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Abstract

The purpose of this work is to describe an abstract theory of Hardy-Sobolev
spaces on doubling Riemannian manifolds via an atomic decomposition. We study
the real interpolation of these spaces with Sobolev spaces and finally give applica-
tions to Riesz inequalities.
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The aim of the present work is to define atomic Hardy-Sobolev spaces and interpolate
them with Sobolev spaces on Riemannian manifolds.
One of the motivations is our Sobolev interpolation result [10], [11] in different geometric
frames, under the doubling property and Poincaré inequalities. After this result, it is
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interesting to consider a “nice” subspace of W 1,1 – as is the Hardy space for L1– and
study the interpolation of this space with Sobolev spaces. Apart from the interpolation
itself, the use of the Hardy-Sobolev spaces that we construct gives strong boundedness of
some linear operators instead of the weak boundedness on W 1,1. For instance this is the
case of the square root of the Laplace-Beltrami operator ∆1/2.
Another motivation responds to the recent improvements on the theory of Hardy spaces.
In the last years, many works were related to the study of specific Hardy spaces de-
fined according to a particular operator (Riesz transforms, Maximal regularity operator,
Calderón-Zygmund operators, ... [15, 16, 24, 25, 26, 29, 34]). Mainly one of the most
interesting questions in this theory is the interpolation of these spaces with Lebesgue
spaces in order to prove boundedness of some operators.
Although the theory of Hardy spaces is now well developed, the more recent theory of
Hardy-Sobolev spaces is still not unified.

Before we state our results, let us briefly review the existing literature related to this
subject.

The Hardy-Sobolev spaces were studied by many authors in the Euclidean case. We
mention R. Strichartz [36]. Related works are [9], [31], [19], [33]. They deal with “clas-
sical” Hardy-Sobolev spaces HS1 on R

n, which correspond to the Sobolev version of the
Coifman-Weiss Hardy space H1

CW (Rn) : HS1 is the set of functions f ∈ H1
CW such that

each partial derivative of f belongs to H1
CW . Some of them consider the homogeneous

version of HS1 and others only assume f ∈ L1 instead of f ∈ H1
CW .

We recall that R. Coifman proved an atomic decomposition for the classical Hardy space
H1
CW , which can be defined by maximal functions (see [26]). In the Euclidean case, the

question of atomic decomposition for the homogeneous space ḢS
1

was treated in [36] and
[19]. However, in the non-Euclidean case this issue is still not clear. In contrast, our idea
is to introduce atomic Hardy-Sobolev spaces for which we can prove real interpolation
with Sobolev spaces. Then we are able to derive the interpolation of HS1 with Sobolev
spaces.

Let us now summarize the content of this paper. We refer the reader to the corresponding
sections for definitions and properties of the spaces and operators that we use in the
statements.

In the second part of Section 2, we define atomic Hardy-Sobolev spaces HS1
(β),ato for

1 < β ≤ ∞. They correspond to the Sobolev version of the atomic Coifman-Weiss Hardy
spaceH1

CW (defined by atomic decomposition withW 1,β-atoms). We compare these spaces
for different β in the following theorem:

Theorem 0.1 Let M be a complete Riemannian manifold satisfying (D) and admitting
a Poincaré inequality (Pq) for some q > 1. Then HS1

(β),ato ⊂ HS1
(∞),ato for every β ≥ q

and therefore HS1
(β1),ato = HS1

(β2),ato for every β1, β2 ∈ [q,∞].

For the real interpolation of these spaces with Sobolev spaces, we obtain
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Theorem 0.2 Let M be a complete Riemannian manifold satisfying (D) and (Pq), for
some q ∈ (1,∞). Let r ∈ (1,∞], s ∈ (q,∞], p ∈ (q, s) and θ ∈ (0, 1) satisfying 1

p
=

(1 − θ) + θ
s
. Then

W 1,p =
(
HS1

(r),ato,W
1,s
)
θ,p

=
(
HS1,W 1,s

)
θ,p

with equivalent norms.

We also prove the homogeneous version of theses two theorems:

Theorem 0.3 Let M be a complete Riemannian manifold satisfying (D) and a Poincaré

inequality (Pq) for some q > 1. Then ḢS
1

(β),ato ⊂ ḢS
1

(∞),ato for every β ≥ q and therefore

ḢS
1

(β1),ato = ḢS
1

(β2),ato for every β1, β2 ∈ [q,∞].

Theorem 0.4 Let M be a complete Riemannian manifold satisfying (D) and (Pq), for
some 1 < q < ∞. Let r ∈ (1,∞], s ∈ (q,∞] and p ∈ (q, s) and θ ∈ (0, 1) satisfying
1
p

= (1 − θ) + θ
s
. Then

Ẇ 1,p =
(
ḢS

1

(r),ato, Ẇ
1,s
)
θ,p

=
(
ḢS

1
, Ẇ 1,s

)
θ,p

with equivalent norms.

In the first part of section 2, given a collection of uniformly bounded operators on W 1,β:
B := (BQ)Q∈Q , we define abstract atomic Hardy-Sobolev spaces HW 1

ato. For theses
spaces, we obtain in section 3 the following two interpolation results.

Theorem 0.5 Let M be a Riemannian manifold satisfying (D). Let σ ∈ (1,∞] and p0

such that σ′ < p0 ≤ β. Let B := (BQ)Q∈Q be a collection of uniformly bounded operators
on W 1,β satisfying

1

µ(Q)1/σ

∥∥f −B∗
Q(f)

∥∥
W−1,σ(Q)

. MS,∗,β′(f). (1)

Let T be a bounded linear operator from W 1,p0 to Lp0 and from HW 1
F,ato to L1. Then for

every p ∈ (σ′, p0) such that (β′, p′) ∈ IM , there is a constant c = c(p) such that for all
function f ∈ W 1,p ∩W 1,p0

‖T (f)‖Lp ≤ c‖f‖W 1,p .

Consequently, T admits a continuous extension from W 1,p to Lp.

Theorem 0.6 Let M be a Riemannian manifold satisfying (D) and of infinite measure
µ(M) = ∞. Assume that the finite Hardy-Sobolev space is contained in W 1,1:

HW 1
F,ato →֒ W 1,1

and that B satisfies (1). Let σ ∈ (1,∞] and p0 satisfying σ′ < p0 ≤ β. Then for every
θ ∈ (0, 1) such that

1

pθ
:= (1 − θ) +

θ

p0

<
1

σ′

and (β′, p′θ) ∈ IM , we have
(
HW 1

F,ato,W
1,p0
)
θ,pθ

= W 1,pθ ,

with equivalent norms.
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Finally, the following theorem is an application of our result. It is proved in section 4 and
applies to ∆1/2.

Theorem 0.7 Let M be a complete Riemannian manifold satisfying (D).

1. Assume that a Poincaré inequality (P1) holds. Let T be a bounded linear operator
from Ẇ 1,2 to L2 and associated to a kernel satisfying

sup
Q ball

sup
y,z∈Q

rQ

∫

M\4Q
|K(x, y) −K(x, z)| dµ(x) <∞. (2)

Then T admits a unique extension from ḢS
1

(2),ato to L1.

2. Assume that a Poincaré inequality (P2) holds. Let T be a bounded linear operator
from W 1,2 to L2 and associated to a kernel satisfying (2).
Then T admits a unique extension from HS1

(2),ato to L1.

Remark 0.8 Thanks to Theorem 0.1, in item 1. of Theorem 0.7, T is then bounded from

ḢS
1

(β),ato to L1 for all β ∈ (1,∞]. In item 2., T is then bounded from HS1
(β),ato to L1 for

all β ∈ [2,∞].

Consequently

Corollary 0.9 1-Let T be as in item 1. of Theorem 0.7. Assume that a Poincaré in-
equality (P1) holds. Then for all p ∈ (1, 2], the operator T admits a continuous extension
from Ẇ 1,p to Lp.
2-Let T be as in item 2. of Theorem 0.7. Assume that a Poincaré inequality (Pq) holds
for some q ∈ (1, 2). Then for all p ∈ (q, 2], the operator T admits a continuous extension
from W 1,p to Lp.

We apply these last two theorems to the square root of the positive Laplace-Beltrami
operator ∆1/2. In [4], P. Auscher and T. Coulhon proved that under the doubling property
(D) and a Poincaré inequality (Pq) for some q ∈ [1, 2), (RRp) (which is equivalent to the
boundedness of ∆1/2 from Ẇ 1,p to Lp) holds for every q < p ≤ 2. Moreover, ∆1/2 satisfies
a weak type inequality (RRqw) ((RRp) also holds in this case for 2 < p < ∞). Applying
Theorem 0.7, we show that under (D) and (P1) (resp. (P2) ) we have a strong (RR1)
(resp. (nhRR1)) inequality for functions in the homogeneous (resp. non-homogeneous)

atomic Hardy-Sobolev space ḢS
1

(β),ato (resp. HS1
(β),ato).

We finish this introduction with a plan of the paper. In section 1, we recall some defini-
tions and properties that we need. We define abstract Hardy-Sobolev spaces via atomic
decomposition in the first part of section 2. In the second part we study particular atomic
Hardy-Sobolev spaces HS1

(β),ato in more detail and prove Theorem 0.1 . We also prove
that under Poincaré inequality, these spaces are a particular case of the abstract Hardy-
Sobolev spaces that we defined in the first part. Section 3 is devoted to the proof of the
interpolation results in Theorems 0.2 and 0.4 using a “Calderón-Zygmund” decomposition
well adapted to the spaces HS1

(β),ato. For the interpolation of the abstract Hardy-Sobolev
spaces in Theorem 0.5, our method is based on the new maximal inequality described in
[18]. Finally, the proof of Theorem 0.7 and the application to ∆1/2 are given in section 4.
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1 Preliminaries

Throughout this paper we will denote by 1E the characteristic function of a set E and
Ec the complement of E. If X is a metric space, Lip will be the set of real Lipschitz
functions on X and Lip0 the set of real, compactly supported Lipschitz functions on X.
We denote by Q(x, r) the open ball of center x ∈ X and radius r > 0 and λQ denotes the
ball co-centered with Q and with radius λ times that of Q. Finally, C will be a constant
that may change from an inequality to another and we will use u . v to say that there
exists two constants C such that u ≤ Cv and u ≃ v to say that u . v and v . u.

In all this paper M denotes a Riemannian manifold. We write µ for the Riemannian
measure on M , ∇ for the Riemannian gradient, | · | for the length on the tangent space
(forgetting the subscript x for simplicity) and ‖ · ‖Lp for the norm on Lp := Lp(M,µ),
1 ≤ p ≤ +∞.
We will use the positive Laplace-Beltrami operator ∆ defined by

∀f, g ∈ C∞
0 (M), 〈∆f, g〉 = 〈∇f,∇g〉.

1.1 The doubling property

Definition 1.1 Let M be a Riemannian manifold. One says that M satisfies the (global)
doubling property (D) if there exists a constant C > 0, such that for all x ∈M, r > 0 we
have

µ(Q(x, 2r)) ≤ Cµ(Q(x, r)). (D)

Observe that if M satisfies (D) then

diam(M) <∞ ⇔ µ(M) <∞ (see [1]).

Therefore if M is a complete non-compact Riemannian manifold satisfying (D) then
µ(M) = ∞.

