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REAL INTERPOLATION OF SOBOLEV SPACES

NADINE BADR

Abstract. We prove that W 1

p
is a real interpolation space between W 1

p1
and W 1

p2

for p > q0 and 1 ≤ p1 < p < p2 ≤ ∞ on some classes of manifolds and general metric
spaces, where q0 depends on our hypotheses.
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1. Introduction

Do the Sobolev spaces W 1
p form a real interpolation scale for 1 < p <∞? The aim

of the present work is to provide a positive answer for Sobolev spaces on some metric
spaces. Let us state here our main theorems for non-homogeneous Sobolev spaces
(resp. homogeneous Sobolev spaces) on Riemannian manifolds.

Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying
the local doubling property (Dloc) and a local Poincaré inequality (Pqloc), for some

2000 Mathematics Subject Classification. 46B70, 46M35.
Key words and phrases. Interpolation; Sobolev spaces; Poincaré inequality; Doubling property;

Riemannian manifolds; Metric-measure spaces.
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1 ≤ q < ∞. Then for 1 ≤ r ≤ q < p < ∞, W 1
p is a real interpolation space between

W 1
r and W 1

∞.

To prove Theorem 1.1, we characterize the K-functional of real interpolation for non-
homogeneous Sobolev spaces:

Theorem 1.2. Let M be as in Theorem 1.1. Then

1. there exists C1 > 0 such that for all f ∈ W 1
r +W 1

∞ and t > 0

K(f, t
1

r ,W 1
r ,W

1
∞) ≥ C1t

1

r

(

|f |r∗∗ 1

r (t) + |∇f |r∗∗ 1

r (t)
)

;

2. for r ≤ q ≤ p <∞, there is C2 > 0 such that for all f ∈ W 1
p and t > 0

K(f, t
1

r ,W 1
r ,W

1
∞) ≤ C2t

1

r

(

|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1

q (t)
)

.

In the special case r = q, we obtain the upper bound of K in point 2. for every
f ∈ W 1

q +W 1
∞ and hence get a true characterization of K.

The proof of this theorem relies on a Calderón-Zygmund decomposition for Sobolev
functions (Proposition 3.5).

Above and from now on, |g|q∗∗ 1

q means (|g|q∗∗) 1

q –see section 2 for the definition of
g∗∗–.

The reiteration theorem ([6], Chapter 5, Theorem 2.4 p.311) and an improvement
result for the exponent of a Poincaré inequality due to Keith-Zhong yield a more
general version of Theorem 1.1. Define q0 = inf {q ∈ [1,∞[: (Pqloc) holds }.
Corollary 1.3. For 1 ≤ p1 < p < p2 ≤ ∞ with p > q0, W

1
p is a real interpolation

space between W 1
p1

and W 1
p2

. More precisely

W 1
p = (W 1

p1
,W 1

p2
)θ,p

where 0 < θ < 1 such that 1
p

= 1−θ
p1

+ θ
p2

.

However, if p ≤ q0, we only know that (W 1
p1
,W 1

p2
)θ,p ⊂ W 1

p .
For the homogeneous Sobolev spaces, a weak form of Theorem 1.2 is available. This
result is presented in section 5. The consequence for the interpolation problem is
stated as follows.

Theorem 1.4. Let M be a complete non-compact Riemannian manifold satisfying the
global doubling property (D) and a global Poincaré inequality (Pq) for some 1 ≤ q <∞.

Then, for 1 ≤ r ≤ q < p <∞, Ẇ 1
p is a real interpolation space between Ẇ 1

r and Ẇ 1
∞.

Again, the reiteration theorem implies another version of Theorem 1.4; see section
5 below.

For Rn and the non-homogeneous Sobolev spaces, our interpolation result follows
from the leading work of Devore-Scherer [14]. The method of [14] is based on spline
functions. Later, simpler proofs were given by Calderón-Milman [9] and Bennett-
Sharpley [6], based on the Whitney extension and covering theorems. Since Rn admits
(D) and (P1), we recover this result by our method. Moreover, applying Theorem 1.4,
we obtain the interpolation of the homogeneous Sobolev spaces on Rn. Notice that
this result is not covered by the existing references.
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The interested reader may find a wealth of examples of spaces satisfying doubling and
Poincaré inequalities –to which our results apply– in [1], [4], [15], [18], [23].

Some comments about the generality of Theorem 1.1- 1.4 are in order. First of all,
completeness of the Riemannian manifold is not necessary (see Remark 4.3). Also,
our technique can be adapted to more general metric-measure spaces, see sections
7-8. Finally it is possible to build examples where interpolation without a Poincaré
inequality is possible. The question of the necessity of a Poincaré inequality for a
general statement arises. This is discussed in the Appendix.

The initial motivation of this work was to provide an answer for the interpolation

question for
.

W 1
p . This problem was explicitly posed in [3], where the authors interpo-

late inequalities of type ‖∆ 1

2f‖p ≤ Cp‖ |∇f | ‖p on Riemannian manifolds.

Let us briefly describe the structure of this paper. In section 2 we review the notions
of a doubling property as well as the real K interpolation method. In sections 3 to 5,
we study in detail the interpolation of Sobolev spaces in the case of a complete non-
compact Riemannian manifold M satisfying (D) and (Pq) (resp. (Dloc) and (Pqloc)).
We briefly mention the case where M is a compact manifold in section 6. In section 7,
we explain how our results extend to more general metric-measure spaces. We apply
this interpolation result to Carnot-Carathéodory spaces, weighted Sobolev spaces and
to Lie groups in section 8. Finally, the Appendix is devoted to an example where the
Poincaré inequality is not necessary to interpolate Sobolev spaces.

Acknowledgements. I am deeply indebted to my Ph.D advisor P. Auscher, who sug-
gested to study the topic of this paper, and for his constant encouragement and useful
advices. I would like to thanks P. Koskela for his thorough reading and processing of
the paper. Also I am thankful to P. Hajlasz for his interest in this work and M. Mil-
man for communicating me his paper with J. Martin [30]. Finally, I am also grateful
to G. Freixas, with whom I had interesting discussions regarding this work.

2. Preliminaries

Throughout this paper we will denote by 11E the characteristic function of a set E
and Ec the complement of E. IfX is a metric space, Lip will be the set of real Lipschitz
functions on X and Lip0 the set of real, compactly supported Lipschitz functions on
X. For a ball B in a metric space, λB denotes the ball co-centered with B and with
radius λ times that of B. Finally, C will be a constant that may change from an
inequality to another and we will use u ∼ v to say that there exists two constants C1,
C2 > 0 such that C1u ≤ v ≤ C2u.

2.1. The doubling property. By a metric-measure space, we mean a triple (X, d, µ)
where (X, d) is a metric space and µ a non negative Borel measure. Denote by B(x, r)
the open ball of center x ∈ X and radius r > 0.

Definition 2.1. Let (X, d, µ) be a metric-measure space. One says that X satisfies
the local doubling property (Dloc) if there exist constants r0 > 0, 0 < C = C(r0) <∞,

3



such that for all x ∈ X, 0 < r < r0 we have

(Dloc) µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Furthermore X satisfies a global doubling property or simply doubling property (D) if
one can take r0 = ∞. We also say that µ is a locally (resp. globally) doubling Borel
measure.

Observe that if X is a metric-measure space satisfying (D) then

diam(X) <∞ ⇔ µ(X) <∞ ([1]).

Theorem 2.2 (Maximal theorem). ([11]) Let (X, d, µ) be a metric-measure space
satisfying (D). Denote by M the uncentered Hardy-Littlewood maximal function over
open balls of X defined by

Mf(x) = sup
B:x∈B

|f |B

where fE := −
∫

E

fdµ :=
1

µ(E)

∫

E

fdµ. Then

1. µ({x : Mf(x) > λ}) ≤ C
λ

∫

X
|f |dµ for every λ > 0;

2. ‖Mf‖Lp
≤ Cp‖f‖Lp

, for 1 < p ≤ ∞.

2.2. The K-method of real interpolation. The reader can refer to [6], [7] for
details on the development of this theory. Here we only recall the essentials to be
used in the sequel.

Let A0, A1 be two normed vector spaces embedded in a topological Hausdorff vector
space V . For each a ∈ A0 +A1 and t > 0, we define the K-functional of interpolation
by

K(a, t, A0, A1) = inf
a=a0+a1

(‖a0‖A0
+ t‖a1‖A1

).

