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Abstract

The purpose of this work is to describe an abstract theory of Hardy-Sobolev
spaces on doubling Riemannian manifolds via an atomic decomposition. We study
the real interpolation of these spaces with Sobolev spaces and finally give applica-
tions to Riesz inequalities.
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The aim of the present work is to define atomic Hardy-Sobolev spaces and interpolate

them with Sobolev spaces on Riemannian manifolds.

One of the motivations is our Sobolev interpolation result [10], [11] in different geometric
frames, under the doubling property and Poincaré inequalities. After this result, it is



interesting to consider a “nice” subspace of Wh! — as is the Hardy space for L'~ and
study the interpolation of this space with Sobolev spaces. Apart from the interpolation
itself, the use of the Hardy-Sobolev spaces that we construct gives strong boundedness of
some linear operators instead of the weak boundedness on Wh!. For instance this is the
case of the square root of the Laplace-Beltrami operator A/2.

Another motivation responds to the recent improvements on the theory of Hardy spaces.
In the last years, many works were related to the study of specific Hardy spaces de-
fined according to a particular operator (Riesz transforms, Maximal regularity operator,
Calderén-Zygmund operators, ... [15, 16, 24, 25, 26, 29, 34]). Mainly one of the most
interesting questions in this theory is the interpolation of these spaces with Lebesgue
spaces in order to prove boundedness of some operators.

Although the theory of Hardy spaces is now well developed, the more recent theory of
Hardy-Sobolev spaces is still not unified.

Before we state our results, let us briefly review the existing literature related to this
subject.

The Hardy-Sobolev spaces were studied by many authors in the Euclidean case. We
mention R. Strichartz [36]. Related works are [9], [31], [19], [33]. They deal with “clas-
sical” Hardy-Sobolev spaces HS! on R", which correspond to the Sobolev version of the
Coifman-Weiss Hardy space Hyy (R") : HS' is the set of functions f € Hlyy, such that
each partial derivative of f belongs to Hly,. Some of them consider the homogeneous
version of HS! and others only assume f € L' instead of f € Hyy.

We recall that R. Coifman proved an atomic decomposition for the classical Hardy space
Hly, which can be defined by maximal functions (see [26]). In the Euclidean case, the

question of atomic decomposition for the homogeneous space HS ! was treated in [36] and
[19]. However, in the non-Euclidean case this issue is still not clear. In contrast, our idea
is to introduce atomic Hardy-Sobolev spaces for which we can prove real interpolation
with Sobolev spaces. Then we are able to derive the interpolation of HS' with Sobolev
spaces.

Let us now summarize the content of this paper. We refer the reader to the corresponding
sections for definitions and properties of the spaces and operators that we use in the
statements.

In the second part of Section 2, we define atomic Hardy-Sobolev spaces H S(lﬁ),ato for
1 < 8 < o0. They correspond to the Sobolev version of the atomic Coifman-Weiss Hardy
space Hly, (defined by atomic decomposition with W1#-atoms). We compare these spaces
for different (3 in the following theorem:

Theorem 0.1 Let M be a complete Riemannian manifold satisfying (D) and admitting
a Poincaré inequality (P,) for some ¢ > 1. Then HS(IB)’atO C HS(loo)mo for every B > q
and therefore HS(lﬁl)mo = HS(%Q)’MO for every (i, B € [q, 00].

For the real interpolation of these spaces with Sobolev spaces, we obtain



Theorem 0.2 Let M be a complete Riemannian manifold satisfying (D) and (P,), for
some q € (1,00). Letr € (1,00], s € (¢,0], p € (¢,5) and 0 € (0,1) satisfying }—1) =
(1—6)+¢%. Then

Wt = (IS,

,ato?

Wl,s)e’p — (Hsl’ I/Vl,s)a7

P

with equivalent norms.

We also prove the homogeneous version of theses two theorems:

Theorem 0.3 Let M be a complete Riemannian manifold satisfying (D) and a Poincaré

inequality (P,) for some g > 1. Then H'Szﬁ)’ C H'Szoo) for every 3 > q and therefore

ato

.1 .1
Hs(ﬁl),ato = HS(BQ),ato fOT‘ every ﬁla 52 € [q7 OO]

,ato

Theorem 0.4 Let M be a complete Riemannian manifold satisfying (D) and (F,), for
some 1 < q < oo. Letr € (1,00], s € (¢,00] and p € (q,s) and 6 € (0,1) satisfying
1=(1-0)+% Then

p

Wl,p = (H.—Szr),atm Wl,s) = (H:Sl,WLS)

0,p 0,p

with equivalent norms.

In the first part of section 2, given a collection of uniformly bounded operators on W*#:
B := (Bg)geo , we define abstract atomic Hardy-Sobolev spaces HWJ}, . For theses
spaces, we obtain in section 3 the following two interpolation results.

Theorem 0.5 Let M be a Riemannian manifold satisfying (D). Let o € (1,00] and po
such that o’ < py < 3. Let B := (Bg)geg be a collection of uniformly bounded operators
on W8 satisfying

1
o I = Balh)lyseq) = M (D) (1)

Let T be a bounded linear operator from W' to L and from HW4 ., to L. Then for
every p € (o', po) such that (B',p") € Iy, there is a constant ¢ = ¢(p) such that for all
function f € Whr e

IT(H)lle < el fllwr.
Consequently, T admits a continuous extension from WP to LP.

Theorem 0.6 Let M be a Riemannian manifold satisfying (D) and of infinite measure
u(M) = oco. Assume that the finite Hardy-Sobolev space is contained in Whi:

1 1,1
HWRatO — W

and that B satisfies (1). Let o € (1,00] and py satisfying o' < py < 3. Then for every
6 € (0,1) such that

1 0 1
0 0
and (0, py) € Iy, we have
(HWI}“,ato’ lepo)a,pe - lepe’

with equivalent norms.



Finally, the following theorem is an application of our result. It is proved in section 4 and
applies to A!/2.

Theorem 0.7 Let M be a complete Riemannian manifold satisfying (D).

1. Assume that a Poincaré inequality (P1) holds. Let T be a bounded linear operator
from W2 to L? and associated to a kernel satisfying

oo s g [ K ()~ Kol dn(o) < o @)
Q ball y,z€Q M\4Q

Then T admits a unique extension from H'Szz)ﬂw to L.

2. Assume that a Poincaré inequality (P,) holds. Let T be a bounded linear operator
from W2 to L? and associated to a kernel satisfying (2).

Then T admits a unique extension from HS(lz)’ato to L',

Remark 0.8 Thanks to Theorem 0.1, in item 1. of Theorem 0.7, T is then bounded from
H.Sémﬂw to L' for all B € (1,00|. In item 2., T is then bounded from HS(lﬁ) to L' for
all B € [2,00].

,ato

Consequently

Corollary 0.9 1-Let T be as in item 1. of Theorem 0.7. Assume that a Poincaré in-
equality (Py) holds. Then for all p € (1,2], the operator T admits a continuous extension
from WY to LP.
2-Let T' be as in item 2. of Theorem 0.7. Assume that a Poincaré inequality (P,) holds
for some q € (1,2). Then for all p € (q,2], the operator T admits a continuous extension
from WHP to LP.

We apply these last two theorems to the square root of the positive Laplace-Beltrami
operator A2, In [4], P. Auscher and T. Coulhon proved that under the doubling property
(D) and a Poincaré inequality (F,) for some ¢ € [1,2), (RR,) (which is equivalent to the
boundedness of AY?2 from W to LP) holds for every ¢ < p < 2. Moreover, A/? satisfies
a weak type inequality (RR,,) ((RR,) also holds in this case for 2 < p < c0). Applying
Theorem 0.7, we show that under (D) and (P;) (resp. (P) ) we have a strong (RR;)
(resp. (nhRR;)) inequality for functions in the homogeneous (resp. non-homogeneous)

atomic Hardy-Sobolev space HS (15)7(”0 (resp. H S(lmﬂm).

We finish this introduction with a plan of the paper. In section 1, we recall some defini-
tions and properties that we need. We define abstract Hardy-Sobolev spaces via atomic
decomposition in the first part of section 2. In the second part we study particular atomic
Hardy-Sobolev spaces H S(lﬁ)mo in more detail and prove Theorem 0.1 . We also prove
that under Poincaré inequality, these spaces are a particular case of the abstract Hardy-
Sobolev spaces that we defined in the first part. Section 3 is devoted to the proof of the
interpolation results in Theorems 0.2 and 0.4 using a “Calderén-Zygmund” decomposition
well adapted to the spaces H S(lﬁ)ﬂto. For the interpolation of the abstract Hardy-Sobolev
spaces in Theorem 0.5, our method is based on the new maximal inequality described in
[18]. Finally, the proof of Theorem 0.7 and the application to A'/? are given in section 4.
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1 Preliminaries

Throughout this paper we will denote by 1z the characteristic function of a set £ and
E€ the complement of E. If X is a metric space, Lip will be the set of real Lipschitz
functions on X and Lip, the set of real, compactly supported Lipschitz functions on X.
We denote by Q(x, ) the open ball of center € X and radius r > 0 and AQ) denotes the
ball co-centered with ) and with radius A times that of (). Finally, C' will be a constant
that may change from an inequality to another and we will use u < v to say that there
exists two constants C' such that u < Cv and u ~ v to say that u < v and v S u.