Theorem 1.2 (Maximal theorem) ([20]) Let M be a Riemannian manifold satisfying
(D). Denote by M the uncentered Hardy-Littlewood maximal function over open balls of
M defined by

Mf(x) := sup
Q ball

x∈Q

|f |Q

where fE := −
∫

E

fdµ :=
1

µ(E)

∫

E

fdµ. Then for every p ∈ (1,∞], M is Lp bounded and

moreover of weak type (1, 1)1.

1An operator T is of weak type (p, p) if there is C > 0 such that for any α > 0, µ({x; |Tf(x)| > α}) ≤
C
αp ‖f‖p

p.
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Consequently for s ∈ (0,∞), the operator Ms defined by

Msf(x) := [M(|f |s)(x)]1/s

is of weak type (s, s) and Lp bounded for all p ∈ (s,∞].

1.2 Poincaré inequality

Definition 1.3 (Poincaré inequality on M) We say that a complete Riemannian man-
ifold M admits a Poincaré inequality (Pq) for some q ∈ [1,∞) if there exists a constant
C > 0 such that, for every function f ∈ Lip0(M)2 and every ball Q of M of radius r > 0,
we have (

−
∫

Q

|f − fQ|qdµ
)1/q

≤ Cr

(
−
∫

Q

|∇f |qdµ
)1/q

. (Pq)

Remark 1.4 By density of C∞
0 (M) in Lip0(M), we can replace Lip0(M) by C∞

0 (M).

Let us recall some known facts about Poincaré inequalities with varying q.
It is known that (Pq) implies (Pp) when p ≥ q (see [28]). Thus if the set of q such that
(Pq) holds is not empty, then it is an interval unbounded on the right. A recent result of
S. Keith and X. Zhong (see [30]) asserts that this interval is open in [1,+∞[ :

Theorem 1.5 Let (X, d, µ) be a complete metric-measure space with µ doubling and ad-
mitting a Poincaré inequality (Pq), for some 1 < q < ∞. Then there exists ǫ > 0 such
that (X, d, µ) admits (Pp) for every p > q − ǫ.

A consequence of Poincaré inequality:

Proposition 1.6 Assume that M satisfies (D) and admits a Poincaré inequality (Pp) for
some p ∈ [1,∞). Then there is a constant c = c(p) such that for all balls Q (of radius
rQ) and all functions f ∈ C∞

0 (Q)

∣∣∣∣
1

µ(Q)

∫

Q

fdµ

∣∣∣∣ ≤ crQ

(
1

µ(Q)

∫

Q

|∇f |pdµ
)1/p

.

This result is well-known. However for an easy reference and for the sake of completeness,
we remember the proof based on the self-improvement of Poincaré inequality. We refer
the reader to Theorem 5.3.3 of [35] for an initial proof (the proof there applies also for
p = 1).

Proof : We first prove that for all x ∈ Q, y ∈ 3Q \ 2Q

|f(x) − f(y)| . Mp−ǫ(|∇f |)(x). (3)

Using Hardy-Littlewood Theorem, we have

f(x) = lim
ǫ→0

fQ(x,ǫ).

2compaclty supported Lipshitz function defined on M .
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With the balls Qi := Q(x, 2irQ), we also have

|f(x) − fQ1| ≤
∑

i≤0

∣∣fQi
− fQi+1

∣∣ .

Thanks to Theorem 1.5), the Poincaré inequality (Pp) self improves to (Pp−ǫ) for a certain
ǫ > 0. Using this Poincaré inequality and the doubling property one obtains

|f(x) − fQ4| ≤
3∑

i=−∞

∣∣fQi
− fQi+1

∣∣

.
∑

i≤3

1

µ(Qi)

∫

Qi

|f − fQi
| dµ

.
∑

i≤3

rQi

(
1

µ(Qi)

∫

Qi

|∇f |p−ǫ dµ
) 1

p−ǫ

.
∑

i≤3

2−irQMp−ǫ(|∇f |)(x)

. rQMp−ǫ(|∇f |)(x).

Similarly we have with Q̃i := Q(y, 2irQ)

∣∣∣f(y) − f
eQ3

∣∣∣ . rQMp−ǫ(|∇f |)(y).

However since y ∈ 3Q\2Q and f is supported inQ, we have Mp−ǫ(|∇f |)(y) . Mp−ǫ(|∇f |)(x).
Then we just have to control the difference of means. The Poincaré inequality (Pp) and

Q̃3 ⊂ Q4 yield

∣∣∣f
eQ3

− fQ4

∣∣∣ . 1

µ(Q4)

∫

Q4

|f − fQ4| dµ . rQMp−ǫ(|∇f |)(x).

Thus we proved (3). Then using the fact that f(y) = 0 due to the support of f , we obtain

∣∣∣∣
1

µ(Q)

∫

Q

fdµ

∣∣∣∣ ≤
1

µ(Q)

∫

Q

|f(x) − f(y)| dµ(x) . rQµ(Q)−1/p ‖Mp−ǫ(|∇f |)‖p .

Finally the Lp-boundedness of Mp−ǫ concludes the proof. ⊓⊔

1.3 The K-method of real interpolation

The reader can refer to [12], [13] for details on the development of this theory. Here we
only recall the essentials to be used in the sequel.

Let A0, A1 be two normed vector spaces embedded in a topological Hausdorff vector space
V . For each a ∈ A0 + A1 and t > 0, we define the K-functional of real interpolation by

K(a, t, A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1).
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For 0 < θ < 1, 1 ≤ q ≤ ∞, we denote by (A0, A1)θ,q the real interpolation space between
A0 and A1 defined as

(A0, A1)θ,q =

{
a ∈ A0 + A1 : ‖a‖θ,q =

(∫ ∞

0

(t−θK(a, t, A0, A1))
q dt

t

) 1
q

<∞
}
.

It is an exact interpolation space of exponent θ between A0 and A1 (see [13], Chapter II).

Definition 1.7 Let f be a measurable function on a measure space (X,µ). The decreasing
rearrangement of f is the function f ∗ defined for every t ≥ 0 by

f ∗(t) = inf {λ : µ({x : |f(x)| > λ}) ≤ t} .

The maximal decreasing rearrangement of f is the function f ∗∗ defined for every t > 0 by

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds.

From the properties of f ∗∗ we mention:

1. (f + g)∗∗ ≤ f ∗∗ + g∗∗.

2. (Mf)∗ ∼ f ∗∗.

3. µ({x; |f(x)| > f∗(t)}) ≤ t.

4. ∀1 < p ≤ ∞, ‖f ∗∗‖p ∼ ‖f‖p.

We exactly know the functional K for Lebesgue spaces :

Proposition 1.8 Take 0 < p0 < p1 ≤ ∞. We have :

K(f, t, Lp0 , Lp1) ≃
(∫ tα

0

[f ∗(s)]p0 ds

)1/p0

+ t

(∫ ∞

tα
[f ∗(s)]p1 ds

)1/p1

,

where 1
α

= 1
p0

− 1
p1

.

From now on, we always assume that the Riemannian manifold satisfies the doubling
property (D).

1.4 Maximal inequalities for dual Sobolev spaces.

First, we begin recalling the “duality-properties” of the Sobolev spaces.

Definition 1.9 For p ∈ [1,∞] and O an open set of M , we define W 1,p(O) as following

W 1,p(O) := C∞
0 (O)

‖ . ‖
W1,p(O) , with ‖f‖W 1,p(O) := ‖|f | + |∇f |‖Lp(O) .

Then we denote W−1,p′(O) the dual space of W 1,p(O) defined as the set of distributions
f ∈ D′(M) such that

‖f‖W−1,p′ (O) = sup
g∈C∞

0 (M)

|〈f, g〉|
‖g‖W 1,p(O)

.
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Proposition 1.10 Let p ∈ [1,∞). Then for all open set O of M , we have

‖f‖W−1,p′ (O) ≃ inf
f=φ−div(ψ)

‖φ‖Lp′ (O) + ‖ψ‖Lp′ (O)

≃ inf
f=φ−div(ψ)

‖|φ| + |ψ|‖Lp′ (O) .

Here we take the infimum over all the decompositions f = φ−div(ψ) on M with φ ∈ Lp
′
(O)

and ψ ∈ D′(O,Rn) such that div(ψ) ∈ Lp
′
(O).

The proof is left to the reader (it is essentially written in [9], Proposition 33).

We now introduce the following maximal operators :

Definition 1.11 Let s > 0. According to the standard maximal “Hardy-Littlewood” op-
erator Ms, we define two “Sobolev versions” :

MS,s(f)(x) := sup
Qball

x∈Q

1

µ(Q)1/s
‖f‖W−1,s(Q)

and
MS,∗,s(f)(x) := inf

f=φ−div(ψ)
Ms (|φ| + |ψ|) (x).

The following assumption is taken from [18]:

Assumption 1.12 Take two exponents 1 ≤ µ0 ≤ µ1 <∞. We call (Hµ0,µ1) the following
assumption :

‖f‖W−1,µ1 . ‖MS,∗,µ0(f)‖Lµ1 . (Hµ0,µ1)

Definition 1.13 For M a Riemannian manifold, we denote by IM the following set

IM :=
{
(µ0, µ1) ∈ (1,∞)2, µ0 ≤ µ1, (Hµ0,µ1) holds

}
.

We refer to [18] for the study of these maximal operators and the previous assumption.

Proposition 1.14 For p ∈ [1,∞), MS,p and MS,∗,p are of “weak type (p, p)”. That is

∀f ∈ W−1,p, ‖MS,p(f)‖Lp,∞ ≤ ‖MS,∗,p(f)‖Lp,∞ . ‖f‖W−1,p . (4)

Definition 1.15 We use the operator L := (I + ∆) defined with the positive Laplace-
Beltrami operator. We recall that the two operators ∆ and L are self-adjoint.
According to [4], we say that for p ∈ (1,∞) we have the non-homogeneous property (nhRp)
if

‖f‖W 1,p .
∥∥L1/2(f)

∥∥
Lp (nhRp)

for all f ∈ C∞
0 (M). This is equivalent to the Lp boundedness of the local Riesz transform

∇(I + ∆)−1/2. We have the non-homogeneous reverse property (nhRRp) if
∥∥L1/2(f)

∥∥
Lp . ‖f‖W 1,p (nhRRp)

for all f ∈ C∞
0 (M).
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Definition 1.16 Let p, q ∈ [1,∞). We say that the collection (Tt)t>0 = (e−t∆)t>0 or
(Tt)t>0 = (

√
t∇e−t∆)t>0 satisfy (Lp − Lq)-“off-diagonal” estimates, if there exists γ such

that for all balls Q of radius rQ, every function f supported in Q and all index j ≥ 0

(
1

µ(2jQ)

∫

Sj(Q)

∣∣∣Tr2
Q
(f)
∣∣∣
q

dµ

)1/q

. e−γ4
j

(
1

µ(Q)

∫

Q

|f |p dµ
)1/p

.

We used Sj(Q) for the dyadic corona around the ball

Sj(Q) :=

{
y, 2j ≤ 1 +

d(y,Q)

rQ
< 2j+1

}
.

These “off-diagonal” estimates are closely related to “Gaffney estimates” of the semigroup.

We now come to the main result of [18].

