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interesting to consider a "nice" subspace of W 1,1 -as is the Hardy space for L 1 -and study the interpolation of this space with Sobolev spaces. Apart from the interpolation itself, the use of the Hardy-Sobolev spaces that we construct gives strong boundedness of some linear operators instead of the weak boundedness on W 1,1 . For instance this is the case of the square root of the Laplace-Beltrami operator ∆ 1/2 . Another motivation responds to the recent improvements on the theory of Hardy spaces. In the last years, many works were related to the study of specific Hardy spaces defined according to a particular operator (Riesz transforms, Maximal regularity operator, Calderón-Zygmund operators, ... [START_REF] Bernicot | New abstract Hardy spaces[END_REF][START_REF] Bernicot | On maximal L p -regularity[END_REF][START_REF] Duong | Duality of Hardy and BMO spaces associated with operators with heat kernel bounds[END_REF][START_REF] Dziubański | Atomic decomposition of H p spaces associated with some Schrödinger operators[END_REF][START_REF] Fefferman | H p spaces of several variables[END_REF][START_REF] Hofmann | Hardy and BMO spaces associated to divergence form elliptic operators[END_REF][START_REF] Russ | H 1 -L 1 boundedness of Riesz transforms on Riemannian manifolds and on graphs[END_REF]). Mainly one of the most interesting questions in this theory is the interpolation of these spaces with Lebesgue spaces in order to prove boundedness of some operators. Although the theory of Hardy spaces is now well developed, the more recent theory of Hardy-Sobolev spaces is still not unified.

Before we state our results, let us briefly review the existing literature related to this subject.

The Hardy-Sobolev spaces were studied by many authors in the Euclidean case. We mention R. Strichartz [START_REF] Strichartz | H p Sobolev spaces[END_REF]. Related works are [START_REF] Auscher | Hardy-sobolev spaces on strongly lipschitz domains of R n[END_REF], [START_REF] Koskela | Pointwise characterizations of Hardy-Sobolev functions[END_REF], [START_REF] Cho | Atomic decomposition on Hardy-Sobolev spaces[END_REF], [START_REF] Miyachi | Hardy-sobolev spaces and maximal functions[END_REF]. They deal with "classical" Hardy-Sobolev spaces HS 1 on R n , which correspond to the Sobolev version of the Coifman-Weiss Hardy space H 1 CW (R n ) : HS 1 is the set of functions f ∈ H 1 CW such that each partial derivative of f belongs to H 1 CW . Some of them consider the homogeneous version of HS 1 and others only assume f ∈ L 1 instead of f ∈ H 1 CW .

We recall that R. Coifman proved an atomic decomposition for the classical Hardy space H 1 CW , which can be defined by maximal functions (see [START_REF] Fefferman | H p spaces of several variables[END_REF]). In the Euclidean case, the question of atomic decomposition for the homogeneous space ḢS 1 was treated in [START_REF] Strichartz | H p Sobolev spaces[END_REF] and [START_REF] Cho | Atomic decomposition on Hardy-Sobolev spaces[END_REF]. However, in the non-Euclidean case this issue is still not clear. In contrast, our idea is to introduce atomic Hardy-Sobolev spaces for which we can prove real interpolation with Sobolev spaces. Then we are able to derive the interpolation of HS 1 with Sobolev spaces.

Let us now summarize the content of this paper. We refer the reader to the corresponding sections for definitions and properties of the spaces and operators that we use in the statements.

In the second part of Section 2, we define atomic Hardy-Sobolev spaces HS 1 (β),ato for 1 < β ≤ ∞. They correspond to the Sobolev version of the atomic Coifman-Weiss Hardy space H 1 CW (defined by atomic decomposition with W 1,β -atoms). We compare these spaces for different β in the following theorem: Theorem 0.1 Let M be a complete Riemannian manifold satisfying (D) and admitting a Poincaré inequality (P q ) for some q > 1. Then HS 1 (β),ato ⊂ HS 1 (∞),ato for every β ≥ q and therefore HS 1 (β 1 ),ato = HS 1 (β 2 ),ato for every

β 1 , β 2 ∈ [q, ∞].
For the real interpolation of these spaces with Sobolev spaces, we obtain Theorem 0.2 Let M be a complete Riemannian manifold satisfying (D) and (P q ), for some q ∈ (1, ∞). Let r ∈ (1, ∞], s ∈ (q, ∞], p ∈ (q, s) and θ ∈ (0, 1) satisfying 1 p = (1θ) + θ s . Then W 1,p = HS 1 (r),ato , W 1,s θ,p = HS 1 , W 1,s θ,p with equivalent norms.

We also prove the homogeneous version of theses two theorems:

Theorem 0.3 Let M be a complete Riemannian manifold satisfying (D) and a Poincaré inequality (P q ) for some q > 1. Then ḢS 1 (β),ato ⊂ ḢS 1 (∞),ato for every β ≥ q and therefore ḢS 1 (β 1 ),ato = ḢS 1 (β 2 ),ato for every β 1 , β 2 ∈ [q, ∞]. Theorem 0.4 Let M be a complete Riemannian manifold satisfying (D) and (P q ), for some 1 < q < ∞. Let r ∈ (1, ∞], s ∈ (q, ∞] and p ∈ (q, s) and θ ∈ (0, 1) satisfying

1 p = (1 -θ) + θ s . Then Ẇ 1,p = ḢS 1 (r),ato , Ẇ 1,s θ,p = ḢS 1 , Ẇ 1,s θ,p
with equivalent norms.

In the first part of section 2, given a collection of uniformly bounded operators on W 1,β : B := (B Q ) Q∈Q , we define abstract atomic Hardy-Sobolev spaces HW 1 ato . For theses spaces, we obtain in section 3 the following two interpolation results. Theorem 0.5 Let M be a Riemannian manifold satisfying (D). Let σ ∈ (1, ∞] and p 0 such that σ ′ < p 0 ≤ β. Let B := (B Q ) Q∈Q be a collection of uniformly bounded operators on W 1,β satisfying

1 µ(Q) 1/σ f -B * Q (f ) W -1,σ (Q) M S, * ,β ′ (f ). ( 1 
)
Let T be a bounded linear operator from W 1,p 0 to L p 0 and from HW 1 F,ato to L 1 . Then for every p ∈ (σ ′ , p 0 ) such that (β ′ , p ′ ) ∈ I M , there is a constant c = c(p) such that for all function f ∈ W 1,p ∩ W 1,p 0 T (f ) L p ≤ c f W 1,p .

Consequently, T admits a continuous extension from W 1,p to L p .

Theorem 0.6 Let M be a Riemannian manifold satisfying (D) and of infinite measure µ(M ) = ∞. Assume that the finite Hardy-Sobolev space is contained in W 1,1 :

HW 1 F,ato ֒→ W 1,1 and that B satisfies [START_REF] Ambrosio | Special functions of bounded variation in doubling metric measure spaces, Calculus of variations : topics from the mathematical heritage of E. De Giorgi[END_REF]. Let σ ∈ (1, ∞] and p 0 satisfying σ ′ < p 0 ≤ β. Then for every θ ∈ (0, 1) such that 1 p θ := (1θ) + θ p 0 < 1 σ ′ and (β ′ , p ′ θ ) ∈ I M , we have HW 1 F,ato , W 1,p 0 θ,p θ = W 1,p θ , with equivalent norms.

Finally, the following theorem is an application of our result. It is proved in section 4 and applies to ∆ 1/2 . Theorem 0.7 Let M be a complete Riemannian manifold satisfying (D).

1. Assume that a Poincaré inequality (P 1 ) holds. Let T be a bounded linear operator from Ẇ 1,2 to L 2 and associated to a kernel satisfying

sup Q ball sup y,z∈Q r Q M \4Q |K(x, y) -K(x, z)| dµ(x) < ∞. (2) 
Then T admits a unique extension from ḢS 1

(2),ato to L 1 . 2. Assume that a Poincaré inequality (P 2 ) holds. Let T be a bounded linear operator from W 1,2 to L 2 and associated to a kernel satisfying (2).

Then T admits a unique extension from HS 1 (2),ato to L 1 .

Remark 0.8 Thanks to Theorem 0.1, in item 1. of Theorem 0.7, T is then bounded from ḢS

1 (β),ato to L 1 for all β ∈ (1, ∞]. In item 2., T is then bounded from HS 1 (β),ato to L 1 for all β ∈ [2, ∞].

Consequently

Corollary 0.9 1-Let T be as in item 1. of Theorem 0.7. Assume that a Poincaré inequality (P 1 ) holds. Then for all p ∈ (1, 2], the operator T admits a continuous extension from Ẇ 1,p to L p . 2-Let T be as in item 2. of Theorem 0.7. Assume that a Poincaré inequality (P q ) holds for some q ∈ (1, 2). Then for all p ∈ (q, 2], the operator T admits a continuous extension from W 1,p to L p .

We apply these last two theorems to the square root of the positive Laplace-Beltrami operator ∆ 1/2 . In [START_REF] Auscher | Riesz transform on manifolds and poincaré inequalities[END_REF], P. Auscher and T. Coulhon proved that under the doubling property (D) and a Poincaré inequality (P q ) for some q ∈ [1, 2), (RR p ) (which is equivalent to the boundedness of ∆ 1/2 from Ẇ 1,p to L p ) holds for every q < p ≤ 2. Moreover, ∆ 1/2 satisfies a weak type inequality (RR qw ) ((RR p ) also holds in this case for 2 < p < ∞). Applying Theorem 0.7, we show that under (D) and (P 1 ) (resp. (P 2 ) ) we have a strong (RR 1 ) (resp. (nhRR 1 )) inequality for functions in the homogeneous (resp. non-homogeneous) atomic Hardy-Sobolev space ḢS 1 (β),ato (resp. HS 1 (β),ato ).

We finish this introduction with a plan of the paper. In section 1, we recall some definitions and properties that we need. We define abstract Hardy-Sobolev spaces via atomic decomposition in the first part of section 2. In the second part we study particular atomic Hardy-Sobolev spaces HS 1 (β),ato in more detail and prove Theorem 0.1 . We also prove that under Poincaré inequality, these spaces are a particular case of the abstract Hardy-Sobolev spaces that we defined in the first part. Section 3 is devoted to the proof of the interpolation results in Theorems 0.2 and 0.4 using a "Calderón-Zygmund" decomposition well adapted to the spaces HS 1 (β),ato . For the interpolation of the abstract Hardy-Sobolev spaces in Theorem 0.5, our method is based on the new maximal inequality described in [START_REF] Bernicot | Maximal inequalities for dual sobolev spaces W -1,p and applications to interpolation[END_REF]. Finally, the proof of Theorem 0.7 and the application to ∆ 1/2 are given in section 4.
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Preliminaries

Throughout this paper we will denote by 1 E the characteristic function of a set E and E c the complement of E. If X is a metric space, Lip will be the set of real Lipschitz functions on X and Lip 0 the set of real, compactly supported Lipschitz functions on X. We denote by Q(x, r) the open ball of center x ∈ X and radius r > 0 and λQ denotes the ball co-centered with Q and with radius λ times that of Q. Finally, C will be a constant that may change from an inequality to another and we will use u v to say that there exists two constants C such that u ≤ Cv and u ≃ v to say that u v and v u.

