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Abstract. This paper deals with a three-dimensional model for thermal stress-induced trans-
formations in shape-memory materials. Microstructure, like twined martensites, is described meso-
scopically by a vector of internal variables containing the volume fractions of each phase. We assume
that the temperature variations are prescribed. The problem is formulated mathematically within
the energetic framework of rate-independent processes. An existence result is proved and temporal
regularity is obtained in the case of uniform convexity. We also study space-time discretizations and
establish convergence of these approximations.
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1. Introduction. The good performances of shape-memory alloys in applica-
tions to relative fields like biomedicine, aeronautics, or engineering stimulate the in-
terest in the development of different models. These alloys have some surprising ther-
momechanical behavior; namely, severely deformed materials can recover their original
shape after a thermal cycle (shape-memory effect). In the mathematical literature,
many one-dimensional models are available, but multidimensional models allowing for
multiaxial loadings and anisotropies are rarely presented. In [MiT99, MTL02] such
models were introduced for the isothermal setting and a first existence result was
provided.

This paper deals with the quasi-static evolution of shape-memory materials in a
small-strain regime under nonisothermal conditions. In [SMZ98, AuS01, AuP04] a
model for polycrystalline shape-memory materials is proposed where phase transfor-
mations are driven by stress or temperature changes, and it is analyzed in [AuS04,
AuS05, MiP07, AMS08]. In this model the mesoscopic average of the transformation
strain used an internal variable, and hence it is restricted to situations where isotropy
and equal elastic constants in austenite and martensite can be assumed. Here we
treat a more advanced model which allows us to describe each pure phase indepen-
dently, like in the isothermal models considered in [CaP01, MTL02, GMH02, KMR05,
RoK06, GHH07].

†Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin,
Germany (mielke@wias-berlin.de).

‡LaMUSE (Laboratoire de Mathématiques de l’Université de Saint-Etienne), 23 rue Paul Miche-
lon, 42023 Saint-Etienne Cedex 02, France (laetitia.paoli@univ-st-etienne.fr).

§Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin,
Germany (petrov@wias-berlin.de). This author’s work was supported by the Deutsche Forschungs-
gemeinschaft through the project C18 “Analysis and numerics of multidimensional models for elastic
phase transformation in shape-memory alloys” of the Research Center Matheon.

1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Following [Mie07, MiP07] we assume here that the temperature θ is given a priori
as an applied load θ = θappl(t, x). This assumption is used in engineering models and
is acceptable if the body is small in at least one direction. Then, the excessive or
missing heat can be balanced through the environment. While the existence result
will be a direct consequence of the general theory of energetic solutions for rate-
independent processes, we present here an approach which states existence of solutions
as a consequence of convergence of space-time discretizations. Using the ideas of
Γ-convergence for rate-independent processes developed in [MRS08] we show that
for arbitrary sequences of partitions of the time interval and for arbitrary finite-
dimensional approximations of the underlying Banach space we obtain sequences of
discrete solutions that are a priori bounded and precompact. Any limit point of this
sequence will be a solution of the full problem. As in general uniqueness of solutions
for the full problem is not true, it cannot be expected that the full sequence converges.
A similar approach, in a more general setting, is followed in [MiR06].

Our model is based on a stored-energy density W and a dissipation distance D.
The stored-energy density W (x, e, z, θ) depends on the material point x ∈ Ω, the
infinitesimal strain e = e(u) = 1

2 (∇u+∇uT) for the displacement u : Ω → Rd, the
prescribed temperature θ = θappl(t, x), and the vector of phase fractions z : Ω → Z =
conv{ê1, . . . , êN}, the convex hull in RN . Here N is the total number of phases; in an
austenite-martensite phase transformation this includes the austenite and all variants
of martensite. In general, z ∈ conv{ê1, . . . , êN} is a phase mixture, and the vertices
z = ê1, . . . , êN correspond to the pure phases such that W (·, êk, ·, ·) corresponds to
the stored-energy density of a pure phase, which can be adapted to measured data.
The total stored energy takes the following form:

E(t, u, z) def=
∫

Ω

(
W (x, e(u+uDir(t)), z, θappl(t)) +

σ

2
|∇z|2

)
dx− 〈l(t), u〉, σ > 0,

where uDir and l denote the time-dependent Dirichlet boundary data and applied
loading, respectively. To model the dissipation via phase transformations we introduce
a dissipation distance D : Ω×Z×Z → [0,∞) and define the total dissipation distance
D via

D(z0, z1)
def=
∫

Ω

D(x, z0(x), z1(x))dx.

The natural function sets for the unknown q
def= (u, z) is Q def= F × Z with Z def=

H1(Ω;Z). As the time-dependent conditions on ΓDir ⊂ ∂Ω are incorporated in uDir,
we define the space of admissible displacements via

F def= { u ∈ H1(Ω; Rd)
∣∣ u = 0 on ΓDir }.

Then, our problem can be posed in the energetic formulation for rate-independent
problems. For a given initial value (u(0), z(0)) ∈ Q, we have to find a function
(u, z) : [0, T ] → Q (with T > 0) such that for all t ∈ [0, T ] the global stability
condition (S) and the global energy balance (E) are satisfied, i.e.,

(S) ∀(ū, z̄) ∈ Q : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + D(z(t), z̄),

(E) E(t, u(t), z(t)) + VarD(z; [0, t]) = E(0, u(0), z(0)) +
∫ t

0

∂sE(s, u(s), z(s))ds,
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where the dissipation VarD(z; [0, t]) is defined as the supremum over all finite parti-
tions 0 ≤ t0 < t1 < · · · < tn ≤ t of

∑n
j=1 D(z(tj−1), z(tj)).

The paper is organized as follows. In section 2, we give a more detailed description
of the mechanical model and the mathematical formulation of the problem within the
energetic formulation theory of rate-independent systems (Q, E ,D). In section 3,
we specify the full assumptions and state our existence result by applying the same
techniques as in [Mie07, MiP07]. More precisely, we show that for any stable initial
data q(0) an energetic solution exists. We also provide a series of further properties
of the functional E that will be used in the later sections.

In section 4, the temporal smoothness is obtained assuming uniform convexity of
W (x, ·, ·, θ) and D(x, z0, z1) = ψ(x, z1−z0). Finally, in section 5, we discuss the con-
vergence of space-time discretizations of the problem. For this we choose a sequence
(Πτ )τ>0 of partitions {0 = tτ0 < tτ1 < · · · < tτNτ

= T } of the time interval [0, T ] with
max{ tτk − tτk−1 : k = 1, . . . , Nτ } ≤ τ . Moreover, we choose a sequence (Qh)h>0,
Qh

def= Fh ×Zh, of finite-dimensional space approximations exhausting Q. We obtain
a sequence qτ,h : [0, T ] → Q of piecewise constant interpolants. The main theorem
states that this sequence has a subsequence (qτn,hn)n∈N such that for all t ∈ [0, T ] we
have qτn,hn(t) → q(t), where q : [0, T ] → Q is a solution for (Q, E ,D).

In section 6, we discuss several models for the stored-energy density W , which in
this context is called mixture function [MiT99, Mie00, CaP01, MTL02] or free energy
of mixing [HaG02, GMH02, GHH07]. In particular, we clarify the assumptions that
are needed to apply the results obtained in the previous sections.

2. Mechanical model and mathematical formulation. We consider a ma-
terial with a reference configuration Ω ⊂ Rd with d ∈ {2, 3}. We assume that Ω is
an open bounded set with a 1-regular smooth boundary (see [RaT83]). This body
may undergo displacements u : Ω → Rd and phase transformations. The latter will
be characterized by a mesoscopic internal variable z : Ω → Z, where Z is the Gibbs
simplex, associated with the N pure phases ê1, . . . êN ∈ R

N , where êj is the jth unit
vector, i.e.,

(2.1) Z
def= conv{ê1, . . . , êN} def=

{
z =

N∑
i=1

λiêi

∣∣∣ 0 ≤ λi ≤ 1,
N∑

i=1

λi = 1
}
⊂ R

N .

The set of admissible displacements F is chosen as a suitable subspace of H1(Ω; Rd)
by prescribing Dirichlet data on the subset ΓDir of ∂Ω, i.e.,

F def=
{
u ∈ H1(Ω; Rd)

∣∣ u|ΓDir = 0
}
.

Note that the physical displacement is u + uDir, where uDir : [0, T ] → H1(Ω; Rd) is
prescribed a priori. Throughout the paper we consider the extension of uDir(t) to Ω,
but actually only the trace on ΓDir would be needed. The internal variable z belongs
to

Z def=
{
z ∈ H1(Ω; RN ) | z(x) ∈ Z a.e. x ∈ Ω

}
.

We will denote the norm in Q def= F × Z by ‖·‖Q and q def= (u, z).
We also assume that the material behavior depends on the temperature θ, which

will be considered as a time-dependent given parameter. Therefore we will not solve
an associated heat equation, but we will treat θ as an applied load and denote it by

3



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θappl : [0, T ] × Ω → [θmin, θmax]. This approximation for the temperature is used in
engineering models and is justified when the changes of the loading are slow and the
body is small in at least one direction: in such a case, excess of heat can be transported
very fast to the surface of the body and then radiated into the environment.

We will denote by R
d×d
sym the space of symmetric d × d tensors endowed with the

scalar product v:w def= tr(vTw), and the corresponding norm is given by |v|2 def= v:v for
all v, w ∈ Rd×d

sym . Here (·)T and tr(·) denote the transpose and the trace of the matrix
(·), respectively. The linearized strain tensor is given by e = e(u) def= 1

2 (∇u+∇uT) ∈
Rd×d

sym . We assume that ∂Ω is smooth enough and that the surface measure
∫
ΓDir

1da
is positive such that Korn’s inequality holds; i.e., there exists cKorn > 0 such that

(2.2) ∀u ∈ F : ‖e(u)‖2
L2 ≥ cKorn‖u‖2

H1.