Theorem 1.17 Let 1 < s < r′ < σ. Assume that the Riemannian manifold M satisfies
(nhRRr) and (nhRs′). Moreover, assume that the semigroup (e−t∆)t>0 satisfies (Lσ

′−Ls′)-
“off-diagonal” estimates and that the collection (

√
t∇e−t∆)t>0 satisfies (Ls

′ − Ls
′
)-“off-

diagonal” estimates. Then there is a constant c = c(s, r, σ) such that

∀f ∈ W−1,r′ , ‖f‖W−1,r′ . ‖MS,∗,s(f)‖Lr′ . (5)

Therefore (Hµ0,µ1) is satisfied for all exponents µ0, µ1 satisfying µ0 ≥ s and µ1 = r′.

Corollary 1.18 In the Euclidean case M = R
n, for all µ0, µ1 ∈ (1,∞), the assumption

(Hµ0,µ1) holds. More generally, on any Riemannian manifold satisfying (D) and (P1),
(Hµ0,µ1) holds for all µ0, µ1 ∈ (1,∞).

After all these preliminaries, we now define our Hardy-Sobolev spaces via atomic decom-
position.

2 Abstract Hardy-Sobolev spaces.

We begin this section defining “abstract atomic” Hardy-Sobolev spaces, then we study in
more detail a particular case of these spaces.

2.1 New Hardy-Sobolev spaces.

We follow ideas of [15] and propose an “atomic” definition of abstract Hardy-Sobolev
spaces. We refer the reader to [15] for an explanation of this choice : the “atoms” are
defined as the image of localized functions by an operator BQ, playing the role of the
“oscillation operator” associated to a ball Q.

Let us fix β ∈]1,∞] and take B := (BQ)Q∈Q a collection of W 1,β-bounded linear operators,
indexed by Q the collection of all open balls Q of the manifold M . We assume that these
operators BQ are uniformly bounded on W 1,β : there exists a constant 0 < A′ < ∞ such
that

∀f ∈ W 1,β, ∀Q ball, ‖BQ(f)‖W 1,β ≤ A′‖f‖W 1,β . (6)

We define the Sobolev-atoms using the collection B :

10



Definition 2.1 A function m ∈ L1
loc is called an atom associated to a ball Q if there

exists a real function fQ compactly supported in the ball Q such that

m = BQ(fQ),

with
‖fQ‖W 1,β ≤ µ(Q)−1/β′

.

The functions fQ in this definition are normalized in W 1,1. It is easy to check that

‖fQ‖W 1,1 . 1.

Now we can define our abstract atomic Hardy-Sobolev spaces :

Definition 2.2 A measurable function h belongs to the atomic Hardy-Sobolev space HW 1
ato

if there exists a decomposition

h =
∑

i∈N

λimi µ− a.e,

where for all i, mi is an atom and (λi)i are real numbers satisfying
∑

i∈N

|λi| <∞.

We equip HW 1
ato with the norm :

‖h‖HW 1
ato

:= inf
h=

P

i∈N
λimi

∑

i

|λi|.

Similarly we define our “finite” Hardy-Sobolev space HW 1
F,ato as the set of functions which

admit finite atomic decompositions.

Remark 2.3 We refer the reader to [15, 14, 17] for details concerning the use of “finite
atomic Hardy space” instead of the whole atomic Hardy space. The use of this last one
brings technical problems (we do not know how to solve them) that are not important and
are twisted by the use of the atomic Hardy space.

Our goal is to interpolate the Hardy-Sobolev spaces with Sobolev spaces. First, we de-
scribe a useful criterion to prove the boundedness of an operator from the Hardy-Sobolev
space HW 1

F,ato into L1.

Proposition 2.4 Let M be a Riemannian manifold satisfying the doubling property. Let
T be a linear operator bounded from W 1,β to Lβ for some β ∈ (1,∞) and satisfying some
“off-diagonal” Sobolev estimates: for all ball Q and all function f compactly supported in
Q

∀j ≥ 2

(
1

µ(2j+1Q)

∫

Sj(Q)

|T (BQ(f))|β dµ
)1/β

≤ αj(Q)
1

µ(Q)1/β
‖f‖W 1,β(Q), (7)

with coefficients αj satisfying

Λ := sup
Q ball

∑

j≥2

µ(2j+1Q)

µ(Q)
αj(Q) <∞. (8)

Then T is continuous from HW 1
F,ato to L1.

The proof is left to the reader, it is written in [15] and [17] in the context of Lebesgue
spaces. It is the same in our context of Sobolev spaces.

11



2.2 The study of a particular Hardy-Sobolev space.

In this subsection, we present in more detail the study of a particular Hardy-Sobolev
space.

In the study of Hardy spaces (see [15]), we have seen that our abstract Hardy space
corresponds to the “classical” Hardy space (the one defined by R. Coifman and G. Weiss
in [21]), when we choose our operator BQ as the exact oscillation operator. Here we
want to study the Hardy-Sobolev space defined with a regular version of this particular
collection B. For all ball Q, let φQ be a function supported in Q and satisfying

‖φQ‖L∞ . 1, ‖ |∇φQ| ‖L∞ . r−1
Q and

∫
φQdµ = µ(Q).

We define our operator

AQ(f) :=

(
1

µ(Q)

∫

Q

fdµ

)
φQ BQ(f) = f − AQ(f).

In all this subsection, the Hardy-Sobolev spaces are constructed with this particular choice
of operators. According to this collection, we construct our Hardy-Sobolev spaceHW 1

(β),ato

and HW 1
F,(β),ato.

Remark 2.5 In the previous subsection, we did not study the dependence of the Hardy-
Sobolev space with respect to the exponent β, so we omitted it in the notation. In this
subsection, we will study the role of β in a particular case (see Theorem 0.1). That is why
we put the exponent in the notation.

We have to check the first assumption (6). Thanks to Proposition 1.6, it is easy to check
that if a Poincaré inequality (Pβ) is satisfied then (6) holds.

Moreover, with the normalization of functions φQ, each atom m associated to a ball Q
verifies ∫

Q

mdµ = 0.

From this observation, we can set a definition of particular Hardy-Sobolev spaces.

Definition 2.6 For β ∈ (1,∞], we say that a function m is a non-homogeneous (1, β)-
atom associated to a ball Q, if

1. m is supported in the ball Q,

2. ‖m‖W 1,β ≤ µ(Q)
− 1

β′ ,

3.
∫
mdµ = 0.

We define the Hardy-Sobolev space HS1
(β),ato as follows: f ∈ HS1

(β),ato if there exists (bi)i
a family of (1, β)-atoms such that f =

∑
i λibi with

∑
i |λi| < ∞. We equip this space

with the norm
‖f‖HS1

(β),ato
= inf

(λi)i

∑

i

|λi|.

Similarly to Definition 2.2, we define “finite” atomic space HS1
F,(β),ato.

12



From Proposition 1.6 and the previous discussion, we have this first proposition.

Proposition 2.7 Assume that a Poincaré inequality (Pβ) holds. Then the concept of
(1, β)-atoms exactly corresponds to the concept of atoms, defined with our operators BQ.
Thus the different atomic Hardy-Sobolev spaces are equal:

HS1
F,(β),ato = HW 1

F,(β),ato HS1
(β),ato = HW 1

(β),ato.

Remark 2.8 Note that every β2 atom is an β1 atom for 1 < β1 ≤ β2 ≤ ∞ and therefore
HS1

(β2),ato ⊂ HS1
(β1),ato with ‖f‖HS1

(β1),ato
≤ ‖f‖HS1

(β2),ato
.

Proposition 2.9 HS1
(β),ato is a Banach space for β ∈ (1,∞].

Proof : Consider a sequence (hk)k in HS1
(β),ato such that

∑
k ‖hk‖HS1

(β),ato
< ∞. It

suffices to prove that
∑

k hk converges in HS1
(β),ato. For this, for every k take the following

atomic decomposition hk =
∑

i λk,ibk,i with
∑

i |λk,i| ≤ ‖hk‖HS1
(β),ato

+ 1
2k . Then h =∑

k

∑
i λk,ibk,i ∈ W 1

1 (absolutely convergence) with
∑

k

∑
i |λk,i| ≤ ∑

k ‖hk‖HS1
(β),ato

+
∑

k
1
2k <∞. Hence h ∈ HS1

(β),ato and the proof is complete. ⊓⊔

Proposition 2.10 For β ∈ (1,∞], the finite space HS1
F,(β),ato is dense in HS1

(β),ato.

We recall here the definition of a Coifman-Weiss atom of H1
CW := H1

CW (M) the Hardy
space of Coifman-Weiss (see [21]).

Definition 2.11 For β ∈ (1,∞], we say that a function m is a β-atom associated to a
ball Q, if

1. m is supported in the ball Q,

2. ‖m‖Lβ ≤ µ(Q)
− 1

β′ ,

3.
∫
mdµ = 0.

In the literature, we found definitions of classical Hardy-Sobolev spaces in the Euclidean
case as the set of f ∈ H1

CW such that ∇f ∈ H1
CW or ∆1/2f ∈ H1

CW . Thanks to the H1
CW

boundedness of the Riesz transform in R
n, these two spaces are equal. We hope to have

a complete picture and comparison of all these definitions of Hardy-Sobolev spaces on
Riemmannian manifolds in a forthcoming paper.

Definition 2.12 The classical Hardy-Sobolev space HS1(M) is defined as (see [19], for
the Euclidean case)

HS1 =
{
f ∈ H1

CW ; ∇f ∈ H1
CW

}

where ∇f is the distributional gradient of f .

Proposition 2.13 The space HS1 is a Banach space.

Proof : Let (fn)n be a Cauchy sequence in HS1. Then (fn) and (∇fn)n are Cauchy
sequences in H1

CW and therefore converge to f ∈ H1
CW and g ∈ H1

CW . Since fn → f µ−a.e
it comes that ∇fn → ∇f in the distributional sense. The uniqueness of the limit shows
that g = ∇f and finishes the proof. ⊓⊔
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Proposition 2.14 We have HS1
(β),ato ⊂ HS1 ⊂ W 1,1 for every β > 1.

Unfortunately, it is not clear when HS1 ⊂ HS1
(β),ato. However for the point of view of

interpolation, the study of HS1
(β),ato implies results for HS1. For an exponent p ∈ (1,∞]

and θ ∈ (0, 1) if (
HS1

(β),ato,W
1,p
)
θ,pθ

= W 1,pθ

with 1
pθ

= (1 − θ) + θ
p

then we know that

(
HS1,W 1,p

)
θ,pθ

= W 1,pθ .

This follows from the fact that HS1
(β),ato ⊂ HS1 ⊂ W 1,1 and that ‖f‖HS1 ≤ 2‖f‖HS1

(β),ato
.

We know (see [21]) that the Hardy space H1
CW admits an atomic decomposition and is

also equal to the corresponding atomic Hardy space (for any exponent β used in the
definition of β-atoms). In our case the atomic Hardy-Sobolev spaces are all contained
in the classical one HS1 but for the moment we are not able to show if they are equal
or not. We believe that this is not true without additional hypotheses on the geometry
of the manifold. However, under Poincaré inequality we will compare different atomic
Hardy-Sobolev spaces in Theorem 0.1.

Before we prove this theorem, we need the following Lemma.

Lemma 2.15 (see Lemma 3.9 in [21]) Assume that M satisfies (D).

1. Let

Mcf(x) := sup
r>0

1

µ(Q(x, r))

∫

Q(x,r)

|f |dµ

be the centered maximal function of f . Observe that if x ∈ Q(y, r) then Q(y, r) ⊂
Q(x, 2r). It follows that

Mcf ≤ Mf ≤ CMcf

where C only depends on the constant of the doubling property.