In all this paper M denotes a Riemannian manifold. We write µ for the Riemannian measure on M , ∇ for the Riemannian gradient, | • | for the length on the tangent space (forgetting the subscript x for simplicity) and • L p for the norm on L p := L p (M, µ), 1 ≤ p ≤ +∞. We will use the positive Laplace-Beltrami operator ∆ defined by

∀f, g ∈ C ∞ 0 (M ), ∆f, g = ∇f, ∇g .
1.1 The doubling property Definition 1.1 Let M be a Riemannian manifold. One says that M satisfies the (global) doubling property (D) if there exists a constant C > 0, such that for all x ∈ M, r > 0 we have µ(Q(x, 2r)) ≤ Cµ(Q(x, r)).

(D)

Observe that if M satisfies (D) then 1 An operator T is of weak type (p, p) if there is C > 0 such that for any α > 0, µ({x

diam(M ) < ∞ ⇔ µ(M ) < ∞ (see [1]). Therefore if M is a complete non-compact Riemannian manifold satisfying (D) then µ(M ) = ∞.
; |T f (x)| > α}) ≤ C α p f p p .
Consequently for s ∈ (0, ∞), the operator M s defined by

M s f (x) := [M(|f | s )(x)] 1/s
is of weak type (s, s) and L p bounded for all p ∈ (s, ∞].

Poincaré inequality

Definition 1.3 (Poincaré inequality on M ) We say that a complete Riemannian manifold M admits a Poincaré inequality (P q ) for some q ∈ [1, ∞) if there exists a constant C > 0 such that, for every function f ∈ Lip 0 (M ) 2 and every ball Q of M of radius r > 0, we have

- Q |f -f Q | q dµ 1/q ≤ Cr - Q |∇f | q dµ 1/q . (P q ) Remark 1.4 By density of C ∞ 0 (M ) in Lip 0 (M ), we can replace Lip 0 (M ) by C ∞ 0 (M ).
Let us recall some known facts about Poincaré inequalities with varying q. It is known that (P q ) implies (P p ) when p ≥ q (see [START_REF] Hajlasz | Sobolev met Poincaré[END_REF]). Thus if the set of q such that (P q ) holds is not empty, then it is an interval unbounded on the right. A recent result of S. Keith and X. Zhong (see [START_REF] Keith | The Poincaré inequality is an open ended condition[END_REF]) asserts that this interval is open in [1, +∞[ : Theorem 1.5 Let (X, d, µ) be a complete metric-measure space with µ doubling and admitting a Poincaré inequality (P q ), for some 1 < q < ∞. Then there exists ǫ > 0 such that (X, d, µ) admits (P p ) for every p > qǫ.

A consequence of Poincaré inequality:

Proposition 1.6 Assume that M satisfies (D) and admits a Poincaré inequality (P p ) for some p ∈ [1, ∞). Then there is a constant c = c(p) such that for all balls Q (of radius r Q ) and all functions f

∈ C ∞ 0 (Q) 1 µ(Q) Q f dµ ≤ cr Q 1 µ(Q) Q |∇f | p dµ 1/p .
This result is well-known. However for an easy reference and for the sake of completeness, we remember the proof based on the self-improvement of Poincaré inequality. We refer the reader to Theorem 5.3.3 of [START_REF] Saloff-Coste | Aspects of sobolev type inequalities[END_REF] for an initial proof (the proof there applies also for p = 1).

Proof : We first prove that for all

x ∈ Q, y ∈ 3Q \ 2Q |f (x) -f (y)| M p-ǫ (|∇f |)(x). (3) 
Using Hardy-Littlewood Theorem, we have

f (x) = lim ǫ→0 f Q(x,ǫ) .
2 compaclty supported Lipshitz function defined on M .

With the balls

Q i := Q(x, 2 i r Q ), we also have |f (x) -f Q 1 | ≤ i≤0 f Q i -f Q i+1 .
Thanks to Theorem 1.5), the Poincaré inequality (P p ) self improves to (P p-ǫ ) for a certain ǫ > 0. Using this Poincaré inequality and the doubling property one obtains

|f (x) -f Q 4 | ≤ 3 i=-∞ f Q i -f Q i+1 i≤3 1 µ(Q i ) Q i |f -f Q i | dµ i≤3 r Q i 1 µ(Q i ) Q i |∇f | p-ǫ dµ 1 p-ǫ i≤3 2 -i r Q M p-ǫ (|∇f |)(x) r Q M p-ǫ (|∇f |)(x).

Similarly we have with

Q i := Q(y, 2 i r Q ) f (y) -f e Q 3 r Q M p-ǫ (|∇f |)(y). However since y ∈ 3Q\2Q and f is supported in Q, we have M p-ǫ (|∇f |)(y) M p-ǫ (|∇f |)(x).
Then we just have to control the difference of means. The Poincaré inequality (P p ) and

Q 3 ⊂ Q 4 yield f e Q 3 -f Q 4 1 µ(Q 4 ) Q 4 |f -f Q 4 | dµ r Q M p-ǫ (|∇f |)(x).
Thus we proved (3). Then using the fact that f (y) = 0 due to the support of f , we obtain

1 µ(Q) Q f dµ ≤ 1 µ(Q) Q |f (x) -f (y)| dµ(x) r Q µ(Q) -1/p M p-ǫ (|∇f |) p .
Finally the L p -boundedness of M p-ǫ concludes the proof. ⊓ ⊔

The K-method of real interpolation

The reader can refer to [START_REF] Bennett | Interpolation of operators[END_REF], [START_REF] Bergh | Interpolations spaces, An introduction[END_REF] for details on the development of this theory. Here we only recall the essentials to be used in the sequel.

Let A 0 , A 1 be two normed vector spaces embedded in a topological Hausdorff vector space V . For each a ∈ A 0 + A 1 and t > 0, we define the K-functional of real interpolation by

K(a, t, A 0 , A 1 ) = inf a=a 0 +a 1 ( a 0 A 0 + t a 1 A 1 ).
For 0 < θ < 1, 1 ≤ q ≤ ∞, we denote by (A 0 , A 1 ) θ,q the real interpolation space between A 0 and A 1 defined as

(A 0 , A 1 ) θ,q = a ∈ A 0 + A 1 : a θ,q = ∞ 0 (t -θ K(a, t, A 0 , A 1 )) q dt t 1 q < ∞ .
It is an exact interpolation space of exponent θ between A 0 and A 1 (see [START_REF] Bergh | Interpolations spaces, An introduction[END_REF], Chapter II).

Definition 1.7 Let f be a measurable function on a measure space (X, µ). The decreasing rearrangement of f is the function f * defined for every t ≥ 0 by

f * (t) = inf {λ : µ({x : |f (x)| > λ}) ≤ t} .
The maximal decreasing rearrangement of f is the function f * * defined for every t > 0 by

f * * (t) = 1 t t 0 f * (s)ds.
From the properties of f * * we mention:

1. (f + g) * * ≤ f * * + g * * . 2. (Mf ) * ∼ f * * . 3. µ({x; |f (x)| > f * (t)}) ≤ t. 4. ∀1 < p ≤ ∞, f * * p ∼ f p .
We exactly know the functional K for Lebesgue spaces :

Proposition 1.8 Take 0 < p 0 < p 1 ≤ ∞. We have :

K(f, t, L p 0 , L p 1 ) ≃ t α 0 [f * (s)] p 0 ds 1/p 0 + t ∞ t α [f * (s)] p 1 ds 1/p 1
,

where 1 α = 1 p 0 -1 p 1 .
From now on, we always assume that the Riemannian manifold satisfies the doubling property (D).

1.4 Maximal inequalities for dual Sobolev spaces.

First, we begin recalling the "duality-properties" of the Sobolev spaces.

Definition 1.9 For p ∈ [1, ∞] and O an open set of M , we define W 1,p (O) as following

W 1,p (O) := C ∞ 0 (O) . W 1,p (O) , with f W 1,p (O) := |f | + |∇f | L p (O) .
Then we denote W -1,p ′ (O) the dual space of W 1,p (O) defined as the set of distributions

f ∈ D ′ (M ) such that f W -1,p ′ (O) = sup g∈C ∞ 0 (M ) | f, g | g W 1,p (O) . Proposition 1.10 Let p ∈ [1, ∞).
Then for all open set O of M , we have

f W -1,p ′ (O) ≃ inf f =φ-div(ψ) φ L p ′ (O) + ψ L p ′ (O) ≃ inf f =φ-div(ψ) |φ| + |ψ| L p ′ (O) .
Here we take the infimum over all the decompositions

f = φ-div(ψ) on M with φ ∈ L p ′ (O) and ψ ∈ D ′ (O, R n ) such that div(ψ) ∈ L p ′ (O).
The proof is left to the reader (it is essentially written in [START_REF] Auscher | Hardy-sobolev spaces on strongly lipschitz domains of R n[END_REF], Proposition 33).

We now introduce the following maximal operators :

Definition 1.11 Let s > 0.
According to the standard maximal "Hardy-Littlewood" operator M s , we define two "Sobolev versions" :

M S,s (f )(x) := sup Qball x∈Q 1 µ(Q) 1/s f W -1,s (Q) and M S, * ,s (f )(x) := inf f =φ-div(ψ) M s (|φ| + |ψ|) (x).
The following assumption is taken from [START_REF] Bernicot | Maximal inequalities for dual sobolev spaces W -1,p and applications to interpolation[END_REF]:

Assumption 1.12 Take two exponents 1 ≤ µ 0 ≤ µ 1 < ∞. We call (H µ 0 ,µ 1 ) the following assumption : f W -1,µ 1 M S, * ,µ 0 (f ) L µ 1 . (H µ 0 ,µ 1 )
Definition 1.13 For M a Riemannian manifold, we denote by I M the following set

I M := (µ 0 , µ 1 ) ∈ (1, ∞) 2 , µ 0 ≤ µ 1 , (H µ 0 ,µ 1 ) holds .
We refer to [START_REF] Bernicot | Maximal inequalities for dual sobolev spaces W -1,p and applications to interpolation[END_REF] for the study of these maximal operators and the previous assumption.

Proposition 1.14 For p ∈ [1, ∞), M S,p and M S, * ,p are of "weak type (p, p)". That is

∀f ∈ W -1,p , M S,p (f ) L p,∞ ≤ M S, * ,p (f ) L p,∞ f W -1,p . (4) 
Definition 1.15 We use the operator L := (I + ∆) defined with the positive Laplace-Beltrami operator. We recall that the two operators ∆ and L are self-adjoint.