In all this paper M denotes a Riemannian manifold. We write p for the Riemannian
measure on M, V for the Riemannian gradient, |- | for the length on the tangent space
(forgetting the subscript « for simplicity) and || - ||z» for the norm on LP := LP(M, u),
1<p< +oo.

We will use the positive Laplace-Beltrami operator A defined by

Vf,g € C* (M), (Af,9) =(Vf,Vg).

1.1 The doubling property

Definition 1.1 Let M be a Riemannian manifold. One says that M satisfies the (global)
doubling property (D) if there exists a constant C' > 0, such that for all x € M, r > 0 we
have

p(Q(z,2r)) < Cp(Q(z, 7). (D)
Observe that if M satisfies (D) then
diam(M) < co & pu(M) < oo (see [1]).

Therefore if M is a complete non-compact Riemannian manifold satisfying (D) then
p(M) = oo.

Theorem 1.2 (Maximal theorem) (/20]) Let M be a Riemannian manifold satisfying
(D). Denote by M the uncentered Hardy-Littlewood maximal function over open balls of
M defined by

Mf(x) = sup | flo
T€EQ

1
where fg ::][ fdu = —/ fdu. Then for every p € (1,00], M is LP bounded and
E w(E) Jp

moreover of weak type (1,1).

L An operator T is of weak type (p,p) if there is C' > 0 such that for any a > 0, u({z; |Tf(x)| > a}) <
A1
aP P’



Consequently for s € (0,00), the operator M defined by

M f(z) = [M(|f]) ()]

is of weak type (s,s) and LP bounded for all p € (s, o0].

1.2 Poincaré inequality

Definition 1.3 (Poincaré inequality on M) We say that a complete Riemannian man-
ifold M admits a Poincaré inequality (P,) for some q € [1,00) if there exists a constant
C > 0 such that, for every function f € Lipy(M)? and every ball Q of M of radius r > 0,

we have
1/q 1/q
(L1 dopan) "< v (f 1vs0an) (P,
Q Q

Remark 1.4 By density of C5°(M) in Lipy(M), we can replace Lipy(M) by C§°(M).

Let us recall some known facts about Poincaré inequalities with varying q.

It is known that (P,) implies (F,) when p > ¢ (see [28]). Thus if the set of ¢ such that
(P,) holds is not empty, then it is an interval unbounded on the right. A recent result of
S. Keith and X. Zhong (see [30]) asserts that this interval is open in [1,400] :

Theorem 1.5 Let (X,d, i) be a complete metric-measure space with p doubling and ad-
mitting a Poincaré inequality (P,), for some 1 < q < co. Then there exists € > 0 such
that (X,d, ) admits (P,) for every p > q — e.

A consequence of Poincaré inequality:

Proposition 1.6 Assume that M satisfies (D) and admits a Poincaré inequality (P,) for
some p € [1,00). Then there is a constant ¢ = c(p) such that for all balls Q (of radius
ro) and all functions f € C3°(Q)

i |z )

This result is well-known. However for an easy reference and for the sake of completeness,
we remember the proof based on the self-improvement of Poincaré inequality. We refer
the reader to Theorem 5.3.3 of [35] for an initial proof (the proof there applies also for

p=1).
Proof : We first prove that for all z € Q,y € 3Q \ 2Q

[f(@) = f(y)| S Mp-(IVF]) (). (3)

Using Hardy-Littlewood Theorem, we have

F@) =1m foge,

2compaclty supported Lipshitz function defined on M.

6



With the balls Q; := Q(z,2'rg), we also have

|f(l’) - le’ < Z |sz - fQi+1|'

1<0

Thanks to Theorem 1.5), the Poincaré inequality (P,) self improves to (FP,_.) for a certain
€ > 0. Using this Poincaré inequality and the doubling property one obtains

3
F@) = fad < 3 1o = fau]

1=—00

1

i<3
. o
N , VfPF—“d
<2 oMy (IVf])(2)
1<3

S reMy—(IVf])(z).

dp

Similarly we have with Q; := Q(y,2'rg)
) = fa,

However since y € 3Q\2Q and f is supported in @, we have M,,_.(|V f])(y) S M,—(IV f])(2).
Then we just have to control the difference of means. The Poincaré inequality (F,) and

Qs C Q, yield

S 1My (IVF)(y)-

1
M(Q4)

Thus we proved (3). Then using the fact that f(y) = 0 due to the support of f, we obtain

‘f@ — Jaou

S

/Q 1 — foul di S oMy IV f)(2).

'@/Qfdu' - @/wa) ~ W)l dp(2) € rou(@) P My (VS

Finally the LP-boundedness of M,_. concludes the proof. U

1.3 The K-method of real interpolation

The reader can refer to [12], [13] for details on the development of this theory. Here we
only recall the essentials to be used in the sequel.

Let Ay, A; be two normed vector spaces embedded in a topological Hausdorff vector space

V. For each a € Ay + A; and t > 0, we define the K-functional of real interpolation by

K(a,t, Ao, Ay) = _inf (laolla, + llarll,).

ai



For 0 <0 < 1,1 < ¢ < oo, we denote by (Ay, A1)g, the real interpolation space between
Ag and A; defined as

1
o dt\ «
(Ao,Al)g’q = {Cl € A() + Al : HGHQ,Q = (/ (t79K<CZ,t,A0,A1))q 7) < OO} .
0

It is an exact interpolation space of exponent 6 between Ay and A; (see [13], Chapter II).

Definition 1.7 Let f be a measurable function on a measure space (X, ). The decreasing
rearrangement of f is the function f* defined for everyt > 0 by

fr@) =mf{A: p({a - [f(2)] > A}) <t}

The mazimal decreasing rearrangement of f is the function f** defined for everyt > 0 by

o= [ 5
From the properties of f** we mention:
L g < g
2 (MF) ~
3. (e 17(@)] > F(0)) <t
491 < p< oo, [l ~ Il

We exactly know the functional K for Lebesgue spaces :
Proposition 1.8 Take 0 < py < p1 < 0co. We have :

ey = ([irora) (o)

(&3

where L = L — L
a po  m

From now on, we always assume that the Riemannian manifold satisfies the doubling
property (D).

1.4 Maximal inequalities for dual Sobolev spaces.

First, we begin recalling the “duality-properties” of the Sobolev spaces.

Definition 1.9 For p € [1,00] and O an open set of M, we define W ?(O) as following
ST ,
WH(0) := C(0) 7 with |[fllwieoy = I+ IV flll ooy -

Then we denote W5 (0) the dual space of W'?(O) defined as the set of distributions
f € D(M) such that
(/. 9)]
Hf”W-lm/(O) = sup

g€Ce (M) ||9HWLP(0)'



Proposition 1.10 Let p € [1,00). Then for all open set O of M, we have

oy 2 inf ooy T o
o= it 0o + o)

=t 1ol + o)
Here we take the infimum over all the decompositions f = ¢p—div(xp) on M with ¢ € L? (O)
and ¥ € D'(O,R™) such that div(y) € L' (O).

The proof is left to the reader (it is essentially written in [9], Proposition 33).

We now introduce the following maximal operators :

Definition 1.11 Let s > 0. According to the standard maximal “Hardy-Littlewood” op-
erator M, we define two “Sobolev versions” :

1
Ms,s(f)(x) == sup W HfHW*LS(Q)

Qball
zeEQ
and

Ms,o(f)(a) i= _inf M. (10l + ) (@)

The following assumption is taken from [18]:

Assumption 1.12 Take two exponents 1 < py < py < oco. We call (H,, ., ) the following
assumption :

[l S 1M e ()1 (Hio 1)

Definition 1.13 For M a Riemannian manifold, we denote by Iy the following set
Iy = {(NOaMl) < (1700)27 po < pa, (HMOMM) hOldS} :

We refer to [18] for the study of these maximal operators and the previous assumption.
Proposition 1.14 Forp € [1,00), Mg, and Mg, are of “weak type (p,p)”. That is

VEeW T IMsp(D)ll e < IMsep(Dll e S 1l (4)

Definition 1.15 We use the operator L := (I + A) defined with the positive Laplace-
Beltrami operator. We recall that the two operators A and L are self-adjoint.
According to [4], we say that for p € (1, 00) we have the non-homogeneous property (nhR,)

if
fllwre S NZV2C L (nhRy)

for all f € C3°(M). This is equivalent to the LP boundedness of the local Riesz transform
V(I + A)~Y2. We have the non-homogeneous reverse property (nhRR,) if

1L S W llwe (nhRR,)

for all f € C§°(M).