2. Let f be an L1 function supported in Q0 = Q(x0, r0). Then there is C1 depending
on the doubling constant such that

Ωα = {x ∈M ;M(f)(x) > α} ⊂ Q(x0, 2r0)

whenever α > C1 −
∫
Q0

|f |dµ.

Proof of Theorem 0.1 :
The proof is inspired by that of R. Coifman and G. Weiss ([21]) for classical Hardy spaces
on a space of homogeneous type. We prove that every (1, β) atom is a sum of (1,∞) atom.
We use an adapted Calderón-Zygmund decomposition for Sobolev functions (proved later
for convenience in subsection 3.1) and proceed as their proof. However, the presence of
the gradient create some problems.
Since we know from [30] that Poincaré inequality (Pq) self-improves in (Pq−ǫ) for some
ǫ > 0, let us denote κ := ‖Mq−ǫ‖Lβ→Lβ .
Let a be a (1, β) atom supported in a ball Q0. Set b = µ(Q0)a.
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We claim that for K,α > 0 large enough parameters, there exists a collection of balls
(Qjl), jl ∈ N

l for l = 0, 1, ..., such that for every n ≥ 1

b = CNKα
n−1∑

l=0

(Kα)l
∑

jl∈Nl

µ(Qjl)ajl +
∑

jn∈Nn

hjn (9)

and

(a) ajl is an ∞ atom supported in Qjl , l = 0, 1, ...n− 1;

(b)
⋃
jn∈Nn Qjn ⊂ Ωn :=

{
x; Mq

(
|b| + Mn

q−ǫ(|∇b|)
)
(x) > K αn

2

}
;

(c)
∑

jn
1Qjn

≤ Nn;

(d) supphjn ⊂ Qjn ,
∫
hjndµ = 0;

(e) |hjn(x)| ≤ |b(x)| + 2C ′(Kα)n1Qjn
(x);

(f) |∇hjn(x)| ≤ (C ′′ + 2)
[
Kn−1Mn

q−ǫ(|∇b|)(x) + (Kα)n1Qjn
(x)
]
;

(g)
(
−
∫
Qjn

(|hjn|q + |∇hjn|q)dµ
) 1

q

. (Kα)n.

The constants α,K are sufficiently large and α,K, N depend only on β, q and the doubling
constant. We write Mn

q−ǫ for the composed operator Mq−ǫ ◦Mq−ǫ ◦ ....
Let us first see how from theses properties we can write

a =
∑

j

αjaj

where for every j, aj is an ∞-atom. We have

NKα

µ(Q0)

∞∑

n=0

(Kα)n
∑

jn∈Nn

µ(Qjn) ≤ C (10)

where C is independent of a. Indeed, it follows from (b), (c) and the weak type (1, 1) of
M that

∑

jn

µ(Qjn) ≤ CNnµ(
⋃

jn

Qjn) ≤ CNnµ(Ωn) ≤ Cmax(1, κn)Nn

(
2

αn

)β
‖b‖β

W 1,β . (3′)

Therefore ∞∑

n=0

(Kα)n
∑

jn∈Nn

µ(Qjn) ≤ C2β
∞∑

n=0

(κNKα1−β)n‖b‖β
W 1,β .

Since ‖b‖β
W 1,β ≤ Cµ(Q0) we deduce (10) with C depending on β, q and α,K but not on

a. We choose α >> K such that N max(1,κ)K
αβ−1 < 1.

From (g), we have ∫
(|hjn| + |∇hjn|)dµ ≤ Cµ(Qjn)(Kα)n.
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Therefore, if we note by Hn =
∑

jn∈Nn hjn we have

∫
(|Hn| + |∇Hn|)dµ ≤

∑

jn∈Nn

∫
(|hjn| + |∇hjn|)dµ

≤ C(Kα)n
∑

jn

µ(Qjn)

≤ C(NκKα1−β)n‖b‖β
W 1,β .

We used the bounded overlap property of the (Qjn)n and the above estimate for
∑

jn
µ(Qjn).

This shows that the first series on the right-hand side of (9) converges to b in W 1,1.
It remains now to prove that these properties are valid for every n ∈ N

∗. We begin proving
the case n = 1. Let

Ω̃1 := {x;M(|b|q + |∇b|q)(x) > (Kα)q} ⊂ Ω1.

Lemma 2.15 shows that Ω̃1 ⊂ 2Q0 provided Kα > C1. Moreover Ω̃1 is a bounded open
set with µ(Ω̃1) ≤ C

αβ ‖b‖βW 1,β ≤ Cα−βµ(Q0). This allows us to apply the Whitney covering

theorem to Ω̃1 and consider the Calderón-Zygmund decomposition of Proposition 3.1 – in
section 3– for b with p = β. We obtain

b =
∑

j

hj + g0 (11)

with hj, g0 satisfying the properties of Proposition 3.1. We have

∑

j

∫

Qj

(|hj| + |∇hj|)dµ ≤ C
∑

j

µ(Qj)

(
−
∫

Qj

(|b|β + |∇b|β)dµ
) 1

β

≤ 2N‖b‖W 1,βµ(Q0)
1− 1

β

≤ Cµ(Q0).

Consequently, the sum in (11) converges inW 1,1,
∫
g0dµ = 0 since

∫
bdµ = 0 and

∫
hjdµ =

0. It follows that a0 ≡ g0
NCKαµ(Q0)

is an ∞-atom. Thus we can write

b = NCKαµ(Q0)a0 +
∑

j∈N

hj.

Properties (a) and (d) are then established in this case when n = 1. Property (c) follows
from the Whitney covering theorem since M satisfies (D). We have

|hj(x)| ≤ |b(x)| + µ(Qj)

χj(Qj)
−
∫

Qj

|b|dµ

≤ |b(x)| + C04
D
q Kα

where D = log2Cd and Cd is the doubling constant. We refer the reader to the proof of
Proposition 3.1 for the construction of hj’s and χj’s. We have

hj =

(
b− 1

χj(Qj)

∫

Qj

bχjdµ

)
χj,

16



with χj(Qj) =
∫
Qj
χjdµ and essentially, χj is a smooth version of 1Qj

, with |∇χj| ≤ r−1
Qj

.

For ∇hj we have

∇hj = χj∇b+

(
b− 1

χj(Qj)

∫

Qj

bχjdµ

)
∇χj = I + II.

We have |I| ≤ |∇b| ≤ Mq−ǫ(∇b). It remains to estimate II. For y ∈ Qj , we have

|b(y) − 1

χj(Qj)

∫

Qj

bχjdµ|

≤
−1∑

k=−∞
|bQ(y,2krj) − bQ(y,2k+1rj)|dµ+

∣∣∣∣∣bQ(y,rj) −
1

χj(Qj)

∫

Qj

bχjdµ

∣∣∣∣∣

≤
−1∑

k=−∞
−
∫

Q(y,2krj)

|b− bQ(y,2k+1rj)|dµ+

∣∣∣∣∣bQ(y,rj) −
1

χj(Qj)

∫

Qj

bχjdµ

∣∣∣∣∣

≤
−1∑

k=−∞

µ(Q(y, 2k+1rj))

µ(Q(y, 2krj))
−
∫

Q(y,2k+1rj)

|b− bQ(y,2k+1rj)|dµ

+ |bQ(y,rj) − b2Qj
| +
∣∣∣∣∣

1

χj(Qj)

∫

Qj

(
b− 1

µ(2Qj)

∫

2Qj

b

)
χjdµ

∣∣∣∣∣

≤ 2DCrjMq−ǫ(|∇b|)(y)
−1∑

k=−∞
2k + C2D/q3DKαrj

+
1

χj(Qj)

∫

2Qj

∣∣∣∣∣b−
1

µ(2Qj)

∫

2Qj

bdµ

∣∣∣∣∣ |χj|dµ

≤ 2DCrjMq−ǫ(|∇b|)(y) + Crj

(
−
∫

Qj

|∇b|q−ǫdµ
) 1

q−ǫ

+ C0C2D/qKαrj

≤ C ′ (Mq−ǫ(|∇b|)(y) +Kα) rj

where C ′ = max(C04
D/q, C3D2D/q, C0C2D/q). Thus |∇hj| ≤ (C ′ + 2)Mq−ǫ(|∇b|) +

2C ′Kα1Qj
. We choose C ′′ = 2C ′ ≥ 1, and thus (e) and (f) are proved. Similarly to

(14), we deduce (g) and finally property (b) is satisfied by the Whitney covering. The
induction hypothesis is then satisfied for n = 1.
We assume that it holds for n and show its validity for n+ 1. Consider the set

Ω̃jn :=
{
x ∈M ;M(|hjn|q + |∇hjn|q)(x) > (Kα)q(n+1)

}
.

Property (g) for n shows that

C1 −
∫

Qj

(|hjn|q + |∇hjn|q)dµ ≤ C1C
q(Kα)nq < (Kα)(n+1)q

provided Kα > C
1
q

1 C and where C1 is the constant in Lemma 2.15. Then Lemma 2.15

asserts that Ω̃jn ⊂ 2Qjn . Let now (Qjn,i) be a Whitney covering for Ω̃jn . We have
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⋃
iQjn,i = Ω̃jn ⊂ Ωn and the (Qjn,i)i have the bounded overlap property. From (c) for n,

we know that the (Qjn) are Nn disjoint. Consequently, the balls (Qjn,i) are Nn+1 disjoint
and therefore we obtain (c) for n+ 1. Pose

hjn,i(x) =

(
hjn(x) − 1

χijn(Qjn,i)

∫

Qjn,i

hjnχ
i
jndµ

)
χijn(x)

and gjn = hjn−
∑

i hjn,i. The same arguments as in Proposition 3.1 show that ‖gjn‖W 1,∞ ≤
C(Kα)(n+1). Since the support of hjn is contained in Qjn ⊂ 2Qjn and Ω̃jn ⊂ 2Qjn , we
deduce that supp gjn ⊂ 2Qjn . For every i,

∫
hjn,i dµ = 0 so that (d) follows for n+ 1. We

also obtain
∑

i ‖hjn,i‖L1 + ‖ |∇hjn,i| ‖L1 ≤ C‖hjn‖W 1,1 as in Proposition 3.1. Therefore,
the equality

hjn = gjn +
∑

i

hjn,i

holds in W 1,1 and also µ − a.e. since for each x the sum has at most N (n+1) terms and∫
gjndµ = 0. It follows that

ajn =
gjn

CN(Kα)n+1µ(2Qjn)

is an ∞ atom with supp ajn ⊂ 2Qjn . We deduce that the representation (9) holds for
n + 1 and also (a). Let us prove (e) and (f) for n + 1. The definition of hjn,i and (e) for
n yield

|hjn,i(x)| ≤


|hjn(x)| + C0

[
−
∫

Qjn,i

|hjn|qdµ
] 1

q


χijn(x)

≤
(
|b(x)| + 2C04

D
q (Kα)n + C04

D
q (Kα)n+1

)
χijn(x)

≤ |b(x)| + 2C04
D
q (Kα)n+1χijn(x)

= |b(x)| + 2C ′(Kα)n+1χijn(x)

as long as Kα > 2. The definition of ∇hjn,i and (f) for n yield

|∇hjn,i| ≤|∇hjn| +
(
hjn − 1

χjn(Qjn)

∫

Qjn

hjnχjndµ

)
∇χjn

≤(C ′′ + 2)
[
Kn−1Mn

q−ǫ(|∇b|) + (Kα)n1Qjn

]
1Qjn,i

+ C ′ [Mq−ǫ(|∇hjn|) + (Kα)n+11Qjn

]
1Qjn,i

≤(C ′′ + 2)
[
Kn−1Mn

q−ǫ(|∇b|)(x) + (Kα)n1Qjn

]

+ C ′(C ′′ + 2)
[
Kn−1Mn+1

q−ǫ (|∇b|)(x) + (Kα)n
]
1Qjn,i

+ C ′(Kα)n+11Qjn
1Qjn,i

≤(C ′′ + 2)
[
KnMn+1

q−ǫ (|∇b|)(x) + (Kα)n+11Qjn,i

]
.

as long as K,Kα are large enough (for example we require K >> 4C ′). Now we can

prove (b). From (e) and (f), we deduce that for x ∈ Ω̃jn ,

(Kα)(n+1) <Mq(|hjn| + |∇hjn|)(x)
< (C ′′ + 2)

[
Mq(b)(x) +Kn−1Mn

q−ǫ(|∇b|)(x) + 2(Kα)n
]
.
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provided Kα large enough. Thus if we take K >> 4(C ′′ + 2), we deduce that

Mq

[
|b| +Kn−1Mn

q−ǫ(|∇b|)
]
(x) >

Knα(n+1)

2

and so as K > 1 we obtain

Mq

[
|b| + Mn

q−ǫ(|∇b|)
]
(x) >

Kα(n+1)

2
.