According to [START_REF] Auscher | Riesz transform on manifolds and poincaré inequalities[END_REF], we say that for p ∈ (1, ∞) we have the non-homogeneous property

(nhR p ) if f W 1,p L 1/2 (f ) L p (nhR p ) for all f ∈ C ∞ 0 (M )
. This is equivalent to the L p boundedness of the local Riesz transform ∇(I + ∆) -1/2 . We have the non-homogeneous reverse property (nhRR p ) if

L 1/2 (f ) L p f W 1,p (nhRR p ) for all f ∈ C ∞ 0 (M ). Definition 1.16 Let p, q ∈ [1, ∞).
We say that the collection (T t ) t>0 = (e -t∆ ) t>0 or (T t ) t>0 = ( √ t∇e -t∆ ) t>0 satisfy (L p -L q )-"off-diagonal" estimates, if there exists γ such that for all balls Q of radius r Q , every function f supported in Q and all index j ≥ 0

1 µ(2 j Q) S j (Q) T r 2 Q (f ) q dµ 1/q e -γ4 j 1 µ(Q) Q |f | p dµ 1/p .
We used S j (Q) for the dyadic corona around the ball

S j (Q) := y, 2 j ≤ 1 + d(y, Q) r Q < 2 j+1 .
These "off-diagonal" estimates are closely related to "Gaffney estimates" of the semigroup.

We now come to the main result of [START_REF] Bernicot | Maximal inequalities for dual sobolev spaces W -1,p and applications to interpolation[END_REF].

Theorem 1.17 Let 1 < s < r ′ < σ. Assume that the Riemannian manifold M satisfies (nhRR r ) and (nhR s ′ ). Moreover, assume that the semigroup (e -t∆ ) t>0 satisfies (L σ ′ -L s ′ )-"off-diagonal" estimates and that the collection

( √ t∇e -t∆ ) t>0 satisfies (L s ′ -L s ′ )-"off- diagonal" estimates. Then there is a constant c = c(s, r, σ) such that ∀f ∈ W -1,r ′ , f W -1,r ′ M S, * ,s (f ) L r ′ . (5) 
Therefore (H µ 0 ,µ 1 ) is satisfied for all exponents µ 0 , µ 1 satisfying µ 0 ≥ s and µ 1 = r ′ .

Corollary 1.18 In the Euclidean case M = R n , for all µ 0 , µ 1 ∈ (1, ∞), the assumption (H µ 0 ,µ 1 ) holds. More generally, on any Riemannian manifold satisfying (D) and (P 1 ),

(H µ 0 ,µ 1 ) holds for all µ 0 , µ 1 ∈ (1, ∞).
After all these preliminaries, we now define our Hardy-Sobolev spaces via atomic decomposition.

2 Abstract Hardy-Sobolev spaces.

We begin this section defining "abstract atomic" Hardy-Sobolev spaces, then we study in more detail a particular case of these spaces.

New Hardy-Sobolev spaces.

We follow ideas of [START_REF] Bernicot | New abstract Hardy spaces[END_REF] and propose an "atomic" definition of abstract Hardy-Sobolev spaces. We refer the reader to [START_REF] Bernicot | New abstract Hardy spaces[END_REF] for an explanation of this choice : the "atoms" are defined as the image of localized functions by an operator B Q , playing the role of the "oscillation operator" associated to a ball Q.

Let us fix β ∈]1, ∞] and take B := (B Q ) Q∈Q a collection of W 1,β -bounded linear operators, indexed by Q the collection of all open balls Q of the manifold M . We assume that these operators B Q are uniformly bounded on W 1,β : there exists a constant 0

< A ′ < ∞ such that ∀f ∈ W 1,β , ∀Q ball, B Q (f ) W 1,β ≤ A ′ f W 1,β . (6) 
We define the Sobolev-atoms using the collection B :

Definition 2.1 A function m ∈ L 1 loc is called an atom associated to a ball Q if there exists a real function f Q compactly supported in the ball Q such that m = B Q (f Q ), with f Q W 1,β ≤ µ(Q) -1/β ′ .
The functions f Q in this definition are normalized in W 1,1 . It is easy to check that

f Q W 1,1 1.
Now we can define our abstract atomic Hardy-Sobolev spaces :

Definition 2.2 A measurable function h belongs to the atomic Hardy-Sobolev space HW 1 ato if there exists a decomposition

h = i∈N λ i m i µ -a.e,
where for all i, m i is an atom and (λ i ) i are real numbers satisfying

i∈N |λ i | < ∞.
We equip HW 1 ato with the norm :

h HW 1 ato := inf h= P i∈N λ i m i i |λ i |.
Similarly we define our "finite" Hardy-Sobolev space HW 1 F,ato as the set of functions which admit finite atomic decompositions.

Remark 2.3

We refer the reader to [START_REF] Bernicot | New abstract Hardy spaces[END_REF][START_REF] Bernicot | Use of Hardy spaces and interpolation[END_REF][START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF] for details concerning the use of "finite atomic Hardy space" instead of the whole atomic Hardy space. The use of this last one brings technical problems (we do not know how to solve them) that are not important and are twisted by the use of the atomic Hardy space.

Our goal is to interpolate the Hardy-Sobolev spaces with Sobolev spaces. First, we describe a useful criterion to prove the boundedness of an operator from the Hardy-Sobolev space HW 1 F,ato into L 1 . Proposition 2.4 Let M be a Riemannian manifold satisfying the doubling property. Let T be a linear operator bounded from W 1,β to L β for some β ∈ (1, ∞) and satisfying some "off-diagonal" Sobolev estimates: for all ball Q and all function f compactly supported in

Q ∀j ≥ 2 1 µ(2 j+1 Q) S j (Q) |T (B Q (f ))| β dµ 1/β ≤ α j (Q) 1 µ(Q) 1/β f W 1,β (Q) , (7) 
with coefficients α j satisfying

Λ := sup Q ball j≥2 µ(2 j+1 Q) µ(Q) α j (Q) < ∞. ( 8 
)
Then T is continuous from

HW 1 F,ato to L 1 .
The proof is left to the reader, it is written in [START_REF] Bernicot | New abstract Hardy spaces[END_REF] and [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF] in the context of Lebesgue spaces. It is the same in our context of Sobolev spaces.

2.2

The study of a particular Hardy-Sobolev space.

In this subsection, we present in more detail the study of a particular Hardy-Sobolev space.

In the study of Hardy spaces (see [START_REF] Bernicot | New abstract Hardy spaces[END_REF]), we have seen that our abstract Hardy space corresponds to the "classical" Hardy space (the one defined by R. Coifman and G. Weiss in [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]), when we choose our operator B Q as the exact oscillation operator. Here we want to study the Hardy-Sobolev space defined with a regular version of this particular collection B. For all ball Q, let φ Q be a function supported in Q and satisfying

φ Q L ∞ 1, |∇φ Q | L ∞ r -1 Q and φ Q dµ = µ(Q).
We define our operator

A Q (f ) := 1 µ(Q) Q f dµ φ Q B Q (f ) = f -A Q (f ).
In all this subsection, the Hardy-Sobolev spaces are constructed with this particular choice of operators. According to this collection, we construct our Hardy-Sobolev space HW 1 (β),ato and HW 1 F,(β),ato .

Remark 2.5 In the previous subsection, we did not study the dependence of the Hardy-Sobolev space with respect to the exponent β, so we omitted it in the notation. In this subsection, we will study the role of β in a particular case (see Theorem 0.1). That is why we put the exponent in the notation.

We have to check the first assumption [START_REF] Auscher | The solution of the kato square root problem for second order elliptic operators on R n[END_REF]. Thanks to Proposition 1.6, it is easy to check that if a Poincaré inequality (P β ) is satisfied then (6) holds.

Moreover, with the normalization of functions φ Q , each atom m associated to a ball Q verifies

Q mdµ = 0.
From this observation, we can set a definition of particular Hardy-Sobolev spaces.

Definition 2.6 For β ∈ (1, ∞], we say that a function m is a non-homogeneous (1, β)- atom associated to a ball Q, if 1. m is supported in the ball Q, 2. m W 1,β ≤ µ(Q) -1 β ′ , 3. mdµ = 0.
We define the Hardy-Sobolev space HS 1 (β),ato as follows: f ∈ HS 1 (β),ato if there exists

(b i ) i a family of (1, β)-atoms such that f = i λ i b i with i |λ i | < ∞.
We equip this space with the norm f HS 1 (β),ato = inf

(λ i ) i i |λ i |.
Similarly to Definition 2.2, we define "finite" atomic space HS 1 F,(β),ato .

From Proposition 1.6 and the previous discussion, we have this first proposition.

Proposition 2.7 Assume that a Poincaré inequality (P β ) holds. Then the concept of (1, β)-atoms exactly corresponds to the concept of atoms, defined with our operators B Q . Thus the different atomic Hardy-Sobolev spaces are equal:

HS 1 F,(β),ato = HW 1 F,(β),ato HS 1 (β),ato = HW 1 (β),ato .
Remark 2.8 Note that every β 2 atom is an β 1 atom for 1 < β 1 ≤ β 2 ≤ ∞ and therefore HS 1 (β 2 ),ato ⊂ HS 1 (β 1 ),ato with f HS 1 (β 1 ),ato ≤ f HS 1 (β 2 ),ato .

Proposition 2.9 HS 1 (β),ato is a Banach space for β ∈ (1, ∞].

Proof : Consider a sequence (h k ) k in HS 1 (β),ato such that k h k HS 1 (β),ato < ∞. It suffices to prove that k h k converges in HS 1 (β),ato .
For this, for every k take the following atomic decomposition We recall here the definition of a Coifman-Weiss atom of H 1 CW := H 1 CW (M ) the Hardy space of Coifman-Weiss (see [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]).

h k = i λ k,i b k,i with i |λ k,i | ≤ h k HS 1 (β),ato + 1 2 k . Then h = k i λ k,i b k,i ∈ W 1 1 (absolutely convergence) with k i |λ k,i | ≤ k h k HS 1 (β),ato + k 1 2 k < ∞. Hence h ∈ HS 1 (β),
Definition 2.11 For β ∈ (1, ∞], we say that a function m is a β-atom associated to a ball Q, if 1. m is supported in the ball Q, 2. m L β ≤ µ(Q) -1 β ′ , 3. mdµ = 0.
In the literature, we found definitions of classical Hardy-Sobolev spaces in the Euclidean case as the set of

f ∈ H 1 CW such that ∇f ∈ H 1 CW or ∆ 1/2 f ∈ H 1 CW . Thanks to the H 1 CW
boundedness of the Riesz transform in R n , these two spaces are equal. We hope to have a complete picture and comparison of all these definitions of Hardy-Sobolev spaces on Riemmannian manifolds in a forthcoming paper.

Definition 2.12 The classical Hardy-Sobolev space HS 1 (M ) is defined as (see [START_REF] Cho | Atomic decomposition on Hardy-Sobolev spaces[END_REF], for the Euclidean case)

HS 1 = f ∈ H 1 CW ; ∇f ∈ H 1 CW
where ∇f is the distributional gradient of f . Proposition 2. [START_REF] Bergh | Interpolations spaces, An introduction[END_REF] The space HS 1 is a Banach space.

Proof : Let (f n ) n be a Cauchy sequence in HS 1 . Then (f n ) and (∇f n ) n are Cauchy sequences in H 1 CW and therefore converge to f ∈ H 1 CW and g ∈ H 1 CW . Since f n → f µ-a.e it comes that ∇f n → ∇f in the distributional sense. The uniqueness of the limit shows that g = ∇f and finishes the proof.

