The proof is complete. �

7. Existence for degenerate case—general initial data. In this final section,
we complete the proof of Theorem 2.7. In particular, we show existence of a kinetic
solution to (1.1) for a general initial data u0 ∈ Lp(�;Lp(TN)), ∀p ∈ [1,∞). It is
a straightforward consequence of the previous section. Indeed, let us approximate
the initial condition by a sequence {uε

0} ⊂ Lp(�;C∞(TN)), ∀p ∈ [1,∞), such
that uε

0 → u0 in L1(�;L1(TN)) and∥∥uε
0

∥∥
Lp(�;Lp(TN)) ≤ ‖u0‖Lp(�;Lp(TN)), ε ∈ (0,1),p ∈ [1,∞).(7.1)

According to Theorem 6.4, for each ε ∈ (0,1), there exists a unique kinetic so-
lution uε to (1.1) with initial condition uε

0. Besides, by the comparison princi-
ple (3.1),

E

∫ T

0

∥∥uε1(t) − uε2(t)
∥∥
L1(TN) dt ≤ TE

∥∥uε1
0 − u

ε2
0

∥∥
L1(TN), ε1, ε2 ∈ (0,1),

hence {uε; ε ∈ (0,1)} is a Cauchy sequence in L1(� × [0, T ],P,dP ⊗ dt;
L1(TN)). Consequently, there exists u ∈ L1(�×[0, T ],P,dP⊗dt;L1(TN)) such
that

uε −→ u in L1(
� × [0, T ],P,dP⊗ dt;L1(

T
N ))

.
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By (7.1), we have the uniform energy estimate, p ∈ [1,∞),

E ess sup
0≤t≤T

∥∥uε(t)
∥∥p

Lp(TN)
≤ C,

as well as

E
∣∣mε([0, T ] ×T

N ×R
)∣∣2 ≤ C.

Thus, using this observations as in Theorem 6.4, one finds that there exists a sub-
sequence {un;n ∈ N} such that:

(i) f n w∗−→ f in L∞(� × [0, T ] ×T
N ×R),

(ii) there exists a kinetic measure m such that

mn w∗−→ m in L2
w

(
�;Mb

([0, T ] ×T
N ×R

))
and m = n1 + n2, where

dn1(t, x, ξ) =
∣∣∣∣div

∫ u

0
σ(ζ )dζ

∣∣∣∣
2

dδu(t,x)(ξ)dx dt

and n2 is a.s. a nonnegative measure over [0, T ] ×T
N ×R.

With these facts in hand, we are ready to pass to the limit in (2.6) and conclude
that u is the unique kinetic solution to (1.1). The proof of Theorem 2.7 is thus
complete.

APPENDIX: GENERALIZED ITÔ’S FORMULA

In this section, we establish a generalized Itô formula for weak solutions of a
very general class of SPDEs of the form

du = F(t)dt + divG(t)dt + H(t)dW,
(A.1)

u(0) = u0,

where W is the cylindrical Wiener process defined in Section 2. Similar ideas were
already used in [9]. In the present context, the result is applied in the derivation of
the kinetic formulation in Section 2.3 as well as in the proof of a priori Lp(TN)-
estimates in Proposition 5.1. The result reads as follows.

PROPOSITION A.1. Let ψ ∈ C1(TN) and ϕ ∈ C2(R) with bounded second-
order derivative. Assume that the coefficients F , Gi, i = 1, . . . ,N , belong to
L2(�;L2(0, T ;L2(TN))) and H ∈ L2(�;L2(0, T ;L2(U;L2(TN)))), we denote
Hk = Hek , k ∈ N. Let the equation (A.1) be satisfied in H−1(TN) for some

u ∈ L2(
�;C([0, T ];L2(

T
N ))) ∩ L2(

�;L2(
0, T ;H 1(

T
N )))

.
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Then almost surely, for all t ∈ [0, T ],
〈
ϕ