Thus
⋃
jn,i

Qjn,i ⊂
⋃
jn

Ω̃jn ⊂ Ωn+1. The last point (g) for n + 1 is obtained as (14) in
Proposition 3.1. The proof is therefore complete. ⊓⊔
We finish this subsection describing the homogeneous version of all these results.

Definition 2.16 For 1 < β ≤ ∞, we say that a function b is a homogeneous (1, β)-atom
associated to a ball Q if

1. b is supported in the ball Q,

2. ‖b‖Ẇ 1,β := ‖ |∇b| ‖Lβ ≤ µ(Q)
− 1

β′ ,

3.
∫
bdµ = 0.

Definition 2.17 For 1 < β ≤ ∞, we define the homogeneous atomic Hardy-Sobolev

space ḢS
1

(β),ato as follows: f ∈ ḢS
1

(β),ato if f ∈ L1
loc and there exists (bi)i a family of

homogeneous (1, β)-atoms such that f =
∑

i λibi with
∑

i |λi| < ∞. We equip this space
with the semi-norm

‖f‖
ḢS

1
(β),ato

= inf
(λi)i

∑

i

|λi|.

Proposition 2.18 ḢS
1

(β),ato/R is a Banach space for every 1 < β ≤ ∞.

Remark 2.19 Note that every homogeneous (1, β)- atom is an homogeneous (1, β′)- atom

for 1 < β′ ≤ β ≤ ∞ and therefore ḢS
1

(β),ato ⊂ ḢS
1

(β′),ato with ‖f‖
ḢS

1
(β′),ato

≤ ‖f‖
ḢS

1
(β),ato

.

Proposition 2.20 For 1 < β <∞ the finite subspace ḢS
1

F,(β),ato is dense in ḢS
1

(β),ato.

Definition 2.21 Let M be a Riemmanian manifold. The classical homogeneous Hardy-

Sobolev space ḢS
1
(M) is defined as ḢS

1
= {f ∈ L1

loc;∇f ∈ H1(M)} (see [36], [19] in
the Euclidean case).

Proposition 2.22 ḢS
1

is a Banach space.

Proposition 2.23 We have ḢS
1

(β),ato ⊂ ḢS
1

for all 1 < β <∞.

Proof of Theorem 0.3: Same proof as that of Theorem 0.1 but considering the homo-
geneous version of the Calderón-Zygmund decomposition. ⊓⊔
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3 Interpolation of Hardy-Sobolev spaces.

This section is dedicated to the study of real interpolation of Hardy-Sobolev spaces with
Sobolev spaces. First we show how we can use the Calderón-Zygmund decomposition for
Sobolev functions to obtain interpolation results for the particular Hardy-Sobolev spaces
(studied in Subsection 2.2).
Unfortunately, this method is very specific to this kind of spaces and seems not to be
generalized for the study of other Hardy-Sobolev spaces. That is why in Subsection 3.2,
we will use the maximal characterization and the results of Subsection 1.4 to obtain
interpolation results in a more abstract background.

3.1 Interpolation of particular Hardy-Sobolev spaces.

First as done in [10] and [11], we want to prove interpolation results using an adapted
“Calderón-Zygmund” decomposition for Sobolev functions.

Let us describe it :

Proposition 3.1 (Calderón-Zygmund lemma for Sobolev functions) Let M be a
complete non-compact Riemannian manifold satisfying (D). Let 1 < q < ∞ and assume
that M satisfies a Poincaré inequality (Pq). Let q ≤ p < ∞, f ∈ W 1,p and α > 0. Then
one can find a collection of balls (Qi)i, functions bi and a Lipschitz function g such that
the following properties hold:

f = g +
∑

i

bi (12)

|g(x)| ≤ Cα and |∇g(x)| ≤ Cα µ− a.e x ∈M (13)

supp bi ⊂ Qi, ‖bi‖HS1
(q),ato

≤ Cαµ(Qi) (14)

∑

i

µ(Qi) ≤ Cα−p
∫

(|f | + |∇f |)pdµ (15)

∑

i

1Qi
≤ N (16)

where C and N only depend on q, p and on the constants in (D) and (Pq).

This proposition is very similar to the ones of [10, 11]. So we do not detail the proof
and just explain the modifications. The new and important fact, is that the functions
bi (appearing in the decomposition) belong to the atomic Hardy-Sobolev spaces and not
just to the Sobolev space W 1,1.
Proof : Let f ∈ W 1,p, α > 0 and consider Ω = {x ∈M : M(|f |q + |∇f |q)(x) > αq}. If
Ω = ∅, then set

g = f , bi = 0 for all i

so that (13) is satisfied according to the Lebesgue differentiation theorem. Otherwise, the
maximal theorem yields

µ(Ω) ≤ Cα−p‖(|f | + |∇f |)q‖
p
q
p
q

≤ Cα−p
(∫

|f |pdµ+

∫
|∇f |pdµ

)
(17)

< +∞.
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In particular Ω 6= M as µ(M) = +∞. Let F be the complement of Ω. Since Ω is an
open set distinct of M , let (Qi) be a Whitney decomposition of Ω ([21]). That is, the Qi

are pairwise disjoint, and there exist two constants C2 > C1 > 1, depending only on the
metric, such that

1. Ω = ∪iQi with Qi = C1Qi and the balls Qi have the bounded overlap property;

2. ri = r(Qi) = 1
2
d(xi, F ) and xi is the center of Qi;

3. each ball Qi = C2Qi intersects F (C2 = 4C1 works).

For x ∈ Ω, denote Ix = {i : x ∈ Qi}. Recall that ♯Ix ≤ N and fixing j ∈ Ix, Qi ⊂ 7Qj for
all i ∈ Ix.
Conditions (16) and (14) are satisfied due to (17). Using the doubling property, we have

∫

Qi

(|f |q + |∇f |q)dµ ≤ Cαqµ(Qi). (18)

Let us now define the functions bi. For this, we construct a partition of unity (χi)i be a
partition of unity of Ω subordinated to the covering (Qi). Each χi is a Lipschitz function

supported in Qi with ‖ |∇χi| ‖∞ ≤ C

ri
.

We set bi = (f − 1
χi(Qi)

∫
Qi
fχi)χi where χi(Qi) ≃ µ(Qi) means

∫
Qi
χidµ. This is the main

change, which is necessary as we look for a vanishing mean value for bi’s.
By usual arguments and Poincaré inequality (Pq), we can estimate bi in the Sobolev space

W 1,q: ‖bi‖W 1,q ≤ Cαµ(Qi)
1
q . Then by writing bi = αiα

−1
i bi = αiai with αi = Cαµ(Qi), we

deduce that the functions ai are (1, q)-atoms – and in fact (1, r)-atoms for every r ≤ q–
associated to the ball Qi. Therefore bi ∈ HS1

(q),ato with ‖bi‖HS1
(q),ato

≤ αi = Cαµ(Qi)

and also b =
∑

i bi ∈ HS1
(q),ato with ‖b‖HS1

(q),ato
. αµ(Ω). Thus (14) is proved. Set

g = f −
∑

i

bi. Since the sum is locally finite on Ω, as usually g is defined almost

everywhere on M and g = f on F . Moreover, g is a locally integrable function on M . It
remains to prove (13). We have

∇g = ∇f −
∑

i

∇bi

= ∇f − (
∑

i

χi)∇f −
∑

i

(f − 1

χi(Qi)

∫

Qi

fχidµ)∇χi

= 1F (∇f) −
∑

i

(f − 1

χi(Qi)

∫

Qi

fχidµ)∇χi.

From the definition of F and the Lebesgue differentiation theorem, we have 1F (|f | +
|∇f |) ≤ α µ−a.e. We claim that a similar estimate holds for

h =
∑

i

(
f − 1

χi(Qi)

∫

Qi

fχidµ

)
∇χi,

that is |h(x)| ≤ Cα for all x ∈ M . For this, note first that h vanishes on F and the sum

defining h is locally finite on Ω. Then fix x ∈ Ω and j ∈ Ix. Note that
∑

i

χi(x) = 1 and
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∑

i

∇χi(x) = 0, so

h(x) =
∑

i∈Ix

[(
1

µ(7Qj)

∫

7Qj

fdµ

)
−
(

1

χi(Qi)

∫

Qi

fχidµ

)]
∇χi(x).

For all i, j ∈ Ix, by the construction of the Whitney collection, the ball Qi and Qj have
equivalent radius and Qi ⊂ 7Qj. Thus

∣∣∣∣∣
1

χi(Qi)

∫

Qi

fχidµ−−
∫

7Qj

fdµ

∣∣∣∣∣

≤ 1

χi(Qi)

∫

Qi

∣∣∣∣∣f −−
∫

7Qj

fdµ

∣∣∣∣∣ |χi|dµ

. −
∫

7Qj

∣∣∣∣∣f −−
∫

7Qj

fdµ

∣∣∣∣∣ dµ

. rj

(
−
∫

7Qj

|∇f |qdµ
)1/q

. αrj. (19)

We used (D), (Pq), χi(Qi) ≃ µ(Qi) and (18) for 7Qj. Hence

|h(x)| .
∑

i∈Ix

αrjr
−1
j ≤ CNα. (20)

Then the end of the proof is classical and is exactly the same as that of the decompositions
proved in [10, 11]. We do not repeat it. ⊓⊔
According to [10, 11], we know how to obtain interpolation results from an adapted
“Calderón-Zygmund decomposition”. We quickly recall them (for an easy reference) in
order to obtain a real interpolation result between the Hardy-Sobolev spaces HS1

(q),ato and
Sobolev spaces.