For more details on Korn’s inequality and its consequences, we refer the reader to
the [KoO88] or [DuL76].

The stored-energy potential takes the following form:

(2.3)
E(t, u, z) def=

∫
Ω

(
W (x, e(u+uDir(t))(x), z(x), θappl(t, x)) +

σ

2
|∇z(x)|2

)
dx

− 〈l(t), u〉,

where the stored-energy density W : Ω × R
d×d
sym × Z × [θmin, θmax] → R describes

the material behavior. Here σ is a positive coefficient that is expected to measure
some nonlocal interaction effect for the internal variable z and l(t) denotes an applied
mechanical loading of the form

〈l(t), u〉 def=
∫

Ω

fappl(t, x)·u(x)dx +
∫

∂Ω

gappl(t, x)·u(x)dγ.

The main point in the model is the choice of the stored-energy density W . For
notational simplicity, we will omit any dependence on the material point x ∈ Ω, as
it is standard to generalize the approach to this case. For the pure phases z = êk it
is clear that W (·, êk, ·) : Rd×d

sym × [θmin, θmax] → R can be adjusted to the measured
elasticity constants of this phase. However, the choice for true mixtures z ∈ Z is not
so obvious. In [MiT99, Mie00, MTL02] it was suggested to derive W as a mixture
function via cross-quasi convexification:

(2.4)

Wmix(e, z, θ) = inf
{∫

Td

W (e+e(ṽ)(y), z̃(y), θ)dy
∣∣∣ ṽ ∈ H1(Td; Rd),

z =
∫

Td

z̃(y)dy, z̃ ∈ L1(Td; {ê1, . . . , êN})
}
,

where Td = (R/Z)d is the d-dimensional torus; i.e., ṽ and z̃ are periodic functions.
In [HaG02, GMH02, GHH07] this function is called free energy of mixing. The

point of this construction is that W (·, z, θ) is still quasi-convex, which is an essential
prerequisite for constructing solutions. All this theory was developed for fixed tem-
perature levels and may be much too difficult to be carried through for given material
models for the pure phases. In [Mie07, eq. (3.7)] another modeling idea is used by
interpolating in a thermal way, such that for convex W (·, êk, θ), k = 1, . . . , N , the
resulting function W (·, z, θ) is still convex.
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If each W (·, êk, θ) is a quadratic function and the associated elasticity tensor is
the same for all phases, then it is shown in [Mie00, MTL02] that W takes the form

Wmix(e, z, θ) =
N∑

k=1

zk

[
1
2
(e−Ek(θ)):C(θ):(e−Ek(θ)) + wtherm

k (θ)
]

+ wmix(z, θ)(2.5)

=
1
2
(e−E(z, θ)):C(θ):(e−E(z, θ)) + w̃(z, θ),

where C(θ) denotes the elasticity tensor, Ek(θ) is the transformation strain of phase k
with E(z, θ) def=

∑N
k=1 zkEk(θ) being the effective transformation strain for a mixture,

and wmix(·, θ) : Z → (−∞, 0] is convex and satisfies wmix(êk, θ) = 0 for all k =
1, . . . , N . In [CaP01, HaG02, GMH02, GHH07] it was shown that this model can be
used quite effectively in engineering applications. See section 6 for more discussion of
the mixture function W .

Our functional E also includes a gradient term σ
2 |∇z|2 which is mainly introduced

for mathematical purposes. It will be essential to introduce this term for obtaining
the necessary compactness of the abstract theory. After we have averaged the mi-
crostructure by allowing for nontrivial phase mixtures, we have to penalize to drastic
changes in the mixture composition. This has the disadvantage that we cannot allow
for interfaces between the pure austenite and a twined pair of martensite variants
(also called habit plane). However, our theory would work equally well if the gradient
term would be replaced by a weaker term like∫

Ω×Ω

σ
|z(y)−z(x)|2
|y−x|d+2s

dxdy

for s ∈ (0, 1), which leads to the Sobolev space Hs(Ω) instead of H1(Ω) for the
definition of Z. For s < 1/2 piecewise constant functions are contained in Hs(Ω), and
hence habit planes would have finite energy. For notational convenience we restrict
ourselves to the case s = 1.

To model the hysteretic behavior of shape-memory materials, we also have to
describe the dissipation as a constitutive law, since this is largely independent of
the energy landscape; cf. [Rou02, AGR03, Rou04]. Again, the energy dissipated in
a phase transformation between two pure phases can be measured given the values
D(x, êj , êk). It is shown in [MTL02] that from these values there is a canonical way
(via optimal transport theory) to find a function D : Ω × Z × Z → [0,∞) such that
the dissipation between two states z0, z1 ∈ Z takes the form

(2.6) D(x, z0, z1) = ψ(x, z1−z0),

where the dissipation potential ψ(x, ·) : R
N
0 → R, with RN

0
def= {v ∈ RN | ∑N

j=1 vj =
0}, is convex and positively homogeneous of degree 1; i.e., for all γ ≥ 0 and v ∈ R

N
0 ,

ψ(x, γv) = γψ(x, v).
At the moment, we do not assume that D is defined via ψ but postulate a dis-

sipation distance D : Z × Z → [0,∞) satisfying the following two properties which
imply that D is a quasi distance (as for W , we suppress the x-dependence of D from
now on):

D(z0, z1) = 0 ⇐⇒ z0 = z1,(2.7a)

∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) +D(z2, z3).(2.7b)
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Note that symmetry D(z1, z2) = D(z2, z1) is not needed, which may be useful, as
the dissipated energy for transforming from austenite to martensite and vice versa
may be different. Finally, the total dissipation distance between two internal states
z0, z1 ∈ Z is defined via

(2.8) D(z0, z1)
def=
∫

Ω

D(z0(x), z1(x))dx.

The evolution is assumed to be governed by the energetic formulation of rate-
independent processes as introduced in [MTL02, MiT04, Mie05, MaM05, FrM06].
More precisely, a function q : [0, T ] → Q is called an energetic solution of the rate-
independent problem associated with E and D if for all t ∈ [0, T ] the global stability
condition (S) and the global energy balance (E) are satisfied, i.e.,

(S) ∀q̄ = (ū, z̄) ∈ Q : E(t, q(t)) ≤ E(t, q̄) + D(z(t), z̄),

(E) E(t, q(t)) + VarD(z; [0, t]) = E(0, q(0)) +
∫ t

0

∂sE(s, q(s))ds.

The dissipation VarD is defined via

VarD(z; [r, s]) def= sup
{ n∑

j=1

D(z(tj−1), z(tj))
∣∣∣n ∈ N, r ≤ t0 < t1 < · · · < tn ≤ s

}

for all (r, s) ∈ [0, T ]2 such that r < s.
As detailed in [MiT04, Mie05], we can interpret the energetic formulation as a

weak form of the associated evolution law defined by elastic equilibrium and the flow
rule for the internal variable z. In particular, if the functional E(t, ·) is convex and D
is given in the form (2.6), then the energetic formulation (S) and (E) is equivalent to
the following doubly nonlinear evolution law:

(2.9)
elastic equilibrium

⎧⎪⎨⎪⎩
−div∂eW (e(u+uDir), z, θappl) = fappl in Ω,
u = uDir on ΓDir,

∂eW (e(u+uDir), z, θappl)ν = gappl on ΓNeu;

flow rule 0 ∈ ∂ψ(ż) + ∂zW (e(u+uDir), z, θappl) + ∂χZ(z) in Ω,

where ∂ without a subscript denotes the set-valued subdifferential of a convex function.
In fact, under the assumptions of section 4 the energetic solutions satisfy (2.9) as
well.

3. The existence result. In this section we collect the assumptions on the
constitutive functions W and D and on the data θappl, l, and uDir that allow us to
apply the abstract existence theory for energetic solutions to the rate-independent
system (Q, E ,D). Thus, we will just check that the assumptions of the result in
[FrM06] are satisfied. In fact, virtually the same assumptions will be used in section 5
to obtain the convergence result, which is again an existence result, as existence is
not assumed beforehand. After stating the existence result, we will collect a number
of properties of the energy functional E , which will be useful in the later sections.
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For the prescribed temperature profile θappl, the external loading l, and the Dirich-
let boundary condition uDir we assume

θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])),(3.1a)

l ∈ C1([0, T ]; (H1(Ω; Rd))′),(3.1b)

uDir ∈ C1([0, T ]; H1(Ω; Rd)).(3.1c)

For the stored-energy densityW : R
d×d
sym×Z×[θmin, θmax] → R we impose the following

conditions. In section 6, we will show that these conditions are satisfied by some of
the functions W introduced in the previous section.

Assumptions on W . There exist positive constants C, c, CW
0 , CW

1 , Cθ, Cθ
0 ,

Cθ
1 , Ce, Ce

0 , Ce
1 , an exponent p̂ ∈ (0, 2), and a nondecreasing function ω : [0,∞) →

[0,∞) with limτ→0+ ω(τ) = 0 such that for all e, e1, e2 ∈ Rd×d
sym , z, z1, z2 ∈ Z, and

θ, θ1, θ2 ∈ [θmin, θmax] we have

W (·, z, θ) is strictly convex,(3.2a)

W,∂θW ∈ C0(Rd×d
sym×Z×[θmin, θmax]; R),(3.2b)

∂eW ∈ C0(Rd×d
sym×Z×[θmin, θmax]; Rd×d

sym),(3.2c)

c
(
|e|2+|z|2

)
− C ≤W (e, z, θ) ≤ C

(
|e|2+|z|2

)
+ C,(3.2d)

|∂eW (e, z, θ)|2 + |∂θW (e, z, θ)| ≤ CW
1

(
W (e, z, θ)+CW

0

)
,(3.2e) ∣∣∂θW (e, z, θ1)−∂θW (e, z, θ2)

∣∣ ≤ Cθ
1

(
W (e, z, θ1)+Cθ

0

)
ω(|θ1−θ2|),(3.2f) ∣∣∂eW (e, z, θ1)−∂eW (e, z, θ2)

∣∣2 ≤ Ce
1

(
W (e, z, θ1)+Ce

0

)
ω(|θ1−θ2|),(3.2g) ∣∣∂θW (e1, z1, θ)−∂θW (e2, z2, θ)

∣∣(3.2h)

≤ Cθ(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|),∣∣∂eW (e1, z1, θ)−∂eW (e2, z2, θ)
∣∣ ≤ Ce(|e1−e2|+|z1−z2|),(3.2i)

|W (e, z1, θ)−W (e, z2, θ)| ≤ C(1+|e|)p̂ω(|z1−z2|).(3.2j)

For the dissipation distance we impose (2.7) and

(3.3) ∃ c1, c2 > 0 ∀z1, z2 ∈ Z : c1|z1−z2| ≤ D(z1, z2) ≤ c2|z1−z2|.