(
u(t)

)
,ψ

〉 = 〈
ϕ(u0),ψ

〉 +
∫ t

0

〈
ϕ′(u(s)

)
F(s),ψ

〉
ds

−
∫ t

0

〈
ϕ′′(u(s)

)∇u · G(s),ψ
〉
ds

+
∫ t

0

〈
div

(
ϕ′(u(s)

)
G(s)

)
,ψ

〉
ds(A.2)

+
∫ t

0

〈
ϕ′(u(s)

)
H(s)dW(s),ψ

〉

+ 1

2

∑
k≥1

∫ t

0

〈
ϕ′′(u(s)

)
H 2

k (s),ψ
〉
ds.

PROOF. In order to prove the claim, we use regularization by convolutions.
Let (�δ) be an approximation to the identity on T

N . For a function f on T
N , we

denote by f δ the convolution f ∗ �δ . Recall, that if f ∈ L2(TN) then∥∥f δ
∥∥
L2(TN) ≤ ‖f ‖L2(TN),

∥∥f δ − f
∥∥
L2(TN) −→ 0.

Using �δ(x − ·) as a test function in (A.1), we obtain that

uδ(t) = uδ
0 +

∫ t

0
Fδ(s)ds +

∫ t

0
divGδ(s)ds + ∑

k≥1

∫ t

0
Hδ

k (s)dβk(s)

holds true for every x ∈ T
N . Hence, we can apply the classical 1-dimensional Itô

formula to the function u(x) 	→ ϕ(u(x))ψ(x) and integrate with respect to x

〈
ϕ

(
uδ(t)

)
,ψ

〉 = 〈
ϕ

(
uδ

0
)
,ψ

〉 +
∫ t

0

〈
ϕ′(uδ(s)

)
Fδ(s),ψ

〉
ds

−
∫ t

0

〈
ϕ′′(uδ(s)

)∇uδ(s) · Gδ(s),ψ
〉
ds

+
∫ t

0

〈
div

(
ϕ′(uδ(s)

)
Gδ(s)

)
,ψ

〉
ds

(A.3)

+ ∑
k≥1

∫ t

0

〈
ϕ′(uδ(s)

)
Hδ

k (s),ψ
〉
dβk(s)

+ 1

2

∑
k≥1

∫ t

0

〈
ϕ′′(uδ(s)

)[
Hδ

k (s)
]2

,ψ
〉
ds

= J1 + · · · + J6.

We will now show that each term in (A.3) converge a.s. to the corresponding term
in (A.2). For the stochastic term, we apply the Burkholder–Davis–Gundy inequal-
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ity

E sup
0≤t≤T

∣∣∣∣
∑
k≥1

∫ t

0

〈
ϕ′(uδ)Hδ

k − ϕ′(u)Hk,ψ
〉
dβk(s)

∣∣∣∣

≤ CE

(∫ T

0

∑
k≥1

∣∣〈ϕ′(uδ)Hδ
k − ϕ′(u)Hk,ψ

〉∣∣2 ds

)1/2

(A.4)

≤ CE

(∫ T

0

∥∥ϕ′(uδ) − ϕ′(u)
∥∥2
L2(TN)

∥∥Hδ
∥∥2
L2(U;L2(TN)) ds

)1/2

+ CE

(∫ T

0

∥∥ϕ′(u)
∥∥2
L2(TN)

∥∥Hδ − H
∥∥2
L2(U;L2(TN)) ds

)1/2

.