For 0 < θ < 1, 1 ≤ q ≤ ∞, we denote by (A0, A1)θ,q the interpolation space between
A0 and A1:

(A0, A1)θ,q =

{

a ∈ A0 + A1 : ‖a‖θ,q =

(
∫ ∞

0

(t−θK(a, t, A0, A1))
q dt

t

)
1

q

<∞
}

.

It is an exact interpolation space of exponent θ between A0 and A1, see [7], Chapter
II.

Definition 2.3. Let f be a measurable function on a measure space (X,µ). The
decreasing rearrangement of f is the function f ∗ defined for every t ≥ 0 by

f ∗(t) = inf {λ : µ({x : |f(x)| > λ}) ≤ t} .
The maximal decreasing rearrangement of f is the function f ∗∗ defined for every t > 0
by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds.

It is known that (Mf)∗ ∼ f ∗∗ and µ({x : |f(x)| > f∗(t)}) ≤ t for all t > 0. We
refer to [6], [7], [8] for other properties of f ∗ and f ∗∗.

We conclude the preliminaries by quoting the following classical result ([7] p.109):
4



Theorem 2.4. Let (X,µ) be a measure space where µ is a totally σ-finite positive
measure. Let f ∈ Lp + L∞, 0 < p <∞ where Lp = Lp(X, dµ). We then have

1. K(f, t, Lp, L∞) ∼
(

∫ tp

0
(f ∗(s))pds

)
1

p

and equality holds for p = 1;

2. for 0 < p0 < p < p1 ≤ ∞, (Lp0
, Lp1

)θ,p = Lp with equivalent norms, where
1

p
=

1 − θ

p0

+
θ

p1

with 0 < θ < 1.

3. Non-homogeneous Sobolev spaces on Riemannian manifolds

In this section M denotes a complete non-compact Riemannian manifold. We write
µ for the Riemannian measure on M , ∇ for the Riemannian gradient, | · | for the
length on the tangent space (forgetting the subscript x for simplicity) and ‖ · ‖p for
the norm on Lp(M,µ), 1 ≤ p ≤ +∞. Our goal is to prove Theorem 1.2.

3.1. Non-homogeneous Sobolev spaces.

Definition 3.1 ([2]). Let M be a C∞ Riemannian manifold of dimension n. Write
E1

p for the vector space of C∞ functions ϕ such that ϕ and |∇ϕ| ∈ Lp, 1 ≤ p < ∞.

We define the Sobolev space W 1
p as the completion of E1

p for the norm

‖ϕ‖W 1
p

= ‖ϕ‖p + ‖ |∇ϕ| ‖p.

We denote W 1
∞ for the set of all bounded Lipschitz functions on M .

Proposition 3.2. ([2], [20]) Let M be a complete Riemannian manifold. Then C∞
0

and in particular Lip0 is dense in W 1
p for 1 ≤ p <∞.

Definition 3.3 (Poincaré inequality on M). We say that a complete Riemannian
manifold M admits a local Poincaré inequality (Pqloc) for some 1 ≤ q < ∞ if
there exist constants r1 > 0, C = C(q, r1) > 0 such that, for every function f ∈ Lip0

and every ball B of M of radius 0 < r < r1, we have

(Pqloc) −
∫

B

|f − fB|qdµ ≤ Crq −
∫

B

|∇f |qdµ.

M admits a global Poincaré inequality (Pq) if we can take r1 = ∞ in this definition.

Remark 3.4. By density of C∞
0 in W 1

p , we can replace Lip0 by C∞
0 .

3.2. Estimation of the K-functional of interpolation. In the first step, we prove
Theorem 1.2 in the global case. This will help us to understand the proof of the more
general local case.

3.2.1. The global case. Let M be a complete Riemannian manifold satisfying (D) and
(Pq), for some 1 ≤ q < ∞. Before we prove Theorem 1.2, we make a Calderón-
Zygmund decomposition for Sobolev functions inspired by the one done in [3]. To
achieve our aims, we state it for more general spaces (in [3], the authors only needed
the decomposition for the functions f in C∞

0 ). This will be the principal tool in the
estimation of the functional K.

Proposition 3.5 (Calderón-Zygmund lemma for Sobolev functions). Let M be a
complete non-compact Riemannian manifold satisfying (D). Let 1 ≤ q < ∞ and
assume that M satisfies (Pq). Let q ≤ p <∞, f ∈ W 1

p and α > 0. Then one can find
5



a collection of balls (Bi)i, functions bi ∈ W 1
q and a Lipschitz function g such that the

following properties hold:

(3.1) f = g +
∑

i

bi

(3.2) |g(x)| ≤ Cα and |∇g(x)| ≤ Cα µ− a.e x ∈M

(3.3) supp bi ⊂ Bi,

∫

Bi

(|bi|q + |∇bi|q)dµ ≤ Cαqµ(Bi)

(3.4)
∑

i

µ(Bi) ≤ Cα−p

∫

(|f | + |∇f |)pdµ

(3.5)
∑

i

χBi
≤ N.

The constants C and N only depend on q, p and on the constants in (D) and (Pq).

Proof. Let f ∈ W 1
p , α > 0. Consider Ω = {x ∈M : M(|f | + |∇f |)q(x) > αq}. If

Ω = ∅, then set
g = f , bi = 0 for all i

so that (3.2) is satisfied according to the Lebesgue differentiation theorem. Otherwise
the maximal theorem –Theorem 2.2– gives us

µ(Ω) ≤ Cα−p‖(|f | + |∇f |)q‖
p

q
p

q

≤ Cα−p
(

∫

|f |pdµ+

∫

|∇f |pdµ
)

(3.6)

< +∞.

In particular Ω 6= M as µ(M) = +∞. Let F be the complement of Ω. Since Ω is an
open set distinct of M , let (Bi) be a Whitney decomposition of Ω ([12]). The balls Bi

are pairwise disjoint and there exist two constants C2 > C1 > 1, depending only on
the metric, such that

1. Ω = ∪iBi with Bi = C1Bi and the balls Bi have the bounded overlap property;

2. ri = r(Bi) = 1
2
d(xi, F ) and xi is the center of Bi;

3. each ball Bi = C2Bi intersects F (C2 = 4C1 works).

For x ∈ Ω, denote Ix = {i : x ∈ Bi}. By the bounded overlap property of the balls Bi,
we have that ♯Ix ≤ N . Fixing j ∈ Ix and using the properties of the Bi’s, we easily
see that 1

3
ri ≤ rj ≤ 3ri for all i ∈ Ix. In particular, Bi ⊂ 7Bj for all i ∈ Ix.

Condition (3.5) is nothing but the bounded overlap property of the Bi’s and (3.4)
follows from (3.5) and (3.6). The doubling property and the fact that Bi ∩ F 6= ∅
yield

(3.7)

∫

Bi

(|f |q + |∇f |q)dµ ≤
∫

Bi

(|f | + |∇f |)qdµ ≤ αqµ(Bi) ≤ Cαqµ(Bi).

Let us now define the functions bi. Let (χi)i be a partition of unity of Ω sub-
ordinated to the covering (Bi), such that for all i, χi is a Lipschitz function sup-

ported in Bi with ‖ |∇χi| ‖∞ ≤ C

ri

. To this end it is enough to choose χi(x) =

6



ψ(
C1d(xi, x)

ri

)
(

∑

k

ψ(
C1d(xk, x)

rk

)
)−1

, where ψ is a smooth function, ψ = 1 on [0, 1],

ψ = 0 on [1+C1

2
,+∞[ and 0 ≤ ψ ≤ 1. We set bi = (f − fBi

)χi. It is clear that
supp bi ⊂ Bi. Let us estimate

∫

Bi
|bi|qdµ and

∫

Bi
|∇bi|qdµ. We have

∫

Bi

|bi|qdµ =

∫

Bi

|(f − fBi
)χi|qdµ

≤ C(

∫

Bi

|f |qdµ+

∫

Bi

|fBi
|qdµ)

≤ C

∫

Bi

|f |qdµ

≤ Cαqµ(Bi).

We applied Jensen’s inequality in the second estimate, and (3.7) in the last one. Since

∇
(

(f − fBi
)χi

)

= χi∇f + (f − fBi
)∇χi, the Poincaré inequality (Pq) and (3.7) yield

∫

Bi

|∇bi|qdµ ≤ C

(
∫

Bi

|χi∇f |qdµ+

∫

Bi

|f − fBi
|q|∇χi|qdµ

)

≤ Cαqµ(Bi) + C
Cq

rq
i

rq
i

∫

Bi

|∇f |qdµ

≤ Cαqµ(Bi).