Definition 1.16 Let p,q € [1,00). We say that the collection (T})yso = (€7'%)i=0 or
(1)) >0 = (VtVe ™) s satisfy (LP — L9)- “off-diagonal” estimates, if there exists y such
that for all balls Q) of radius rq, every function f supported in ¢ and all index 5 > 0

1/q 1/p
1 q j 1
. d <e ([ — Pd )
(a(%@)/sj(@ “) < (g )

We used S;(Q) for the dyadic corona around the ball

S;(Q) = {y, 27 <1+ v, Q) < 2j+1}.

rQ

These “off-diagonal” estimates are closely related to “Gaffney estimates” of the semigroup.

T2 (f)

TQ

We now come to the main result of [18].

Theorem 1.17 Let 1 < s <1’ < 0. Assume that the Riemannian manifold M satisfies
(nhRR,) and (nhRy). Moreover, assume that the semigroup (e ')~ satisfies (L7 —L*)-
“off-diagonal” estimates and that the collection (\/tVe™"®)sq satisfies (L¥ — L*)- “off-
diagonal” estimates. Then there is a constant ¢ = ¢(s,r,0) such that

VEeW ™ | fllwere S IMsus(Hll e - (5)
Therefore (H,, ., ) is satisfied for all exponents jig, pn satisfying po > s and py = 1'.

Corollary 1.18 In the Euclidean case M = R", for all g, p; € (1,00), the assumption
(H,o) holds. More generally, on any Riemannian manifold satisfying (D) and (Py),
(H o1 ) holds for all pg, py € (1, 00).

After all these preliminaries, we now define our Hardy-Sobolev spaces via atomic decom-
position.

2 Abstract Hardy-Sobolev spaces.

We begin this section defining “abstract atomic” Hardy-Sobolev spaces, then we study in
more detail a particular case of these spaces.

2.1 New Hardy-Sobolev spaces.

We follow ideas of [15] and propose an “atomic” definition of abstract Hardy-Sobolev
spaces. We refer the reader to [15] for an explanation of this choice : the “atoms” are
defined as the image of localized functions by an operator By, playing the role of the
“oscillation operator” associated to a ball Q.

Let us fix 3 €]1, 0c] and take B := (Bg)geo a collection of W#-bounded linear operators,
indexed by Q the collection of all open balls ) of the manifold M. We assume that these
operators Bg are uniformly bounded on W1# : there exists a constant 0 < A’ < co such
that

Ve W vQball,  [|Bo(f)llwis < Al fllwrs. (6)

We define the Sobolev-atoms using the collection B :

10



Definition 2.1 A function m € Lj,. is called an atom associated to a ball Q if there

exists a real function fg compactly supported in the ball ) such that

m = Bg(fq),
with /
1 fallys < m(@Q)~7.

The functions fg in this definition are normalized in W', It is easy to check that

Ifallwir S 1.

Now we can define our abstract atomic Hardy-Sobolev spaces :

Definition 2.2 A measurable function h belongs to the atomic Hardy-Sobolev space HW,,
if there exists a decomposition

h = Z i [ — a.e,
ieN

where for all i, m; is an atom and (\;); are real numbers satisfying

> Al < oo

€N

We equip HW}!

ato With the norm :

Blaws, = it 3l
Il =, 00, 2

Similarly we define our “finite” Hardy-Sobolev space HW}’atO as the set of functions which
admit finite atomic decompositions.

Remark 2.3 We refer the reader to [15, 14, 17] for details concerning the use of “finite
atomic Hardy space” instead of the whole atomic Hardy space. The use of this last one
brings technical problems (we do not know how to solve them) that are not important and
are twisted by the use of the atomic Hardy space.

Our goal is to interpolate the Hardy-Sobolev spaces with Sobolev spaces. First, we de-
scribe a useful criterion to prove the boundedness of an operator from the Hardy-Sobolev
space HW} ,,, into L'.

Proposition 2.4 Let M be a Riemannian manifold satisfying the doubling property. Let
T be a linear operator bounded from W'# to LP for some 3 € (1,00) and satisfying some
“off-diagonal” Sobolev estimates: for all ball Q) and all function f compactly supported in

Q

/B
, 1 1
V=2 (m /Sj(Q)|T(BQ(f))|ﬂdH) <@ slflve@. ()
with coefficients o satisfying
A := sup MQJ(Q) < 00. (8)

Q ball 2 M(Q)
Then T is continuous from HWg ., to L*.

The proof is left to the reader, it is written in [15] and [17] in the context of Lebesgue
spaces. It is the same in our context of Sobolev spaces.

11



2.2 The study of a particular Hardy-Sobolev space.

In this subsection, we present in more detail the study of a particular Hardy-Sobolev
space.

In the study of Hardy spaces (see [15]), we have seen that our abstract Hardy space
corresponds to the “classical” Hardy space (the one defined by R. Coifman and G. Weiss
in [21]), when we choose our operator B as the exact oscillation operator. Here we
want to study the Hardy-Sobolev space defined with a regular version of this particular
collection B. For all ball @, let ¢¢ be a function supported in @) and satisfying

léolle S [[[Véol o= S5t and / dodi = 1(Q).

We define our operator

1
Ao(f) = <m /Q fd,u) b0 Bolf)=f - Aolf).

In all this subsection, the Hardy-Sobolev spaces are constructed with this particular choice
of operators. According to this collection, we construct our Hardy-Sobolev space H W&G)

and HW}’(B)’MO.

ato

Remark 2.5 In the previous subsection, we did not study the dependence of the Hardy-
Sobolev space with respect to the exponent 3, so we omitted it in the notation. In this
subsection, we will study the role of B in a particular case (see Theorem 0.1). That is why
we put the exponent in the notation.

We have to check the first assumption (6). Thanks to Proposition 1.6, it is easy to check
that if a Poincaré inequality (Pg) is satisfied then (6) holds.

Moreover, with the normalization of functions ¢g, each atom m associated to a ball @)

verifies
/ mdp = 0.
Q

From this observation, we can set a definition of particular Hardy-Sobolev spaces.

Definition 2.6 For g € (1,00], we say that a function m is a non-homogeneous (1, 3)-
atom associated to a ball Q, if

1. m is supported in the ball @,

2. [mllwrs < (@) 7,
3. [mdu = 0.

We define the Hardy-Sobolev space HS(lﬁ)mo as follows: f € HS(IB),ato if there exists (b;);

a family of (1,5)-atoms such that f = Y. \b; with >, || < oo. We equip this space
with the norm
1£llmst,,., = if 3 AL

Similarly to Definition 2.2, we define “finite” atomic space H S}w’(ﬁ)

,ato”

12



From Proposition 1.6 and the previous discussion, we have this first proposition.

Proposition 2.7 Assume that a Poincaré inequality (Ps) holds. Then the concept of
(1, B)-atoms exactly corresponds to the concept of atoms, defined with our operators Bg.
Thus the different atomic Hardy-Sobolev spaces are equal:

HS}I?,(B),ato - HWFI',(,B),ato HS(lﬁ),ato - HW(IB),ato‘

Remark 2.8 Note that every (35 atom is an 31 atom for 1 < B < Py < oo and therefore
HS| C HS| with || fll s <[ fllas:

(62)7at0 (61)7at0 (B1),ato (B2),ato ’

Proposition 2.9 HS(lﬁ)mo is a Banach space for € (1, 00].

such that Ek”thHS(lm o< oo It

For this, for every k take the following
atomic decomposition hy = >, Apibk,; with > . |Ax,| < ”thHS(l,e),m + 2% Then h =

o> Mibei € W (absolutely convergence) with >0, > (M| < 30, g

(B),ato

+
Y e 2% < oo. Hence h € HS(lﬁ)ﬂtO and the proof is complete. U

Proof : Consider a sequence (hy)r in H S(lﬁ)

,ato

suffices to prove that ), hj converges in H S(lﬁ)

,ato’

Proposition 2.10 For 3 € (1,00], the finite space HS}T(m uto 18 dense in HS(lﬁ)

,ato”

We recall here the definition of a Coifman-Weiss atom of Hly, := Hy (M) the Hardy
space of Coifman-Weiss (see [21]).

Definition 2.11 For € (1, 00|, we say that a function m is a $-atom associated to a

ball Q, if
1. m is supported in the ball (),

2. Imllze < pu(@) 7,
3. [mdu = 0.

In the literature, we found definitions of classical Hardy-Sobolev spaces in the Euclidean
case as the set of f € HYyy, such that Vf € Hly, or AYV2f € HLy,. Thanks to the Hly,
boundedness of the Riesz transform in R", these two spaces are equal. We hope to have
a complete picture and comparison of all these definitions of Hardy-Sobolev spaces on
Riemmannian manifolds in a forthcoming paper.

Definition 2.12 The classical Hardy-Sobolev space HS'(M) is defined as (see [19], for
the Euclidean case)
HS'={f € Hiy; VfeHy}

where V [ is the distributional gradient of f.
Proposition 2.13 The space HS' is a Banach space.