Since ϕ′ is Lipschitz, we have ‖ϕ′(uδ) − ϕ′(u)‖L2(TN) → 0 a.e. in ω, t and

E

(∫ T

0

∥∥ϕ′(uδ) − ϕ′(u)
∥∥2
L2(TN)

∥∥Hδ
∥∥2
L2(U;L2(TN)) ds

)1/2

≤ CE

(∫ T

0
‖u‖2

L2(TN)
‖H‖2

L2(U;L2(TN))
ds

)1/2

≤ CE sup
0≤t≤T

‖u‖2
L2(TN)

+ CE

∫ T

0
‖H‖2

L2(U;L2(TN))
ds

hence the first term on the right-hand side of (A.4) converges to zero by dom-
inated convergence theorem. The second one can be dealt with similarly as
‖Hδ − H‖L2(U;L2(TN)) → 0 a.e. in ω, t . As a consequence, we obtain (up to sub-
sequences) the almost sure convergence of J5.

All the other terms can be dealt with similarly using the dominated convergence
theorem. Let us now verify the convergence of J3. It holds∣∣∣∣

∫ t

0

〈
ϕ′′(uδ)∇uδ · Gδ − ϕ′′(u)∇u · G,ψ

〉
ds

∣∣∣∣
≤

∫ t

0

∣∣〈ϕ′′(uδ)∇uδ · (
Gδ − G

)
,ψ

〉∣∣ ds

+
∫ t

0

∣∣〈ϕ′′(uδ)(∇uδ − ∇u
)
G,ψ

〉∣∣ ds

+
∫ t

0

∣∣〈(ϕ′′(uδ) − ϕ′′(u)
)∇u · G,ψ

〉∣∣ ds.

Since ϕ′′ is bounded and ‖Gδ − G‖L2(TN) → 0, ‖∇uδ − ∇u‖L2(TN) → 0 a.e. in
ω, t we deduce by dominated convergence that the first two terms converge to
zero. For the remaining term, we shall use the fact that ϕ′′(uδ) − ϕ′′(u) → 0 a.e.
in ω, t, x and dominated convergence again.
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In the case of J4, we have∣∣∣∣
∫ t

0

〈
ϕ′(uδ)Gδ − ϕ′(u)G,∇ψ

〉
ds

∣∣∣∣
≤

∫ t

0

∣∣〈ϕ′(uδ)(Gδ − G
)
,∇ψ

〉∣∣ ds

+
∫ t

0

∣∣〈(ϕ′(uδ) − ϕ′(u)
)
G,∇ψ

〉∣∣ ds

hence ‖Gδ − G‖L2(TN) → 0, ‖ϕ′(uδ) − ϕ′(u)‖L2(TN) → 0 a.e. in ω, t yield the
conclusion. Similarly for J2.

Concerning J6, it holds∣∣∣∣
∑
k≥1

∫ t

0

〈
ϕ′′(uδ)[Hδ

k

]2 − ϕ′′(u)H 2
k ,ψ

〉
ds

∣∣∣∣

≤ ∑
k≥1

∫ t

0

∣∣〈ϕ′′(uδ)([Hδ
k

]2 − H 2
k

)
,ψ

〉∣∣ ds

+ ∑
k≥1

∫ t

0

∣∣〈(ϕ′′(uδ) − ϕ′′(u)
)
H 2

k ,ψ
〉∣∣ ds,

where for the first term we make use of boundedness of ϕ′′, the fact that∥∥[
Hδ

k

]2 − H 2
k

∥∥
L1(TN) ≤ ∥∥Hδ

k − Hk

∥∥
L2(TN)

∥∥Hδ
k + Hk

∥∥
L2(TN) −→ 0

a.e. in ω, t and dominated convergence. For the second one, we employ that
ϕ′′(uδ) − ϕ(u) → 0 a.e. in ω,x, t together with boundedness of ϕ′′.

Since ϕ′ has a linear growth, we obtain the convergence of J1 as well as the term
on the left-hand side of (A.3). Indeed, for all t ∈ [0, T ] we have∣∣〈ϕ(

uδ(t)
) − ϕ

(
u(t)

)
,ψ

〉∣∣ ≤ C
(
1 + ∥∥u(t)

∥∥
L2(TN)

)∥∥uδ(t) − u(t)
∥∥
L2(TN) −→ 0

and the proof is complete. �
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