⊓ ⊔ Proposition 2.14 We have HS 1 (β),ato ⊂ HS 1 ⊂ W 1,1 for every β > 1.

Unfortunately, it is not clear when HS 1 ⊂ HS 1 (β),ato . However for the point of view of interpolation, the study of HS 1 (β),ato implies results for HS 1 . For an exponent p ∈ (1, ∞] and θ ∈ (0, 1) if

HS 1 (β),ato , W 1,p θ,p θ = W 1,p θ with 1 p θ = (1 -θ) + θ p then we know that HS 1 , W 1,p θ,p θ = W 1,p θ .
This follows from the fact that HS 1 (β),ato ⊂ HS 1 ⊂ W 1,1 and that f HS 1 ≤ 2 f HS 1 (β),ato .

We know (see [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]) that the Hardy space H 1 CW admits an atomic decomposition and is also equal to the corresponding atomic Hardy space (for any exponent β used in the definition of β-atoms). In our case the atomic Hardy-Sobolev spaces are all contained in the classical one HS 1 but for the moment we are not able to show if they are equal or not. We believe that this is not true without additional hypotheses on the geometry of the manifold. However, under Poincaré inequality we will compare different atomic Hardy-Sobolev spaces in Theorem 0.1.

Before we prove this theorem, we need the following Lemma.

Lemma 2.15 (see Lemma 3.9 in [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]) Assume that M satisfies (D).

1. Let M c f (x) := sup r>0 1 µ(Q(x, r)) Q(x,r)
|f |dµ be the centered maximal function of f . Observe that if x ∈ Q(y, r) then Q(y, r) ⊂ Q(x, 2r). It follows that

M c f ≤ Mf ≤ CM c f
where C only depends on the constant of the doubling property.

2. Let f be an L 1 function supported in Q 0 = Q(x 0 , r 0 ). Then there is C 1 depending on the doubling constant such that

Ω α = {x ∈ M ; M(f )(x) > α} ⊂ Q(x 0 , 2r 0 ) whenever α > C 1 -Q 0 |f |dµ.
Proof of Theorem 0.1 :

The proof is inspired by that of R. Coifman and G. Weiss ( [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]) for classical Hardy spaces on a space of homogeneous type. We prove that every (1, β) atom is a sum of (1, ∞) atom.

We use an adapted Calderón-Zygmund decomposition for Sobolev functions (proved later for convenience in subsection 3.1) and proceed as their proof. However, the presence of the gradient create some problems. Since we know from [START_REF] Keith | The Poincaré inequality is an open ended condition[END_REF] that Poincaré inequality (P q ) self-improves in (P q-ǫ ) for some ǫ > 0, let us denote

κ := M q-ǫ L β →L β . Let a be a (1, β) atom supported in a ball Q 0 . Set b = µ(Q 0 )a.
We claim that for K, α > 0 large enough parameters, there exists a collection of balls (Q j l ), j l ∈ N l for l = 0, 1, ..., such that for every n ≥

1 b = CN Kα n-1 l=0 (Kα) l j l ∈N l µ(Q j l )a j l + jn∈N n h jn (9) 
and (a)

a j l is an ∞ atom supported in Q j l , l = 0, 1, ...n -1; (b) jn∈N n Q jn ⊂ Ω n := x; M q |b| + M n q-ǫ (|∇b|) (x) > K α n 2 ; (c) jn 1 Q jn ≤ N n ; (d) supp h jn ⊂ Q jn , h jn dµ = 0; (e) |h jn (x)| ≤ |b(x)| + 2C ′ (Kα) n 1 Q jn (x); (f) |∇h jn (x)| ≤ (C ′′ + 2) K n-1 M n q-ǫ (|∇b|)(x) + (Kα) n 1 Q jn (x) ; (g) -Q jn (|h jn | q + |∇h jn | q )dµ 1 q (Kα) n .
The constants α, K are sufficiently large and α, K, N depend only on β, q and the doubling constant. We write M n q-ǫ for the composed operator M q-ǫ • M q-ǫ • .... Let us first see how from theses properties we can write a = j α j a j where for every j, a j is an ∞-atom. We have

N Kα µ(Q 0 ) ∞ n=0 (Kα) n jn∈N n µ(Q jn ) ≤ C ( 10 
)
where C is independent of a. Indeed, it follows from (b), (c) and the weak type (1, 1) of

M that jn µ(Q jn ) ≤ CN n µ( jn Q jn ) ≤ CN n µ(Ω n ) ≤ C max(1, κ n )N n 2 α n β b β W 1,β . (3 ′ ) Therefore ∞ n=0 (Kα) n jn∈N n µ(Q jn ) ≤ C2 β ∞ n=0 (κN Kα 1-β ) n b β W 1,β . Since b β W 1,β ≤ Cµ(Q 0 )
we deduce [START_REF] Badr | Real interpolation of sobolev spaces[END_REF] with C depending on β, q and α, K but not on a. We choose α >> K such that N max(1,κ)K

α β-1 < 1.
From (g), we have

(|h jn | + |∇h jn |)dµ ≤ Cµ(Q jn )(Kα) n .
Therefore, if we note by H n = jn∈N n h jn we have

(|H n | + |∇H n |)dµ ≤ jn∈N n (|h jn | + |∇h jn |)dµ ≤ C(Kα) n jn µ(Q jn ) ≤ C(N κKα 1-β ) n b β W 1,β
. We used the bounded overlap property of the (Q jn ) n and the above estimate for jn µ(Q jn ). This shows that the first series on the right-hand side of (9) converges to b in W 1,1 . It remains now to prove that these properties are valid for every n ∈ N * . We begin proving the case n = 1. Let

Ω 1 := {x; M(|b| q + |∇b| q )(x) > (Kα) q } ⊂ Ω 1 . Lemma 2.15 shows that Ω 1 ⊂ 2Q 0 provided Kα > C 1 . Moreover Ω 1 is a bounded open set with µ( Ω 1 ) ≤ C α β b β W 1,β ≤ Cα -β µ(Q 0 )
. This allows us to apply the Whitney covering theorem to Ω 1 and consider the Calderón-Zygmund decomposition of Proposition 3.1 -in section 3-for b with p = β. We obtain b = j h j + g 0 [START_REF] Badr | Real interpolation of sobolev spaces associated to a weight[END_REF] with h j , g 0 satisfying the properties of Proposition 3.1. We have

j Q j (|h j | + |∇h j |)dµ ≤ C j µ(Q j ) - Q j (|b| β + |∇b| β )dµ 1 β ≤ 2N b W 1,β µ(Q 0 ) 1-1 β ≤ Cµ(Q 0 ).
Consequently, the sum in [START_REF] Badr | Real interpolation of sobolev spaces associated to a weight[END_REF] converges in W 1,1 , g 0 dµ = 0 since bdµ = 0 and h j dµ = 0. It follows that a 0 ≡

g 0 N CKαµ(Q 0 ) is an ∞-atom. Thus we can write b = N CKαµ(Q 0 )a 0 + j∈N h j .
Properties (a) and (d) are then established in this case when n = 1. Property (c) follows from the Whitney covering theorem since M satisfies (D). We have

|h j (x)| ≤ |b(x)| + µ(Q j ) χ j (Q j ) - Q j |b|dµ ≤ |b(x)| + C 0 4 D q Kα
where D = log 2 C d and C d is the doubling constant. We refer the reader to the proof of Proposition 3.1 for the construction of h j 's and χ j 's. We have

h j = b - 1 χ j (Q j ) Q j bχ j dµ χ j ,
with χ j (Q j ) = Q j χ j dµ and essentially, χ j is a smooth version of 1 Q j , with |∇χ j | ≤ r -1 Q j . For ∇h j we have

∇h j = χ j ∇b + b - 1 χ j (Q j ) Q j bχ j dµ ∇χ j = I + II.
We have |I| ≤ |∇b| ≤ M q-ǫ (∇b). It remains to estimate II. For y ∈ Q j , we have

|b(y) - 1 χ j (Q j ) Q j bχ j dµ| ≤ -1 k=-∞ |b Q(y,2 k r j ) -b Q(y,2 k+1 r j ) |dµ + b Q(y,r j ) - 1 χ j (Q j ) Q j bχ j dµ ≤ -1 k=-∞ - Q(y,2 k r j ) |b -b Q(y,2 k+1 r j ) |dµ + b Q(y,r j ) - 1 χ j (Q j ) Q j bχ j dµ ≤ -1 k=-∞ µ(Q(y, 2 k+1 r j )) µ(Q(y, 2 k r j )) - Q(y,2 k+1 r j ) |b -b Q(y,2 k+1 r j ) |dµ + |b Q(y,r j ) -b 2Q j | + 1 χ j (Q j ) Q j b - 1 µ(2Q j ) 2Q j b χ j dµ ≤ 2 D Cr j M q-ǫ (|∇b|)(y) -1 k=-∞ 2 k + C2 D/q 3 D Kαr j + 1 χ j (Q j ) 2Q j b - 1 µ(2Q j ) 2Q j bdµ |χ j |dµ ≤ 2 D Cr j M q-ǫ (|∇b|)(y) + Cr j - Q j |∇b| q-ǫ dµ 1 q-ǫ + C 0 C2 D/q Kαr j ≤ C ′ (M q-ǫ (|∇b|)(y) + Kα) r j where C ′ = max(C 0 4 D/q , C3 D 2 D/q , C 0 C2 D/q ). Thus |∇h j | ≤ (C ′ + 2)M q-ǫ (|∇b|) + 2C ′ Kα1 Q j . We choose C ′′ = 2C ′ ≥ 1,
and thus (e) and (f) are proved. Similarly to [START_REF] Bernicot | Use of Hardy spaces and interpolation[END_REF], we deduce (g) and finally property (b) is satisfied by the Whitney covering. The induction hypothesis is then satisfied for n = 1. We assume that it holds for n and show its validity for n + 1. Consider the set

Ω jn := x ∈ M ; M(|h jn | q + |∇h jn | q )(x) > (Kα) q(n+1) .
Property (g) for n shows that