We prove now that the energetic formulation (S) and (E) has at least one solution
q : [0, T ] → Q for any given stable initial data q0 = (u0, z0) ∈ Q; i.e., q0 ∈ Q satisfies
the global stability condition (S) at t = 0. The existence theory for (S) and (E)
has been developed in [MaM05, FrM06, Mie05] and is based on the construction of a
sequence of incremental minimization problems. More precisely, for a given partition
Π = {0 = t < t1 < · · · < tn = T }, we define the incremental problems as follows:

(IP)Π

{
for k = 1, . . . , n find

qk
def= (uk, zk) ∈ Argmin

{
E(tk, q̄) + D(zk−1, z̄) | q̄ = (ū, z̄) ∈ Q

}
.
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Let the piecewise constant interpolant qΠ : [0, T ] → Q be defined by qΠ(t) = qj for
t ∈ [tj , tj+1) for j = 0, . . . , n−1 and qΠ(T ) = qn. Then one shows that a subsequence
of (qΠ)Π has a limit, and this limit function satisfies the energetic formulation (S)
and (E).

Note that our statement given here is slightly stronger than the one obtained in
the abstract setting. First, we state that not only the z-component of q converges but
also the u-component. Second, we provide strong convergence in Q, i.e., in the norm
topology of H1(Ω).

Theorem 3.1. Assume that W and D satisfy (2.7), (3.2), and (3.3) and that
the data uDir, l, and θappl satisfy (3.1). Let q0 ∈ Q be stable for t = 0. Then there
exists an energetic solution q = (u, z) : [0, T ] → Q such that q0 = (u(0), z(0)) and

u ∈ L∞([0, T ]; H1(Ω; Rd)),

z ∈ L∞([0, T ]; H1(Ω;Z)) ∩ BV([0, T ]; L1(Ω;Z)).

Moreover, let Πk = {0 = tk0 < tk1 < · · · < tkNk
= T }, k ∈ N, be a sequence of partitions

with fineness Δ(Πk) def= max{tkj − tkj−1 : j = 1, . . . , Nk} tending to 0 for k → ∞. Let
qΠk

def= (uΠk , zΠk) : [0, T ] → Q be the piecewise constant interpolants associated with
the incremental problems (IP)Πk

; then there exist a subsequence q̄n
def= qΠkn and an

energetic solution q̂ : [0, T ] → Q such that for all t ∈ [0, T ] the following holds:

q̄n(t) → q̂(t) in Q,(3.4a)

E(t, q̄n(t)) → E(t, q̂(t)),(3.4b)

VarD(z̄n; [0, t]) → VarD(ẑ; [0, t]).(3.4c)

Proof. We use the abstract result of [FrM06], which relies on the following abstract
assumptions (i)–(v), where F and Z are considered as topological spaces carrying the
weak topology of H1(Ω):

(i) ∀z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇐⇒ z1 = z2 and D(z1, z3) ≤ D(z1, z2) +
D(z2, z3);

(ii) D : Z × Z → [0,∞) is continuous;
(iii) ∀t ∈ [0, T ] : E(t, ·) : Q → [0,∞) has compact sublevels;
(iv) there exists CE

0 , C
E
1 > 0 such that ∀q ∈ Q

E(t, q) <∞ =⇒
{
E(·, q) ∈ C1([0, T ]) and

|∂tE(t, q)| ≤ CE
1 (E(t, q)+CE

0 );

(v) ∀η > 0 ∀ε > 0 ∃δ > 0 ∀q ∈ Q ∀t1, t2 ∈ [0, T ] :(
E(0, q) ≤ η, |t1−t2| ≤ δ

)
=⇒ |∂tE(t1, q)−∂tE(t2, q)| < ε.

Property (i) follows from the definition (2.8) of the dissipation potential D and the
conditions (2.7) and (3.3). The latter condition also implies that D(z1, z2) is bounded
from above and below by the norm of z1−z2 in L1(Ω). Hence, D is strongly continuous
in L1(Ω), and the compact embedding of H1(Ω) into L1(Ω) provides (ii).

On the one hand, E(t, ·) is coercive because of (3.2d) and (2.2). Moreover, E(t, ·)
is weakly lower semicontinuous, as the integrand is convex in (∇u,∇z) and contin-
uous in (u, z,∇u,∇z). This provides (iii). Finally, (iv) and (v) will be obtained in
Proposition 3.3.
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Since the assumptions (i)–(v) are fulfilled, [FrM06, Thm. 3.4] or [Mie05, Thm. 5.2]
are applicable, and the statement of the theorem follows, except for (3.4a), where only
z̄n(t) ⇀ ẑ(t) is inferred.

To obtain the convergence of ūn(t) we note that by construction ūn(t) minimizes
the energy E(τ(n, t), ·, z̄n(t)), where τ(n, t) is the largest point in Πkn not exceeding t.
Since we have τ(n, t) → t and z̄n(t) ⇀ ẑ(t), we may infer part of Lemma 3.4 to obtain
(3.4a).

Now we collect some properties of E and D that we will use in the next sections.
Lemma 3.2. Let the assumptions (3.1), (3.2a), (3.2b), (3.2d), (2.7), and (3.3)

hold. Then, the energy functional E : [0, T ] ×Q → R is weakly lower semicontinuous
and strongly continuous, and is coercive:

(3.5) ∃C0, c0 > 0 ∀(t, q) ∈ [0, T ]×Q : C0‖q‖2
Q − c0 ≤ E(t, q) ≤ c0‖q‖2

Q + c0.

The dissipation distance D : Z × Z → [0,∞) is weakly continuous.
Proof. First, let us observe that Korn’s inequality (2.2), Young’s inequality, and

(3.2d) lead to

E(t, q) ≥ ccKorn

4
‖u‖2

H1 +min
(
c,
σ

2

)
‖z‖2

H1 −C|Ω| − 1
ccKorn

‖l(t)‖2
(H1)′ −c‖e(uDir(t))‖2

L2

for all (t, q) ∈ [0, T ]×Q. Similarly, (3.2d) implies

E(t, q) ≤
(

2C+
1
2

)
‖u‖2

H1+max
(
C,

σ

2

)
‖z‖2

H1+C|Ω|+1
2
‖l(t)‖2

(H1)′+2C‖e(uDir(t))‖2
L2 ,

and, by using (3.1), we may conclude that (3.5) holds.
The weak lower semicontinuity of E(t, · ) : Q → R follows from the convexity of

the integrand in highest derivatives of (u, z), namely (e(u),∇z). Weak continuity of
D is a consequence of the strong continuity of D with respect to the norm in L1(Ω)
and the compact embedding of Z ⊂ H1(Ω; RN ) into L1(Ω; RN ).

It remains to show the strong continuity of E . For this assume (tn, qn) → (t∗, q∗).
Using (3.5) the sequence

(
E(tn, qn)

)
n∈N

is bounded, and we may choose a subsequence
(tnj , qnj )j∈N such that

E(tnj , qnj ) → E∗,

∀a.a. x ∈ Ω : (enj (x), znj (x), θappl(tnj , x)) → (e∗(x), z∗(x), θappl(t, x)),

∃γ ∈ L2(Ω) ∀j ∈ N : |(enj , znj )| ≤ γ a.e. in Ω

with enj = e
(
unj + uDir(tnj )

)
for all j ∈ N. Thus, we may pass to the limit in

E(tnj , qnj ) =
∫

Ω

W (e(unj +uDir(tnj )), znj , θappl(tnj ))dx +
σ

2
‖∇znj‖2

L2 − 〈l(tnj ), unj〉,

by applying Lebesgue’s theorem and using (3.1). We obtain E∗ = limj→∞ E(tnj , qnj ) =
E(t∗, q∗) and, by uniqueness of the limit, the whole sequence (E(tn, qn))n∈N converges
to E(t∗, q∗).

We now check the last two assumptions (iv) and (v) of the abstract result of
[FrM06], which are needed to obtain Theorem 3.1. To do so, we first observe that
the regularity assumptions on W and the data uDir, l, and θappl imply that E(·, q) ∈
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C1([0, T ]) for all q ∈ Q and we derive an explicit formula for ∂tE(·, q). Then using the
assumptions (3.2e) to (3.2i) we obtain an estimate of |∂tE(t, q)| in terms of E(t, q) and
establish (v), which can be interpreted as a uniform continuity property for ∂tE(·, q)
on energy sublevels.

Proposition 3.3. Let us assume that (3.1) and (3.2b) to (3.2i) hold. Then E
satisfies the following properties:

(P1) Let q = (u, z) ∈ Q. Then E(·, q) lies in C1([0, T ]) and

(3.6)

∂tE(t, q) =
∫

Ω

∂eW (e(u+uDir(t)), z, θappl(t)) e(u̇Dir(t))dx

+
∫

Ω

∂θW (e(u+uDir(t)), z, θappl(t)) θ̇appl(t)dx − 〈l̇(t), u〉.