Therefore (3.3) is proved.

Set g = f−
∑

i

bi. Since the sum is locally finite on Ω, g is defined almost everywhere

on M and g = f on F . Observe that g is a locally integrable function on M . Indeed,
let ϕ ∈ L∞ with compact support. Since d(x, F ) ≥ ri for x ∈ supp bi, we obtain

∫

∑

i

|bi| |ϕ| dµ ≤
(

∫

∑

i

|bi|
ri

dµ
)

sup
x∈M

(

d(x, F )|ϕ(x)|
)

and
∫ |bi|

ri

dµ =

∫

Bi

|f − fBi
|

ri

χidµ

≤
(

µ(Bi)
)

1

q′
(

∫

Bi

|∇f |qdµ
)

1

q

≤ Cαµ(Bi).

We used the Hölder inequality, (Pq) and the estimate (3.7), q′ being the conjugate of

q. Hence

∫

∑

i

|bi||ϕ|dµ ≤ Cαµ(Ω) sup
x∈M

(

d(x, F )|ϕ(x)|
)

. Since f ∈ L1,loc, we deduce

that g ∈ L1,loc. (Note that since b ∈ L1 in our case, we can say directly that g ∈ L1,loc.
However, for the homogeneous case –section 5– we need this observation to conclude

that g ∈ L1,loc.) It remains to prove (3.2). Note that
∑

i

χi(x) = 1 and
∑

i

∇χi(x) = 0

7



for all x ∈ Ω. We have

∇g = ∇f −
∑

i

∇bi

= ∇f − (
∑

i

χi)∇f −
∑

i

(f − fBi
)∇χi

= 11F (∇f) +
∑

i

fBi
∇χi.

From the definition of F and the Lebesgue differentiation theorem, we have that
11F (|f |+ |∇f |) ≤ α µ−a.e.. We claim that a similar estimate holds for h =

∑

i fBi
∇χi.

We have |h(x)| ≤ Cα for all x ∈ M . For this, note first that h vanishes on F and is
locally finite on Ω. Then fix x ∈ Ω and let Bj be some Whitney ball containing x.
For all i ∈ Ix, we have |fBi

− fBj
| ≤ Crjα. Indeed, since Bi ⊂ 7Bj, we get

|fBi
− f7Bj

| ≤ 1

µ(Bi)

∫

Bi

|f − f7Bj
|dµ

≤ C

µ(Bj)

∫

7Bj

|f − f7Bj
|dµ

≤ Crj(−
∫

7Bj

|∇f |qdµ)
1

q

≤ Crjα(3.8)

where we used Hölder inequality, (D), (Pq) and (3.7). Analogously |f7Bj
−fBj

| ≤ Crjα.
Hence

|h(x)| = |
∑

i∈Ix

(fBi
− fBj

)∇χi(x)|

≤ C
∑

i∈Ix

|fBi
− fBj

|r−1
i

≤ CNα.

From these estimates we deduce that |∇g(x)| ≤ Cα µ − a.e.. Let us now esti-

mate ‖g‖∞. We have g = f11F +
∑

i

fBi
χi. Since |f |11F ≤ α, still need to estimate

‖∑

i fBi
χi‖∞. Note that

|fBi
|q ≤ C

( 1

µ(Bi)

∫

Bi

|f |dµ
)q

≤
(

M(|f | + |∇f |)
)q

(y)

≤ M(|f | + |∇f |)q(y)

≤ αq(3.9)

where y ∈ Bi ∩ F since Bi ∩ F 6= ∅. The second inequality follows from the fact that
(Mf)q ≤ Mf q for q ≥ 1.
Let x ∈ Ω. Inequality (3.9) and the fact that ♯Ix ≤ N yield

|g(x)| = |
∑

i∈Ix

fBi
χi|

8



≤
∑

i∈Ix

|fBi
|

≤ Nα.

We conclude that ‖g‖∞ ≤ C α µ− a.e. and the proof of Proposition 3.5 is therefore
complete. �

Remark 3.6. 1- It is a straightforward consequence of (3.3) that bi ∈ W 1
r for all

1 ≤ r ≤ q with ‖bi‖W 1
r
≤ Cαµ(Bi)

1

r .
2- From the construction of the functions bi, we see that

∑

i bi ∈ W 1
p , with ‖∑

i bi‖W 1
p
≤

C‖f‖W 1
p
. It follows that g ∈ W 1

p . Hence (g, |∇g|) satisfies the Poincaré inequality

(Pp). Theorem 3.2 of [23] asserts that for µ− a.e. x, y ∈M

|g(x) − g(y)| ≤ Cd(x, y)
(

(M|∇g|p) 1

p (x) + (M|∇g|p) 1

p (y)
)

.

From Theorem 2.2 with p = ∞ and the inequality ‖ |∇g| ‖∞ ≤ Cα, we deduce that g
has a Lipschitz representative. Moreover, the Lipschitz constant is controlled by Cα.
3- We also deduce from this Calderón-Zygmund decomposition that g ∈ W 1

s for p ≤
s ≤ ∞. We have

(∫

Ω
(|g|s + |∇g|s)dµ

)
1

s ≤ Cαµ(Ω)
1

s and
∫

F

(|g|s + |∇g|s)dµ =

∫

F

(|f |s + |∇f |s)dµ

≤
∫

F

(|f |p|f |s−p + |∇f |p|∇f |s−p)dµ

≤ αs−p‖f‖p

W 1
p
<∞.

Corollary 3.7. Under the same hypotheses as in the Calderón-Zygmund lemma, we
have

W 1
p ⊂ W 1

r +W 1
s for 1 ≤ r ≤ q ≤ p ≤ s <∞.

Proof of Theorem 1.2. To prove part 1., we begin applying Theorem 2.4, part 1. We
have

K(f, t
1

r , Lr, L∞) ∼
(

∫ t

0

(f ∗(s))rds
)

1

r

.

On the other hand
(

∫ t

0

f ∗(s)rds
)

1

r

=
(

∫ t

0

|f(s)|r∗ds
)

1

r

=
(

t|f |r∗∗(t)
)

1

r

where in the first equality we used the fact that f ∗r = (|f |r)∗ and the second follows

from the definition of f ∗∗. We thus get K(f, t
1

r , Lr, L∞) ∼ t
1

r (|f |r∗∗) 1

r (t). Moreover,

K(f, t
1

r ,W 1
r ,W

1
∞) ≥ K(f, t

1

r , Lr, L∞) +K(|∇f |, t 1

r , Lr, L∞)

since the linear operator

(I, ∇) : W 1
s (M) → (Ls(M ; C × TM))

is bounded for every 1 ≤ s ≤ ∞. These two points yield the desired inequality.
We will now prove part 2.. We treat the case when f ∈ W 1

p , q ≤ p < ∞. Let
t > 0. We consider the Calderón-Zygmund decomposition of f of Proposition 3.5

9



with α = α(t) =
(

M(|f | + |∇f |)q
)∗ 1

q

(t). We write f =
∑

i

bi + g = b + g where

(bi)i, g satisfy the properties of the proposition. From the bounded overlap property
of the Bi’s, it follows that for all r ≤ q

‖b‖r
r ≤

∫

M

(
∑

i

|bi|)rdµ

≤ N
∑

i

∫

Bi

|bi|rdµ

≤ Cαr(t)
∑

i

µ(Bi)

≤ Cαr(t)µ(Ω).

Similarly we have ‖ |∇b| ‖r ≤ Cα(t)µ(Ω)
1

r .
Moreover, since (Mf)∗ ∼ f ∗∗ and (f + g)∗∗ ≤ f ∗∗ + g∗∗, we get

α(t) = (M(|f | + |∇f |)q)∗
1

q (t) ≤ C
(

|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1

q (t)
)

.

Noting that µ(Ω) ≤ t, we deduce that

(3.10) K(f, t
1

r ,W 1
r ,W

1
∞) ≤ Ct

1

r

(

|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1

q (t)
)

for all t > 0 and obtain the desired inequality for f ∈ W 1
p , q ≤ p <∞.

Note that in the special case where r = q, we have the upper bound of K for
f ∈ W 1

q . Applying a similar argument to that of [14] –Euclidean case– we get (3.10)

for f ∈ W 1
q +W∞. Here we will omit the details. �

We were not able to show this characterization when r < q since we could not
show its validity even for f ∈ W 1

r . Nevertheless this theorem is enough to achieve
interpolation (see the next section).