C 1 - Q j (|h jn | q + |∇h jn | q )dµ ≤ C 1 C q (Kα) nq < (Kα) (n+1)q provided Kα > C 1 q
1 C and where C 1 is the constant in Lemma 2.15. Then Lemma 2.15 asserts that Ω jn ⊂ 2Q jn . Let now (Q jn,i ) be a Whitney covering for Ω jn . We have i Q jn,i = Ω jn ⊂ Ω n and the (Q jn,i ) i have the bounded overlap property. From (c) for n, we know that the (Q jn ) are N n disjoint. Consequently, the balls (Q jn,i ) are N n+1 disjoint and therefore we obtain (c) for n + 1. Pose

h jn,i (x) = h jn (x) - 1 χ i jn (Q jn,i ) Q jn,i h jn χ i jn dµ χ i jn (x)
and g jn = h jni h jn,i . The same arguments as in Proposition 3.1 show that g jn W 1,∞ ≤ C(Kα) (n+1) . Since the support of h jn is contained in Q jn ⊂ 2Q jn and Ω jn ⊂ 2Q jn , we deduce that supp g jn ⊂ 2Q jn . For every i, h jn,i dµ = 0 so that (d) follows for n + 1. We also obtain i h jn,i L 1 + |∇h jn,i | L 1 ≤ C h jn W 1,1 as in Proposition 3.1. Therefore, the equality

h jn = g jn + i h jn,i
holds in W 1,1 and also µa.e. since for each x the sum has at most N (n+1) terms and g jn dµ = 0. It follows that

a jn = g jn CN (Kα) n+1 µ(2Q jn )
is an ∞ atom with supp a jn ⊂ 2Q jn . We deduce that the representation (9) holds for n + 1 and also (a). Let us prove (e) and (f) for n + 1. The definition of h jn,i and (e) for n yield

|h jn,i (x)| ≤   |h jn (x)| + C 0 - Q jn,i |h jn | q dµ 1 q   χ i jn (x) ≤ |b(x)| + 2C 0 4 D q (Kα) n + C 0 4 D q (Kα) n+1 χ i jn (x) ≤ |b(x)| + 2C 0 4 D q (Kα) n+1 χ i jn (x) = |b(x)| + 2C ′ (Kα) n+1 χ i
jn (x) as long as Kα > 2. The definition of ∇h jn,i and (f) for n yield

|∇h jn,i | ≤|∇h jn | + h jn - 1 χ jn (Q jn ) Q jn h jn χ jn dµ ∇χ jn ≤(C ′′ + 2) K n-1 M n q-ǫ (|∇b|) + (Kα) n 1 Q jn 1 Q jn,i + C ′ M q-ǫ (|∇h jn |) + (Kα) n+1 1 Q jn 1 Q jn,i ≤(C ′′ + 2) K n-1 M n q-ǫ (|∇b|)(x) + (Kα) n 1 Q jn + C ′ (C ′′ + 2) K n-1 M n+1 q-ǫ (|∇b|)(x) + (Kα) n 1 Q jn,i + C ′ (Kα) n+1 1 Q jn 1 Q jn,i ≤(C ′′ + 2) K n M n+1 q-ǫ (|∇b|)(x) + (Kα) n+1 1 Q jn,i
. as long as K, Kα are large enough (for example we require K >> 4C ′ ). Now we can prove (b). From (e) and (f), we deduce that for x ∈ Ω jn ,

(Kα) (n+1) < M q (|h jn | + |∇h jn |)(x) < (C ′′ + 2) M q (b)(x) + K n-1 M n q-ǫ (|∇b|)(x) + 2(Kα) n .
provided Kα large enough. Thus if we take K >> 4(C ′′ + 2), we deduce that

M q |b| + K n-1 M n q-ǫ (|∇b|) (x) > K n α (n+1) 2
and so as K > 1 we obtain

M q |b| + M n q-ǫ (|∇b|) (x) > Kα (n+1) 2 .
Thus jn,i Q jn,i ⊂ jn Ω jn ⊂ Ω n+1 . The last point (g) for n + 1 is obtained as ( 14) in Proposition 3.1. The proof is therefore complete.

⊓ ⊔

We finish this subsection describing the homogeneous version of all these results.

Definition 2.16 For 1 < β ≤ ∞, we say that a function b is a homogeneous (1, β)-atom associated to a ball Q if 1. b is supported in the ball Q, 2. b Ẇ 1,β := |∇b| L β ≤ µ(Q) -1 β ′ , 3. bdµ = 0.
Definition 2.17 For 1 < β ≤ ∞, we define the homogeneous atomic Hardy-Sobolev space ḢS 1 (β),ato as follows:

f ∈ ḢS 1 (β),ato if f ∈ L 1 loc and there exists (b i ) i a family of homogeneous (1, β)-atoms such that f = i λ i b i with i |λ i | < ∞.
We equip this space with the semi-norm

f ḢS 1 (β),ato = inf (λ i ) i i |λ i |.
Proposition 2.18 ḢS 1 (β),ato /R is a Banach space for every 1 < β ≤ ∞.

Remark 2.19 Note that every homogeneous (1, β)-atom is an homogeneous

(1, β ′ )-atom for 1 < β ′ ≤ β ≤ ∞ and therefore ḢS 1 (β),ato ⊂ ḢS 1 (β ′ ),ato with f ḢS 1 (β ′ ),ato ≤ f ḢS 1 (β),ato . Proposition 2.20 For 1 < β < ∞ the finite subspace ḢS 1 F,(β),ato is dense in ḢS 1 (β),ato .
Definition 2.21 Let M be a Riemmanian manifold. The classical homogeneous Hardy-Sobolev space ḢS 1 (M ) is defined as [START_REF] Strichartz | H p Sobolev spaces[END_REF], [START_REF] Cho | Atomic decomposition on Hardy-Sobolev spaces[END_REF] in the Euclidean case).

ḢS 1 = {f ∈ L 1 loc ; ∇f ∈ H 1 (M )} (see

Proposition 2.22 ḢS

1 is a Banach space.

Proposition 2. [START_REF] Davies | Non-Gaussian aspects of heat kernel behavior[END_REF] We have ḢS

1 (β),ato ⊂ ḢS 1 for all 1 < β < ∞.
Proof of Theorem 0.3: Same proof as that of Theorem 0.1 but considering the homogeneous version of the Calderón-Zygmund decomposition. ⊓ ⊔

3 Interpolation of Hardy-Sobolev spaces.

This section is dedicated to the study of real interpolation of Hardy-Sobolev spaces with Sobolev spaces. First we show how we can use the Calderón-Zygmund decomposition for Sobolev functions to obtain interpolation results for the particular Hardy-Sobolev spaces (studied in Subsection 2.2).

Unfortunately, this method is very specific to this kind of spaces and seems not to be generalized for the study of other Hardy-Sobolev spaces. That is why in Subsection 3.2, we will use the maximal characterization and the results of Subsection 1.4 to obtain interpolation results in a more abstract background.

Interpolation of particular Hardy-Sobolev spaces.

First as done in [START_REF] Badr | Real interpolation of sobolev spaces[END_REF] and [START_REF] Badr | Real interpolation of sobolev spaces associated to a weight[END_REF], we want to prove interpolation results using an adapted "Calderón-Zygmund" decomposition for Sobolev functions.

Let us describe it :

Proposition 3.1 (Calderón-Zygmund lemma for Sobolev functions) Let M be a complete non-compact Riemannian manifold satisfying (D). Let 1 < q < ∞ and assume that M satisfies a Poincaré inequality (P q ). Let q ≤ p < ∞, f ∈ W 1,p and α > 0. Then one can find a collection of balls (Q i ) i , functions b i and a Lipschitz function g such that the following properties hold:

f = g + i b i (12) |g(x)| ≤ Cα and |∇g(x)| ≤ Cα µ -a.e x ∈ M (13) 
supp b i ⊂ Q i , b i HS 1 (q),ato ≤ Cαµ(Q i ) ( 14 
) i µ(Q i ) ≤ Cα -p (|f | + |∇f |) p dµ ( 15 
) i 1 Q i ≤ N ( 16 
)
where C and N only depend on q, p and on the constants in (D) and (P q ). This proposition is very similar to the ones of [START_REF] Badr | Real interpolation of sobolev spaces[END_REF][START_REF] Badr | Real interpolation of sobolev spaces associated to a weight[END_REF]. So we do not detail the proof and just explain the modifications. The new and important fact, is that the functions b i (appearing in the decomposition) belong to the atomic Hardy-Sobolev spaces and not just to the Sobolev space W 1,1 . 13) is satisfied according to the Lebesgue differentiation theorem. Otherwise, the maximal theorem yields

Proof : Let f ∈ W 1,p , α > 0 and consider Ω = {x ∈ M : M(|f | q + |∇f | q )(x) > α q }. If Ω = ∅, then set g = f , b i = 0 for all i so that (
µ(Ω) ≤ Cα -p (|f | + |∇f |) q p q p q ≤ Cα -p |f | p dµ + |∇f | p dµ (17) 
< +∞.

In particular Ω = M as µ(M ) = +∞. Let F be the complement of Ω. Since Ω is an open set distinct of M , let (Q i ) be a Whitney decomposition of Ω ( [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]). That is, the Q i are pairwise disjoint, and there exist two constants C 2 > C 1 > 1, depending only on the metric, such that 16) and ( 14) are satisfied due to [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF]. Using the doubling property, we have

1. Ω = ∪ i Q i with Q i = C 1 Q i and the balls Q i have the bounded overlap property; 2. r i = r(Q i ) = 1 2 d(x i , F ) and x i is the center of Q i ; 3. each ball Q i = C 2 Q i intersects F (C 2 = 4C 1 works). For x ∈ Ω, denote I x = {i : x ∈ Q i }. Recall that ♯I x ≤ N and fixing j ∈ I x , Q i ⊂ 7Q j for all i ∈ I x . Conditions (
Q i (|f | q + |∇f | q )dµ ≤ Cα q µ(Q i ). ( 18 
)
Let us now define the functions b i . For this, we construct a partition of unity (χ i ) i be a partition of unity of Ω subordinated to the covering

(Q i ). Each χ i is a Lipschitz function supported in Q i with |∇χ i | ∞ ≤ C r i . We set b i = (f -1 χ i (Q i ) Q i f χ i )χ i where χ i (Q i ) ≃ µ(Q i ) means Q i χ i dµ.
This is the main change, which is necessary as we look for a vanishing mean value for b i 's. By usual arguments and Poincaré inequality (P q ), we can estimate b i in the Sobolev space

W 1,q : b i W 1,q ≤ Cαµ(Q i ) 1 q . Then by writing b i = α i α -1 i b i = α i a i with α i = Cαµ(Q i )
, we deduce that the functions a i are (1, q)-atoms -and in fact (1, r)-atoms for every r ≤ qassociated to the ball Q i . Therefore b i ∈ HS 1 (q),ato with b i HS 1 (q),ato ≤ α i = Cαµ(Q i ) and also b = i b i ∈ HS 1 (q),ato with b HS 1 (q),ato αµ(Ω). Thus ( 14) is proved. Set

g = f - i b i .
Since the sum is locally finite on Ω, as usually g is defined almost everywhere on M and g = f on F . Moreover, g is a locally integrable function on M . It remains to prove [START_REF] Bergh | Interpolations spaces, An introduction[END_REF]. We have

∇g = ∇f - i ∇b i = ∇f -( i χ i )∇f - i (f - 1 χ i (Q i ) Q i f χ i dµ)∇χ i = 1 F (∇f ) - i (f - 1 χ i (Q i ) Q i f χ i dµ)∇χ i .
From the definition of F and the Lebesgue differentiation theorem, we have 1

F (|f | + |∇f |) ≤ α µ-a.e.
We claim that a similar estimate holds for

h = i f - 1 χ i (Q i ) Q i f χ i dµ ∇χ i ,
that is |h(x)| ≤ Cα for all x ∈ M . For this, note first that h vanishes on F and the sum defining h is locally finite on Ω. Then fix x ∈ Ω and j ∈ I x . Note that i χ i (x) = 1 and

i ∇χ i (x) = 0, so h(x) = i∈Ix 1 µ(7Q j ) 7Q j f dµ - 1 χ i (Q i ) Q i f χ i dµ ∇χ i (x).
For all i, j ∈ I x , by the construction of the Whitney collection, the ball Q i and Q j have equivalent radius and Q i ⊂ 7Q j . Thus

1 χ i (Q i ) Q i f χ i dµ -- 7Q j f dµ ≤ 1 χ i (Q i ) Q i f -- 7Q j f dµ |χ i |dµ - 7Q j f -- 7Q j f dµ dµ r j - 7Q j |∇f | q dµ 1/q αr j . (19) 
We used (D), (P q ), χ i (Q i ) ≃ µ(Q i ) and ( 18) for 7Q j . Hence

|h(x)| i∈Ix αr j r -1 j ≤ CN α. (20) 
Then the end of the proof is classical and is exactly the same as that of the decompositions proved in [START_REF] Badr | Real interpolation of sobolev spaces[END_REF][START_REF] Badr | Real interpolation of sobolev spaces associated to a weight[END_REF]. We do not repeat it.