(P2) There exist CE
0 , C

E
1 > 0 such that |∂tE(t, q)| ≤ CE

1

(
E(t, q)+CE

0

)
for all (t, q) ∈

[0, T ]×Q.
(P3) For each ε > 0 and E ∈ R+ there exists δ > 0 such that for all (s, t, q) ∈

[0, T ]2 ×Q with E(0, q) ≤ E and |s−t| ≤ δ we have |∂tE(s, q)−∂tE(t, q)| < ε.
Estimate (P2) together with Gronwall’s lemma leads to

(3.7) ∀s, t ∈ [0, T ] : E(t, q) ≤ exp(CE
1 |t−s|)(E(s, q)+CE

0 ) − CE
0 .

This estimate is crucial to derive a priori estimates, also in the time-discrete setting.
Proof. First, we infer from (3.1) and (3.2b) to (3.2e) that E(·, q) ∈ C1([0, T ]) and

that (3.6) holds.
For (P2), one can see that assumptions (3.1) and Cauchy–Schwarz’s inequality

lead to

(3.8)

|∂tE(t, q)| ≤ 1
2

∫
Ω

|∂eW̃ (t, θappl(t))|2 dx+
1
2
‖e(u̇Dir(t))‖2

L2

+ Θ
∫

Ω

|∂θW̃ (t, θappl(t))|dx +
1
2
‖u‖2

H1 +
1
2
‖l̇(t)‖2

(H1)′ ,

where Θ def= ‖θ̇appl(·)‖C0([0,T ];L∞) and W̃ (s, θ) def= W (e(u+uDir(s)), z, θ). Carrying
(3.2e) into (3.8), we have

|∂tE(t, q)| ≤
(

1
2
+Θ
)∫

Ω

CW
1

(
W̃ (t, θappl(t))+CW

0

)
dx

+
1
2
‖u‖2

H1 +
1
2
‖e(u̇Dir(t))‖2

L2 +
1
2
‖l̇(t)‖2

(H1)′ ,

which implies using (2.3) that

(3.9) |∂tE(t, q)| ≤
(

1
2
+CW

1

(
1
2
+Θ
))(

E(t, q)+‖u‖2
H1+C1

)
,

where C1
def= ‖e(u̇Dir)‖2

C0([0,T ];L2) + ‖l‖2
C0([0,T ];(H1)′) + ‖l̇‖2

C0([0,T ];(H1)′) +CW
0 |Ω|. Using

(3.5) in (3.9), the announced result (P2) follows immediately.
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To derive estimate (P3) we use the decompositions

|∂tE(s, q)−∂tE(t, q)| ≤ Ie(s, t) + Iθ(s, t) + Il(s, t),(3.10a)

where

Ie(s, t)
def=
∫

Ω

∣∣∂eW̃ (s, θappl(s)) e(u̇Dir(s))−∂eW̃ (t, θappl(t)) e(u̇Dir(t))
∣∣dx,(3.10b)

Iθ(s, t)
def=
∫

Ω

∣∣∂θW̃ (s, θappl(s)) θ̇appl(s)−∂θW̃ (t, θappl(t)) θ̇appl(t)
∣∣dx,(3.10c)

Il(s, t)
def=
∣∣〈l̇(s)−l̇(t), u〉| ≤ ‖l̇(s)−l̇(t)‖(H1)′‖u‖H1 ≤ ‖l̇(s)−l̇(t)‖(H1)′

√
E+c0

C0
,(3.10d)

where we used (3.5) for the last estimate.
Each term on the right-hand side of (3.10a) is estimated separately by using the

assumptions on W introduced above. Since E(0, q) ≤ E, one deduces from (2.3), (3.5),
and (3.7) that

(3.11)
∫

Ω

W̃ (s, θappl(s))dx ≤ ρ(E),

where ρ(E) def= exp(CE
1 T )(E+CE

0 )−CE
0 +sups∈[0,T ]‖l(s)‖(H1)′

√
E+c0

C0
. Using (3.1) the

right-hand side of (3.11) is bounded independently of s and q. Let us now observe
that

(3.12) Ie(s, t) ≤
∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t))

)∣∣dx+ Ie
var(s, t),

where

Ie
var(s, t)

def=
∫

Ω

∣∣(∂eW̃ (s, θappl(s))−∂eW̃ (t, θappl(s))
)
e(u̇Dir(t))

∣∣dx
+
∫

Ω

∣∣(∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))
)
e(u̇Dir(t))

∣∣dx.
Using Cauchy–Schwarz’s inequality and (3.2e), the first term on the right-hand side
of (3.12) is estimated by∫

Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t))

)∣∣dx
≤
(
CW

1

∫
Ω

W̃ (s, θappl(s))dx + CW
1 CW

0 |Ω|
)1/2

‖e(u̇Dir(s))−e(u̇Dir(t))‖L2 .

Introducing (3.11) in the latter estimate, we deduce that there exists C̃E
1 > 0 such

that

(3.13)

∫
Ω

∣∣∂eW̃ (s, θappl(s))
(
e(u̇Dir(s))−e(u̇Dir(t))

)∣∣dx
≤ C̃E

1 ‖e(u̇Dir(s))−e(u̇Dir(t))‖L2 .
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For Ie
var we use (3.2i) and Cauchy–Schwarz’s inequality to find

(3.14)
Ie

var(s, t) ≤ η
(
Ce‖e(uDir(s))−e(uDir(t))‖L2

+ ‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖L2

)
,

where η def= ‖e(u̇Dir(·))‖C0([0,T ];L2). By (3.1a) we have

(3.15)
∀a.e. x ∈ Ω : ω(|θappl(s, x)−θappl(t, x)|) ≤ ω̄s,t

def= ω(‖θappl(s)−θappl(t)‖L∞)

≤ ω
(
Θ|s−t|

)
.

Hence, (3.2g) yields the estimate

‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖2
L2 ≤ Ce

1

(∫
Ω

W̃ (t, θappl(t))dx + Ce
0 |Ω|

)
ω̄s,t,

which implies thanks to (3.11) that

(3.16) ‖∂eW̃ (t, θappl(s))−∂eW̃ (t, θappl(t))‖2
L2 ≤ Ce

1

(
ρ(E)+Ce

0 |Ω|
)
ω̄s,t.

Carrying (3.16) into (3.14), and observing that e(u̇Dir(·)) ∈ C0([0, T ]; L2(Ω; Rd×d
sym)),

one deduces that there exists C̃E
2 > 0 such that

(3.17) Ie
var(s, t) ≤ C̃E

2

(
‖e(uDir(s))−e(uDir(t))‖L2+

√
ω̄s,t

)
.

Finally, we insert (3.13) and (3.17) in (3.12) and obtain

(3.18)
Ie(s, t) ≤ C̃E

1 ‖e(u̇Dir(s))−e(u̇Dir(t))‖L2

+ C̃E
2

(
‖e(uDir(s))−e(uDir(t))‖L2+

√
ω̄s,t

)
.

Using the same decomposition for Iθ as for Ie, we have

(3.19) Iθ(s, t) ≤
∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx+ Iθ

var(s, t),

where

Iθ
var(s, t)

def=
∫

Ω

∣∣(∂θW̃ (s, θappl(s))−∂θW̃ (t, θappl(s))
)
θ̇appl(t)

∣∣dx
+
∫

Ω

∣∣(∂θW̃ (t, θappl(s))−∂θW̃ (t, θappl(t))
)
θ̇appl(t)

∣∣dx.
Using (3.2e), the first term on the right-hand side of (3.19) can be estimated as follows:∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx

≤
(
CW

1

∫
Ω

W̃ (s, θappl(s))dx + CW
1 CW

0 |Ω|
)
‖θ̇appl(s)−θ̇appl(t)‖L∞ ,
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which implies using once again (3.11) that there exists C̃E
3 > 0 such that

(3.20)
∫

Ω

∣∣∂θW̃ (s, θappl(s))(θ̇appl(s)−θ̇appl(t))
∣∣dx ≤ C̃E

3 ‖θ̇appl(s)−θ̇appl(t)‖L∞ .

To estimate Iθ
var we first deduce from (3.2f), (3.2h), Cauchy–Schwarz’s inequality, and

(3.15) that

(3.21)

Iθ
var(s, t) ≤ Θ

(
Cθ‖1+|e(uDir(s))+e(uDir(t))+2e(u)|+2|z|‖L2

‖e(uDir(s))−e(uDir(t))‖L2

+ Cθ
1

(∫
Ω

W̃ (t, θappl(t))dx + Cθ
0 |Ω|

)
ω̄s,t

)
.

With Cauchy–Schwarz’s inequality, (3.5), (2.3), and e(uDir(·)) ∈ C0([0, T ]; L2(Ω; Rd×d
sym))

we infer that ‖1+|e(uDir(s))+e(uDir(t))+2e(u)|+2|z|‖L2 is bounded independently of
t, s, and q. Hence, using (3.11), we deduce that there exists C̃E

4 > 0 such that

(3.22) Iθ
var(s, t) ≤ C̃E

4

(
‖e(uDir(s))−e(uDir(t))‖L2+ω̄s,t

)
.

Carrying (3.20) and (3.22) into (3.19), we obtain

(3.23) Iθ(s, t) ≤ C̃E
3 ‖θ̇appl(s)−θ̇appl(t)‖L∞+C̃E

4

(
‖e(uDir(s))−e(uDir(t))‖L2+ω̄s,t

)
.

Recalling that (3.1) assumes that θappl, l, and uDir are C1, the compactness of [0, T ]
implies uniform continuity of the derivatives. Hence, (3.10d), (3.18), (3.23), and ω̄s,t ≤
ω
(
Θ|s−t|

)
lead to the existence of a nondecreasing function ωE : [0,∞) → [0,∞) with

ωE(τ) → 0 for τ ↘ 0 such that

|∂tE(s, q)−∂tE(t, q)| ≤ ωE(|s−t|),

whenever E(0, q) ≤ E. This concludes the proof.
Next we introduce the set of stable states defined as follows:

(3.24) S(t) def=
{
q ∈ Q

∣∣ ∀q̄ ∈ Q : E(t, q) ≤ E(t, q̄) + D(z, z̄)
}
.