3.2.2. The local case. Let M be a complete non-compact Riemannian manifold satis-
fying a local doubling property (Dloc) and a local Poincaré inequality (Pqloc) for some
1 ≤ q <∞.

Denote by ME the Hardy-Littlewood maximal operator relative to a measurable
subset E of M , that is, for x ∈ E and every locally integrable function f on M

MEf(x) = sup
B: x∈B

1

µ(B ∩ E)

∫

B∩E

|f |dµ

where B ranges over all open balls of M containing x and centered in E. We say
that a measurable subset E of M has the relative doubling property if there exists a
constant CE such that for all x ∈ E and r > 0 we have

µ(B(x, 2r) ∩ E) ≤ CEµ(B(x, r) ∩ E).

This is equivalent to saying that the metric-measure space (E, d|E, µ|E) has the dou-
bling property. On such a set ME is of weak type (1, 1) and bounded on Lp(E, µ), 1 <
p ≤ ∞.
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Proof of Theorem 1.2. To fix ideas, we assume without loss of generality r0 = 5,
r1 = 8. The lower bound of K is trivial (same proof as for the global case). It remains
to prove the upper bound.

For all t > 0, take α = α(t) =
(

M(|f | + |∇f |)q
)∗ 1

q

(t). Consider

Ω = {x ∈M : M(|f | + |∇f |)q(x) > αq(t)} .
We have µ(Ω) ≤ t. If Ω = M then

∫

M

|f |rdµ+

∫

M

|∇f |rdµ =

∫

Ω

|f |rdµ+

∫

Ω

|∇f |rdµ

≤
∫ µ(Ω)

0

|f |r∗(s)ds+

∫ µ(Ω)

0

|∇f |r∗(s)ds

≤
∫ t

0

|f |r∗(s)ds+

∫ t

0

|∇f |r∗(s)ds

= t (|f |r∗∗(t) + |∇f |r∗∗(t)) .
Therefore

K(f, t
1

r ,W 1
r ,W

1
∞) ≤ ‖f‖W 1

r

≤ Ct
1

r

(

|f |r∗∗ 1

r (t) + |∇f |r∗∗ 1

r (t)
)

≤ Ct
1

r

(

|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1

q (t)
)

since r ≤ q. We thus obtain the upper bound in this case.
Now assume Ω 6= M . Pick a countable set {xj}j∈J

⊂M, such that M =
⋃

j∈J

B(xj,
1
2
)

and for all x ∈M , x does not belong to more than N1 balls Bj := B(xj, 1). Consider
a C∞ partition of unity (ϕj)j∈J subordinated to the balls 1

2
Bj such that 0 ≤ ϕj ≤

1, suppϕj ⊂ Bj and ‖ |∇ϕj| ‖∞ ≤ C uniformly with respect to j. Consider f ∈ W 1
p ,

q ≤ p < ∞. Let fj = fϕj so that f =
∑

j∈J fj. We have for j ∈ J , fj ∈ Lp and

∇fj = f∇ϕj + ∇fϕj ∈ Lp. Hence fj ∈ W 1
p (Bj). The balls Bj satisfy the relative

doubling property with constant independent of the balls Bj. This follows from the
next lemma quoted from [4] p.947.

Lemma 3.8. Let M be a complete Riemannian manifold satisfying (Dloc). Then the
balls Bj above, equipped with the induced distance and measure, satisfy the relative
doubling property (D), with the doubling constant that may be chosen independently
of j. More precisely, there exists C ≥ 0 such that for all j ∈ J

(3.11) µ(B(x, 2r) ∩Bj) ≤ C µ(B(x, r) ∩Bj) ∀x ∈ Bj, r > 0,

and

(3.12) µ(B(x, r)) ≤ Cµ(B(x, r) ∩Bj) ∀x ∈ Bj, 0 < r ≤ 2.

Remark 3.9. Noting that the proof in [4] only used the fact that M is a length space,
we observe that Lemma 3.8 still holds for any length space. Recall that a length space
X is a metric space such that the distance between any two points x, y ∈ X is equal to
the infimum of the lengths of all paths joining x to y (we implicitly assume that there
is at least one such path). Here a path from x to y is a continuous map γ : [0, 1] → X
with γ(0) = x and γ(1) = y.
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Let us return to the proof of the theorem. For any x ∈ Bj we have

MBj(|fj| + |∇fj|)q(x) = sup
B: x∈B, r(B)≤2

1

µ(Bj ∩B)

∫

Bj∩B

(|fj| + |∇fj|)qdµ

≤ sup
B: x∈B, r(B)≤2

C
µ(B)

µ(Bj ∩B)

1

µ(B)

∫

B

(|f | + |∇f |)qdµ

≤ CM(|f | + |∇f |)q(x)(3.13)

where we used (3.12) of Lemma 3.8. Consider now

Ωj =
{

x ∈ Bj : MBj(|fj| + |∇fj|)q(x) > Cαq(t)
}

where C is the constant in (3.13). Ωj is an open subset of Bj, hence of M , and
Ωj ⊂ Ω 6= M for all j ∈ J . For the fj’s, and for all t > 0, we have a Calderón-
Zygmund decomposition similar to the one done in Proposition 3.5: there exist bjk, gj

supported in Bj, and balls (Bjk)k of M , contained in Ωj, such that

(3.14) fj = gj +
∑

k

bjk

(3.15) |gj(x)| ≤ Cα(t) and |∇gj(x)| ≤ Cα(t) for µ− a.e. x ∈M

(3.16) supp bjk ⊂ Bjk, for 1 ≤ r ≤ q

∫

Bjk

(|bjk|r + |∇bjk|r)dµ ≤ Cαr(t)µ(Bjk)

(3.17)
∑

k

µ(Bjk) ≤ Cα−p(t)

∫

Bj

(|fj| + |∇fj|)pdµ

(3.18)
∑

k

χBjk
≤ N

with C and N depending only on q, p and the constants in (Dloc) and (Pqloc). The
proof of this decomposition will be the same as in Proposition 3.5, taking for all j ∈ J
a Whitney decomposition (Bjk)k of Ωj 6= M and using the doubling property for balls
whose radii do not exceed 3 < r0 and the Poincaré inequality for balls whose radii do
not exceed 7 < r1. For the bounded overlap property (3.18), just note that the radius
of every ball Bjk is less than 1. Then apply the same argument as for the bounded
overlap property of a Whitney decomposition for an homogeneous space, using the
doubling property for balls with sufficiently small radii.

By the above decomposition we can write f =
∑

j∈J

∑

k

bjk +
∑

j∈J

gj = b + g. Let us

now estimate ‖b‖W 1
r

and ‖g‖W 1
∞

.

‖b‖r
r ≤ N1N

∑

j

∑

k

‖bjk‖r
r

≤ Cαr(t)
∑

j

∑

k

(µ(Bjk))

≤ NCαr(t)
(

∑

j

µ(Ωj)
)

≤ N1Cα
r(t)µ(Ω).
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We used the bounded overlap property of the (Ωj)j∈J ’s and that of the (Bjk)k’s for all

j ∈ J . It follows that ‖b‖r ≤ Cα(t)µ(Ω)
1

r . Similarly we get ‖ |∇b| ‖r ≤ Cα(t)µ(Ω)
1

r .
For g we have

‖g‖∞ ≤ sup
x

∑

j∈J

|gj(x)|

≤ sup
x

N1 sup
j∈J

|gj(x)|

≤ N1 sup
j∈J

‖gj‖∞

≤ Cα(t).

Analogously ‖ |∇g| ‖∞ ≤ Cα(t). We conclude that

K(f, t
1

r ,W 1
r ,W

1
∞) ≤ ‖b‖W 1

r
+ t

1

r ‖g‖W 1
∞

≤ Cα(t)µ(Ω)
1

r + Ct
1

rα(t)

≤ Ct
1

rα(t)

∼ Ct
1

r (|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1

q (t))

which completes the proof of Theorem 1.2 in the case r < q. When r = q we get the
characterization of K for every f ∈ W 1

q +W 1
∞ by applying again a similar argument

to that of [14]. �

4. Interpolation Theorems

In this section we establish our interpolation Theorem 1.1 and some consequences for
non-homogeneous Sobolev spaces on a complete non-compact Riemannian manifold
M satisfying (Dloc) and (Pqloc) for some 1 ≤ q <∞.