⊓ ⊔

According to [START_REF] Badr | Real interpolation of sobolev spaces[END_REF][START_REF] Badr | Real interpolation of sobolev spaces associated to a weight[END_REF], we know how to obtain interpolation results from an adapted "Calderón-Zygmund decomposition". We quickly recall them (for an easy reference) in order to obtain a real interpolation result between the Hardy-Sobolev spaces HS 1 (q),ato and Sobolev spaces.

First we characterize the K-functional of real interpolation in the following theorem: Proposition 3.2 Let M be a complete Riemannian manifold satisfying (D) and Poincaré inequality (P q ) for some q ∈ (1, ∞). Then 1. for all r ∈ (1, ∞), there exists

C 1 > 0 such that for every f ∈ HS 1 (r),ato + W 1,∞ and t > 0, K(f, t, HS 1 (r),ato , W 1,∞ ) ≥ C 1 t (|f | * * + |∇f | * * ) (t);
2. for 1 < q ≤ p < ∞, there exists C 2 > 0 such that for every f ∈ W 1,p and t > 0,

K(f, t, HS 1 (r),ato , W 1,∞ ) ≤ C 2 t |f | q * * 1 q + |∇f | q * * 1 q (t).
We have the same results replacing the space HS 1 (r),ato by HS 1 .

Proof : We only write the proof for the space HS 1 (r),ato . We have already seen (Theorem 0.1) that under our assumption HS 1 (r),ato = HS 1 (q),ato for r ∈ [q, ∞]. We just have to prove our result for r ∈ (1, q]. The lower bound of K is trivial. It follows from the characterization of K between L 1 and L ∞ . Now for the upper bound of K of point 2., take f ∈ W 1,p and q ≤ p < ∞. Let t > 0. We consider the Calderón-Zygmund decomposition of Proposition 3.1 for f with α = α(t) = (M(|f | q + |∇f | q )) * 1 q (t). We write f = i b i + g = b + g where (b i ) i , g satisfy the properties of the proposition. From the bounded overlap property of the B i 's, it follows that for all r ≤ q b HS 1 (r),ato ≤ N

i b i HS 1 (r),ato ≤ Cα(t) i µ(Q i ) ≤ Cα(t)µ(Ω).
Moreover, since (Mf ) * ∼ f * * and (f + g) * * ≤ f * * + g * * (c.f [START_REF] Bennett | Interpolation of operators[END_REF], [START_REF] Bergh | Interpolations spaces, An introduction[END_REF]) , we get

α(t) |f | q * * 1 q (t) + |∇f | q * * 1 q (t) .
Noting that for this choice of α(t), µ(Ω t ) ≤ t (c.f [START_REF] Bennett | Interpolation of operators[END_REF], [START_REF] Bergh | Interpolations spaces, An introduction[END_REF]), we deduce that

K(f, t, HS 1 (r),ato , W 1,∞ ) ≤ b HS 1 (r),ato + t g W 1,∞ t |f | q * * 1 q (t) + |∇f | q * * 1 q (t) (21) 
for all t > 0 and obtain the desired inequality for f ∈ W 1,p , q ≤ p < ∞. ⊓ ⊔

Then integrating the K-functional yields Proposition 3.3 Let M be a complete Riemannian manifold satisfying (D) and (P q ), for some 1 < q < ∞. Then for all r ∈ (1, ∞] and p ∈ (q, ∞), W 1,p is a real interpolation space between HS 1 (r),ato and W 1,∞ . More precisely, we have

HS 1 (r),ato , W 1,∞ 1-1 p ,p = W 1,p .
We refer the reader to the previously cited papers for a detailled proof. We also have an analogous interpolation result for the Hardy-Sobolev space HS 1 instead of HS 1 (r),ato . Note that HS 1 (r),ato ⊂ HS 1 and f HS 1 ≤ 2 f HS 1 (r),ato .

Proof of Theorem 0.2: The proof follows from Proposition 3.3 and the Reiteration Theorem (see [START_REF] Bennett | Interpolation of operators[END_REF], Theorem 2.4).

⊓ ⊔

All these results are based on the well adapted "Calderón-Zygmund decomposition". The first one (described in [START_REF] Auscher | On L p estimates for square roots of second order elliptic operators on R n[END_REF] by P. Auscher) was written for homogeneous Sobolev spaces. We can write an analog result of Proposition 3.1 for homogeneous Sobolev spaces. Then we estimate the functional K (as in [START_REF] Badr | Real interpolation of sobolev spaces[END_REF]) and obtain the homogeneous interpolation Theorem 0.4:

Proof of Theorem 0.4: Analogous proof to that of Theorem 0.2 and 3.3.

⊓ ⊔

We used a "Calderón-Zygmund" decomposition to obtain an interpolation result for the particular Hardy-Sobolev spaces. These arguments give positive interpolation results under the assumptions of doubling property and Poincaré inequality. Unfortunately, this method seems not to work for abstract and more general Hardy-Sobolev spaces: the way to make appear the "atoms" is very particular. That is why, in the next subsection, we develop other arguments to obtain interpolation results with abstract Hardy-Sobolev spaces. We will use our maximal characterization of Sobolev spaces (Subsection 1.4) and ideas of [START_REF] Bernicot | New abstract Hardy spaces[END_REF].

Interpolation of abstract Hardy-Sobolev spaces.

We refer the reader to Subsection 2.1 for the definition of abstract Hardy-Sobolev spaces associated to a collection of "local operators" B.

To prove our results, we will follow ideas of [START_REF] Bernicot | New abstract Hardy spaces[END_REF] and [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF] using duality and some maximal operators associated to the collection B. Let us first define them.

Definition 3.4 Let σ ∈ (1, ∞]. We set A Q = Id -B Q and ∀x ∈ M, M B,σ (f )(x) := sup Qball x∈Q 1 µ(Q) 1/σ A * Q (f ) W -1,σ (Q) . (22) 
We define a sharp maximal function adapted to our operators. For s > 0,

∀x ∈ M, M ♯ B,s (f )(x) := sup Qball x∈Q 1 µ(Q) 1/s B * Q (f ) W -1,s (Q) .
We refer the reader to Definition 1.13 for the notation I M and Subsection 1.4 for the definition of some maximal operators and the assumption (H µ 0 ,µ 1 ) .

We can now prove Theorem 0.5 .

Remark 3.5

We want to emphasize that we only require the use of the "finite Hardy-Sobolev" space HW 1 F,ato . With our new maximal operators, the assumption (1) can be written as

M B,σ M S, * ,β ′ . ( 23 
)
Proof of Theorem 0.5: From the HW 1 F,ato -L 1 boundedness, it is quite easy to check that for each ball Q, the operator

T B Q is bounded from W 1,β (Q) into L 1 with T B Q W 1,β (Q)→L 1 µ(Q) 1/β ′ .
By duality, we deduce that

B * Q T * is bounded from L ∞ to W -1,β ′ with B * Q T * L ∞ →W -1,β ′ (Q) µ(Q) 1/β ′ .
Thus, we obtain the first inequality

∀f ∈ L ∞ , M ♯ B,β ′ (T * f ) L ∞ f L ∞ . ( 24 
)
This inequality with the fact (β ′ , q) ∈ I M -since q ′ ∈ (σ ′ , p 0 ) -, shows that

∀h ∈ L q ∩ L p 0 , T * h W -1,q h L q .
By duality, we deduce that there is a constant c = c(p) such that

∀f ∈ W 1,p 0 ∩ W 1,q ′ , T (f ) L q ≤ c f W 1,q ′ . (31) 
Consequently, inequality [START_REF] Koskela | Pointwise characterizations of Hardy-Sobolev functions[END_REF] holds for all q ∈ (p ′ 0 , σ), and therefore T admits a continuous extension from W 1,p to L p for all p ∈ (σ ′ , p 0 ).

⊓ ⊔

It remains to prove [START_REF] Keith | The Poincaré inequality is an open ended condition[END_REF].

Lemma 3.6 With the notations of the previous proof, we have the following good lambda inequality. For all λ > 0 (or only for λ M S, * ,β ′ (F ) L 1 if the measure is finite)

µ M S, * ,β ′ (F ) > Kλ, M ♯ B,β ′ (F ) ≤ γλ (K -σ + γ β ′ K -β ′ )µ ({M S, * ,β ′ (F ) > λ}) .
Proof : The proof is exactly the same as that of Theorem 3.1 in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF], adapted to our maximal operators. We deal only with the case when µ(X) = ∞. We consider the sets

B λ := M S, * ,β ′ (F ) > Kλ, M ♯ B,β ′ (F ) ≤ γλ and E λ := {M S, * ,β ′ (F ) > λ} .
First since K ≥ 1, we have B λ ⊂ E λ . We choose (Q j ) j a Whitney decomposition of E λ and write x j for a point in 4Q j ∩ E c λ . Let j such that B λ ∩ Q j = ∅ and x ∈ B λ ∩ Q j . We have M S, * ,β ′ (F )(x) := inf

F =φ 0 -div(φ 1 ) sup Qball x∈Q 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≥ Kλ. (32) 
Let F = ψ 0div(ψ 1 ) and Q ext be an extremize decomposition and ball of [START_REF] Meda | On the H 1 -L 1 boundedness of operators[END_REF]. Assume first that Q ext satisfies Q ext ∩ (8Q j ) c = ∅. Since x j ∈ 4Q ext and inf

F =φ 0 -div(φ 1 ) sup Q∋x j 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≤ M S, * ,β ′ (F )(x j ) ≤ λ, we deduce that M S, * ,β ′ (F )(x) ≤ µ(4Q ext ) µ(Q ext ) 1/β ′ λ.
Therefore, for a large enough constant K, the doubling property of the measure shows that the assumption Q ext ∩ (8Q j ) c = ∅ is false. We deduce that Q ext ⊂ 8Q j and therefore