Proof : Let (f,), be a Cauchy sequence in HS'. Then (f,) and (Vf,), are Cauchy
sequences in Hly, and therefore converge to f € Hlyy and g € HLy,. Since f,, — f p—a.e
it comes that Vf, — Vf in the distributional sense. The uniqueness of the limit shows
that ¢ = V f and finishes the proof. U
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Proposition 2.14 We have HS(lﬁ) C HS' c WL for every 3 > 1.

,ato
Unfortunately, it is not clear when HS' ¢ H S(lﬂ),ato'

interpolation, the study of H S(lﬁ)mo implies results for HS!. For an exponent p € (1, 0]
and 6 € (0,1) if

However for the point of view of

(HS(5),ato-

lep) — Whpe
6.po

with + = (1 — 6) + ¢ then we know that
Po p

(HS' Whr), =W,

This follows from the fact that HSj ,,, C HS' C W' and that || f||lzs: < 2HfHHS(1ﬂ> "
We know (see [21]) that the Hardy space Hly admits an atomic decomposition and is
also equal to the corresponding atomic Hardy space (for any exponent [ used in the
definition of B-atoms). In our case the atomic Hardy-Sobolev spaces are all contained
in the classical one HS! but for the moment we are not able to show if they are equal
or not. We believe that this is not true without additional hypotheses on the geometry
of the manifold. However, under Poincaré inequality we will compare different atomic
Hardy-Sobolev spaces in Theorem 0.1.

Before we prove this theorem, we need the following Lemma.
Lemma 2.15 (see Lemma 3.9 in [21]) Assume that M satisfies (D).
1. Let

1

be the centered maximal function of f. Observe that if v € Q(y,r) then Q(y,r) C
Q(x,2r). It follows that
Mef<Mf<CM.f

where C' only depends on the constant of the doubling property.

2. Let f be an L' function supported in Qo = Q(xq,70). Then there is Cy depending
on the doubling constant such that

Qo = {2 € My M(f)(2) > a} C Q(wo, 2r0)
whenever o > C fQO | fldp.

Proof of Theorem 0.1 :

The proof is inspired by that of R. Coifman and G. Weiss ([21]) for classical Hardy spaces
on a space of homogeneous type. We prove that every (1, 3) atom is a sum of (1, c0) atom.
We use an adapted Calderén-Zygmund decomposition for Sobolev functions (proved later
for convenience in subsection 3.1) and proceed as their proof. However, the presence of
the gradient create some problems.

Since we know from [30] that Poincaré inequality (P,) self-improves in (P,_.) for some
€ > 0, let us denote k := || M _c||rs_1s-

Let a be a (1, 3) atom supported in a ball Q. Set b = u(Qo)a.

14



We claim that for K,a > 0 large enough parameters, there exists a collection of balls
(Qj)), ji € N for [ = 0,1, ..., such that for every n > 1

b= CNEa S (Ka)' S ul@)as + 3 by, )

1=0 jieNt jn€NR
and

(a) aj, is an co atom supported in Q;,, l =0,1,...n — 1;

() Uj, enn Qs C Q= {@; M, (Jb] + M;_E(|Vb|)) (z) > K<},

(c
(d) supphj, C Qj., [ hj,dp=0;

|, (@) < [b(z)| 4+ 2C"(Ka)"1g,, (2);

[Vhy, (x)] < (C"+2) [K" My (|Vb])(2) + (Ka)"1q,, (2)];

1

) (o, (slt + [V, [9dp) " S (Ka).

The constants a, K are sufficiently large and «, K, N depend only on (3, g and the doubling
constant. We write Mg__ for the composed operator M, o M, o
Let us first see how from theses properties we can write

a = E ozjaj
J

where for every j, a; is an oco-atom. We have

NKO‘ZKa PIRICRE (10)

jn ENT

)
)
)
)
(e)
(f)

where C' is independent of a. Indeed, it follows from (b), (¢) and the weak type (1,1) of
M that

> 1@, < N J@,) < ONu(n) < Cmas(l N (2 1ol @)

Therefore -
S (Ka)" Y (@) < czﬁz (ENKa =) [b]|0 1 5.
n=0 Jn€N? n=0

Since Hb”wlﬁ < Cu(Qo) we deduce (10) with C' depending on 3, ¢ and «, K but not on

a. We choose o >> K such that M < 1.
From (g), we have

/ (sl + [Vhy du < Cu(@,,) (o)

15



Therefore, if we note by H, = > h;, we have

Jn€NT

/ (Ha |+ [VHdp < 3 / (sl + [V, g
jn€NR
< C<Ka>”2u<@jn>

< C(NKK Q" #)"|b]|7 1 -

We used the bounded overlap property of the (Q;, ), and the above estimate for 3, 1(Q;, ).
This shows that the first series on the right-hand side of (9) converges to b in Wh!,

It remains now to prove that these properties are valid for every n € N*. We begin proving
the case n = 1. Let

Q) = {z: M([b|? + |Vb|9)(z) > (Ka)?} C Q.

Lemma 2.15 shows that QNl C 20Q)p provided Ka > (. Moreover 51 is a bounded open

set with /L(AI) < Q%Hb”ng < Ca=Pu(Qyp). This allows us to apply the Whitney covering

theorem to {2, and consider the Calderén-Zygmund decomposition of Proposition 3.1 — in
section 3— for b with p = . We obtain

b= hi+g (11)
J

with h;, go satisfying the properties of Proposition 3.1. We have

3 [ nl+ 19k < €32 (@) <]{2

< 2N||b]l s (Qo) 7
< Cp(Qo).

Consequently, the sum in (11) converges in Wb, [ godp = 0 since [ bdpu = 0 and [ hjdp =

|-

J

(1p” + !Vblﬁ)du>

0. It follows that ag = WOM(QO) is an oo-atom. Thus we can write
b=NCKoau(Qo)ag+ Y _ h;.
jEN

Properties (a) and (d) are then established in this case when n = 1. Property (c) follows
from the Whitney covering theorem since M satisfies (D). We have

(o 4 Q)
(o) < ()] + 42 ]{2 bldy
< |b(z)] + Cods Ka

where D = log,Cy and Cj is the doubling constant. We refer the reader to the proof of
Proposition 3.1 for the construction of h;’s and x;’s. We have

1
hi=|b———— [ bydu|
: ( xj<@j>/@ v “)X”
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with x;(Q;) = fQ_ X;dp and essentially, x; is a smooth version of 1¢,, with |[Vy;| < réjl
J
For Vh; we have

1
Vh; =x;Vb+ b——/ bx;du | Vx; =1+11.
T < Xi(@j) Jo, !

We have |I| < |[Vb| < M,_(Vb). It remains to estimate II. For y € @); , we have

1
b(y) — m /Qj ijd/i\

-1

1
< b kpy — b k1,0 |dpe + |b T ——/ by du
1
< |b—b 2k |dp + |b i ——/ by ;du
_Z][ ' Q(y, 2kt 1rj) Q(y,rj) Xj(@j) o, J
-1
M(Q(y,Qk“?“j))][
< b — by phein|dys
kz—oo M(Q(y72k7’j)) Q(y,2k+1rj)| Q(y,2~ J)|

%/ (b_M(QIQ')/Q jb> XA

<2PCriM,(|Vb])(y Z 2k 4 02P/13P K ar

k=—0o0
1 1
bd
+><j<czj>/2 1(2Q;) /Q s

<2PCr;M,_(|Vb)(y) + Crj <][

< C"(Mg-o(|VE)(y) + Ka)r

+ 1bQey.r;) — bag;| +

Xl dp

J
1
q—e€

|Vb|q‘edu> + CoO2P K ar,

J

where €' = max(Co4P/9, C3P2P/1 C,C2P/7).  Thus |Vhi| < (C" + 2)M,_(|Vb]) +
2C'Kalg,. We choose C” = 2C" > 1, and thus (e) and (f) are proved. Similarly to
(14), we deduce (g) and finally property (b) is satisfied by the Whitney covering. The
induction hypothesis is then satisfied for n = 1.