For 1 ≤ r ≤ q < p < ∞, we define the real interpolation space W 1
p,r between W 1

r

and W 1
∞ by

W 1
p,r = (W 1

r ,W
1
∞)1− r

p
,p.

From the previous results we know that for f ∈ W 1
r +W 1

∞

‖f‖1− r
p
,p ≥ C1

{
∫ ∞

0

(

t
1

p (|f |r∗∗ 1

r + |∇f |r∗∗ 1

r )(t)
)p dt

t

}
1

p

and for f ∈ W 1
p

‖f‖1− r
p
,p ≤ C2

{
∫ ∞

0

(

t
1

p (|f |q∗∗ 1

q + |∇f |q∗∗ 1

q )(t)
)p dt

t

}
1

p

.

We claim that W 1
p,r = W 1

p , with equivalent norms. Indeed,

‖f‖1− r
p
,p ≥ C1

{
∫ ∞

0

(

|f |r∗∗ 1

r (t) + |∇f |r∗∗ 1

r (t)
)p

dt

}
1

p

≥ C
(

‖f r∗∗‖
1

r
p

r

+ ‖|∇f |r∗∗‖
1

r
p

r

)

≥ C
(

‖f r‖
1

r
p

r

+ ‖ |∇f |r ‖
1

r
p

r

)
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= C (‖f‖p + ‖ |∇f | ‖p)

= C‖f‖W 1
p
,

and

‖f‖1− r
p
,p ≤ C2

{
∫ ∞

0

(

|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1

q (t)
)p

dt

}
1

p

≤ C

(

‖f q∗∗‖
1

q
p

q

+ ‖ |∇f |q∗∗ ‖
1

q
p

q

)

≤ C

(

‖f q‖
1

q
p

q

+ ‖ |∇f |q ‖
1

q
p

q

)

= C (‖f‖p + ‖ |∇f | ‖p)

= C‖f‖W 1
p
,

where we used that for l > 1, ‖f ∗∗‖l ∼ ‖f‖l (see [34], Chapter V: Lemma 3.21 p.191
and Theorem 3.21, p.201). Moreover, from Corollary 3.7, we have W 1

p ⊂ W 1
r + W 1

∞

for r < p < ∞. Therefore W 1
p is a real interpolation space between W 1

r and W 1
∞ for

r < p <∞.
Let us recall some known facts about Poincaré inequalities with varying q.

It is known that (Pqloc) implies (Pploc) when p ≥ q (see [23]). Thus if the set of q such
that (Pqloc) holds is not empty, then it is an interval unbounded on the right. A recent
result of Keith and Zhong [28] asserts that this interval is open in [1,+∞[.

Theorem 4.1. Let (X, d, µ) be a complete metric-measure space with µ locally dou-
bling and admitting a local Poincaré inequality (Pqloc), for some 1 < q < ∞. Then
there exists ǫ > 0 such that (X, d, µ) admits (Pploc) for every p > q − ǫ.

Here, the definition of (Pqloc) is that of section 7. It reduces to the one of section 3
when the metric space is a Riemannian manifold.

Comment on the proof of this theorem. The proof goes as in [28] where this theorem is
proved for X satisfying (D) and admitting a global Poincaré inequality (Pq). By using
the same argument and choosing sufficiently small radii for the considered balls, (Pqloc)
will give us (P(q−ǫ)loc) for every ball of radius less than r2, for some r2 < min(r0, r1),
r0, r1 being the constants given in the definitions of local doubling property and local
Poincaré inequality. �

Define AM = {q ∈ [1,∞[: (Pqloc) holds } and q0M
= inf AM . When no confusion

arises, we write q0 instead of q0M
. As we mentioned in the introduction, this improve-

ment of the exponent of a Poincaré inequality together with the reiteration theorem
yield another version of our interpolation result: Corollary 1.3.

Proof of Corollary 1.3. Let 0 < θ < 1 such that 1
p

= 1−θ
p1

+ θ
p2

.

1. Case when p1 > q0. Since p1 > q0, there exists q ∈ AM such that q0 < q < p1.
Then 1− q

p
= (1−θ)(1− q

p1

)+θ(1− q

p2

). The reiteration theorem –[6], Theorem

2.4 p. 311– yields

(W 1
p1
,W 1

p2
)θ,p = (W 1

p1,q,W
1
p2,q)θ,p

= (W 1
q ,W

1
∞)1− q

p
,p
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= W 1
p,q

= W 1
p .

2. Case when 1 ≤ p1 ≤ q0. Let θ′ = θ(1 − p1

p2

) = 1 − p1

p
. The reiteration theorem

applied this time only to the second exponent yields

(W 1
p1
,W 1

p2
)θ,p = (W 1

p1
,W 1

p2,p1
)θ,p

= (W 1
p1
,W 1

∞)θ′,p

= W 1
p,p1

= W 1
p .

�

Theorem 4.2. Let M and N be two complete non-compact Riemannian manifolds
satisfying (Dloc). Assume that q0M

and q0N
are well defined. Take 1 ≤ p1 ≤ p2 ≤

∞, 1 ≤ r1, r, r2 ≤ ∞. Let T be a bounded linear operator from W 1
pi

(M) to W 1
ri
(N) of

norm Li, i = 1, 2. Then for every couple (p, r) such that p ≤ r, p > q0M
, r > q0N

and
(1

p
, 1

r
) = (1 − θ)( 1

p1

, 1
r1

) + θ( 1
p2

, 1
r2

), 0 < θ < 1, T is bounded from W 1
p (M) to W 1

r (N)

with norm L ≤ CL1−θ
0 Lθ

1.

Proof.

‖Tf‖W 1
r (N) ≤ C‖Tf‖(W 1

r1
(N),W 1

r2
(N))θ,r

≤ CL1−θ
0 Lθ

1‖f‖(W 1
p1

(M),W 1
p2

(M))θ,r

≤ CL1−θ
0 Lθ

1‖f‖(W 1
p1

(M),W 1
p2

(M))θ,p

≤ CL1−θ
0 Lθ

1‖f‖W 1
p (M).

We used the fact that Kθ,q is an exact interpolation functor of exponent θ, that
W 1

p (M) = (W 1
p1

(M),W 1
p2

(M))θ,p, W
1
r (N) = (W 1

r1
(N),W 1

r2
(N))θ,r with equivalent

norms and that (W 1
p1

(M),W 1
p2

(M))θ,p ⊂ (W 1
p1

(M),W 1
p2

(M))θ,r if p ≤ r. �

Remark 4.3. Let M be a Riemannian manifold, not necessarily complete, satisfying
(Dloc). Assume that for some 1 ≤ q < ∞, a weak local Poincaré inequality holds for
all C∞ functions, that is there exists r1 > 0, C = C(q, r1), λ ≥ 1 such that for all
f ∈ C∞ and all ball B of radius r < r1 we have

(

−
∫

B

|f − fB|qdµ
)

1

q ≤ Cr
(

−
∫

λB

|∇f |qdµ
)

1

q

.

Then, we obtain the characterization of K as in Theorem 1.2 and we get by interpo-
lating a result analogous to Theorem 1.1.

5. Homogeneous Sobolev spaces on Riemannian manifolds

Definition 5.1. Let M be a C∞ Riemannian manifold of dimension n. For 1 ≤ p ≤
∞, we define

.

E1
p to be the vector space of distributions ϕ with |∇ϕ| ∈ Lp, where ∇ϕ is

the distributional gradient of ϕ. It is well known that the elements of
.

E1
p are in Lploc.

We equip
.

E1
p with the semi norm

‖ϕ‖ .

E1
p

= ‖ |∇ϕ| ‖p.
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Definition 5.2. We define the homogeneous Sobolev space
.

W 1
p as the quotient space

.

E1
p/R.

Remark 5.3. For all ϕ ∈
.

E1
p , ‖ϕ‖ .

W 1
p

= ‖ |∇ϕ| ‖p, where ϕ denotes the class of ϕ.

Proposition 5.4. 1. ([20])
.

W 1
p is a Banach space.

2. Assume that M satisfies (D) and (Pq) for some 1 ≤ q < ∞ and for all f ∈ Lip,
that is there exists a constant C > 0 such that for all f ∈ Lip and for every ball B of
M of radius r > 0 we have

(Pq)

(

−
∫

B

|f − fB|qdµ
)

1

q

≤ Cr

(

−
∫

B

|∇f |qdµ
)

1

q

.

Then Lip(M) ∩
.

W 1
p is dense in

.

W 1
p for q ≤ p <∞.