M S, * ,β ′ (F )(x) = inf F =φ 0 -div(φ 1 ) sup Qball x∈Q⊂8Q j 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≥ Kλ. Write F = B * 8Q j F + A * 8Q j F . It follows that µ(B λ ∩ Q j ) ≤µ      inf B * 8Q j F =φ 0 -div(φ 1 ) sup Qball x∈Q⊂8Q j 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≥ Kλ/2      + µ      inf A * 8Q j F =φ 0 -div(φ 1 ) sup Qball x∈Q⊂8Q j 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≥ Kλ/2      .
The first term is controlled by the "weak type (β ′ , β ′ )" of the maximal operator M S, * ,β ′ (local version of Proposition 1.14) :

µ      inf B * 8Q j F =φ 0 -div(φ 1 ) sup Qball x∈Q⊂8Q j 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≥ Kλ/2      1 K β ′ λ β ′ M S, * ,β ′ (B * 8Q j F ) β ′ L β ′ ,∞ ,8Q j 1 K β ′ λ β ′ B * 8Q j F β ′ W -1,β ′ (8Q j ) 1 K β ′ λ β ′ µ(Q j ) inf 8Q j M ♯ B,β ′ (F ) β ′ γ β ′ K β ′ µ(Q j ). (33) 
For the last inequality, we used the fact that B λ ∩ Q j = ∅. For the second term, we use similar arguments with

β ′ ≤ σ µ      inf A * 8Q j F =φ 0 -div(φ 1 ) sup Qball x∈Q⊂8Q j 1 µ(Q) 1/β ′ |φ 0 | + |φ 1 | L β ′ (Q) ≥ Kλ/2      1 K σ λ σ M S, * ,σ A * 8Q j F σ L σ,∞ ,8Q j 1 K σ λ σ A * 8Q j F σ W -1,σ (8Q j ) .
The above assumption [START_REF] Davies | Non-Gaussian aspects of heat kernel behavior[END_REF] shows that

A * 8Q j F σ W -1,σ (8Q j ) µ(Q j ) inf 8Q j M B,σ (F ) σ µ(Q j ) inf 8Q j M S, * ,β ′ (F ) σ λ σ µ(Q j ).
We used in the last inequality that x j ∈ 8Q j and M S, * ,β ′ (F )(x j ) ≤ λ. Thus, we proved an analogous inequality of [START_REF] Miyachi | Hardy-sobolev spaces and maximal functions[END_REF] for the second term. We deduce that

µ (B λ ∩ Q j ) γ β ′ K β ′ + 1 K σ µ(Q j ).
Summing over j, the proof is therefore complete.

⊓ ⊔

In the next proposition, we give a useful criterion to insure the main assumption [START_REF] Davies | Non-Gaussian aspects of heat kernel behavior[END_REF] :

Proposition 3.7 Assume that the operators A Q satisfy ∀j ≥ 0 1 µ(2 j+1 Q) 1/β A Q (f ) W 1,β (S j (Q)) ≤ α j (Q) 1 µ(Q) 1/σ ′ f W 1,σ ′ (Q) ,
for all functions f supported in the ball Q, where the coefficients α j (Q) satisfy

sup Q ball j≥0 µ(2 j+1 Q) µ(Q) α j (Q) < ∞. (34) 
Then the maximal operator M B,σ is bounded by M S, * ,β ′ .

Proof : Let x ∈ M . For a ball Q, we denote S j (Q) = 2 j Q \ 2 j-1 Q. We estimate the Sobolev-norm by duality

M B,σ (f )(x) = sup Q; x∈Q sup g∈C ∞ 0 (Q) g W 1,σ ′ ≤1 µ(Q) -1/σ A * Q (f )gdµ = sup Q; x∈Q sup g∈C ∞ 0 (Q) g W 1,σ ′ ≤1 µ(Q) -1/σ f A Q (g)dµ.
Take a decomposition f = φdiv(ψ). Then we have

M B,σ (f )(x) ≤ sup Q; x∈Q sup g∈C ∞ 0 (Q) g W 1,σ ′ ≤1 µ(Q) -1/σ j≥0 S j (Q) [φ 0 A Q (g) + ψ 0 ∇A Q (g)] dµ ≤ sup Q; x∈Q µ(Q) -1/σ sup g∈C ∞ 0 (Q) g W 1,σ ′ ≤1 j≥0 |φ 0 | + |ψ 0 | L β ′ (S j (Q)) A Q (g) W 1,β (S j (Q)) .
Our assumption yields

M B,σ (f )(x) ≤ sup Q; x∈Q µ(Q) -1/σ sup g∈C ∞ 0 (Q) g W 1,σ ′ ≤1 j≥0 |φ 0 | + |ψ 0 | L β ′ (S j (Q)) α j (Q) µ (2 j+1 Q) 1/β µ(Q) 1/σ ′ g W 1,σ ′ (Q) ≤ sup Q; x∈Q j≥0 |φ 0 | + |ψ 0 | L β ′ (2 j Q) µ(2 j+1 Q) -1/β ′ α j (Q) µ(2 j+1 Q) µ(Q) ≤ M HL,β ′ (|φ 0 | + |ψ 0 |)(x) sup Q; x∈Q j≥0 α j (Q) µ(2 j+1 Q) µ(Q) M HL,β ′ (|φ 0 | + |ψ 0 |)(x).
These inequalities hold for every decomposition f = φdiv(ψ). Taking the infimum over all these decompositions, we obtain the desired inequality.

⊓ ⊔

With an extra assumption (as in [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF]), we obtain the real interpolation result of Theorem 0.6 : Proof of Theorem 0.6: The proof is the same as the one of Theorem 3.14 in [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF] using the arguments of Theorem 0.5. We omit it.

⊓ ⊔

Let us compare our assumption (β ′ , p ′ θ ) ∈ I M with Poincaré inequality :

Remark 3.8 Assume that β ′ ≤ p ′ θ (else (β ′ , p ′ θ ) ∈ I M is always satisfied, see [START_REF] Bernicot | Maximal inequalities for dual sobolev spaces W -1,p and applications to interpolation[END_REF]) and p θ ≤ 2. Thanks to Theorem 1.17, we can check that the assumption (β ′ , p ′ θ ) ∈ I M is implied by the Poincaré inequality (P p θ ) if β ′ ≥ 2, which corresponds to a variant of the assumption done in [START_REF] Badr | Real interpolation of sobolev spaces[END_REF] (in [START_REF] Badr | Real interpolation of sobolev spaces[END_REF], the author used local hypotheses of doubling and Poincaré, here we are under the global hypotheses) to interpolate the corresponding nonhomogeneous Sobolev spaces.

Applications

4.1 Operators with regularity assumptions about the kernel.

In this subsection, we look for a "Sobolev" version of results for Calderón-Zygmund operators on Lebesgue spaces. Definition 4.1 Let T be a linear operator bounded from Ẇ 1,p 0 (resp. W 1,p 0 ) to L p 0 . We say that it is associated to a kernel K(x, y) if for every compactly supported function f and x ∈ supp(f ) c we have the integral representation :

T (f )(x) = K(x, y)f (y)dµ(y).
We introduce the following regularity property for such kernel :

Γ := sup Q ball sup y,z∈Q r Q M \4Q |K(x, y) -K(x, z)| dµ(x) < ∞. (35) 
This subsection is devoted to the study of operators T associated to a kernel satisfying [START_REF] Saloff-Coste | Aspects of sobolev type inequalities[END_REF]. We first prove a weak type estimate .

Proposition 4.2 Let M be a complete Riemannian manifold satisfying (D) and admitting a Poincaré inequality (P 1 ). Let T be a linear operator which is bounded from Ẇ 1,2 (resp. W 1,2 ) to L 2 and is associated to a kernel satisfying [START_REF] Saloff-Coste | Aspects of sobolev type inequalities[END_REF]. Then T is bounded from Ẇ 1,1 (resp. W 1,1 ) to L 1,∞ .

Proof : We give the proof in the homogeneous case, it is the same in the non-homogeneous case. Let f ∈ Ẇ 1,1 . We want to show that

µ({x ∈ M ; |T f (x)| > α}) 1 α ∇f L 1 .
Take the Calderón-Zygmund decomposition -homogeneous version of Proposition 3.1of f for α > 0. We have

T f = T g + T ( i b i ) and {|T f | > α} ⊂ |T g| > α 2 |T ( i b i )| > α 2 . Since T is bounded from Ẇ 1,2 to L 2 then µ |T g| > α 2 ≤ 4 α 2 M |T g| 2 dµ 1 α 2 T Ẇ 1,2 →L 2 α ∇f L 1 . For |T ( i b i )| = | i T b i | ≤ i |T b i | we have µ |T ( i b i )| > α 2 ≤ µ i |T b i | > α 2 ≤ µ( i 4Q i ) + µ {(M \ ∪ i 4Q i ); i |T b i | > α 2 } .
From (D) and the homogeneous analog of (15) of Proposition 3.1, we have µ(

i 4Q i ) ≤ C α ∇f 1 . It remains to estimate µ(A) = µ( (M \ ∪ i 4Q i ); i |T b i | > α 2 
). We have

A ⊂ i 1 M \4Q i |T b i | > α 2 . Then µ(A) ≤ 2 α M i |T b i |1 M \4Q i dµ = 2 α i M \4Q i |T b i |dµ. Let y i ∈ Q i such that K(x, y i ) exists. Noting that b i dµ = 0, it comes that M \4Q i |T b i |(x)dµ(x) = M \4Q i Q i K(x, y)b i (y)dµ(y) dµ(x) = M \4Q i Q i (K(x, y) -K(x, y i ))b i (y)dµ(y) dµ(x) ≤ Q i M \4Q i |K(x, y) -K(x, y i )|dµ(x) |b i (y)|dµ(y) 1 r i Q i |b i (y)|dµ(y) sup y, y i ∈Q i r i M \4Q i |K(x, y) -K(x, y i )|dµ(x) αµ(Q i ).
Summing over i and using the homogeneous analogous property of (15), the proof is therefore complete.

⊓ ⊔

To obtain this weak type estimate, we have to assume a strong Poincaré inequality (P 1 ). The result of Theorem 0.7 is also interesting: we are able to obtain a strong type estimate using Hardy-Sobolev spaces (instead of the Sobolev space Ẇ 1,1 ), and requiring a weaker Poincaré inequality in the non-homogeneous case.

Proof of Theorem 0.7: We begin showing that in both case item 1. (resp. 2.), there exists a constant C, such that for all 2-homogeneous atom a (resp. non-homogenous atom),

T a L 1 ≤ C. ( 36 
)
We give the proof in the homogeneous case, it works the same in the non-homogeneous case. Indeed, noting Q = Q(x 0 , r) the ball associated to the (1, 2) homogeneous atom a , we have

4Q |T a|dµ ≤ C T Ẇ 1,2 →L 2 a Ẇ 1,2 µ(Q) 1 2 ≤ C T Ẇ 1,2 →L 2 .
On M \4Q, we use the integral representation. The fact that adµ = 0 yields M \4Q

|T a|dµ ≤ |K(x, y) -K(x, x 0 )|dµ(x) dµ(y)

= Q |a -a Q | M \4Q
|K(x, y) -K(x, x 0 )|dµ(x) dµ(y)

≤ Crµ(Q)(- Q |∇a| 2 dµ) 1 2 C r ≤ C.
We used Poincaré inequality (P 2 ), [START_REF] Saloff-Coste | Aspects of sobolev type inequalities[END_REF] and the definition of a (1, 2) atom.

