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Abstract 
Considering availability purposes for train transportation, passenger accesses (doors and steps) are 
often designated as critical systems. To improve global availability of its rolling stock, Bombardier 
Transportation (BT) aims at reinforcing its maintenance procedure by introducing predictive diagnosis. 
The SURFER project has been initiated to develop online and in-cars tools to early detect and prevent 
faults. In this paper, an overview of achieved progress with respect to online predictive diagnosis will 
be introduced. For this purpose, many signals are recorded using a test bench by BT: electrical motor 
intensity current, door displacement, binary indicators as door closed and locked. The paper focuses 
on designing a semi-supervised discriminative probabilistic model that take into account contextual 
variables (train inclination or constraints due to passengers affluence) to perform a robust predictive 
diagnosis. The main steps of the proposed method are the followings: the segmentation of the 
provided signals into opening and closing phases, the extraction of relevant features from 
opening/closing phases, the setting of the discriminative diagnosis model based on statistical semi-
supervised learning. The proposed approach is tested on signals collected from regional trains fleeting 
around Paris. It allows the earlier detection of anomalies, for instance, those due to maladjustments. 
The practical implementation of this approach will be detailed together with its preliminary results. 
 

1. Introduction 
 
Rolling stock unavailability could be very expensive for the train builder during warranty period or for 
operating companies afterwards. Furthermore unavailability could lead to route planning 
disorganisation and to customer dissatisfaction. The SURFER project aims at deploying technical 
solution of active monitoring of on-board critical systems that are wisely solicited like customer 
accesses (the focus of this work). It also aims at optimising maintenance plan considering experiences 
about the system status evolution (the point developed in the paper entitled “A rolling stock door 
system’s dynamic maintenance strategies based on a sensitivity analysis through Bayesian networks” 
in WCRR 2013). In these two papers, the door systems are considered as the key point in terms of 
rolling stock availability. 
 
In this paper, a methodology used to perform an on-board discrimination between normal signals and 
suspicious signals of the door system due to malfunctions or exterior events as customer malevolence 
or strong track cant is introduced. If an abnormal event is detected, an alarm could be sent to deported 
operators that can access to all historical data stored on-board to investigate and give instructions to 
the train driver if necessary. The proposed approach, which does not require any physical model of the 
system, is generic and can easily be transposed to other critical transportation systems provided that 
relevant data are available on these ones. A partial labeling of the signals with faults supplied by the 
experts is exploited to build the discriminative model. The design of the model also takes into account 
data variability associated to the normal operating state, which can be attributed to certain exploitation 
contexts as the train inclination. 
 
The rest of the paper is organized as follows. In Section 2 we focus on extracting features of signals.  
Sections 3 and 4 introduce the general setting of the dataset and present the methodology. In Section 
5, we conclude the paper and discuss the technologies that are employed for on-board diagnosis. 
 
 
 



2. Selected indicators with real time transmission and processing constraints 
 
In the case of door systems, the signals of electrical currents consumed during the opening and 
closing operations, the door displacement signals, the binary switch indicator (door opened/door 
closed) were found to be the more relevant data for an accurate diagnosis to be performed. 
 
Due to transmission band width limitations, these signals have to be simplified into an indicator vector. 
The limited size of the corresponding file will allow on-board hard drive writings (during long 
exploitation periods) together with a 3G transmission to a distant terminal of selected signals upon 
request. A drastic compression of electrical signals has been done without loss of significant 
information depending on the requirements of practical applications. Under the bandwidth limitation 
constraint, the goal of this step is to extract the compact set of features or indicators that contain as 
much information as possible about the faults to be detected. 
 
In this framework, it has been chosen to summarize the raw signals of electrical current consumed 
during the openings/closing cycles and their associated door displacement into different phases 
together with values of important switches. For each cycle of opening and closing, we get a set of 66 
indicators including 
 

 the required unlocking power, 

 the amount of electrical current consumed during different identified translation phases,  

 the time when the first peak of the electrical current occurs,  

 the time duration of door translation, 

 the instants, positions and speeds while limit switches are going up and down,  

 the pressure estimated during locking phase. 
 