Proof. The proof of item 2. is implicit in the proof of Theorem 9 in [17]. �

We obtain for the K-functional of the homogeneous Sobolev spaces the following
homogeneous form of Theorem 1.2, weaker in the particular case r = q, but again
sufficient for us to interpolate.

Theorem 5.5. Let M be a complete Riemannian manifold satisfying (D) and (Pq)
for some 1 ≤ q <∞. Let 1 ≤ r ≤ q. Then

1. there exists C1 such that for every F ∈
.

W 1
r +

.

W 1
∞ and t > 0

K(F, t
1

r ,
.

W 1
r ,

.

W 1
∞) ≥ C1t

1

r |∇f |r∗∗ 1

r (t) where f ∈
.

E1
r +

.

E1
∞ and f = F ;

2. for q ≤ p <∞, there exists C2 such that for every F ∈
.

W 1
p and t > 0

K(F, t
1

r ,
.

W 1
r ,

.

W 1
∞) ≤ C2t

1

r |∇f |q∗∗ 1

q (t) where f ∈
.

E1
p and f = F.

Before we prove Theorem 5.5, we give the following Calderón-Zygmund decompo-
sition that will be also in this case our principal tool to estimate K.

Proposition 5.6 (Calderón-Zygmund lemma for Sobolev functions). Let M be a
complete non-compact Riemannian manifold satisfying (D) and (Pq) for some 1 ≤
q < ∞. Let q ≤ p < ∞, f ∈

.

E1
p and α > 0. Then there is a collection of balls (Bi)i,

functions bi ∈
.

E1
q and a Lipschitz function g such that the following properties hold :

(5.1) f = g +
∑

i

bi

(5.2) |∇g(x)| ≤ C α µ− a.e.

(5.3) supp bi ⊂ Bi and for 1 ≤ r ≤ q

∫

Bi

|∇bi|rdµ ≤ Cαrµ(Bi)

(5.4)
∑

i

µ(Bi) ≤ Cα−p

∫

|∇f |pdµ
16



(5.5)
∑

i

χBi
≤ N.

The constants C and N depend only on q, p and the constant in (D).

Proof. The proof goes as in the case of non-homogeneous Sobolev spaces, but taking
Ω = {x ∈M : M(|∇f |q)(x) > αq} as ‖f‖p is not under control. We note that in the
non-homogeneous case, we used that f ∈ Lp only to control g ∈ L∞ and b ∈ Lr. �

Remark 5.7. It is sufficient for us that the Poincaré inequality holds for all f ∈
.

E1
p .

Corollary 5.8. Under the same hypotheses as in the Calderón-Zygmund lemma, we
have

.

W 1
p ⊂

.

W 1
r +

.

W 1
∞ for 1 ≤ r ≤ q ≤ p <∞ .

Proof of Theorem 5.5. The proof of item 1. is the same as in the non-homogeneous

case. Let us turn to inequality 2.. For F ∈
.

W 1
p we take f ∈

.

E1
p with f = F . Let

t > 0 and α(t) =
(

M(|∇f |q)
)∗ 1

q

(t). By the Calderón-Zygmund decomposition with

α = α(t), f can be written f = b + g, hence F = b + g, with ‖b‖ .

W 1
r

= ‖ |∇b| ‖r ≤
Cα(t)µ(Ω)

1

r and ‖g‖ .

W 1
∞

= ‖|∇g| ‖∞ ≤ Cα(t). Since for α = α(t) we have µ(Ω) ≤ t,

then we get K(F, t
1

r ,
.

W 1
r ,

.

W 1
∞) ≤ Ct

1

r |∇f |q∗∗ 1

q (t). �

We can now prove our interpolation result for the homogeneous Sobolev spaces.

Proof of Theorem 1.4. The proof follows directly from Theorem 5.5. Indeed, item 1.
of Theorem 5.5 yields

(
.

W 1
r ,

.

W 1
∞)1− r

p
,p ⊂

.

W 1
p

with ‖F‖ .

W 1
p

≤ C‖F‖1− r
p
,p, while item 2. gives us that

.

W 1
p ⊂ (

.

W 1
r ,

.

W 1
∞)1− r

p
,p

with ‖F‖1− r
p
,p ≤ C‖F‖ .

W 1
p

. We conclude that

.

W 1
p = (

.

W 1
r ,

.

W 1
∞)1− r

p
,p

with equivalent norms. �

Corollary 5.9 (The reiteration theorem). Let M be a complete non-compact Rie-
mannian manifold satisfying (D) and (Pq) for some 1 ≤ q < ∞. Define q0 =

inf {q ∈ [1,∞[: (Pq) holds }. Then for p > q0 and 1 ≤ p1 < p < p2 ≤ ∞,
.

W 1
p is

a real interpolation space between
.

W 1
p1

and
.

W 1
p2

.

Application. Consider a complete non-compact Riemannian manifold M satisfying
(D) and (Pq) for some 1 ≤ q < 2. Let ∆ be the Laplace-Beltrami operator. Consider

the linear operator ∆
1

2 with the following resolution

∆
1

2f = c

∫ ∞

0

∆e−t∆f
dt√
t
, f ∈ C∞

0
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where c = π− 1

2 . Here ∆
1

2f can be defined for f ∈ Lip as a measurable function (see
[3]).

In [3], Auscher and Coulhon proved that on such a manifold, we have

µ
{

x ∈M : |∆ 1

2f(x)| > α
}

≤ C

αq
‖ |∇f | ‖q

for f ∈ C∞
0 , with q ∈ [1, 2[. In fact one can check that the argument applies to all

f ∈ Lip∩
.

E1
q and since ∆

1

2 1 = 0, ∆
1

2 can be defined on Lip∩
.

W 1
q by taking quotient

which we keep calling ∆
1

2 . Moreover, Proposition 5.4 gives us that ∆
1

2 has a bounded

extension from
.

W 1
q to Lq,∞. Since we already have

‖∆ 1

2f‖2 ≤ ‖ |∇f | ‖2

then by Corollary 5.9, we see at once

(5.6) ‖∆ 1

2f‖p ≤ Cp‖ |∇f | ‖p

for all q < p ≤ 2 and f ∈
.

W 1
p , without using the argument in [3].

6. Sobolev spaces on compact manifolds

Let M be a C∞ compact manifold equipped with a Riemannian metric. Then M
satisfies the doubling property (D) and the Poincaré inequality (P1).

Theorem 6.1. Let M be a C∞ compact Riemannian manifold. There exist C1, C2

such that for all f ∈ W 1
1 +W 1

∞ and all t > 0 we have

(∗comp) C1t
(

|f |∗∗(t) + |∇f |∗∗(t)
)

≤ K(f, t,W 1
1 ,W

1
∞) ≤ C2t

(

|f |∗∗(t) + |∇f |∗∗(t)
)

.

Proof. It remains to prove the upper bound for K as the lower bound is trivial.
Indeed, let us consider for all t > 0 and for α(t) = (M(|f | + |∇f |))∗ (t), Ω =
{x ∈M ;M(|f | + |∇f |)(x) ≥ α(t)}. If Ω 6= M , we have the Calderón-Zygmund de-
composition as in Proposition 3.5 with q = 1 and the proof will be the same as the
proof of Theorem 1.2 in the global case. Now if Ω = M , we prove the upper bound
by the same argument used in the proof of Theorem 1.2 in the local case. Thus, in
the two cases we obtain the right hand inequality of (∗comp) for all f ∈ W 1

1 +W 1
∞. �

It follows that

Theorem 6.2. For all 1 ≤ p1 < p < p2 ≤ ∞, W 1
p is an interpolation space between

W 1
p1

and W 1
p2

.

7. Metric-measure spaces

In this section we consider (X, d, µ) a metric-measure space with µ doubling.

7.1. Upper gradients and Poincaré inequality.

Definition 7.1 (Upper gradient [26]). Let u : X → R be a Borel function. We say
that a Borel function g : X → [0,+∞] is an upper gradient of u if |u(γ(b))−u(γ(a))| ≤
∫ b

a
g(γ(t))dt for all 1-Lipschitz curve γ : [a, b] → X 1.

1Since every rectifiable curve admits an arc-length parametrization that makes the curve 1-
Lipschitz, the class of 1-Lipschitz curves coincides with the class of rectifiable curves, modulo a
parameter change.
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Remark 7.2. If X is a Riemannian manifold, |∇u| is an upper gradient of u ∈ Lip
and |∇u| ≤ g for all upper gradients g of u.