Now we conclude the proof of item 1. Thanks to Proposition 4.2, T is bounded from Ẇ 1,1 to L 1,∞ . Take f ∈ ḢS It remains to complete the proof of item 2. For this, we invoke the following lemma which finishes the proof. It is a Sobolev version of a result in [START_REF] Meda | On the H 1 -L 1 boundedness of operators[END_REF], that was generalized in [START_REF] Bernicot | Use of abstract Hardy spaces, real interpolation and applications to bilinear operators[END_REF].

⊓ ⊔ Lemma 4.3 Assume that (P 2 ) holds. Let T be a bounded linear operator from W 1,2 to L 2 with a constant C such that for all (1, 2) atom f ∈ HS 1 F,(2),ato , we have

T (f ) L 1 ≤ C.
Then T extends continuously from HS 1 (2),ato into L 1 .

Remark 4.4

The proof uses the embedding HS 1 (2),ato ֒→ L 1 , which does not hold for the homogeneous space ḢS 1 (2),ato . Actually, we do not know if such a result is true or not for homogeneous Hardy-Sobolev spaces, without using (as it is well-known) a weak-type inequality from Ẇ 1,1 to L 1,∞ which requires the Poincaré inequality (P 1 ) as we saw in item 1.

Proof : As HS 1 F,(2),ato is dense in HS 1 (2),ato , we know that there exists an operator U bounded from HS 1 (2),ato into L 1 such that for each atom m: U (m) = T (m). We have to prove that ∀f ∈ W 1,2 ∩ HS 1 (2),ato , U (f ) = T (f ).

To prove this fact, we use duality. Let Q be a ball and φ Q be a smooth function supported in Q verifying

Q φ Q dµ = 1, φ Q ∞ 1 µ(Q) , ∇φ Q ∞ 1 r Q µ(Q) .
Then for all smooth function k supported in Q, with k W 1,2 ≤ µ(Q) -1/2 , the function

h := k -( Q k)φ Q is a (1,
2)-atom associated to the ball Q (due to Poincaré inequality and Proposition 1.6). Let g ∈ L ∞ ∩ L 2 . We have T (h), g = U (h), g .

We deduce that h, T * g = h, U * g . Hence

k, [T * g -U * g] - φ Q [T * g -U * g] dµ 1 Q = 0.
We set λ for the function λ := [T * g -U * g]. We have

λ - φ Q λdµ 1 Q W -1,2 (B) = 0.
Thus λ (as distribution) is constant on the ball Q. This fact is proved for every ball Q. We conclude that λ (which is independent with respect to the ball) is constant over the whole manifold M . The non-homogeneous Hardy-Sobolev space HS 1 (2),ato is embedded into L 1 . Then by L 1 -L ∞ duality, for all functions h ∈ HS 1 (2),ato we have h, λ = 0.

In particular for f ∈ W 1,2 ∩ HS 1

(2),ato , we get f, λ = 0 = Ẇ 1,2 f, T * g Ẇ -1,2 -HS 1

(2),ato f, U * g (HS 1

(2),ato ) * = L 2 T (f ), g L 2 -L 1 U (f ), g L ∞ . This is true for all functions g ∈ L ∞ ∩ L 2 . We deduce that T (f ) = U (f ) in (L ∞ ∩ L 2 ) * and therefore T (f )(x) = U (f )(x) for almost every x ∈ M .

⊓ ⊔

Proof of Corollary 0.9: The proof follows from the interpolation results in Theorem 0.2 and Theorem 0.4 and the self-improvement of Poincaré inequality of Theorem 1.5. ⊓ ⊔

The result in item 2. of Corollary 0.9 can also be recovered by suitably choosing the operators B Q of the abstract Hardy-Sobolev spaces (defined in Subsection 2.1).

Definition 4.5 For each ball Q of M , we define our operator B Q as :

B Q (f ) := f - Q f dµ φ Q ,
where φ Q is a smooth function supported in Q such that

Q φ Q dµ = 1, φ Q ∞ 1 µ(Q) , ∇φ Q ∞ r -1 Q µ(Q) -1 .
Let t dµ(x) ≤ C r . Taking the supremum over all y, z ∈ Q, all balls Q and applying Theorem 0.7, we obtain that T is bounded from ḢS 1 r,ato to L 1 for r > 1. Finally the boundedness of T from Ẇ 1,p to L p for < p < 2 follows from Corollary 0.9.

⊓ ⊔

Theorem 1 . 2 (

 12 Maximal theorem) ([20]) Let M be a Riemannian manifold satisfying (D). Denote by M the uncentered Hardy-Littlewood maximal function over open balls of M defined by Mf (x) := sup Q ball x∈Q |f | Q where f E := -E f dµ := 1 µ(E) E f dµ. Then for every p ∈ (1, ∞], M is L p bounded and moreover of weak type (1, 1) 1 .

  x, y) -K(x, x 0 ))a(y)dµ(y) dµ(x)≤ M \4Q Q |K(x, y) -K(x, x 0 )| |a(y)|dµ(y)dµ(x)

1 ( 2 ) 1 ( 2 1 ( 2 ) 1 F,( 2 )

 12121212 ,ato : f = ∞ i=1 λ i b i with for each i, b i is a (1, 2) homogeneous atom and with ∞ i=1 |λ i | ∼ f ḢS ,ato ֒→ Ẇ 1,1 , we know that f N = N i=1 λ i b i ∈ ḢS ,ato converges to f in Ẇ 1,1 . Thus by Proposition 4.2, T f N converges to T f in L 1,∞ . On the other hand, T f N converges to ∞ i=1 λ i T b i in Ẇ 1,1 and therefore T f = ∞ i=1 λ i T b i and T f 1 ≤ C f ḢS 1(2),ato .

  us estimate I = M \4Q Since y ∈ Q and x ∈ M \4Q then d(x, y) ≥ 3r. It follows that

	∞ 0 t dµ(x). I ≤ 1 tµ(Q(y, √ t)) e -α d 2 (x,y) t dt √ ∞ 0 C tµ(Q(y, √ t)) {x; d(x,y)> √ e -α d 2 (x,y) t 9r 2 } ≤ ∞ 0 C tµ(Q(y, √ t)) C α µ(Q(y, √ t))e -α 9r 2 t dt √ t	dµ(x)	dt √ t
	≤	0	∞	e -α 9r 2 t t √ t	dt
	≤	C r	0	∞	e -α 9 t t √ t	dt
	≤	C r	.			
	In the second estimate, we used that d(x,y)> Lemma 2.1 ). Similarly, we prove that M \4Q √	t e -γ d 2 (x,y) s ∞ 0 1 tµ(Q(z, dµ(x) ≤ C γ µ(Q(y, √ t)) e -α d 2 (x,z)	√ s))e -γ t s ([22],

t dt √

Now using [START_REF] Davies | Non-Gaussian aspects of heat kernel behavior[END_REF], we obtain

Then [START_REF] Dziubański | Atomic decomposition of H p spaces associated with some Schrödinger operators[END_REF] with Proposition 1.14, yields the following "weak type inequality"

Interpolating [START_REF] Duong | Duality of Hardy and BMO spaces associated with operators with heat kernel bounds[END_REF] and [START_REF] Fefferman | H p spaces of several variables[END_REF] gives

Now we use a "good lambdas" argument to compare the maximal operators. We use a Sobolev-version of the result of P. Auscher and J.M. Martell: [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF], Theorem 3.1. With its notation, take a function F . We define for all balls Q

The assumption [START_REF] Davies | Non-Gaussian aspects of heat kernel behavior[END_REF] shows that

By definition of M ♯ B,β ′ , we have

From these two inequalities, we claim that the following good lambda inequality holds (for K large enough and γ as small as we want)

We postpone the proof of this claim to Lemma 3.6. As usually this inequality is satisfied for all λ > 0 if µ(X) = ∞ and only for λ M S, * ,β ′ (F ) L 1 if the measure is finite. Assuming this fact, we will conclude the proof. By classical arguments (see proof of Theorem 3.1 in [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I : General operator theory and weights[END_REF]) we deduce that for

for all q ∈ (p ′ 0 , σ) with an implicit constant depending on q. Now we take a function

Thus we can apply the previous inequality which together with [START_REF] Grigor'yan | Gaussian upper bounds for the heat kernel on arbitrary manifolds[END_REF] yield

If the space X is of finite measure, using the W 1,p 0 -L p 0 boundedness of T and Proposition 1.14, we remark that

With β = 2, we define our Hardy-Sobolev space HW 1 (2),ato . We check the desired assumptions. Thanks to the Proposition 1.6, it is clear that under Poincaré inequality (P 2 ) the operators A Q are uniformly bounded on W 1,2 . Then by similar arguments as that in the proof of Theorem 0.7, under (P 2 ) the above operator T admits a continuous extension from HW 1 (2),ato to L 1 . Moreover, for q ∈ (1, 2) the inequality (P q ) implies that the maximal operator M B,q ′ is bounded by M 2 (using Proposition 3.7). Using Theorem 0.5, we recover item 2. of Corollary 0.9.

Application: (RR p ).

Let M be a complete Riemannian manifold satisfying (D). Consider the linear operator ∆ 1 2 with the following resolution

Here ∆ 1 2 f can be defined for f ∈ Lip as a measurable function (see [START_REF] Auscher | Riesz transform on manifolds and poincaré inequalities[END_REF]). Since ∆ 1 2 1 = 0, ∆ 1 2 can be defined on Lip ∩ Ẇ 1,q by taking quotient which we keep calling ∆ 1 2 . Applying Theorem 0.7, we obtain the following theorem for ∆ Theorem 4.6 1-Let M be a complete Riemannian manifold satisfying (D) and (P 1 ).

2-Let M be a complete Riemannian manifold satisfying (D) and (P q ) for some q ∈ [1, 2). Then (I + ∆) 1 2 is bounded from HS 1 (r),ato to L 1 for any r ≥ q if q = 1 (resp. r > 1 if q = 1). Consequently, (I + ∆) 1 2 is bounded from W 1,p to L p for any p ∈ [q, 2]. Remark 4.7 We refer the reader to [START_REF] Auscher | Riesz transform on manifolds and heat kernel regularity[END_REF][START_REF] Auscher | Riesz transform on manifolds and poincaré inequalities[END_REF] for the study of inequality (RR p ) for p ∈ (1, 2] (which corresponds to the boundedness of ∆ 1 2 from Ẇ 1,p to L p ) under Poincaré inequality. The new point here is the limit case (RR 1 ).

Proof : We prove item 1. of this theorem. We proceed analogously for the proof of item 2. Let us check that ∆ 1 2 satisfies the hypotheses of Theorem 0.7. First ∆