Let us observe that (S) is equivalent to q(t) = (u(t), z(t)) ∈ S(t).
Lemma 3.4. Let the assumptions (3.1), (3.2a) to (3.2e), (3.2j), (2.7), and (3.3)

hold. If tn → t∗, zn ⇀ z∗, qn = (un, zn) ∈ S(tn), and supn∈N E(tn, qn) <∞, then

(3.25) E(tn, qn) → E(t∗, q∗) and qn → q∗ = (u∗, z∗) in Q strongly,

where u∗ = ArgminE(t∗, · , z∗).
Proof. We recall that by (3.2a) the functional F � u �→ E(t, u, z) is strictly

convex. Hence, by weak lower semicontinuity there is for each pair (t, z) ∈ [0, T ]×Z
a unique minimizer u = U(t, z).

We first use the coercivity (3.5) to see that the sequence (un)n∈N is bounded
in F . Thus, there exist a convergent subsequence (unj )j∈N and ũ with qnj ⇀ q̃ =
(ũ, z∗) for j → ∞. Since E is weakly lower semicontinuous, we infer E(t∗, q̃) ≤
lim infj→∞ E(tnj , qnj ).
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Using the stability of qn and testing with q∗ = (u∗, z∗) we have

E(tn, qn) ≤ E(tn, q∗) + D(zn, z∗)

≤ E(t∗, q∗) +
(
exp(CE

1 |tn−t∗|) − 1
)
(E(t∗, q∗) + CE

0 ) + D(zn, z∗).

Passing to the limit n → ∞ gives lim supn→∞ E(tn, qn) ≤ E(t∗, q∗). Since u∗ is the
unique minimizer, we have

E(t∗, q∗) ≤ E(t∗, ũ, z∗) ≤ lim inf
j→∞

E(tnj , qnj ) ≤ lim sup
n→∞

E(tn, qn) ≤ E(t∗, q∗).

Thus, we conclude that E(tn, qn) → E(t∗, q∗) and that ũ is equal to the unique mini-
mizer u∗. This also shows that the whole sequence converges: un ⇀ u∗.

It remains to show that the convergence must in fact be strong, which will fol-
low from the crucial property that the integrand of (e, z, A) �→ W (e, z, θ) + σ

2 |A|2
is strictly convex in (e,A). First we employ (3.7) to conclude that we also have
E(t∗, qn) → E(t∗, q∗), since E(tn, qn)−E(t∗, qn) can be estimated via C|tn−t∗|. Next
observe that E(t∗, ·) is the sum of the two weakly lower semicontinuous functionals
I1 : q �→

∫
ΩW (e(u + uDir(t∗)), z, θappl(t∗)) dx and I2 : q �→

∫
Ω

σ
2 |∇z|2 dx and the

linear functional −〈l(t∗), ·〉. Thus, we have Ik(qn) → Ik(q∗) for k = 1, 2. The case
k = 2 yields zn → z∗ in H1(Ω; RN ) strongly, since in Hilbert spaces weak convergence
plus convergence of the norms implies strong convergence.

To establish strong convergence of the u-component, we introduce q̂n = (un, z∗)
and employ condition (3.2j) to obtain

|I1(q̂n)−I1(qn)| ≤
∫

Ω

C(1+|e(un + uDir(t∗))|)p̂ ω(|zn(x)−z∗(x)|)dx

≤ C2p̂/2
(
|Ω| + ‖e(un + uDir(t∗))‖2

L2

)p̂/2 ‖ω(|zn−z∗|)‖Lp̄ ,(3.26)

where we used Hölder’s inequality with p̄ = 2/(2−p̂) ∈ (1,∞). In (3.26) the first factor
is bounded because of weak convergence. The second factor ‖ω(|zn−z∗|)‖Lp̄ converges
to 0, since ω(|zn−z∗|) is uniformly bounded by ω(diam(Z)) and since |zn−z∗| → 0 in
L2(Ω). Thus, we conclude

|I1(q̂n)−I1(q∗)| ≤ |I1(q̂n)−I1(qn)| + |I1(qn)−I1(q∗)| → 0.

In I1(q̂n) the integrand is x �→ W (x, e(un(x) + uDir(t∗, x)), z∗(x), θ(t∗, x)), where
W (x, ·, z, θ) : Rd×d

sym → R is strictly convex and we can apply [Vis84, Thm. 3] to
conclude e(un) → e(u∗) in L2(Ω; Rd×d

sym) strongly, which means un → u∗ in H1(Ω; Rd)
strongly.

The assumptions on the prescribed temperature profile θappl, the external loading
l, the Dirichlet boundary condition uDir, and the stored energy density W given above
allow us to prove that the power ∂tE(t, q) is locally Lipschitz continuous with respect
to q uniformly with respect to t. This property will play a key role in the proof of
the Lipschitz continuity of energetic solutions, which will be established in the next
section.

Lemma 3.5. Assume (3.1), (3.2b) to (3.2e), (3.2h), and (3.2i) hold. Then, for
all R > 0 there exists a constant CR > 0 such that

(3.27)
∀t ∈ [0, T ] ∀q1, q2 ∈ Q with ‖q1‖Q, ‖q2‖Q ≤ R :

|∂tE(t, q1)−∂tE(t, q2)| ≤ CR‖q1−q2‖Q.
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Proof. We let ei
def= e(ui+uDir(t)) and W̃ (ei, zi)

def= W (e(ui+uDir(t)), zi, θappl(t))
for i = 1, 2. Recalling η def= ‖e(u̇Dir(·))‖C0([0,T ];L2) and Θ def= ‖θ̇appl(·)‖C0([0,T ];L∞) and
using Cauchy–Schwarz’s and Hölder’s inequalities we infer that

|∂tE(t, q1)−∂tE(t, q2)| ≤ η

(∫
Ω

∣∣∂eW̃ (e1, z1)−∂eW̃ (e2, z2)
∣∣2 dx

)1/2

+ Θ
∫

Ω

∣∣∂θW̃ (e1, z1)−∂θW̃ (e2, z2)
∣∣dx

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 ,

which, using (3.2h) and (3.2i), implies

|∂tE(t, q1)−∂tE(t, q2)| ≤ CθΘ
(∫

Ω

(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|)dx
)

+ Ceη

(∫
Ω

(|e1−e2|+|z1−z2|)2 dx
)1/2

+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 .

≤
(
Ceη+CθΘK(t, q1, q2)

)(
‖u1−u2‖H1+‖z1−z2‖L2

)
+ ‖l̇(t)‖(H1)′‖u2−u1‖H1 ,

where K(t, q1, q2)
def=
√
|Ω| + ‖z1‖L2 + ‖z2‖L2 + ‖u1‖H1 + ‖u2‖H1 + 2‖uDir(t)‖H1 . Us-

ing (3.1) the desired estimate is established.

4. Temporal regularity via uniform convexity. In this section we study
a better case, where E(t, ·) is uniformly convex and D(z0, z1) depends only on the
difference z1 − z0. The arguments follow the method developed in [MiT04, sect. 7];
see also [MiR07].

We assume that W is αW -uniformly convex jointly in the first two arguments;
namely, there exists a modulus of convexity αW > 0 such that for all e1, e2 ∈ Rd×d

sym ,
z1, z2 ∈ Z, and λ ∈ [0, 1] we have

(4.1)
∀θ ∈ [θmin, θmax] : W (eλ, zλ, θ) ≤ (1−λ)W (e1, z1, θ) + λW (e2, z2, θ)

− αW

2
λ(1−λ)

(
|e2−e1|2+|z2−z1|2

)
,

where eλ
def= (1−λ)e1 + λe2 and zλ

def= (1−λ)z1 + λz2. With qλ
def= (1−λ)q1 + λq2, we

have

E(t, qλ) ≤ (1−λ)E(t, q1) + λE(t, q2) −
κ̂

2
λ(1−λ)‖q2−q1‖2

B,

where κ̂ def= min(αW , σ) and ‖q‖2
B

def= ‖e(u)‖2
L2 + ‖z‖2

H1. Using Korn’s inequality (2.2),
we find ‖q‖2

B ≥ min(cKorn, 1)‖q‖2
Q. Hence, we deduce

(4.2)
∀q1, q2 ∈ Q ∀t ∈ [0, T ] ∀λ ∈ [0, 1] :

E(t, qλ) ≤ (1−λ)E(t, q1) + λE(t, q2) −
κ

2
λ(1−λ)‖q2−q1‖2

Q,

where κ = κ̂min(cKorn, 1). In other words, E(t, · ) is κ-uniformly convex on Q.
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The next result establishes that in the present setting energetic solutions are
Lipschitz continuous in time, which essentially relies on the uniform convexity (4.2)
of E(t, ·) and on assumption (2.6) for the dissipation D which implies the convexity
of the dissipation distance D(q, ·) : Q → [0,∞].

Notice that the dissipation distance is called translation invariant if D satisfies
(2.6). Then, D(z0, z1) = Ψ(z1−z0) with Ψ(v) =

∫
Ω
ψ(v(x)) dx and Ψ plays the role

of a (possible unsymmetric) L1 norm.
Theorem 4.1 (Lipschitz continuity). Assume that (2.6), (2.7), (3.1), (3.2b) to

(3.2e), (3.2h), (3.2i), (3.3), and (4.1) hold. Then, any energetic solution q is Lipschitz
continuous. More precisely, let R def= ‖q‖L∞([0,T ];Q) and CR > 0 be given by Lemma 3.5;
then ‖q̇(t)‖Q ≤ 2CR

κ for a.e. t ∈ [0, T ] with κ from (4.2).
Proof. We first prove that uniform convexity allows us to improve the stability

(S) into the following stronger statement:

(4.3) ∀ s ∈ [0, T ] ∀ q̂ ∈ Q : E(s, q(s)) +
κ

2
‖q̂−q(s)‖2

Q ≤ E(s, q̂) + Ψ(q̂−q(s)).