During the opening/closing operation, different types of faults can arise from maladjusted door leafs, 
frictions from the top or the bottom of the mechanism, relaxed belt, lack of lubrication or exterior 
phenomenon such as customer action on the mechanism. 
 
For the robustness sake of the classification issue, a historicity of degradation can be integrated. 
However this is not the focus of this paper. In the following section, we present how a discriminative 
model is constructed without taking into account that degradation evolution. 
 

3. Semi-supervised discriminating model for automatic diagnosis 
 
Now, we suppose that the available data are the extracted feature vectors {xi, i=1,2,…,n}, where each 
xi is a 66 dimensional vector describing physical characteristics of door open/close operations of 
trains. It is also assumed that each feature vector xi has an associated binary label yi equaling to 0 or 
1 to indicate whether this one corresponds to a normal operating state or contains mechanical faults. 
The object of the diagnosis task is to construct a discriminative model based on the pairs 
{(xi,yi), i=1,2,…,n}. The input of the model is one such feature vector and the output is an estimation of 
signal state justifying whether the signal is normal or not. 
 
In the extracted database, corresponding to 1344 doors distributed over 84 trains, only a very small 
part (3626 out of totally 1107554 signals) is labeled as signals with faults by the experts. Labels of the 
rest signals are left unknown. Therefore, construction of the model is actually a semi-supervised 
learning procedure [4]. Semi-supervised learning (SSL) is a family of algorithms halfway between 
supervised and unsupervised learning. It makes use of supervision information, but not necessarily for 
all the data samples. In additional to explicitly labeled samples, SSL also benefits from the data 
distribution characteristics of unlabeled samples and consider unlabeled data distribution as 
complementary constraints to enhance the model. In machine learning, SSL is often employed in 
classification when it is nevertheless unrealistic to collect labels of all training samples explicitly, which 
fits our task perfectly. In diagnosis of faults, even without explicit labels, the distribution of unlabeled 
collected signals is still helpful to formulate the learning framework. Firstly, normal signals always 
present homogeneous appearances. Thus they distribute compactly. In contrast, signals with potential 
faults have diverse profiles due to different mechanical causes of faults. Therefore, they contain 
relatively high variances in their distribution. Besides, the extracted signals are intrinsically highly 



imbalanced. The door switching system runs smoothly during most times, while falls into faults 
occasionally. The signals with potential faults thus only compose a small proportion of collected data 
samples. With this property, the identification of faults can be considered as a procedure of outlier 
detection. 
 

 
4. Semi-supervised construction of the discriminative diagnosis model  
 
To attack the above varietal issues of the diagnosis task, we propose to employ a two-step semi-
supervised learning to construct the expected discriminative model. 
 

 We first utilize a semi-supervised robust Principal Component Analysis (PCA) to identify 
signals containing potential faults in the unlabeled data with aid of the partial supervision 
information. This procedure estimates yi for each unlabeled signal and therefore complements 
labels for all the feature vectors.  

 Based on the fully labelled signals {(xi,yi), i=1,2,…,n}, the second step is to construct the our 
discriminative model, the bagging average of logistic regression, including both priory labels 
provided by the experts and those estimated. 

4.1. Semi-supervised robust PCA 
 
PCA is a linear projection of the data conserving most of variances in the data [1]. It has been widely 
used for representing high-dimensional data in a low-dimensional subspace and remove noises during 
preprocessing. PCA assumes data follow Gaussian distribution and fit the variance of data using the 
while noise model. Data samples that are severely biased from the Gaussian noise model are 
considered as noise or outliers. 
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where U is the projection matrix and xi is the projection of xi under U. The estimated columns of U are 
the eigenvectors of the covariance matrix of xi and µ is the average of the data [1]. In the diagnosis 
task, the Gaussian model embedded in PCA will capture most variances of the normal signal samples. 
Those data samples distinctively far from the Gaussian centre imply non-homogeneous 
characteristics, thus identified as signals with potential faults. However, due to the least square 
intrinsic of PCA, extremely large errors will make the principal components deviated from the majority 
homogeneous signal samples. Besides, classical PCA model doesn’t provide the interface to embed 
the observed labels. To improve its robustness and concatenate semi-supervision flexibility, we borrow 
the idea from robust M-estimator [3] to extend the standard PCA framework. Starting from initial 
parameters (U