First we characterize the K-functional of real interpolation in the following theorem:

Proposition 3.2 Let M be a complete Riemannian manifold satisfying (D) and Poincaré
inequality (Pq) for some q ∈ (1,∞). Then

1. for all r ∈ (1,∞), there exists C1 > 0 such that for every f ∈ HS1
(r),ato +W 1,∞ and

t > 0,
K(f, t,HS1

(r),ato,W
1,∞) ≥ C1t (|f |∗∗ + |∇f |∗∗) (t);

2. for 1 < q ≤ p <∞, there exists C2 > 0 such that for every f ∈ W 1,p and t > 0,

K(f, t,HS1
(r),ato,W

1,∞) ≤ C2t
(
|f |q∗∗ 1

q + |∇f |q∗∗ 1
q

)
(t).

We have the same results replacing the space HS1
(r),ato by HS1.
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Proof : We only write the proof for the space HS1
(r),ato. We have already seen (Theorem

0.1) that under our assumption HS1
(r),ato = HS1

(q),ato for r ∈ [q,∞]. We just have to

prove our result for r ∈ (1, q]. The lower bound of K is trivial. It follows from the
characterization of K between L1 and L∞. Now for the upper bound of K of point
2., take f ∈ W 1,p and q ≤ p < ∞. Let t > 0. We consider the Calderón-Zygmund

decomposition of Proposition 3.1 for f with α = α(t) = (M(|f |q + |∇f |q))∗ 1
q (t). We

write f =
∑

i

bi + g = b+ g where (bi)i, g satisfy the properties of the proposition. From

the bounded overlap property of the Bi’s, it follows that for all r ≤ q

‖b‖HS1
(r),ato

≤ N
∑

i

‖bi‖HS1
(r),ato

≤ Cα(t)
∑

i

µ(Qi)

≤ Cα(t)µ(Ω).

Moreover, since (Mf)∗ ∼ f ∗∗ and (f + g)∗∗ ≤ f ∗∗ + g∗∗ (c.f [12],[13]) , we get

α(t) .
(
|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1
q (t)
)
.

Noting that for this choice of α(t), µ(Ωt) ≤ t (c.f [12],[13]), we deduce that

K(f, t,HS1
(r),ato,W

1,∞) ≤ ‖b‖HS1
(r),ato

+ t‖g‖W 1,∞

. t
(
|f |q∗∗ 1

q (t) + |∇f |q∗∗ 1
q (t)
)

(21)

for all t > 0 and obtain the desired inequality for f ∈ W 1,p, q ≤ p <∞. ⊓⊔
Then integrating the K-functional yields

Proposition 3.3 Let M be a complete Riemannian manifold satisfying (D) and (Pq),
for some 1 < q <∞. Then for all r ∈ (1,∞] and p ∈ (q,∞), W 1,p is a real interpolation
space between HS1

(r),ato and W 1,∞. More precisely, we have

(
HS1

(r),ato,W
1,∞)

1− 1
p
,p

= W 1,p.

We refer the reader to the previously cited papers for a detailled proof. We also have
an analogous interpolation result for the Hardy-Sobolev space HS1 instead of HS1

(r),ato.

Note that HS1
(r),ato ⊂ HS1 and ‖f‖HS1 ≤ 2‖f‖HS1

(r),ato
.

Proof of Theorem 0.2: The proof follows from Proposition 3.3 and the Reiteration
Theorem (see [12], Theorem 2.4). ⊓⊔
All these results are based on the well adapted “Calderón-Zygmund decomposition”. The
first one (described in [2] by P. Auscher) was written for homogeneous Sobolev spaces. We
can write an analog result of Proposition 3.1 for homogeneous Sobolev spaces. Then we
estimate the functional K (as in [10]) and obtain the homogeneous interpolation Theorem
0.4:
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Proof of Theorem 0.4: Analogous proof to that of Theorem 0.2 and 3.3. ⊓⊔
We used a “Calderón-Zygmund” decomposition to obtain an interpolation result for the
particular Hardy-Sobolev spaces. These arguments give positive interpolation results
under the assumptions of doubling property and Poincaré inequality. Unfortunately, this
method seems not to work for abstract and more general Hardy-Sobolev spaces: the way
to make appear the “atoms” is very particular. That is why, in the next subsection,
we develop other arguments to obtain interpolation results with abstract Hardy-Sobolev
spaces. We will use our maximal characterization of Sobolev spaces (Subsection 1.4) and
ideas of [15].

3.2 Interpolation of abstract Hardy-Sobolev spaces.

We refer the reader to Subsection 2.1 for the definition of abstract Hardy-Sobolev spaces
associated to a collection of “local operators” B.

To prove our results, we will follow ideas of [15] and [17] using duality and some maximal
operators associated to the collection B. Let us first define them.

Definition 3.4 Let σ ∈ (1,∞]. We set AQ = Id−BQ and

∀x ∈M, MB,σ(f)(x) := sup
Qball

x∈Q

1

µ(Q)1/σ

∥∥A∗
Q(f)

∥∥
W−1,σ(Q)

. (22)

We define a sharp maximal function adapted to our operators. For s > 0,

∀x ∈M, M ♯
B,s(f)(x) := sup

Qball

x∈Q

1

µ(Q)1/s

∥∥B∗
Q(f)

∥∥
W−1,s(Q)

.

We refer the reader to Definition 1.13 for the notation IM and Subsection 1.4 for the
definition of some maximal operators and the assumption (Hµ0,µ1) .
We can now prove Theorem 0.5 .

Remark 3.5 We want to emphasize that we only require the use of the “finite Hardy-
Sobolev” space HW 1

F,ato. With our new maximal operators, the assumption (1) can be
written as

MB,σ . MS,∗,β′ . (23)

Proof of Theorem 0.5: From the HW 1
F,ato − L1 boundedness, it is quite easy to check

that for each ball Q, the operator TBQ is bounded from W 1,β(Q) into L1 with

‖TBQ‖W 1,β(Q)→L1 . µ(Q)1/β′

.

By duality, we deduce that B∗
QT

∗ is bounded from L∞ to W−1,β′
with

‖B∗
QT

∗‖L∞→W−1,β′
(Q) . µ(Q)1/β′

.

Thus, we obtain the first inequality

∀f ∈ L∞,
∥∥∥M ♯

B,β′(T
∗f)
∥∥∥
L∞

. ‖f‖L∞ . (24)
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Now using (23), we obtain

M ♯
B,β′ ≤MS,β′ +MB,β′ ≤MS,β′ +MB,σ . MS,∗,β′ . MS,∗,p′0 . (25)

Then (25) with Proposition 1.14, yields the following “weak type inequality”

∀f ∈ Lp
′
0 ,

∥∥∥M ♯
B,β′(T

∗f)
∥∥∥
Lp′0,∞

. ‖T ∗f‖
W−1,p′0

. ‖f‖
Lp′0
. (26)

Interpolating (24) and (26) gives

∀q ∈ (p′0,∞), ∀f ∈ Lp
′
0 ∩ Lq,

∥∥∥M ♯
B,β′(T

∗f)
∥∥∥
Lq

≤ c‖f‖Lq . (27)

Now we use a “good lambdas” argument to compare the maximal operators. We use a
Sobolev-version of the result of P. Auscher and J.M. Martell: [7], Theorem 3.1. With its
notation, take a function F . We define for all balls Q

GQ = B∗
QF and HQ = A∗

QF.

The assumption (23) shows that

µ(Q)−1/σ ‖HQ‖W−1,σ . MB,σ(F ) . MS,∗,β′(F ). (28)

By definition of M ♯
B,β′ , we have

µ(Q)−1/β′ ‖GQ‖W−1,β′ . M ♯
S,β′(F ). (29)

From these two inequalities, we claim that the following good lambda inequality holds
(for K large enough and γ as small as we want)

µ
({
MS,∗,β′(F ) > Kλ, M ♯

B,β′(F ) ≤ γλ
})

. (K−σ + γβ
′

K−β′

)µ ({MS,∗,β′(F ) > λ}) . (30)

We postpone the proof of this claim to Lemma 3.6. As usually this inequality is satisfied
for all λ > 0 if µ(X) = ∞ and only for λ & ‖MS,∗,β′(F )‖L1 if the measure is finite.
Assuming this fact, we will conclude the proof. By classical arguments (see proof of
Theorem 3.1 in [7]) we deduce that for p0 ∈ (σ′, β) if MS,∗,β′(F ) ∈ Lp

′
0,∞ then

‖MS,∗,β′(F )‖Lq . ‖M ♯
B,β′(F )‖Lq + ‖MS,∗,β′(F )‖L11µ(X)<∞

for all q ∈ (p′0, σ) with an implicit constant depending on q. Now we take a function
h ∈ Lp

′
0 ∩ Lq. Denoting F = T ∗(h), we have F ∈ W−1,p′0 . Proposition 1.14 shows that

MS,∗,β′(F ) belongs to Lp
′
0,∞. Thus we can apply the previous inequality which together

with (27) yield

‖MS,∗,β′(T ∗h)‖Lq . ‖M ♯
B,β′(T

∗h)‖Lq + ‖MS,∗,β′(T ∗h)‖L11µ(X)<∞

. ‖h‖Lq + ‖MS,∗,β′(T ∗h)‖L11µ(X)<∞.

If the space X is of finite measure, using the W 1,p0−Lp0 boundedness of T and Proposition
1.14, we remark that

‖MS,∗,β′(T ∗h)‖L1 . ‖MS,∗,β′(T ∗h)‖
Lp′0

. ‖T ∗(h)‖
W−1,p′0

. ‖h‖
Lp′0

. ‖h‖Lq .
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This inequality with the fact (β′, q) ∈ IM – since q′ ∈ (σ′, p0) –, shows that

∀h ∈ Lq ∩ Lp0 , ‖T ∗h‖W−1,q . ‖h‖Lq .

By duality, we deduce that there is a constant c = c(p) such that

∀f ∈ W 1,p0 ∩W 1,q′ , ‖T (f)‖Lq ≤ c‖f‖W 1,q′ . (31)

Consequently, inequality (31) holds for all q ∈ (p′0, σ), and therefore T admits a continuous
extension from W 1,p to Lp for all p ∈ (σ′, p0). ⊓⊔
It remains to prove (30).

Lemma 3.6 With the notations of the previous proof, we have the following good lambda
inequality. For all λ > 0 (or only for λ & ‖MS,∗,β′(F )‖L1 if the measure is finite)

µ
({
MS,∗,β′(F ) > Kλ, M ♯

B,β′(F ) ≤ γλ
})

. (K−σ + γβ
′

K−β′

)µ ({MS,∗,β′(F ) > λ}) .

Proof : The proof is exactly the same as that of Theorem 3.1 in [7], adapted to our
maximal operators. We deal only with the case when µ(X) = ∞. We consider the sets

Bλ :=
{
MS,∗,β′(F ) > Kλ, M ♯

B,β′(F ) ≤ γλ
}

and
Eλ := {MS,∗,β′(F ) > λ} .

First since K ≥ 1, we have Bλ ⊂ Eλ. We choose (Qj)j a Whitney decomposition of Eλ
and write xj for a point in 4Qj ∩ Ec

λ. Let j such that Bλ ∩Qj 6= ∅ and x ∈ Bλ ∩Qj. We
have

MS,∗,β′(F )(x) := inf
F=φ0−div(φ1)

sup
Qball
x∈Q

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′
(Q) ≥ Kλ. (32)

Let F = ψ0 − div(ψ1) and Qext be an extremize decomposition and ball of (32). Assume
first that Qext satisfies Qext ∩ (8Qj)

c 6= ∅. Since xj ∈ 4Qext and

inf
F=φ0−div(φ1)

sup
Q∋xj

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′
(Q) ≤MS,∗,β′(F )(xj) ≤ λ,

we deduce that

MS,∗,β′(F )(x) ≤
(
µ(4Qext)

µ(Qext)

)1/β′

λ.