Indeed, fix s ∈ [0, T ] and define the functional J via J (q̂) = E(s, q̂) + Ψ(q̂−q(s)) for
all q̂ ∈ Q. Since q is an energetic solution and hence satisfies (S), we know that q(s) is
a global minimizer of J . Moreover, since Ψ is convex we obtain that J is κ-uniformly
convex on Q by using (4.2). Thus, for q̂ ∈ Q and λ ∈ (0, 1) we let qλ = (1−λ)q̂+λq(s)
and obtain

J (q(s)) +
κ

2
λ(1−λ)‖q̂−q(s)‖2

Q ≤ J (qλ) +
κ

2
λ(1−λ)‖q̂−q(s)‖2

Q

≤ (1−λ)J (q̂) + λJ (q(s)).

Subtracting λJ (q(s)) and dividing by (1−λ) gives J (q(s)) + κ
2λ‖q̂−q(s)‖2

Q ≤ J (q̂).
Now the definition of J and the limit λ→ 1 lead to the desired estimate (4.3). Hence,
for all s, t ∈ [0, T ] such that s ≤ t, by choosing q̂ = q(t) we get

κ

2
‖q(t)−q(s)‖2

Q ≤ E(s, q(t)) − E(s, q(s)) + D(z(s), z(t))

≤ E(s, q(t)) − E(s, q(s)) + VarD(z, [s, t])

= −
∫ t

s

∂rE(r, q(t))dr +
∫ t

s

∂rE(r, q(r))dr ≤ CR

∫ t

s

‖q(r)−q(t)‖Qdr.

The second estimate comes from the definition of VarD, the third identity follows from
the energy identity (E) and the additivity property of the dissipation, i.e.,

VarD(z, [0, t]) = VarD(z, [0, s]) + VarD(z, [s, t]),

and the last one results from (3.27). We conclude by applying Lemma 4.2.
Lemma 4.2. Let q ∈ L∞([0, T ];Q) and C > 0 be given such that, for all s, t ∈

[0, T ] such that s ≤ t, we have

κ

2
‖q(t)−q(s)‖2

Q ≤ C

∫ t

s

‖q(r)−q(t)‖Qdr.

Then, q ∈ CLip([0, T ];Q) with ‖q̇(t)‖Q ≤ 2C
κ for a.e. t ∈ [0, T ].

The proof is a simple adaptation of the proof of Theorem 7.5 in [MiT04].
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5. Convergence of the space-time discretization. In this section we treat
the question of convergence of spatially and temporally discretized problems. As we do
not have uniqueness of solutions for the full problem, we cannot expect convergence of
the whole approximation sequence. But, as in the existence theorem (Theorem 3.1),
we will obtain convergence of subsequences to solutions of the full problem. The
approach here follows the abstract Γ-convergence theory developed in [MRS08] and the
specialization to general numerical approaches in [MiR06]. However, for the special
model at hand, we can show more than is stated in the above-mentioned general
papers. Hence, we provide a full independent proof here.

For the time discretization we consider τ ∈ (0, T ) and a partition Πτ = {0 = tτ0 <
tτ1 < · · · < tτkτ = T } with

tτk − tτk−1 ≤ τ for k = 1, . . . , kτ .

In particular, we do not assume our partitions to be equidistant.
For the spatial discretization we choose a set of length parameters h > 0 accu-

mulating at h = 0 and let Fh and Vh be closed subspaces of F and V = H1(Ω; RN ),
respectively. Typically, Fh and Vh are finite-dimensional subspaces of F and V ,
like finite element spaces or Galerkin subspaces. We let Qh

def= Fh × Zh, with
Zh = {zh ∈ Vh | zh(x) ∈ Z a.e. in Ω} = Z ∩ Vh. We assume that the sets Qh satisfy
the standard density assumption:

(5.1) ∀q ∈ Q ∃(qh)h>0 : qh ∈ Qh and qh → q strongly in Q.

By convention, let Q0
def= F0 ×Z0 = F × Z.

To have some specific spatial discretization in mind, we may assume that Ω is
a polyhedral domain and that ΓDir ⊂ ∂Ω is a finite union of faces of Ω. Then, for
each h > 0 choose a triangulation Th of Ω, such that all edges have at most length h.
Now, let Vh be the space of functions that are affine on each polyhedron of Th. Hence
Vh ⊂ H1(Ω), and we let Fh = Vh ∩ F and Zh = Vh ∩ Z. It is then standard in finite
element theory to show the density property (5.1).

We approximate the initial condition q0 by [q0]h ∈ Qh and consider the following
incremental problems:

(IP)τ,h

{
for k = 1, . . . , kτ find

qτ,h
k

def= (uτ,h
k , zτ,h

k )∈Argmin
{
E(tτk, q̂

h)+D(zτ,h
k−1, ẑ

h) | q̂h def= (ûh, ẑh)∈Qh

}
.

We define now the approximate solution qτ,h : [0, T ] → Q as the right-continuous
piecewise constant approximation, namely

(5.2) qτ,h(t) def=

{
qτ,h
k−1 for tτk−1 ≤ t < tτk, k = 1, . . . , kτ ,

qτ,h
kτ for t = T.

It is convenient to introduce the set of stable states Sh(t) for any t ∈ [0, T ] by simply
replacing Q by Qh in (3.24). Observe that if h = 0, then S0(t) = S(t). Moreover, we
define ητ,h

k

def= E(tτk, q
τ,h
k ) and δτ,h

k

def= D(zτ,h
k−1, z

τ,h
k ).

The next result, which is fundamental for the energetic approach (cf. [MiT99,
MTL02]), shows that the fully implicit incremental minimization problem (IP) is
suited perfectly for the energetic formulation (S) and (E). At the time-discrete level
we again obtain stability and a two-sided energy estimate. This will allow us to

17



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

derive suitable a priori estimates. The essential feature is that D satisfies the triangle
inequality.

Proposition 5.1. Assume that (2.7), (3.3), (3.1), (3.2b), (3.2c), and (3.2d)
hold. Then the incremental problems (IP)τ,h admit a solution (qτ,h

k )1≤k≤kτ . Moreover,
we have

discrete stability: qτ,h
k ∈ Sh(tτk),(5.3)

discrete upper energy estimate:

∀k ∈ {1, . . . , kτ} : ητ,h
k − ητ,h

k−1 + δτ,h
k ≤

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k−1)dt,(5.4)

discrete lower energy estimate:

∀k ∈ {2, . . . , kτ} : ητ,h
k − ητ,h

k−1 + δτ,h
k ≥

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k )dt.(5.5)

Proof. The existence of minimizers in each incremental step is a direct conse-
quence of the coercivity of E(t, · ) : Q → R, the nonnegativity of D, and the weak
lower semicontinuity of E and D. Of course, all these properties remain valid if the
minimization is restricted to the closed subspace Qh ⊂ Q.

For the discrete stability we use first that qτ,h
k , k = 1, . . . , kτ , is a minimizer

and that D satisfies the triangle inequality (see (2.7b) and integrate over Ω): for all
q̂h ∈ Qh we have

(5.6) E(tτk, q
τ,h
k ) ≤ E(tτk, q̂

h) + D(zτ,h
k−1, ẑ

h) −D(zτ,h
k−1, z

τ,h
k ) ≤ E(tτk, q̂

h) + D(zτ,h
k , ẑh),

which yields immediately (5.3). Since qτ,h
k ∈ Argmin

{
E(tτk, q̂

h) + D(zτ,h
k−1, ẑ

h) | q̂h ∈
Qh

}
we may choose q̂h = qτ,h

k−1 and find

ητ,h
k − ητ,h

k−1 + δτ,h
k ≤ E(tτk, q

τ,h
k−1) − ητ,h

k−1 =
∫ tτ

k

tτ
k−1

∂tE(t, qτ,h
k−1)dt.

On the other hand, we rewrite (5.6) for qτ,h
k−1, choose q̂h = qτ,h

k , and obtain

ητ,h
k − ητ,h

k−1 + δτ,h
k ≥ ητ,h

k − E(tτk−1, q
τ,h
k ) =

∫ tτ
k

tτ
k−1

∂tE(t, qτ,h
k )dt.

Thus, (5.4) and (5.5) are established.
To investigate the asymptotics when τ and h tend to 0 we need a compactness

argument suited for the rate-independent case. The following version of Helly’s se-
lection principle is a simplified version of the abstract result given in the appendix
of [MaM05].

Proposition 5.2 (Helly’s selection principle). Let D be given by (2.8) with D
satisfying (2.7) and (3.3). Let (zn)n∈N with zn : [0, T ] → Z satisfying

(5.7) ∃C > 0 ∀n ∈ N : VarD(zn; [0, T ]) ≤ C and sup
t∈[0,T ]

‖zn(t)‖H1(Ω) ≤ C;
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then there exist a subsequence (znj )j∈N, a nondecreasing function δ : [0, T ] → R, and
a limit process z : [0, T ] → Z such that for all s, t ∈ [0, T ] with s ≤ t we have

(5.8)
znj (t) ⇀ z(t) in H1(Ω), δ(t) = lim

j→∞
VarD(znj ; [0, t]),

VarD(z; [s, t]) ≤ δ(t) − δ(s).

Our main result states now that the space-time discretization defined via (IP)τ,h

generating the approximants qτ,h : [0, T ] → Q has the desirable properties (i) that the
sequence of approximants is precompact (which can be understood as the “stability
of the numerical algorithm”) and (ii) that any limit point of the sequence of approx-
imants is an energetic solution for the rate-independent system (Q, E ,D) (which can
be understood as “consistency of the numerical algorithm”). It should be noted that
we do not need to make any assumptions about how the fineness τ of the partitions
or the fineness h of the spatial discretization tend to 0.

Theorem 5.3 (convergence of the approximate solution). Assume that E, D,
and q0 satisfy the same assumptions as in Theorem 3.1. Let [q0]h ∈ Qh be such that

(5.9) [q0]h → q0 in Q.