We assume that it holds for n and show its validity for n 4+ 1. Consider the set

Q. = {w € My M(lh, [ +|Vhy, ) (2) > (Ka) )

Property (g) for n shows that

Cl][ (Ihj, )" + [V, |9)dp < C1CY(Ka)™ < (Ka)tHd

Qj

provided Ka > C C and where (' is the constant in Lemma 2.15. Then Lemma 2.15
asserts that Q 5. C 2Qj,. Let now (Qj,:) be a Whitney covering for Q We have
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U; Qi = S/Z\]: C €, and the (Q;, ;); have the bounded overlap property. From (c) for n,
we know that the (Q;,) are N" disjoint. Consequently, the balls (Q;, ;) are N"*! disjoint
and therefore we obtain (c) for n + 1. Pose

By i(x) = (hjn (2) - ﬁ /Q

and gj, = hj, —>_; hj,;- The same arguments as in Proposition 3.1 show that [|g;, [|w1. <
C(Ka)™D. Since the support of h;, is contained in Q;, C 2Q;, and @; C 20Q)j,, we
deduce that supp g;, C 2Q;,. For every i, [ h;, ;du = 0 so that (d) follows for n+ 1. We
also obtain >, ||k, illzr + || VR, il [l < CJlhj,|lwrr as in Proposition 3.1. Therefore,
the equality

Jn i

hj, = g, + Z hj, i

(n+1)

holds in W! and also p — a.e. since for each z the sum has at most N terms and

f g;,dp = 0. It follows that

w Gjn

T ON(Ka)"™ u(2Q;,)

is an oo atom with supp a;, C 2Q);,. We deduce that the representation (9) holds for
n+ 1 and also (a). Let us prove (e) and (f) for n+ 1. The definition of h;, ; and (e) for
n yield

1

]2 Ay, quu] X5, (x)

In,t

IN

|hj,.i(7)] |, (2)| + Co

< (Ib)| + 2004 (K" + Cot (Ka)™) i, )
< |b(x)] + 2Cod’s (Ka)"™ xS, (2)
= [b(x)] +2C"(Ka)" "y, ()

as long as Ka > 2. The definition of Vh;, ; and (f) for n yield

NG hanjndu) VXjn
<(C"+2) [K"IMy_(IVH]) + (Ka)"1g,, | 1q,, .
+ ' [Mq_f(‘Vh‘jnD + (KO‘)”HlQm} 1an,i
<(C" +2) [K" "My (IVb])(2) + (Ka)"1q,, ]
+C'(C" +2) [K" MLV (z) + (Ka)"] 1q,, , + C'(Ka)" 1, 1q,

1
V| <[Vhy, | + (hjn S /Q

Jn

€

<(C"+2) [K"M (Vb)) () + (Ka)" g, ] -

as long as K, Ka are large enough (for example we require K >> 4C"). Now we can
prove (b). From (e) and (f), we deduce that for z € §;,,

(Ka)™™ < My(|hy,| + [Vhy,|) ()
< (C"42) [My(b)(x) + K" "MP_(|Vb]) () + 2(Ka)"] .
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provided K« large enough. Thus if we take K >> 4(C” + 2), we deduce that

Kna(n—i-l)

My (o] + K" MG (IVB])] (2) > —

and so as K > 1 we obtain

KoMt

M [Io]+ M (98D)] (@) > =%

Thus |UJ;, ;@i C U]nﬁ\]: C Qu11. The last point (g) for n + 1 is obtained as (14) in
Proposition 3.1. The proof is therefore complete. U

We finish this subsection describing the homogeneous version of all these results.

Definition 2.16 For 1 < 8 < oo, we say that a function b is a homogeneous (1, 3)-atom
associated to a ball Q) if

1. b is supported in the ball Q,

1
2. bllyirs = 1Vl [[ps < u(@)F,
3. [bdp = 0.

Definition 2.17 For 1 < g < oo, we define the homogeneous atomic Hardy-Sobolev
space H'Szﬁ%ato as follows: f € Hlszﬁ)’ato if f € L. and there exists (b;); a family of

homogeneous (1, 3)-atoms such that f = > . \ib; with Y, || < oco. We equip this space

with the semi-norm
11ist,,,, = € DIl

Proposition 2.18 HS, R is a Banach space for every 1 < f < 0.
(8)

,ato

Remark 2.19 Note that every homogeneous (1, 3)- atom is an homogeneous (1, 3)- atom
for 1 < (' < B < oo and therefore H.S@) C H.Szﬁ,) with || f]]

,ato ,ato

. < . )
HS (), at0 = ”fHHS(lB)

,ato

Proposition 2.20 For 1 < 8 < oo the finite subspace H'S;y(ﬂ) 1s dense in H'S}ﬁ)

,ato ,ato*

Definition 2.21 Let M be a Riemmanian manifold. The classical homogeneous Hardy-
Sobolev space HSI(M) is defined as HS' = {feL,;VfeH (M)} (see [36], [19] in
the Euclidean case).

Proposition 2.22 HS1 15 a Banach space.

Proposition 2.23 We have H'Szﬁ) c HS' forall1l < B < .

,ato

Proof of Theorem 0.3: Same proof as that of Theorem 0.1 but considering the homo-
geneous version of the Calderén-Zygmund decomposition. U
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3 Interpolation of Hardy-Sobolev spaces.

This section is dedicated to the study of real interpolation of Hardy-Sobolev spaces with
Sobolev spaces. First we show how we can use the Calderéon-Zygmund decomposition for
Sobolev functions to obtain interpolation results for the particular Hardy-Sobolev spaces
(studied in Subsection 2.2).

Unfortunately, this method is very specific to this kind of spaces and seems not to be
generalized for the study of other Hardy-Sobolev spaces. That is why in Subsection 3.2,
we will use the maximal characterization and the results of Subsection 1.4 to obtain
interpolation results in a more abstract background.

3.1 Interpolation of particular Hardy-Sobolev spaces.

First as done in [10] and [11], we want to prove interpolation results using an adapted
“Calderon-Zygmund” decomposition for Sobolev functions.

Let us describe it :

Proposition 3.1 (Calderén-Zygmund lemma for Sobolev functions) Let M be a
complete non-compact Riemannian manifold satisfying (D). Let 1 < ¢ < oo and assume
that M satisfies a Poincaré inequality (P,). Let ¢ < p < oo, f € W' and a > 0. Then
one can find a collection of balls (Q;);, functions b; and a Lipschitz function g such that
the following properties hold:

f=g+30 (12)

lg(z)] < Ca and |Vyg(z)| <Ca p—aexeM (13)
supp b; C @i, Hbz‘HHs(lq%m < Cap(@s) (14)
S Q) < Ca [(151+ V51 (15)

» 1o, <N (16)

where C and N only depend on q, p and on the constants in (D) and (P,).

This proposition is very similar to the ones of [10, 11]. So we do not detail the proof
and just explain the modifications. The new and important fact, is that the functions
b; (appearing in the decomposition) belong to the atomic Hardy-Sobolev spaces and not
just to the Sobolev space Wi,
Proof : Let f € W' a > 0 and consider Q = {z € M : M(|f|? + |V f|?)(z) > a4}. If
Q =0, then set

g=f, b=0 foralls

so that (13) is satisfied according to the Lebesgue differentiation theorem. Otherwise, the

maximal theorem yields
p

u(Q) < Ca?|[(If1+ VDI

<car( [ifrau+ [195pdn) (17)

< +00.
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In particular Q # M as u(M) = +o00. Let F be the complement of Q. Since 2 is an
open set distinct of M, let (Q);) be a Whitney decomposition of € ([21]). That is, the Q;
are pairwise disjoint, and there exist two constants C, > C; > 1, depending only on the
metric, such that

L. Q= U;Q; with Q; = C1Q; and the balls Q; have the bounded overlap property;
2. r; =71(Q;) = 3d(z;, F) and z; is the center of Q;;
3. each ball Q; = C,Q; intersects F' (Cy = 4C) works).

For z € €2, denote I, = {i : v € Q;}. Recall that §1, < N and fixing j € I,, Q; C 7Q; for
alli € I,.
Conditions (16) and (14) are satisfied due to (17). Using the doubling property, we have

[ 1+ 1951 < Caru(@y). (19

3

Let us now define the functions b;. For this, we construct a partition of unity (x;); be a
partition of unity of {2 subordinated to the covering (@;). Each y; is a Lipschitz function

C
supported in Q; with || [V [|eoc < —.
T

We set b; = (f — m fQ_ Ixi)x: where x;(Q;) ~ p(Q;) means fQ Xidjt. This is the main
change, which is necessary as we look for a vanishing mean value for b;’s.
By usual arguments and Poincaré inequality (F,), we can estimate b; in the Sobolev space

Wha: || bl < C’oz,u(Qi)%. Then by writing b; = a;; 'b; = a;a; with a; = Cau(Q;), we
deduce that the functions a; are (1, g)-atoms — and in fact (1,r)-atoms for every r < ¢—
associated to the ball @Q;. Therefore b; € HS(lq)ﬂto with ||bi||HS<1) o< = Cap(Q)

and also b = >3, b; € HS| with ||b|| 1 < au(2). Thus (14) is proved. Set

q),ato (g),ato

g=f- Zbi' Since the sum is locally finite on €2, as usually g is defined almost

everywhere on M and g = f on F. Moreover, g is a locally integrable function on M. It
remains to prove (13). We have

Vg=Vf=>Y Vb
= V7 = (0 = X0 gy [, P v
1
=1p(Vf) - zz:(f T @) /Q Fxadp)Vx;.

From the definition of F' and the Lebesgue differentiation theorem, we have 1p(|f| +
IVf]) < ap—a.e. We claim that a similar estimate holds for

h_; (f_ Xz‘(le')/

that is |h(z)| < Ca for all € M. For this, note first that A vanishes on F' and the sum
defining h is locally finite on €2. Then fix x € ©Q and j € I,. Note that Z xi(z) =1 and

fxidu) Vxi,

i
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1 1
IOEDY [(—mw» L, fdu) ~(smr ) fxidu>] V().