Definition 7.3. For every locally Lipschitz continuous function u defined on a open
set of X, we define

Lipu(x) =

{

lim supy→x

y 6=x

|u(y)−u(x)|
d(y,x)

if x is not isolated,

0 otherwise.

Remark 7.4. Lipu is an upper gradient of u.

Definition 7.5 (Poincaré Inequality). A metric-measure space (X, d, µ) admits a weak
local Poincaré inequality (Pqloc) for some 1 ≤ q <∞, if there exist r1 > 0, λ ≥ 1, C =
C(q, r1) > 0, such that for every continuous function u and upper gradient g of u, and
for every ball B of radius 0 < r < r1 the following inequality holds:

(Pqloc)
(

−
∫

B

|u− uB|qdµ
)

1

q ≤ Cr
(

−
∫

λB

gqdµ
)

1

q

.

If λ = 1, we say that we have a strong local Poincaré inequality.
Moreover, X admits a global Poincaré inequality or simply a Poincaré inequality (Pq)
if one can take r1 = ∞.

7.2. Interpolation of the Sobolev spaces H1
p . Before defining the Sobolev spaces

H1
p it is convenient to recall the following proposition.

Proposition 7.6. (see [22] and [10] Theorem 4.38) Let (X, d, µ) be a complete metric-
measure space, with µ doubling and satisfying a weak Poincaré inequality (Pq) for some
1 < q < ∞. Then there exist an integer N , C ≥ 1 and a linear operator D which
associates to each locally Lipschitz function u a measurable function Du : X → RN

such that :

1. if u is L-Lipschitz, then |Du| ≤ CL µ− a.e.;
2. if u is locally Lipschitz and constant on a measurable set E ⊂ X, then Du =

0 µ− a.e. on E;
3. for locally Lipschitz functions u and v, D(uv) = uDv + vDu;
4. for each locally Lipschitz function u, Lipu ≤ |Du| ≤ C Lipu, and hence

(u, |Du|) satisfies the weak Poincaré inequality (Pq) .

We define now H1
p = H1

p (X, d, µ) for 1 ≤ p < ∞ as the closure of locally Lipschitz
functions for the norm

‖u‖H1
p

= ‖u‖p + ‖ |Du| ‖p ≡ ‖u‖p + ‖Lipu‖p.

We denote H1
∞ for the set of all bounded Lipschitz functions on X.

Remark 7.7. Under the hypotheses of Proposition 7.6, the uniqueness of the gradient
holds for every f ∈ H1

p with p ≥ q. By uniqueness of gradient we mean that if un is a
locally Lipschitz sequence such that un → 0 in Lp and Dun → g ∈ Lp then g = 0 a.e..
Then D extends to a bounded linear operator from H1

p to Lp.

In the remaining part of this section, we consider a complete non-compact metric-
measure space (X, d, µ) with µ doubling. We also assume that X admits a Poincaré
inequality (Pq) for some 1 < q < ∞ as defined in Definition 7.5. By [27] Theorem
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1.3.4, this is equivalent to say that there exists C > 0 such that for all f ∈ Lip and
for every ball B of X of radius r > 0 we have

(Pq)

∫

B

|f − fB|qdµ ≤ Crq

∫

B

|Lip f |qdµ.

Define q0 = inf {q ∈]1,∞[: (Pq) holds }.
Lemma 7.8. Under these hypotheses, and for q0 < p <∞, Lip∩H1

p is dense in H1
p .

Proof. See the proof of Theorem 9 in [17]. �

Proposition 7.9. Calderón-Zygmund lemma for Sobolev functions

Let (X, d, µ) be a complete non-compact metric-measure space with µ doubling, admit-
ting a Poincaré inequality (Pq) for some 1 < q < ∞. Then, the Calderón-Zygmund
decomposition of Proposition 3.5 still holds in the present situation for f ∈ Lip∩H1

p ,
q ≤ p <∞, replacing ∇f by Df .

Proof. The proof is similar, replacing ∇f by Df , using that D of Proposition 7.6 is
linear. Since the χi are C

ri
Lipschitz then ‖Dχi‖∞ ≤ C

ri
by item 1. of Theorem 7.6 and

the bi’s are Lipschitz. We can see that g is also Lipschitz. Moreover, using the finite
additivity of D and the property 2. of Proposition 7.6, we get the equality µ− a.e.

Dg = Df −D(
∑

i

bi) = Df − (
∑

i

Dbi).

The rest of the proof goes as in Proposition 3.5. �

Theorem 7.10. Let (X, d, µ) be a complete non-compact metric-measure space with
µ doubling, admitting a Poincaré inequality (Pq) for some 1 < q < ∞. Then, there
exist C1, C2 such that for all f ∈ H1

q +H1
∞ and all t > 0 we have

(∗met)

C1t
1

q

(

|f |q∗∗ 1

q (t) + |Df |q∗∗ 1

q (t)
)

≤ K(f, t
1

q , H1
q , H

1
∞) ≤ C2t

1

q

(

|f |q∗∗ 1

q (t) + |Df |q∗∗ 1

q (t)
)

.

Proof. We have (∗met) for all f ∈ Lip∩H1
q from the Calderón-Zygmund decomposition

that we have done. Now for f ∈ H1
q , by Lemma 7.8, f = lim

n
fn inH1

q , with fn Lipschitz

and ‖f − fn‖H1
q
< 1

n
for all n. Since for all n, fn ∈ Lip, there exist gn, hn such that

fn = hn + gn and ‖hn‖H1
q

+ t
1

q ‖gn‖H1
∞

≤ Ct
1

q

(

|fn|q∗∗
1

q (t) + |Dfn|q∗∗
1

q (t)
)

. Therefore

we find

‖f − gn‖H1
q

+ t
1

q ‖gn‖H1
∞
≤ ‖f − fn‖H1

q
+ (‖hn‖H1

q
+ t

1

q ‖gn‖H1
∞

)

≤ 1

n
+ Ct

1

q

(

|fn|q∗∗
1

q (t) + |Dfn|q ∗∗
1

q (t)
)

.

Letting n → ∞, since |fn|q −→
n→∞

|f |q in L1 and |Dfn|q −→
n→∞

|Df |q in L1, it comes

|fn|q∗∗(t) −→
n→∞

|f |q∗∗(t) and |Dfn|q∗∗(t) −→
n→∞

|Df |q∗∗(t) for all t > 0. Hence (∗met)

holds for f ∈ H1
q . We prove (∗met) for f ∈ H1

q +H1
∞ by the same argument of [14]. �

Theorem 7.11 (Interpolation Theorem). Let (X, d, µ) be a complete non-compact
metric-measure space with µ doubling, admitting a Poincaré inequality (Pq) for some
1 < q < ∞. Then, for q0 < p1 < p < p2 ≤ ∞2, H1

p is an interpolation space between

H1
p1

and H1
p2

.

2We allow p1 = 1 if q0 = 1.
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Proof. Theorem 7.10 provides us with all the tools needed for interpolating, as we did
in the Riemannian case. In particular, we get Theorem 7.11. �

Remark 7.12. We were not able to get our interpolation result as in the Riemmanian
case for p1 ≤ q0. Since we do not have Poincaré inequality (Pp1

), the uniqueness of
the gradient D does not hold in general in H1

p1
.

Remark 7.13. Other Sobolev spaces on metric-measure spaces were introduced in the
last few years, for instance M1

p , N1
p , C1

p , P
1
p . If X is a complete metric-measure space

satisfying (D) and (Pq) for some 1 < q <∞, it can be shown that for q0 < p ≤ ∞, all
the mentioned spaces are equal to H1

p with equivalent norms (see [23]). In conclusion
our interpolation result carries over to those Sobolev spaces.

Remark 7.14. The purpose of this remark is to extend our results to local assump-
tions. Assume that (X, d, µ) is a complete metric-measure space, with µ locally dou-
bling, and admitting a local Poincaré inequality (Pqloc) for some 1 < q <∞. Since X is
complete and (X,µ) satisfies a local doubling condition and a local Poincaré inequality
(Pqloc), then according to an observation of David and Semmes (see the introduction in
[10]), every ball B(z, r), with 0 < r < min(r0, r1), is λ = λ(C(r0), C(r1)) quasi-convex,
C(r0) and C(r1) being the constants appearing in the local doubling property and in
the local Poincaré inequality. Then, for 0 < r < min(r0, r1), B(z, r) is λ bi-Lipschitz
to a length space (one can associate, canonically, to a λ-quasi-convex metric space
a length metric space, which is λ-bi-Lipschitz to the original one). Hence, we get a
result similar to the one in Theorem 7.10. Indeed, the proof goes as that of Theorem
1.2 in the local case noting that the Bj’s considered there are then λ bi-Lipschitz to a
length space with λ independent of j. Thus Lemma 3.8 still holds (see Remark 3.9).
Therefore, we get the characterization (∗met) of K and by interpolating, we obtain the
correspondance analogue of Theorem 7.11.