Then, there exist a subsequence (τn, hn)n∈N tending to (0, 0) and an energetic solution
q : [0, T ] → Q for (Q, E ,D) with q(0) = q0 and

u ∈ L∞([0, T ]; H1(Ω; Rd)),

z ∈ L∞([0, T ]; H1(Ω;Z)) ∩ BV([0, T ]; L1(Ω;Z)),

such that for all t ∈ [0, T ] the following convergences hold:

qτn,hn(t) → q(t) strongly in Q,(5.10a)

E(t, qτn,hn(t)) → E(t, q(t)),(5.10b)

VarD(qτn,hn ; [0, t]) → VarD(q; [0, t]).(5.10c)

Proof. The main steps of the proof are similar to those in [MRS08, MiR06], but
our energy E is better behaved, and thus we are able to obtain more precise results.
For t ∈ [0, T ] let us introduce the notations

(5.11) ητ,h(t) def= E(t, qτ,h(t)), ηh
0

def= E(0, [q0]h), δ
τ,h

(t) def= VarD(zτ,h; [0, t])

and let us recall ητ,h
k = E(tτk, q

τ,h
k ) and δτ,h

k = D(zτ,h
k−1, z

τ,h
k ).

Step 1. A priori estimates. One can observe that (P2) and (3.7) lead to

(5.12) ∀k ∈ {1, . . . , kτ} :
∫ tτ

k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt ≤

(
exp(Cε

1 (tτk−tτk−1))−1
)
(ητ,h

k−1+C
ε
0).

Carrying (5.12) into (5.4), we get

(5.13) ητ,h
k + δτ,h

k ≤ exp(Cε
1(tτk−tτk−1))(η

τ,h
k−1+C

ε
0) − Cε

0 ,
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and observing that δτ,h
k ≥ 0, we obtain by induction

(5.14)
∀k ∈ {1, . . . , kτ} : ητ,h

k + Cε
0 ≤

k∏
j=1

exp(Cε
1(tτj−tτj−1))(η

h
0 +Cε

0)

= exp(Cε
1t

τ
k)(ηh

0 +Cε
0).

Hence, with (5.2), (3.5), and (3.7), we deduce that

(5.15) ∀t ∈ [0, T ] : −c0 ≤ ητ,h(t) ≤ exp(Cε
1t)(η

h
0 +Cε

0) − Cε
0 .

Next we estimate the dissipated energy δ
τ,h

(t) by using (5.13), (5.14), and (3.5): for
all t ∈ [0, T ]

(5.16)

δ
τ,h

(t) ≤ δ
τ,h

(T ) =
kτ∑

k=1

δτ,h
k

≤ ηh
0 − ητ,h

kτ +
kτ∑

k=1

(
exp(Cε

1t
τ
k)− exp(Cε

1t
τ
k−1)

)
(ηh

0 +Cε
0)

≤ exp(Cε
1T )ηh

0 +
(
c0+(exp(Cε

1T ) − 1)Cε
0

)
≤ exp(Cε

1T )
(
ηh
0 + max(c0, Cε

0)
)
.

Let us consider now the total variation Var(ητ,h; [0, T ]) of ητ,h on [0, T ]. Recalling
that

ητ,h(t) = E(t, qτ,h(t)) =

{
E(t, qτ,h

k−1) for tτk−1 ≤ t < tτk, k = 1, . . . , kτ ,

E(T, qτ,h
kτ ) for t = T,

we obtain

Var(ητ,h; [0, T ]) ≤
kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt+

kτ∑
k=1

∣∣ητ,h
k −E(tτk, q

τ,h
k−1)

∣∣
≤

kτ∑
k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt+

kτ∑
k=1

|ητ,h
k −ητ,h

k−1| +
kτ∑

k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt

= I1 + I2 with I1
def= 2

kτ∑
k=1

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt and I2

def=
kτ∑

k=1

|ητ,h
k −ητ,h

k−1|.

On the one hand, using (5.12), (5.14) and summing for k = 1, . . . , kτ , we obtain

(5.17) I1 ≤ 2
kτ∑

k=1

exp(Cε
1(tτk − tτk−1) − 1)(ητ,h

k−1 + Cε
0) ≤ 2

(
exp(Cε

1T )−1
)
(ηh

0 +Cε
0).

On the other hand, by (5.4) and (5.5), we have

(5.18)
I2 ≤ δ

τ,h
(T ) +

kτ∑
k=1

max

(∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt,

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt

)

+ max
(
0, ηh

0−E(tτ1 , q
τ,h
1 )

)
.
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But (P2) and (3.7) lead to

(5.19)

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt ≤

∫ tτ
k

tτ
k−1

Cε
1(E(t, qτ,h

k )+Cε
0)dt

≤
(
exp(Cε

1(tτk−tτk−1)−1)
)
(E(tτk, q

τ,h
k )+Cε

0)

≤
(
exp(Cε

1(tτk−tτk−1)−1
)
exp(Cε

1(tτk−tτk−1))(η
τ,h
k−1+C

ε
0)

≤
(
exp(Cε

1(tτk−tτk−1)−1
)
exp(Cε

1T )(ητ,h
k−1+C

ε
0),

and thus with (5.12)

max

(∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k−1)|dt,

∫ tτ
k

tτ
k−1

|∂tE(t, qτ,h
k )|dt

)

≤
(
exp(Cε

1(tτk−tτk−1)−1
)
exp(Cε

1T )(ητ,h
k−1+C

ε
0).

Moreover, we know from (3.5) that E(tτ1 , q
τ,h
1 ) ≥ −c0. Hence, using (5.17), (5.18), and

(5.19), we obtain, for all t ∈ [0, T ],

(5.20)
Var(ητ,h; [0, t]) ≤ Var(ητ,h; [0, T ]) ≤

(
exp(Cε

1T )−1
)
(ηh

0 +Cε
0)
(
exp(Cε

1T )+2
)

+ δ
τ,h

(T ) + max
(
0, ηh

0+c0
)
.

But, with (3.5), we also have

(5.21) ηh
0 = E(0, [q0]h) ≤ c0‖[q0]h‖2

Q+c0,

and since ([q0]h)h>0 converges to q0 in Q, we infer that ηh
0 is bounded from above

independently of h. Hence, (5.15), (5.16), and (5.20) imply that |ητ,h(t)|, δτ,h
(t) =

VarD(zτ,h; [0, t]), and Var(ητ,h; [0, t]) are bounded independently of t, τ , and h. Using
the coercivity (3.5) and (3.3) we have found a constant C > 0 such that for all τ, h > 0
the approximants satisfy the bounds

sup
t∈[0,T ]

‖qτ,h(t)‖H1(Ω) ≤ C, ‖zτ,h‖BV([0,T ],L1(Ω)) ≤ C, Var(ητ,h; [0, T ]) ≤ C.(5.22)

Using (P2) of Proposition 3.3 we also have a bound for the power

(5.23) ∀τ, h > 0 ∀t ∈ [0, T ] : |∂tE(t, qτ,h(t))| ≤ C.

Step 2. Selection of subsequences. We have prepared all the assumptions for
Helly’s selection principle as stated in Proposition 5.2. Hence, applying both the
classical Helly theorem and Proposition 5.2, we infer that there exists a subsequence
(τn, hn)n∈N such that for all t ∈ [0, T ] we have

(5.24)
ητn,hn(t) → η(t), δ

τn,hn(t) → δ(t),

zτn,hn(t) ⇀ z(t) in Z, VarD(z; [0, t]) ≤ δ(t)

with η ∈ BV([0, T ]; R), δ : [0, T ] → R a nondecreasing function, and z : [0, T ] → Z.
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We want to show that the u-component also converges along this subsequence.
For this we define

sn(t) def= max
{
tτn

j ∈ Πτn
∣∣ tτn

j ≤ t
}
;

then we have qτn,hn(t) = qτn,hn(sn(t)) ∈ Sh(sn(t)). Thus, using sn(t) → t and
zτn,hn(t) ⇀ z(t) we can argue as in Lemma 3.4 to conclude that

(5.25)
qτn,hn(t) → q(t) = (u(t), z(t)) strongly in Q,

ητn,hn(t) → η(t) = E(t, q(t)),

where u(t) = ArgminE(t, · , z(t)). Indeed, using the stability of qτn,hn(t) at sn(t) and
testing by q̂hn ∈ Qhn we have

E(sn(t), qτn,hn(t)) ≤ E(sn(t), q̂hn) + D(zτn,hn(t), ẑhn),

and using (3.7)

E(t, qτn,hn(t)) = ητn,hn(t) ≤ exp
(
Cε

1 |t− sn(t)|
)(
E(sn(t), qτn,hn(t)) + Cε

0

)
− Cε

0

≤ exp
(
Cε

1 |t− sn(t)|
)(
E(sn(t), q̂hn) + D(zτn,hn(t), ẑhn) + Cε

0

)
− Cε

0 .

By the density assumption (5.1) we may choose q̂hn such that q̂hn → q(t), and using
the strong continuity of E we obtain lim supn→∞ ητn,hn(t) ≤ E(t, q(t)). Then we obtain
as in Lemma 3.4 that the whole sequence (qτn,hn(t))n∈N converges weakly to q(t) in Q.
By weak lower semicontinuity we again have E(t, q(t)) ≤ lim infn→∞ ητn,hn(t). Thus,
the second statement in (5.25) is established. Finally, the strong convergence follows
as in Lemma 3.4 by strict convexity.

Now we employ Lemma 3.5 and obtain that the power ∂tE(t, qτn,hn(t)) also con-
verges:

(5.26) ∀t ∈ [0, T ] : ∂tE(t, qτn,hn(t)) → ∂tE(t, q(t)).

Step 3. Stability of the limit q. To prove that q(t) ∈ S(t) we take an arbitrary
q̂ ∈ Q and have to show E(t, q(t)) ≤ E(t, q̂)+D(z(t), ẑ). To do so, we apply the density
assumption (5.1) and obtain a sequence q̂n ∈ Qhn with q̂n → q̂. Since qτn,hn(t) ∈
Shn(sn(t)) we have

E(sn(t), qτn,hn(t)) ≤ E(sn(t), q̂n) + D(zτn,hn(t), ẑn).