1€l

For all 4,j € I, by the construction of the Whitney collection, the ball ¢); and @); have
equivalent radius and @; C 7Q);. Thus

1
i — d
NN Qifx I ]éij It

< ][Q f- ][Q Fd
< <]{Q IVf|qdu> "

S arj. (19)

|Xz‘|dﬂ

dp

We used (D), (P,), xi(Q:) ~ pu(Q;) and (18) for 7Q);. Hence
h(z)] S arp;' < CNa. (20)
icl,

Then the end of the proof is classical and is exactly the same as that of the decompositions
proved in [10, 11]. We do not repeat it. 0

According to [10, 11], we know how to obtain interpolation results from an adapted
“Calderén-Zygmund decomposition”. We quickly recall them (for an easy reference) in
order to obtain a real interpolation result between the Hardy-Sobolev spaces H S(lq)’ato and
Sobolev spaces.

First we characterize the K-functional of real interpolation in the following theorem:

Proposition 3.2 Let M be a complete Riemannian manifold satisfying (D) and Poincaré
inequality (P,) for some q € (1,00). Then

1. for allr € (1,00), there exists C1 > 0 such that for every f € HS(IT)MO + Wt and
t>0,

K (f,t, HS a0 WH) = Cot ([ + [V F7) (B);

2. for 1 < q<p < oo, there exists Cy > 0 such that for every f € WHP and t > 0,

K(fot HS ) 1o W) < Cot (11770 + V1770 (1),

We have the same results replacing the space HS(lr) by HS*.

,ato
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Proof : We only write the proof for the space H S(lr),ato'
ato = HS (g ap for 7 € [g,00]. We just have to
prove our result for » € (1,q]. The lower bound of K is trivial. It follows from the
characterization of K between L' and L*. Now for the upper bound of K of point
2., take f € WP and ¢ < p < oco. Let t > 0. We consider the Calderén-Zygmund
decomposition of Proposition 3.1 for f with a = a(t) = (M(|f]? + \Vf|q))*% (t). We

write f = Z b; + g = b+ g where (b;);, g satisfy the properties of the proposition. From

We have already seen (Theorem
0.1) that under our assumption H S(lr)

the boundeé overlap property of the B;’s, it follows that for all » < ¢

< NZ 10i| 1252

(r),ato

< Ca(t) Z Q)

< Ca(t)u(9).

161252

(r),ato

Moreover, since (M f)* ~ f* and (f + ¢)™ < f* 4+ ¢ (c.f [12],[13]) , we get

at) S (IF175(0) + V£ (1))

Noting that for this choice of a(t), u(2:) <t (c.f [12],[13]), we deduce that

Kt HS Yy o W) < [bllasy, -+ gl
xd sk L

St (L1750 + VA7 (1)) (21)

for all t > 0 and obtain the desired inequality for f € WP, ¢ < p < oc. U

Then integrating the K-functional yields

Proposition 3.3 Let M be a complete Riemannian manifold satisfying (D) and (P,),
for some 1 < q < co. Then for allr € (1,00] and p € (q,0), WP is a real interpolation

space between HS(lr),ato and W1 More precisely, we have

(HS(y a0 WH), = WP

ato’
’ p 7p

We refer the reader to the previously cited papers for a detailled proof. We also have
an analogous interpolation result for the Hardy-Sobolev space HS' instead of H S(l)

r),ato’
Note that HS(lr)mo C HS' and || f||lgs: < 2||f||HS(1) N
Proof of Theorem 0.2: The proof follows from Proposition 3.3 and the Reiteration
Theorem (see [12], Theorem 2.4). 0

All these results are based on the well adapted “Calderén-Zygmund decomposition”. The
first one (described in [2] by P. Auscher) was written for homogeneous Sobolev spaces. We
can write an analog result of Proposition 3.1 for homogeneous Sobolev spaces. Then we
estimate the functional K (as in [10]) and obtain the homogeneous interpolation Theorem
0.4:
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Proof of Theorem 0.4: Analogous proof to that of Theorem 0.2 and 3.3. U

We used a “Calderén-Zygmund” decomposition to obtain an interpolation result for the
particular Hardy-Sobolev spaces. These arguments give positive interpolation results
under the assumptions of doubling property and Poincaré inequality. Unfortunately, this
method seems not to work for abstract and more general Hardy-Sobolev spaces: the way
to make appear the “atoms” is very particular. That is why, in the next subsection,
we develop other arguments to obtain interpolation results with abstract Hardy-Sobolev

spaces. We will use our maximal characterization of Sobolev spaces (Subsection 1.4) and
ideas of [15].

3.2 Interpolation of abstract Hardy-Sobolev spaces.

We refer the reader to Subsection 2.1 for the definition of abstract Hardy-Sobolev spaces
associated to a collection of “local operators” B.

To prove our results, we will follow ideas of [15] and [17] using duality and some maximal
operators associated to the collection B. Let us first define them.

Definition 3.4 Let 0 € (1,00]. We set Ag = Id — Bg and

1

Vee M,  Mg,(f)(z):=sup 2O Ao -10 (@) -

Qball ILL
zEQ

(22)

We define a sharp mazimal function adapted to our operators. For s > 0,

1
Vo e M M = sup — || B .
ve M, B,s<f)(x) %Zél)l M(Q)l/s H Q(f)HW*LS(Q)

We refer the reader to Definition 1.13 for the notation Z,; and Subsection 1.4 for the
definition of some maximal operators and the assumption (H,, ,,) -
We can now prove Theorem 0.5 .

Remark 3.5 We want to emphasize that we only require the use of the “finite Hardy-
Sobolev” space HWp . With our new mazimal operators, the assumption (1) can be
written as

Mpo S Mg.p. (23)

Proof of Theorem 0.5: From the HW} ,,, — L' boundedness, it is quite easy to check
that for each ball Q, the operator T'Bg is bounded from W#(Q) into L' with

1T Bollwisg-r1 S N(Q)l/ﬁl-
By duality, we deduce that B;T™ is bounded from L* to WL with
||BET*”L°°—>W*L5'(Q) S M(Q)l/ﬁl-
Thus, we obtain the first inequality

VfeL®, || MipTh) | SIflee (24)
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Now using (23), we obtain
Mﬁé’ﬁ/ < MS”g/ + M]B,,B’ < MS,ﬁ’ + MIB,U SJ M57*7/3/ 5 MS,*,;DG‘ (25)

Then (25) with Proposition 1.14, yields the following “weak type inequality”

vierh, | MErn| L SIT g S 1 (26)
Interpolating (24) and (26) gives
Vg€ (pho0), Vf e oLy, | MEL(T)| <ellfl (27)

Now we use a “good lambdas” argument to compare the maximal operators. We use a
Sobolev-version of the result of P. Auscher and J.M. Martell: [7], Theorem 3.1. With its
notation, take a function F'. We define for all balls )

GQ = BaF and HQ = AZQF
The assumption (23) shows that
w@Q) 7 [ Holly 10 S Mpo(F) S Moy (F). (28)

By definition of Mé 5, we have

(@) NGl yyor S Mf (). (29)

From these two inequalities, we claim that the following good lambda inequality holds
(for K large enough and ~ as small as we want)

i ({ Moo (F) > KO, ME 5 (F) <90 }) S (K77 47 K7 ) ({ My 3(F) > A}) . (30)

We postpone the proof of this claim to Lemma 3.6. As usually this inequality is satisfied
for all A > 0 if u(X) = oo and only for A 2 || Mg g (F)||1: if the measure is finite.
Assuming this fact, we will conclude the proof. By classical arguments (see proof of
Theorem 3.1 in [7]) we deduce that for py € (¢, 3) if Mg,z (F) € LPo> then

1M (F)| o S MG g (F)l 20+ | M50 (F) | 11 L) <00

for all ¢ € (p), o) with an implicit constant depending on ¢q. Now we take a function
h € LPo N L9 Denoting F' = T*(h), we have F' € W=7, Proposition 1.14 shows that
Mg, 5 (F) belongs to LPo>°. Thus we can apply the previous inequality which together
with (27) yield

1M (T )10 S 1M g (T R) [0+ | Mg 0 (T R) | 11 L) <o
S 1Pl + 1M (T*R)] 21 1) <00

If the space X is of finite measure, using the W10 — [r0 boundedness of T' and Proposition
1.14, we remark that

[ M5 (TR 2 S ([ Mo (TR oy S NT ()N S 1Py S 1P -

LP6 ~
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This inequality with the fact (', q) € Zys — since ¢’ € (0’,py) —, shows that
Vh e LYN LP, HT*hHW—Lq S HhHLq.
By duality, we deduce that there is a constant ¢ = ¢(p) such that
VEeW AW IT(f)le < el f (31)
Consequently, inequality (31) holds for all ¢ € (pj, o), and therefore T admits a continuous
extension from WP to LP for all p € (0’, po). 0
It remains to prove (30).