(0)
,µ

(0)
,υ

(0)
), the resulting robust algorithm iterate the following minimization until the 

parameters stabilize: 
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c being the current iteration. Robust PCA learning is an iterative procedure. During the kth iteration, 
each signal sample xi is assigned with a scalar wi

(c)
 valued between 0 and 1 to evaluate its biases from 

the Gaussian model assumption. For unlabelled signal samples, wi
(c)

 is defined as the exponential 
mapping of the reconstruction error between the centred signal and its reconstruction through the PCA 
projection. Without the explicit label, we assume the signal samples that cannot be well described by 
the Gaussian noise model as the ones that are mostly likely to contain faults. Compared with the 
majority homogeneous samples, they leads to higher reconstruction error, thus correspond to lower 



wi
(c)

. With the increasing reconstruction error, the corresponding wi
(c)

 diminishes to 0 exponentially. The 
mean value of the signal samples µ and principle components U are updated by calculating the 
weighted version of the sample mean and covariance matrix of the signals. Through this way, the 
affections of the large errors to the PCA model are reduced to a large extent. For labelled signal 
samples with faults, wi

(c)
 is simply fixed to be 0 in order to explicitly remove faults patterns from the 

PCA model, which inserts the partially supervision information into the PCA model construction. 
 
In our diagnosis task, the distribution of normal signal samples usually presents a multi-modal 
characteristic caused by mechanical structure settings which can be attributed to the fact that the 
learning database of feature vector is related to several doors, each of which may be subject to 
various contexts (train inclination or constraints due to passengers affluence). In this setting, single-
modal PCA assumption doesn’t fit well with the multi-modal intrinsic. To refine the model for better data 
description, we extend the idea of mixture of local PCA [1] into the robust PCA framework. In this 
setting, normal signal samples are supposed to be divided into m separated local groups defining a 
partition P = (P1,…,Pm), where each group Pj has its own PCA parameters (Uj,µj,υij) indexed by j. The 
resulting algorithm starts from the initial parameters (Uj

(0)
,µj

(0)
,υij

(0)
) and partition P

(0)
=(P1

(0)
,…,Pm

(0)
) and 

iterates the following two steps until the parameters and partition stabilize: 
 

 step 1: for j=1,…,m, compute the parameters (Uj
(c)

,µj
(c)

,υij
(c)

) by solving the problem 
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 step 2: compute the partition P
(c)

=(P1
(c)

,…,Pm
(c)

) according to the rule 
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Training of the robust PCA algorithm with the multi-modal assumption usually converges after about 
50 iterations. Fig.1 indicates the distribution of {wi = maxj wij} for all collected feature vectors. As we 
can see, except labelled signals, 98% of the unlabelled signal samples correspond to {wi} that are 
larger than 0.3. For the unlabelled samples with wi less than 0.3, we have strong confidence that they 
imply occurrence of mechanical faults in the door switch system. In our work, we consider any 
unlabelled signal with its wi less than 0.3 as the signals with faults. The corresponding yi are set to 0 
as a result and the rest of yi are set to 1. Note the threshold on {wi} for justifying labels for the 
unlabelled data is set in the optimal sense according to empirically experiences and experts’ 
knowledge. Lower or higher thresholds can leads to stricter or looser criterion of fault diagnosis, which 
depends on practical needs of automatic diagnosis tasks. 
 