Therefore, for a large enough constant K, the doubling property of the measure shows
that the assumption Qext ∩ (8Qj)

c 6= ∅ is false. We deduce that Qext ⊂ 8Qj and therefore

MS,∗,β′(F )(x) = inf
F=φ0−div(φ1)

sup
Qball

x∈Q⊂8Qj

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′
(Q) ≥ Kλ.
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Write F = B∗
8Qj

F + A∗
8Qj

F . It follows that

µ(Bλ ∩Qj) ≤µ





 inf
B∗

8Qj
F=φ0−div(φ1)

sup
Qball

x∈Q⊂8Qj

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′
(Q) ≥ Kλ/2








+ µ





 inf
A∗

8Qj
F=φ0−div(φ1)

sup
Qball

x∈Q⊂8Qj

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′
(Q) ≥ Kλ/2






 .

The first term is controlled by the “weak type (β′, β′)” of the maximal operator MS,∗,β′

(local version of Proposition 1.14) :

µ





 inf
B∗

8Qj
F=φ0−div(φ1)

sup
Qball

x∈Q⊂8Qj

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′ (Q) ≥ Kλ/2








.
1

Kβ′λβ′ ‖MS,∗,β′(B∗
8Qj

F )‖β′

Lβ′,∞,8Qj

.
1

Kβ′λβ′ ‖B∗
8Qj

F‖β′

W−1,β′
(8Qj)

.
1

Kβ′λβ′ µ(Qj) inf
8Qj

M ♯
B,β′(F )β

′

.
γβ

′

Kβ′ µ(Qj). (33)

For the last inequality, we used the fact that Bλ ∩ Qj 6= ∅. For the second term, we use
similar arguments with β′ ≤ σ

µ





 inf
A∗

8Qj
F=φ0−div(φ1)

sup
Qball

x∈Q⊂8Qj

1

µ(Q)1/β′ ‖|φ0| + |φ1|‖Lβ′
(Q) ≥ Kλ/2








.
1

Kσλσ
‖MS,∗,σA

∗
8Qj

F‖σLσ,∞,8Qj

.
1

Kσλσ
‖A∗

8Qj
F‖σW−1,σ(8Qj)

.

The above assumption (23) shows that

‖A∗
8Qj

F‖σW−1,σ(8Qj)
. µ(Qj) inf

8Qj

MB,σ(F )σ . µ(Qj) inf
8Qj

MS,∗,β′(F )σ

. λσµ(Qj).

We used in the last inequality that xj ∈ 8Qj and MS,∗,β′(F )(xj) ≤ λ. Thus, we proved
an analogous inequality of (33) for the second term. We deduce that

µ (Bλ ∩Qj) .

(
γβ

′

Kβ′ +
1

Kσ

)
µ(Qj).

Summing over j, the proof is therefore complete. ⊓⊔
In the next proposition, we give a useful criterion to insure the main assumption (23) :
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Proposition 3.7 Assume that the operators AQ satisfy

∀j ≥ 0
1

µ(2j+1Q)1/β
‖AQ(f)‖W 1,β(Sj(Q)) ≤ αj(Q)

1

µ(Q)1/σ′ ‖f‖W 1,σ′ (Q) ,

for all functions f supported in the ball Q, where the coefficients αj(Q) satisfy

sup
Q ball

∑

j≥0

µ(2j+1Q)

µ(Q)
αj(Q) <∞. (34)

Then the maximal operator MB,σ is bounded by MS,∗,β′.

Proof : Let x ∈ M . For a ball Q, we denote Sj(Q) = 2jQ \ 2j−1Q. We estimate the
Sobolev-norm by duality

MB,σ(f)(x) = sup
Q;x∈Q

sup
g∈C∞

0 (Q)

‖g‖
W1,σ′ ≤1

µ(Q)−1/σ

∫
A∗
Q(f)gdµ

= sup
Q;x∈Q

sup
g∈C∞

0 (Q)

‖g‖
W1,σ′ ≤1

µ(Q)−1/σ

∫
fAQ(g)dµ.

Take a decomposition f = φ− div(ψ). Then we have

MB,σ(f)(x) ≤ sup
Q;x∈Q

sup
g∈C∞

0 (Q)

‖g‖
W1,σ′ ≤1

µ(Q)−1/σ
∑

j≥0

∫

Sj(Q)

[φ0AQ(g) + ψ0∇AQ(g)] dµ

≤ sup
Q;x∈Q

µ(Q)−1/σ sup
g∈C∞

0 (Q)

‖g‖
W1,σ′ ≤1

∑

j≥0

‖|φ0| + |ψ0|‖Lβ′
(Sj(Q)) ‖AQ(g)‖W 1,β(Sj(Q)) .

Our assumption yields

MB,σ(f)(x) ≤ sup
Q;x∈Q

µ(Q)−1/σ sup
g∈C∞

0 (Q)

‖g‖
W1,σ′ ≤1

∑

j≥0

‖|φ0| + |ψ0|‖Lβ′ (Sj(Q)) αj(Q)
µ (2j+1Q)

1/β

µ(Q)1/σ′ ‖g‖W 1,σ′
(Q)

≤ sup
Q;x∈Q

∑

j≥0

‖|φ0| + |ψ0|‖Lβ′ (2jQ) µ(2j+1Q)−1/β′

αj(Q)
µ(2j+1Q)

µ(Q)

≤MHL,β′(|φ0| + |ψ0|)(x) sup
Q;x∈Q

∑

j≥0

αj(Q)
µ(2j+1Q)

µ(Q)

. MHL,β′(|φ0| + |ψ0|)(x).

These inequalities hold for every decomposition f = φ−div(ψ). Taking the infimum over
all these decompositions, we obtain the desired inequality. ⊓⊔
With an extra assumption (as in [17]), we obtain the real interpolation result of Theorem
0.6 :
Proof of Theorem 0.6: The proof is the same as the one of Theorem 3.14 in [17] using
the arguments of Theorem 0.5. We omit it. ⊓⊔
Let us compare our assumption (β′, p′θ) ∈ IM with Poincaré inequality :
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Remark 3.8 Assume that β′ ≤ p′θ (else (β′, p′θ) ∈ IM is always satisfied, see [18]) and
pθ ≤ 2. Thanks to Theorem 1.17, we can check that the assumption (β′, p′θ) ∈ IM is
implied by the Poincaré inequality (Ppθ

) if β′ ≥ 2, which corresponds to a variant of
the assumption done in [10] (in [10], the author used local hypotheses of doubling and
Poincaré, here we are under the global hypotheses) to interpolate the corresponding non-
homogeneous Sobolev spaces.

4 Applications

4.1 Operators with regularity assumptions about the kernel.

In this subsection, we look for a “Sobolev” version of results for Calderón-Zygmund op-
erators on Lebesgue spaces.

Definition 4.1 Let T be a linear operator bounded from Ẇ 1,p0 (resp. W 1,p0) to Lp0. We
say that it is associated to a kernel K(x, y) if for every compactly supported function f
and x ∈ supp(f)c we have the integral representation :

T (f)(x) =

∫
K(x, y)f(y)dµ(y).

We introduce the following regularity property for such kernel :

Γ := sup
Q ball

sup
y,z∈Q

rQ

∫

M\4Q
|K(x, y) −K(x, z)| dµ(x) <∞. (35)

This subsection is devoted to the study of operators T associated to a kernel satisfying
(35). We first prove a weak type estimate .

Proposition 4.2 Let M be a complete Riemannian manifold satisfying (D) and admit-
ting a Poincaré inequality (P1). Let T be a linear operator which is bounded from Ẇ 1,2

(resp. W 1,2) to L2 and is associated to a kernel satisfying (35).
Then T is bounded from Ẇ 1,1 (resp. W 1,1) to L1,∞.

Proof : We give the proof in the homogeneous case, it is the same in the non-homogeneous
case. Let f ∈ Ẇ 1,1. We want to show that

µ({x ∈M ; |Tf(x)| > α}) .
1

α
‖∇f‖L1 .

Take the Calderón-Zygmund decomposition – homogeneous version of Proposition 3.1 –
of f for α > 0. We have

Tf = Tg + T (
∑

i

bi)

and {|Tf | > α} ⊂
{
|Tg| > α

2

}⋃{|T (
∑

i bi)| > α
2

}
. Since T is bounded from Ẇ 1,2 to L2

then

µ
({

|Tg| > α

2

})
≤ 4

α2

∫

M

|Tg|2dµ .
1

α2
‖T‖Ẇ 1,2→L2α‖∇f‖L1 .

29



For |T (
∑

i bi)| = |∑i Tbi| ≤
∑

i |Tbi| we have

µ

({
|T (
∑

i

bi)| >
α

2

})
≤ µ

({
∑

i

|Tbi| >
α

2

})

≤ µ(
⋃

i

4Qi) + µ

(
{(M\ ∪i 4Qi);

∑

i

|Tbi| >
α

2
}
)
.

From (D) and the homogeneous analog of (15) of Proposition 3.1, we have µ(
⋃
i 4Qi) ≤

C
α
‖∇f‖1. It remains to estimate µ(A) = µ(

{
(M\ ∪i 4Qi);

∑
i |Tbi| > α

2

}
). We have

A ⊂
{
∑

i

1M\4Qi
|Tbi| >

α

2

}
.

Then

µ(A) ≤ 2

α

∫

M

∑

i

|Tbi|1M\4Qi
dµ =

2

α

∑

i

∫

M\4Qi

|Tbi|dµ.

Let yi ∈ Qi such that K(x, yi) exists. Noting that
∫
bidµ = 0, it comes that

∫

M\4Qi

|Tbi|(x)dµ(x) =

∫

M\4Qi

∣∣∣∣
∫

Qi

K(x, y)bi(y)dµ(y)

∣∣∣∣ dµ(x)

=

∫

M\4Qi

∣∣∣∣
∫

Qi

(K(x, y) −K(x, yi))bi(y)dµ(y)

∣∣∣∣ dµ(x)

≤
∫

Qi

(∫

M\4Qi

|K(x, y) −K(x, yi)|dµ(x)

)
|bi(y)|dµ(y)

.
1

ri

∫

Qi

|bi(y)|dµ(y) sup
y, yi∈Qi

ri

∫

M\4Qi

|K(x, y) −K(x, yi)|dµ(x)

. αµ(Qi).

Summing over i and using the homogeneous analogous property of (15), the proof is
therefore complete. ⊓⊔
To obtain this weak type estimate, we have to assume a strong Poincaré inequality (P1).
The result of Theorem 0.7 is also interesting: we are able to obtain a strong type estimate
using Hardy-Sobolev spaces (instead of the Sobolev space Ẇ 1,1), and requiring a weaker
Poincaré inequality in the non-homogeneous case.