Lemma 3.6 With the notations of the previous proof, we have the following good lambda
inequality. For all X > 0 (or only for X 2 ||Ms .z (F)||L if the measure is finite)

i ({ Moy (F) > KX, ME 5 (F) SA}) S (K77 497 K )t ({Mg o (F) > A})

Proof : The proof is exactly the same as that of Theorem 3.1 in [7], adapted to our
maximal operators. We deal only with the case when p(X) = co. We consider the sets

B/\ = {M5'7*,3'<F) > K)\, M]gﬁ/(F) < ’7)‘}

and

E, = {MS7*751(F) > )\} .

First since K > 1, we have By C E,. We choose (@;); a Whitney decomposition of E,
and write z; for a point in 4Q); N EX. Let j such that BN Q; # 0 and x € By N Q;. We
have

1
V. o —  inf L o> K 2
Syx,08 (F)(QJ) F=¢01Pdiv(¢1) Zligl M(Q)l/ﬁ/ H’¢0| + |¢1‘”Lﬁ Q) = (3 )
S

Let F' = g — div(11) and Qezy be an extremize decomposition and ball of (32). Assume
first that Q. satisfies Qezr N (8Q);)° # (. Since x; € 4Q¢yr and

1
inf SUp — = + v < Mgy g (F) () < ),
F:¢o—div(¢1)Q3£ Q)8 @l + 111l (@) S0 (F)(2;)

we deduce that

1/p

Therefore, for a large enough constant K, the doubling property of the measure shows
that the assumption Q. N (8Q);)¢ # 0 is false. We deduce that Q..+ C 8Q); and therefore

1
Mg, o(F)(z) =  inf . s > KO\,
s0 (F)(x) F:¢01Pdiu(¢1) 233 1(Q)L/B lgol + |@1lll o @ =
TeQC8Q;
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Write F' = BngF + AngF . It follows that

1
B = it N ron > KA/2
MR N = Biy F=so-din(é1) v Q)P ol + P11l o) = KA/
J 2EQCSQ;
! inf L ol + 101l gy = K2
1n su —_— ) >
8 AZq, F=do—div(¢1) %bafi? u(Q)/e 0 LI Ls (@)
rEQC j

The first term is controlled by the “weak type (', 3")” of the maximal operator Mg, s
(local version of Proposition 1.14) :

1
inf su — 77 + @ = K2
H B3 . F=¢o—div(¢1) Qba:E)l #(Q)l/ﬁ |||¢0| |¢1|||Lﬁ @) /
J TEQCEQ;
1 * ’
1 /
* B
S WHBSQJ-FHWA,,B’(E;QJ-)

1 . /
S Wﬂ(@j) é%f M]%,ﬁ/(F)ﬂ

<2 0@y (33)
~ Kﬁ/ﬂ 21/

For the last inequality, we used the fact that By N Q; # (. For the second term, we use
similar arguments with 3’ < o

1
b sup ey %ol + o > K2
8 Angcmbofdiv(d)l) QbaIl)l M(Q)l/ﬁ |||¢0| ’¢1|||L5 (@) /
TEQCSQ;
1 . ,
S KU)\G'HMS’*’O-ASQ]‘FHLG*OO,SQj
1

N WHAngFH%/—L”(SQj)'

The above assumption (23) shows that
[ A3, FllYv-10(sq,) S #(Q;) inf My, (F)” S p(Qj) inf My, (F)7
S A u(@)-

We used in the last inequality that x; € 8Q; and Mg, g (F)(z;) < A. Thus, we proved
an analogous inequality of (33) for the second term. We deduce that

i
n(BNQ) S (7 + 305 ) Q)

Summing over j, the proof is therefore complete. U

In the next proposition, we give a useful criterion to insure the main assumption (23) :
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Proposition 3.7 Assume that the operators Aq satisfy

, 1 1
Vj=0 L(TQ)B [AQ(U M s, @) < aj(Q)W 1f e ) »

for all functions f supported in the ball Q, where the coefficients a;(Q) satisfy

ptQ)
5%51; ) (@ <o (34)

Then the maximal operator Mg, is bounded by Mg, 5 .

Proof : Let x € M. For a ball Q, we denote S;(Q) = 27Q \ 2/7'Q. We estimate the
Sobolev-norm by duality

Mao(f)(z) = sup  sup MQ*@/%umm
Q;xeQ 9€CR(Q)

lal 1,7 <1

= sup  sup M(Q)‘l/"/fAQ(g)du
Q;xeQ 9€C(Q)

llgll 1 <1

wl,o

Take a decomposition f = ¢ — div(y)). Then we have

Mg, (f)(z) < sup  sup QY / [P0Aq(g) + eV Ag(g)] du
Q;xeQ) 9eCHF(Q) >0
||9”le0',<1
< sup w(@)7V7 sup Y lldol + [l s, @ 1A@(@) s, ) -
@ reQ \|g\|€OO 21 720
91,00 s

Our assumption yields

Moo (F)@) < sup p(@ s 3 Mool + ol s a5(@FE D
B ) ng@u HJIIEC I? ) 520 ’ e (@)’
. , 2j+1
ﬁwgww%wm<w@wwﬂﬁ$
+1
< Mirzp(lnl + [9ol)(2) sup 3~ 04(@) ”@>

o T m@Q)
S Mupp (@0l + [tol) ().

These inequalities hold for every decomposition f = ¢ — div(¢). Taking the infimum over
all these decompositions, we obtain the desired inequality. U

With an extra assumption (as in [17]), we obtain the real interpolation result of Theorem
0.6 :

Proof of Theorem 0.6: The proof is the same as the one of Theorem 3.14 in [17] using
the arguments of Theorem 0.5. We omit it. U

Let us compare our assumption (3, pj) € Zps with Poincaré inequality :
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Remark 3.8 Assume that ' < pj (else (3',py) € I is always satisfied, see [18]) and
po < 2. Thanks to Theorem 1.17, we can check that the assumption (5',pp) € Ly is
implied by the Poincaré inequality (Pp,) if 3 > 2, which corresponds to a variant of
the assumption done in [10] (in [10], the author used local hypotheses of doubling and
Poincaré, here we are under the global hypotheses) to interpolate the corresponding non-
homogeneous Sobolev spaces.

4 Applications

4.1 Operators with regularity assumptions about the kernel.
In this subsection, we look for a “Sobolev” version of results for Calderén-Zygmund op-

erators on Lebesgue spaces.

Definition 4.1 Let T be a linear operator bounded from W' (resp. W) to L. We
say that it is associated to a kernel K(x,y) if for every compactly supported function f
and x € supp(f)¢ we have the integral representation :

1(7)w) = [ Klaw) f0)duly).
We introduce the following regularity property for such kernel :

[':= sup sup TQ/ |K(z,y) — K(z, )| du(x) < oo. (35)
Q ball y,zeQ M\4Q

This subsection is devoted to the study of operators T" associated to a kernel satisfying
(35). We first prove a weak type estimate .

Proposition 4.2 Let M be a complete Riemannian manifold satisfying (D) and admit-
ting a Poincaré inequality (Py). Let T be a linear operator which is bounded from T2
(resp. W2) to L? and is associated to a kernel satisfying (35).

Then T is bounded from W' (resp. Wh') to L.

Proof: We give the proof in the homogeneous case, it is the same in the non-homogeneous
case. Let f € Wb, We want to show that

p({r € MITF(@) > a}) S ~ IV Sl

Take the Calderén-Zygmund decomposition — homogeneous version of Proposition 3.1 —
of f for @ > 0. We have

Tf=Tg+T() b)
and {|Tf| > a} C {|Tg| > $IU{IT(3, b:)| > &}. Since T is bounded from W2 to L2

then A .
(6]
n({iral > 5}) < 2 [ TP S 1Twa_snal VS
2 o Sy o
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For [T'(D°,b;)| = 1>, Tb;| <>, |Th;| we have

(friz- -3

M(U 4Qi) + ({(M\ Ui 4Qi); > [Tb| > %}> :

7

From (D) and the homogeneous analog of (15) of Proposition 3.1, we have p(|J; 4Q;) <
E|IV f]l1. It remains to estimate p(A) = p({(M\ U; 4Q;); >, |Tb;| > %}). We have

«

2 2
< = Th;|1 dy = — Th;|dp.
_05/]\4;’ | Lanaq,dp a;/ | Tb;|dp

M\4Q;

Then

Let y; € Q; such that K (z,y;) exists. Noting that [ b;du =0, it comes that

/ T () du() = /
M\4Q; M\4Q;
N /M\4Qi

</ (f LK) - K (o, )ldn(o) ) 0 )

S / blduts) sup i [ K (o) = Ko)lda(o)
MA\AQ;
< «

Y, Yi€Q;
S ap(Qs).