8. Applications

8.1. Carnot-Carathéodory spaces. An important application of the theory of So-
bolev spaces on metric-measure spaces is to a Carnot-Carathéodory space. We refer
to [23] for a survey on the theory of Carnot-Carathéodory spaces.
Let Ω ⊂ Rn be a connected open set, X = (X1, ..., Xk) a family of vector fields defined

on Ω, with real locally Lipschitz continuous coefficients and |Xu(x)| =
( k

∑

j=1

|Xju(x)|2
)

1

2

.

We equip Ω with the Lebesgue measure Ln and the Carnot-Carathéodory metric ρ
associated to the Xi. We assume that ρ defines a distance. Then, the metric space
(Ω, ρ) is a length space.

Definition 8.1. Let 1 ≤ p < ∞. We define H1
p,X(Ω) as the completion of locally

metric 3 Lipschitz functions (equivalently of C∞ functions ) for the norm

‖f‖H1

p,X
= ‖f‖Lp(Ω) + ‖ |Xf | ‖Lp(Ω)

We denote H1
∞,X for the set of bounded metric Lipschitz function.

Remark 8.2. For all 1 ≤ p ≤ ∞, H1
p,X = W 1

p,X(Ω) := {f ∈ Lp(Ω) : |Xf | ∈ Lp(Ω)},
where Xf is defined in the distributional sense (see for example [19] Lemma 7.6).

3that is relative to the metric ρ of Carnot-Carathéodory.
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Adapting the same method, we obtain the following interpolation theorem for the
H1

p,X .

Theorem 8.3. Consider (Ω, ρ,Ln) where Ω is a connected open subset of Rn. We
assume that Ln is locally doubling, that the identity map id : (Ω, ρ) → (Ω, |.|) is an
homeomorphism. Moreover, we suppose that the space admits a local weak Poincaré
inequality (Pqloc) for some 1 ≤ q < ∞. Then, for 1 ≤ p1 < p < p2 ≤ ∞ with p > q0,
H1

p,X is a real interpolation space between H1
p1,X and H1

p2,X .

8.2. Weighted Sobolev spaces. We refer to [24], [29] for the definitions used in
this subsection. Let Ω be an open subset of Rn equipped with the Euclidean distance,
w ∈ L1,loc(R

n) with w > 0, dµ = wdx. We assume that µ is q-admissible for some
1 < q < ∞ (see [25] for the definition). This is equivalent to say, (see [23]), that µ is
doubling and there exists C > 0 such that for every ball B ⊂ Rn of radius r > 0 and
for every function ϕ ∈ C∞(B),

(Pq)

∫

B

|ϕ− ϕB|qdµ ≤ Crq

∫

B

|∇ϕ|qdµ

with ϕB = 1
µ(B)

∫

B
ϕdµ. The Aq weights, q > 1, satisfy these two conditions (see [25],

Chapter 15).

Definition 8.4. For q ≤ p < ∞, we define the Sobolev space H1
p (Ω, µ) to be the

closure of C∞(Ω) for the norm

‖u‖H1
p(Ω,µ) = ‖u‖Lp(µ) + ‖ |∇u| ‖Lp(µ).

We denote H1
∞(Ω, µ) for the set of all bounded Lipschitz functions on Ω.

Using our method, we obtain the following interpolation theorem for the Sobolev
spaces H1

p (Ω, µ):

Theorem 8.5. Let Ω be as in above. Then for q0 < p1 < p < p2 ≤ ∞, H1
p (Ω, µ) is a

real interpolation space between H1
p1

(Ω, µ) and H1
p2

(Ω, µ).

As in section 7, we were not able to get our interpolation result for p1 ≤ q0 since
again in this case the uniqueness of the gradient does not hold for p1 ≤ q0.

Remark 8.6. Equip Ω with the Carnot-Carathéodory distance associated to a family
of vector fields with real locally Lipschitz continuous coefficients instead of the Eu-
clidean distance. Under the same hypotheses used in the beginning of this section, just
replacing the balls B by the balls B̃ with respect to ρ, and ∇ by X and assuming that
id : (Ω, ρ) → (Ω, |.|) is an homeomorphism, we obtain our interpolation result. As an
example we take vectors fields satisfying a Hörmander condition or vectors fields of
Grushin type [16].

8.3. Lie Groups. In all this subsection, we consider G a connected unimodular Lie
group equipped with a Haar measure dµ and a family of left invariant vector fields
X1, ..., Xk such that the Xi’s satisfy a Hörmander condition. In this case the Carnot-
Carathéodory metric ρ is is a distance, and G equipped with the distance ρ is complete
and defines the same topology as that of G as a manifold (see [13] page 1148). From
the results in [21], [32], it is known that G satisfies (Dloc). Moreover, if G has polyno-
mial growth it satisfies (D). From the results in [33], [35], G admits a local Poincaré
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inequality (P1loc). If G has polynomial growth, then it admits a global Poincaré in-
equality (P1).

Interpolation of non-homogeneous Sobolev spaces. We define the non-homo-
geneous Sobolev spaces on a Lie group W 1

p in the same manner as in section 3 on a
Riemannian manifold replacing ∇ by X (see Definition 3.1 and Proposition 3.2).

To interpolate the W 1
pi

, we distinguish between the polynomial and the exponential
growth cases. If G has polynomial growth, then we are in the global case. If G has
exponential growth, we are in the local case. In the two cases we obtain the following
theorem.

Theorem 8.7. Let G be as above. Then, for all 1 ≤ p1 < p < p2 ≤ ∞, W 1
p is an

interpolation space between W 1
p1

and W 1
p2
, (q0 = 1 here). Therefore, we get all the

interpolation theorems of section 4.

Interpolation of homogeneous Sobolev spaces. Let G be a connected Lie group
as before. We define the homogeneous Sobolev space Ẇ 1

p in the same manner as in
section 5 on Riemannian manifolds replacing ∇ by X.

For these spaces we have the following interpolation theorem.

Theorem 8.8. Let G be as above and assume that G has polynomial growth. Then
for 1 ≤ p1 < p < p2 ≤ ∞, Ẇ 1

p is a real interpolation space between Ẇ 1
p1

and Ẇ 1
p2

.

9. Appendix

In view of the hypotheses in the previous interpolation results, a naturel question to
address is whether the properties (D) and (Pq) are necessary. The aim of the appendix
is to exhibit an example where at least Poincaré is not needed. Consider

X =
{

(x1, x2, ..., xn) ∈ Rn; x2
1 + ...+ x2

n−1 ≤ x2
n

}

equipped with the Euclidean metric of Rn and with the Lebesgue measure. X consists
of two infinite closed cones with a common vertex. X satisfies the doubling property
and admits (Pq) in the sense of metric-measure spaces if and only if q > n ([23] p.17).
Denote by Ω the interior of X. Let H1

p (X) be the closure of Lip0(X) for the norm

‖f‖H1
p(X) = ‖f‖Lp(Ω) + ‖ |∇f | ‖Lp(Ω).

We define W 1
p (Ω) as the set of all functions f ∈ Lp(Ω) such that ∇f ∈ Lp(Ω) and

equip this space with the norm

‖f‖W 1
p (Ω) = ‖f‖H1

p(X).

The gradient is always defined in the distributional sense on Ω.
Using our method, it is easy to check that the W 1

p (Ω) interpolate for all 1 ≤ p ≤ ∞.

Also our interpolation result asserts that H1
p (X) is an interpolation space between

H1
p1

(X) and H1
p2

(X) for 1 ≤ p1 < p < p2 ≤ ∞ with p > n. It can be shown that

H1
p (X) ( W 1

p (Ω) for p > n and H1
p (X) = W 1

p (Ω) for 1 ≤ p < n. Hence H1
p (X) is an

interpolation space between H1
p1

(X) and H1
p2

(X) for 1 ≤ p1 < p < p2 < n although
the Poincaré inequality does not hold on X for those p. However, we do not know if
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the H1
p interpolate for all 1 ≤ p ≤ ∞ (see [5], Chapter 4 for more details).
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