 
 

Figure 1: Distribution of weights wi 



 

4.2. Supervised bagging average of logistic regression 
 
Give a fully labelled signal set {(xi,yi), i=1,…,n} using the proposed robust PCA, a supervised bagging 
average [4] of discriminative models is constructed through the following iterative procedure. During 
each iteration, we sample the normal signals (samples with yi=1) with replacement. Each randomly 
sampled set of normal signals has the same number of samples as the signals with faults (samples 
with yi=0). A logistic regression model [2] Mj is then constructed based on the selected normal signals 
and all signals with faults. After T iterations of sampling and training, we can thus obtain T logistic 
regression models {Mj, j=1,2,…,T}. With a signal xi as the input, the model average (M1(xi)+…+ 
MT(xi))/T is used as the final diagnosis decision, where Mj(xi) is the output of model Mj for input xi. 
Since the output of each logistic regression model Mj ranges between 0 and 1, then the average 
output is well normalized and ranges between 0 and 1. Therefore, the output of the model average 
acts as a soft label of the input signal. The higher output indicates the stronger confidence of the 
corresponding input signal to be normal, and vice versa. In our work, we choose the number of training 
iterations T to be 500, in order to obtain satisfied regression result. Fig.2 illustrates the distribution of 
the bagging average output of logistic regression models {Mj, j=1,2,…,T} on the collected signal set. 
As we can see, most signals correspond to the output approaching to 1, which is consistent with the 
fact that most collected signals are normal. A small peak locates around 0 in the figure. The signal 
samples in this region are highly suspicious to contain potential faults. 
 

 
 

Figure 2: Distribution of logistic regression model output 
 
5. Online predictive diagnosis 

Once the parameters of the discriminative model are learned following the previous sections, the 
predictive diagnosis then consists, for a given door, of tracking the temporal evolution of the score 
provided by the logistic regression model. Fig.3 shows the temporal variation of the bagging average 
output for one specific door, lasting for almost one year. Blue curves show directly the variation of the 
soft diagnosis result of the model average. The green curves are obtained by performing median filter 
on the blue curves, indicating general temporal tendencies of the discriminative model output. We can 
observe the transition between the normal state and the faulty state. As we can find, the discriminative 
model output varies wildly along the temporal scale. This phenomenon is caused by occasional 
blockage due to passengers for instance. It usually causes a fault-like pattern in indicators, while it 
neither doesn’t last for long time, nor affects the performances of the following door opening/closing 
operations.  Median filter performs a sliding time window scanning the temporal variation of the 
discriminative model output. For each time window, median filter extracts median value of the model 
outputs within this model and smoothes the temporal fluctuations using the median value. Therefore, 
with the proper setting of the sliding window, median filter is able to extract and highlight the real 
mechanical faults that have distinctive influences in temporal scale. In the online diagnosis application, 
we first use the outputs of the discriminative model to trace the variation of the signal status. An online 
median filtering is then used to remove the occasional fluctuations and monitor the temporal tendency 
of the model output. Once the extracted median value of one specific time window is less than a 
predefined threshold, the diagnosis system will trigger an alarm for potential faults in the door.  



 

 

Figure 3: Temporal variation of logistic regression model outputs from  
February 1st 16:30 to December 31st 18:09. 

 
6. Conclusions and future work 
 
In this paper, we present the detailed construction procedure of a discriminative model for online 
predictive diagnosis of train door system. This work is composed by extraction of informative indicators 
from the original electrical signals and the following semi-supervised discriminative model learning 
based on the partially labelled features. Based on the achievement, our work enables online storing 
and transmission of the electrical signal features, while conserving as much as possible the needed 
information. Furthermore, the semi-supervised learning framework provides a flexible way to integrate 
expert knowledge efficiently and allows interactions between human experiences and system 
decisions. According to the experimental results, the presented method can track the temporal 
evolution of the train door system status and manage to early detect the faults of the doors. 
  
Our future work focuses on constructing a temporal dynamic model to describe the variations of the 
system status. It will integrate the function of early fault detection of the presented method and the 
probabilistic inference of the system status into a unified framework. With this dynamic model, we 
could achieve even more accurate monitoring of the system by smoothing the effects of the occasional 
events and focusing on the distinctive fault patterns. 
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