Summing over i and using the homogeneous analogous property of (15), the proof is
therefore complete. U

o K(x, y)bi(y)du(y)’ du(x)

[ (G = Kbt auto)

To obtain this weak type estimate, we have to assume a strong Poincaré inequality (P).
The result of Theorem 0.7 is also interesting: we are able to obtain a strong type estimate
using Hardy-Sobolev spaces (instead of the Sobolev space Wl’l), and requiring a weaker
Poincaré inequality in the non-homogeneous case.

Proof of Theorem 0.7: We begin showing that in both case item 1. (resp. 2.), there
exists a constant C', such that for all 2-homogeneous atom a (resp. non-homogenous

atom),
[Tal[r: < C. (36)

We give the proof in the homogeneous case, it works the same in the non-homogeneous
case. Indeed, noting Q) = Q(zo, ) the ball associated to the (1,2) homogeneous atom a ,
we have

1
/ Taldp < O[Tl 2 p2llallin (@) < ClIT [y g2
4Q
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On M\4Q, we use the integral representation. The fact that [ adu = 0 yields

/M\4Q [Tajd < /M\4Q
- /M\4Q
< /M . /Q K (2, ) — K (2, 20)] |a(y) dp(y)dia(z)

- [ 1ot (/ BLCYE K (o an)ld(o) ) duty)

_ /Q la — ag (/M\4Q K (z,y) — K(%fo)léﬁt(ﬂﬁ)) du(y)
< Cru(@(f (VS
<C. ’

/ K(m,wa(y)du(y)‘ du(z)

/Q (K (2,y) - K(z, :m))a(y)du(y)} du()

We used Poincaré inequality (FP2), (35) and the definition of a (1,2) atom.

Now we conclude the proof of item 1.

Thanks to Proposition 4.2, T is bounded from W' to L. Take f € H'Szz)@m Cf =
> o2, Aib; with for each 4, b; is a (1, 2) homogeneous atom and with Y .o, [A;] ~ ||f||HS% :

2),ato
Since H'Sé)ﬂm < W', we know that fy = Zf\il Aib; € H'S;’(Q)’ato converges to f in Wh1.
Thus by Proposition 4.2, T fy converges to T f in LY.

On the other hand, T fx converges to Z;’il AN Tb; in WLl and therefore Tf = Zfil N T'b;
and [T/l < CIFlL gt -

It remains to complete the proof of item 2. For this, we invoke the following lemma
which finishes the proof. It is a Sobolev version of a result in [32], that was generalized

in [17]. U

Lemma 4.3 Assume that (Py) holds. Let T be a bounded linear operator from W2 to
L? with a constant C such that for all (1,2) atom f € HS};7(2) we have

,ato’

1Tl < C.

Then T extends continuously from H 8(12) into L.

,ato

Remark 4.4 The proof uses the embedding HS(12) < L', which does not hold for the

homogeneous space H.Sé)ﬂw. Actually, we do not know if such a result is true or not
for homogeneous Hardy-Sobolev spaces, without using (as it is well-known) a weak-type
inequality from WhHl to LY which requires the Poincaré inequality (P) as we saw in
item 1.

,ato

Proof : As HS}, (2).ato 15 dense in HS(12) ator We know that there exists an operator U
bounded from HS(lz) uio Into L1 such that for each atom m: U(m) = T'(m). We have to

prove that
Vi €W NHSY W U =T(f).
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To prove this fact, we use duality. Let () be a ball and ¢g be a smooth function supported
in @ verifying
1 1
— = Vogoloo S ——-
Q) IVéall ()
Then for all smooth function k supported in @, with ||k|w12 < u(Q)~"/2, the function

h:=k— (fQ k)pg is a (1,2)-atom associated to the ball @) (due to Poincaré inequality
and Proposition 1.6). Let g € L> N L?. We have

<T(h)a g> = <U<h)> g>'

é%sz léolle <

We deduce that
(h,T*g) = (h,U"g)

<k’> [T*g —Ug] — (/¢Q [T*g —U"yg] du) 1Q> = 0.

We set A for the function A := [T*g — U*g]. We have

([,
W-1.2(B)

Thus A (as distribution) is constant on the ball ). This fact is proved for every ball Q.
We conclude that A (which is independent with respect to the ball) is constant over the
whole manifold M.

The non-homogeneous Hardy-Sobolev space H S(lz)ﬂw

L' — L™ duality, for all functions h € H 5(12)’@0 we have

. Hence

is embedded into L!'. Then by

(h,\) = 0.
In particular for f € W12 nN HS(12),ato’ we get
(LN = 0=y (F,T9) w12 —nsy, , U9 asy, - =2 (T(),9) 2 =1 (U(f), g) 1=

(2),ato

This is true for all functions g € L> N L2. We deduce that T(f) = U(f) in (L>®° N L?)"
and therefore T'(f)(z) = U(f)(x) for almost every z € M. U

Proof of Corollary 0.9: The proof follows from the interpolation results in Theorem
0.2 and Theorem 0.4 and the self-improvement of Poincaré inequality of Theorem 1.5. [

The result in item 2. of Corollary 0.9 can also be recovered by suitably choosing the
operators B of the abstract Hardy-Sobolev spaces (defined in Subsection 2.1).

Definition 4.5 For each ball QQ of M, we define our operator By as :

Bolf) =/ - (/Q fdu) ba

where ¢g is a smooth function supported in ) such that
1

L%WZL loalle S g5 Vo0l Srgn(@"
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With 3 = 2, we define our Hardy-Sobolev space H VV2 ato"

We check the desired assumptions. Thanks to the Proposmon 1.6, it is clear that under
Poincaré inequality (P,) the operators Ag are uniformly bounded on W'?2.

Then by similar arguments as that in the proof of Theorem 0.7, under (F) the above
operator 1" admits a continuous extension from H W(12),ato to L'. Moreover, for q € (1,2)
the inequality (F,) implies that the maximal operator Mg, is bounded by My (using
Proposition 3.7). Using Theorem 0.5, we recover item 2. of Corollary 0.9.

4.2 Application: (RR,).

Let M be a complete Riemannian manifold satisfying (D). Consider the linear operator
A2 with the following resolution

. o dt
Az f = c/ Ae B f—  feC®
0 \/% 0

where ¢ = 772, Here Az f can be defined for f € Lip as a measurable function (see [4]).
Since Azl = 0, Az can be defined on Lip N by taking quotient which we keep calling
Az. Applying Theorem 0.7, we obtain the following theorem for Az.

Theorem 4.6 1- Let M be a complete Riemannian manifold satisfying (D) and (P).
Then A2 is bounded from H'Szr)ﬂm to L' for any r > 1.

Consequently, Az is bounded from WP to LP for any p € (1,2].

2-Let M be a complete Riemannian manifold satisfying (D) and (P,) for some q € [1,2).
Then (I + A)% is bounded from HS(lr),ato to L for anyr > qif q # 1 (resp. v > 1 if
g=1). 1

Consequently, (I + A)2 is bounded from WP to LP for any p € [q,2].

Remark 4.7 We refer the reader to [5, 4] for the study of inequality (RR,) forp € (1,2]

(which corresponds to the boundedness of Az from WP to LP ) under Poincaré inequality.
The new point here is the limit case (RRy).

Proof : We prove item 1. of this theorem. We proceed analogously for the proof of item
2. Let us check that Az satlsﬁes the hypotheses of Theorem 0.7. First Az is bounded
from W3 to L2 The kernel of Az is 15 Opi(z,y) % - Under our hypotheses, the partial
derivative of the heat kernel 0;p; verifies

C &)

———— ¢ t

tu(B(y, V1))
for every x, y € M and t > 0 (see [23], Theorem 4 and [27], Corollary 3.3). Let @ a ball
of radius r > 0 and y, z € ). We therefore have

oo < [, o ] ) i Gt
SC/M\@/O me— W%dtdu( )

m) dt

oo 1 -
e O e v L L
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Oi(pe(x,y) — pe(w, 2))
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. 00 _ d (I y) .
Let us estimate I = fM\4Q (fo m dt> du(z). Since y € @ and x € M\4Q
then d(z,y) > 3r. It follows that

S

> a2 (z,y dt
I S/ L </ Ga(’f)dﬂ(ﬂf)>
0 t:u(Q(ya \/7_5)) {z; d(z,y)>V9Ir2}

~ o dt
<) gty vy @ N

9r2

< /OO T
otV

<€/m€_a?dt
o tVt

¢
.

<

a2 (ry)

In the second estimate, we used that fd osvi€ e du(z) < Cou(Q(y, /3))e 7= (122,

Lemma 2.1 ). Similarly, we prove that fM\4Q (fo

d (a: da“(z,z) dt

C
e &) du(w) < €. Tak-

ing the supremum over all Y,z € @, all balls () and applying Theorem 0.7, we obtain that
T is bounded from H ST uto to L' for r > 1. Finally the boundedness of T from WP to

L? for 1 < p < 2 follows from Corollary 0.9. U
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