Proof of Theorem 0.7: We begin showing that in both case item 1. (resp. 2.), there
exists a constant C, such that for all 2-homogeneous atom a (resp. non-homogenous
atom),

‖Ta‖L1 ≤ C. (36)

We give the proof in the homogeneous case, it works the same in the non-homogeneous
case. Indeed, noting Q = Q(x0, r) the ball associated to the (1, 2) homogeneous atom a ,
we have ∫

4Q

|Ta|dµ ≤ C‖T‖Ẇ 1,2→L2‖a‖Ẇ 1,2µ(Q)
1
2 ≤ C‖T‖Ẇ 1,2→L2 .
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On M\4Q, we use the integral representation. The fact that
∫
adµ = 0 yields

∫

M\4Q
|Ta|dµ ≤

∫

M\4Q

∣∣∣∣
∫

Q

K(x, y)a(y)dµ(y)

∣∣∣∣ dµ(x)

=

∫

M\4Q

∣∣∣∣
∫

Q

(K(x, y) −K(x, x0))a(y)dµ(y)

∣∣∣∣ dµ(x)

≤
∫

M\4Q

∫

Q

|K(x, y) −K(x, x0)| |a(y)|dµ(y)dµ(x)

=

∫

Q

|a(y)|
(∫

M\4Q
|K(x, y) −K(x, x0)|dµ(x)

)
dµ(y)

=

∫

Q

|a− aQ|
(∫

M\4Q
|K(x, y) −K(x, x0)|dµ(x)

)
dµ(y)

≤ Crµ(Q)(−
∫

Q

|∇a|2dµ)
1
2
C

r

≤ C.

We used Poincaré inequality (P2), (35) and the definition of a (1, 2) atom.

Now we conclude the proof of item 1.

Thanks to Proposition 4.2, T is bounded from Ẇ 1,1 to L1,∞. Take f ∈ ḢS
1

(2),ato : f =∑∞
i=1 λibi with for each i, bi is a (1, 2) homogeneous atom and with

∑∞
i=1 |λi| ∼ ‖f‖

ḢS
1
(2),ato

.

Since ḢS
1

(2),ato →֒ Ẇ 1,1, we know that fN =
∑N

i=1 λibi ∈ ḢS
1

F,(2),ato converges to f in Ẇ 1,1.
Thus by Proposition 4.2, TfN converges to Tf in L1,∞.

On the other hand, TfN converges to
∑∞

i=1 λiTbi in Ẇ 1,1 and therefore Tf =
∑∞

i=1 λiTbi
and ‖Tf‖1 ≤ C‖f‖

ḢS
1
(2),ato

.

It remains to complete the proof of item 2. For this, we invoke the following lemma
which finishes the proof. It is a Sobolev version of a result in [32], that was generalized
in [17]. ⊓⊔

Lemma 4.3 Assume that (P2) holds. Let T be a bounded linear operator from W 1,2 to
L2 with a constant C such that for all (1, 2) atom f ∈ HS1

F,(2),ato, we have

‖T (f)‖L1 ≤ C.

Then T extends continuously from HS1
(2),ato into L1.

Remark 4.4 The proof uses the embedding HS1
(2),ato →֒ L1, which does not hold for the

homogeneous space ḢS
1

(2),ato. Actually, we do not know if such a result is true or not
for homogeneous Hardy-Sobolev spaces, without using (as it is well-known) a weak-type
inequality from Ẇ 1,1 to L1,∞ which requires the Poincaré inequality (P1) as we saw in
item 1.

Proof : As HS1
F,(2),ato is dense in HS1

(2),ato, we know that there exists an operator U

bounded from HS1
(2),ato into L1 such that for each atom m: U(m) = T (m). We have to

prove that
∀f ∈ W 1,2 ∩HS1

(2),ato, U(f) = T (f).
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To prove this fact, we use duality. Let Q be a ball and φQ be a smooth function supported
in Q verifying

∫

Q

φQdµ = 1, ‖φQ‖∞ .
1

µ(Q)
, ‖∇φQ‖∞ .

1

rQµ(Q)
.

Then for all smooth function k supported in Q, with ‖k‖W 1,2 ≤ µ(Q)−1/2, the function
h := k − (

∫
Q
k)φQ is a (1, 2)-atom associated to the ball Q (due to Poincaré inequality

and Proposition 1.6). Let g ∈ L∞ ∩ L2. We have

〈T (h), g〉 = 〈U(h), g〉.

We deduce that
〈h, T ∗g〉 = 〈h, U∗g〉

. Hence 〈
k, [T ∗g − U∗g] −

(∫
φQ [T ∗g − U∗g] dµ

)
1Q

〉
= 0.

We set λ for the function λ := [T ∗g − U∗g]. We have
∥∥∥∥λ−

(∫
φQλdµ

)
1Q

∥∥∥∥
W−1,2(B)

= 0.

Thus λ (as distribution) is constant on the ball Q. This fact is proved for every ball Q.
We conclude that λ (which is independent with respect to the ball) is constant over the
whole manifold M .
The non-homogeneous Hardy-Sobolev space HS1

(2),ato is embedded into L1. Then by

L1 − L∞ duality, for all functions h ∈ HS1
(2),ato we have

〈h, λ〉 = 0.

In particular for f ∈ W 1,2 ∩HS1
(2),ato, we get

〈f, λ〉 = 0 =Ẇ 1,2 〈f, T ∗g〉Ẇ−1,2 −HS1
(2),ato

〈f, U∗g〉(HS1
(2),ato

)∗ =L2 〈T (f), g〉L2 −L1 〈U(f), g〉L∞ .

This is true for all functions g ∈ L∞ ∩ L2. We deduce that T (f) = U(f) in (L∞ ∩ L2)
∗

and therefore T (f)(x) = U(f)(x) for almost every x ∈M . ⊓⊔

Proof of Corollary 0.9: The proof follows from the interpolation results in Theorem
0.2 and Theorem 0.4 and the self-improvement of Poincaré inequality of Theorem 1.5. ⊓⊔
The result in item 2. of Corollary 0.9 can also be recovered by suitably choosing the
operators BQ of the abstract Hardy-Sobolev spaces (defined in Subsection 2.1).

Definition 4.5 For each ball Q of M , we define our operator BQ as :

BQ(f) := f −
(∫

Q

fdµ

)
φQ,

where φQ is a smooth function supported in Q such that
∫

Q

φQdµ = 1, ‖φQ‖∞ .
1

µ(Q)
, ‖∇φQ‖∞ . r−1

Q µ(Q)−1.
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With β = 2, we define our Hardy-Sobolev space HW 1
(2),ato.

We check the desired assumptions. Thanks to the Proposition 1.6, it is clear that under
Poincaré inequality (P2) the operators AQ are uniformly bounded on W 1,2.
Then by similar arguments as that in the proof of Theorem 0.7, under (P2) the above
operator T admits a continuous extension from HW 1

(2),ato to L1. Moreover, for q ∈ (1, 2)

the inequality (Pq) implies that the maximal operator MB,q′ is bounded by M2 (using
Proposition 3.7). Using Theorem 0.5, we recover item 2. of Corollary 0.9.

4.2 Application: (RRp).

Let M be a complete Riemannian manifold satisfying (D). Consider the linear operator

∆
1
2 with the following resolution

∆
1
2f = c

∫ ∞

0

∆e−t∆f
dt√
t
, f ∈ C∞

0

where c = π− 1
2 . Here ∆

1
2f can be defined for f ∈ Lip as a measurable function (see [4]).

Since ∆
1
2 1 = 0, ∆

1
2 can be defined on Lip∩Ẇ 1,q by taking quotient which we keep calling

∆
1
2 . Applying Theorem 0.7, we obtain the following theorem for ∆

1
2 .

Theorem 4.6 1- Let M be a complete Riemannian manifold satisfying (D) and (P1).

Then ∆
1
2 is bounded from ḢS

1

(r),ato to L1 for any r > 1.

Consequently, ∆
1
2 is bounded from Ẇ 1,p to Lp for any p ∈ (1, 2].

2-Let M be a complete Riemannian manifold satisfying (D) and (Pq) for some q ∈ [1, 2).

Then (I + ∆)
1
2 is bounded from HS1

(r),ato to L1 for any r ≥ q if q 6= 1 (resp. r > 1 if

q = 1).

Consequently, (I + ∆)
1
2 is bounded from W 1,p to Lp for any p ∈ [q, 2].

Remark 4.7 We refer the reader to [5, 4] for the study of inequality (RRp) for p ∈ (1, 2]

(which corresponds to the boundedness of ∆
1
2 from Ẇ 1,p to Lp) under Poincaré inequality.

The new point here is the limit case (RR1).

Proof : We prove item 1. of this theorem. We proceed analogously for the proof of item
2. Let us check that ∆

1
2 satisfies the hypotheses of Theorem 0.7. First ∆

1
2 is bounded

from Ẇ 1
2 to L2. The kernel of ∆

1
2 is

∫∞
0
∂tpt(x, y)

dt√
t
. Under our hypotheses, the partial

derivative of the heat kernel ∂tpt verifies

|∂tpt(x, y)| ≤
C

tµ(B(y,
√
t))
e−α

d2(x,y)
t (37)

for every x, y ∈ M and t > 0 (see [23], Theorem 4 and [27], Corollary 3.3). Let Q a ball
of radius r > 0 and y, z ∈ Q. We therefore have
∫

M\4Q

∣∣∣∣
∫ ∞

0

∂t(pt(x, y) − pt(x, z))
dt√
t
dt

∣∣∣∣ dµ(x) ≤
∫

M\4Q

∫ ∞

0

|∂t(pt(x, y) − pt(x, z))|
dt√
t
dtdµ(x)

≤ C

∫

M\4Q

∫ ∞

0

1

tµ(Q(y,
√
t))
e−α

d2(x,y)
t

dt√
t
dtdµ(x)

+ C

∫

M\4Q

∫ ∞

0

1

tµ(Q(z,
√
t))
e−α

d2(x,z)
t

dt√
t
dtdµ(x).
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Let us estimate I =
∫
M\4Q

(∫∞
0

1
tµ(Q(y,

√
t))
e−α

d2(x,y)
t

dt√
t

)
dµ(x). Since y ∈ Q and x ∈M\4Q

then d(x, y) ≥ 3r. It follows that

I ≤
∫ ∞

0

C

tµ(Q(y,
√
t))

(∫

{x; d(x,y)>
√

9r2}
e−α

d2(x,y)
t dµ(x)

)
dt√
t

≤
∫ ∞

0

C

tµ(Q(y,
√
t))
Cαµ(Q(y,

√
t))e−α

9r2

t
dt√
t

≤
∫ ∞

0

e−α
9r2

t

t
√
t
dt

≤ C

r

∫ ∞

0

e−α
9
t

t
√
t
dt

≤ C

r
.

In the second estimate, we used that
∫
d(x,y)>

√
t
e−γ

d2(x,y)
s dµ(x) ≤ Cγµ(Q(y,

√
s))e−γ

t
s ([22],

Lemma 2.1 ). Similarly, we prove that
∫
M\4Q

(∫∞
0

1
tµ(Q(z,

√
t))
e−α

d2(x,z)
t

dt√
t

)
dµ(x) ≤ C

r
. Tak-

ing the supremum over all y, z ∈ Q, all balls Q and applying Theorem 0.7, we obtain that

T is bounded from ḢS
1

r,ato to L1 for r > 1. Finally the boundedness of T from Ẇ 1,p to
Lp for 1 < p < 2 follows from Corollary 0.9. ⊓⊔
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