Using the convergences sn(t) → t, qτn,hn(t) → q(t), and q̂n → q̂, we can pass to the
limit and obtain the desired stability.

Step 4. Upper energy estimate. The upper energy estimate on [0, t] follows from
the discrete upper energy estimate obtained above for the solutions of the incremental
problems. Using (3.7) and (5.14) we find that there exists C > 0 such that

E(t, qτ,h(t)) + VarD(zτ,h; [0, t]) ≤ ητ,h
k−1 + VarD(zτ,h; [0, tτk−1]) + C(exp(CE

1 τ)−1)

if tτ,h
k−1 ≤ t < tτ,h

k , which implies thanks to (5.4) that

ητ,h(t) + δ
τ,h

(t) ≤ ηh
0 +

∫ t

0

∂tE(s, qτ,h(s))ds+ C(exp(CE
1 τ)−1).
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Notice that (5.9) and (5.25) imply that limh→0 η
h
0 = E(0, q0) = η(0). Then, with

(5.23), (5.24), and (5.26), we get at the limit

(5.27) E(t, q(t)) + VarD(z; [0, t]) ≤ η(t) + δ(t) ≤ E(0, q0) +
∫ t

0

∂tE(s, q(s))ds.

Step 5. Lower energy estimate. Let us prove now the lower energy estimate. As
has been observed in [MTL02, MiT04], it will be derived directly from the stability
property and not from the discrete lower energy inequality. See also [Mie05, Prop. 5.7]
for an abstract result.

With (5.23) we infer that t �→ ∂tE(t, q(t)) belongs to L∞([0, T ]). Thus, using a
classical result about Lebesgue’s integral (see [FrM06]), for each t ∈ (0, T ] there exists
a sequence of partitions Πn def= {0 = tn0 < tn1 < · · · < tnNn

= t} of [0, t] with fineness
Δ(Πn) def= max{tnj −tnj−1 | j = 1, . . . , Nn} tending to 0, such that∫ t

0

∂tE(s, q(s)) ds = lim
n→∞

Nn∑
j=1

∂tE(tnj , q(t
n
j ))(tnj −tnj−1).

For j ∈ {1, . . . , Nn} we have q(tnj−1) ∈ S(tnj−1), and by choosing q̄ = q(tnj ) we obtain

E(tnj−1, q(t
n
j−1)) ≤ E(tnj−1, q(t

n
j )) + D(q(tnj−1), q(t

n
j ))

= E(tnj , q(t
n
j )) + D(q(tnj−1), q(t

n
j )) −

∫ tn
j

tn
j−1

∂tE(s, q(tnj ))ds.

After summation over j = 1, . . . , Nn, we find

(5.28)

E(t, q(t))−E(0, q(0))+VarD(q; [0, t]) ≥
Nn∑
j=1

∫ tn
j

tn
j−1

∂tE(s, q(tnj ))ds

≥
Nn∑
j=1

∂tE(tnj , q(t
n
j ))(tnj −tnj−1)+

Nn∑
j=1

μn
j ,

where μn
j

def=
∫ tn

j

tn
j−1

(
∂tE(s, q(tnj ))−∂tE(tnj , q(t

n
j ))
)
ds. Then (P3) implies that there exists

a nondecreasing function ωE : [0,∞) → [0,∞) with ωE(τ) → 0 for τ ↘ 0 and
E ≥ supt∈[0,T ] c0‖q(t)‖2

Q + c0 such that

(5.29) |μn
j | ≤ (tnj −tnj−1)ω

E(tnj −tnj−1) ≤ (tnj −tnj−1)ω
E(Δ(Πn)).

Then passing to the limit in (5.28) as Δ(Πn) tends to zero, we obtain

E(t, q(t)) − E(0, q(0)) + VarD(q; [0, t]) ≥
∫ t

0

∂tE(s, q(s))ds.

Now, let us recall that VarD(q; [0, t]) = VarD(z; [0, t]) ≤ δ(t) with (5.24) and that
E(t, q(t)) = η(t). Then, the lower and upper energy estimates imply

η(0) +
∫ t

0

∂tE(s, q(s))ds ≤ E(t, q(t)) + VarD(q; [0, t])

≤ η(t) + δ(t) ≤ η(0) +
∫ t

0

∂tE(s, q(s))ds.
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Hence, all inequalities are in fact equalities and we deduce that δ(t) = VarD(q; [0, t]).
Thus, all assertions in (5.10) are established.

Remark 5.4. Let us observe that, with the choice Fh = F and Vh = V for all
h > 0, we obtain directly the existence of an energetic solution q = (u, z) of (S)
and (E).

6. Discussion of stored-energy densities. Here we address some possible
stored-energy densities W : Rd×d

sym × Z × [θmin, θmax] → R that fulfill the assumptions
made in the previous sections. Except for some growth bounds for the different partial
derivatives the crucial assumptions are the strict convexity of W (·, z, θ) : Rd×d

sym → R

in (3.2a) or the much more restrictive assumption of uniform convexity of W (·, ·, θ) :
Rd×d

sym × Z → R from (4.1).
In [MiT99, Mie00, MTL02] the mixture function Wmix (see (2.4)) was introduced

and further analyzed. Using the theory developed in [MTL02, section 4] it follows
that starting from convex pure phases W (·, êk, θ) the resulting Wmix(·, z, θ) is still
convex for each z ∈ Z. Moreover, if all W (·, êk, θ) are quadratic and have the same
elastic tensor, then Wmix takes the quadratic form given in (2.5). However, it should
be noted that even in this simple case the function Wmix(·, ·, θ) is in general not jointly
convex in (e, z). The general theory states that wmix(·, θ) : Z → R is convex, but the
desired convexity of Wmix(·, ·, θ) in (2.5) needs that

w̃(·, θ) : z �→wmix(z, θ) +
1
2

( N∑
k=1

zkEk(θ):C(θ):Ek(θ) − E(z, θ):C(θ):E(z, θ)
)

+
N∑

k=1

zkw
therm
k (θ)

is convex. For N = 2 convexity holds if and only if E1 and E2 are symmetrically rank-
1-connected; see [Mie00, GMH02]. Clearly, we have convexity of Wmix with respect
to e ∈ Rd×d

sym in all these cases. If additionally w̃ is uniformly convex in z, then also
Wmix defined in (2.5) is uniformly convex with respect to (e, z).

In the next lemma, we clarify the assumptions on wmix, C, and E which imply
that Wmix satisfies the assumptions (3.2). Then, we may deduce that all the results
given above are also valid in the particular case where W = Wmix. The verification
is left to the reader.

Lemma 6.1. Assume that wmix, C, Ej , and wtherm
j satisfy wmix, ∂θwmix ∈ C0(Z×

[θmin, θmax]; R), C ∈ C1([θmin, θmax]; Lin(Rd×d
sym ; Rd×d

sym)), Ej ∈ C1([θmin, θmax]; Rd×d
sym),

and wtherm
j ∈ C1([θmin, θmax]) for j = 1, . . . , N . Further assume that there exist Cθ

mix

and αC > 0 such that for all z1, z2 ∈ Z, e ∈ Rd×d
sym , and θ ∈ [θmin, θmax] we have∣∣∂θwmix(z1, θ)−∂θwmix(z2, θ)

∣∣ ≤ Cθ
mix|z1−z2| and e:C(θ):e ≥ αC|e|2.

Then Wmix defined in (2.5) satisfies the assumptions (3.2).
If additionally there exists αmix > 0 such that w̃(·, θ) is αmix-uniformly convex for

all θ ∈ [θmin, θmax], then the joint uniform convexity (4.1) for W = Wmix also holds.
In general, it is much too difficult to calculate Wmix explicitly. Hence, it is

necessary to model suitably. The general theory in [MTL02] states that ∇u �→
Wmix(e(u), z, θ) is always quasi-convex and that z �→ Wmix(e, z, θ) is always convex.
Of course, cross-quasi convexity is even stronger but very difficult to characterize.
So we need to interpolate between the pure phases Wk(·, θ) = W (·, êk, θ) by making
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suitable assumptions. Throughout we assume that each Wk is strictly convex with
respect to e. Here, we are now able to treat much more general functions Wk. Again
we may take an affine interpolation plus a mixture term:

Wmix(e, z, θ) =
N∑

k=1

zkWk(e, θ) + wmix(z, θ) for z =
N∑

k=1

zkêk.

Clearly, we keep strict convexity with respect to e.
In [Mie07] a more general interpolation is suggested in the form

Wmix(e, z, θ) =
1

β(θ)
ln
( N∑

k=1

zk exp
(
β(θ)Wk(e, θ)

))
+ wmix(z, θ),

where the limit β ↘ 0 corresponds to the affine interpolation given in the previous for-
mula. It is simple to see that upper and lower bounds like c|e|2−C ≤Wk ≤ C|e|2+C
directly carry over to Wmix. The good message is that also (strict) convexity in e is
maintained. To prove this it is sufficient to show that s �→ w(s) = Wmix(e+sẽ, z, θ)
is convex in s ∈ R for all e, ẽ ∈ Rd×d

sym . We let wk(s) = Wk(e+sẽ, θ) and assume, for
simplicity, that all wk are twice differentiable; then we obtain

w′′ = exp(−β(w−wmix))
N∑

k=1

zk exp(βwk)w′′
k + β exp(−2β(w−wmix))

⎛⎝( N∑
k=1

zk exp(βwk)

)(
N∑

k=1

zk exp(βwk)(w′
k)2
)
−
(

N∑
k=1

zk exp(βwk)w′
k

)2
⎞⎠ .

Obviously the first sum is nonnegative, and the last term in big parentheses is non-
negative as well by a simple application of the Cauchy–Schwarz inequality.

The above discussion shows that there is a wide variety of possible mixture func-
tions Wmix : R

d×d
sym × Z × [θmin, θmax] → R for which the above existence theory is

applicable.
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