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Abstract: In this paper, we are interested in the finite-time average consensus problem for multi-agent
systems or wireless sensor networks. This issue is formulated in a discrete-time framework by utilizing
a linear iteration scheme, where each node repeatedly updates its value as a weighted linear combination
of its own value and those of its neighbors. Unlike most of research in literature, this work deals with
the foremost step, called configuration step, during which the consensus protocol is to be set up in each
agent. Designing consensus protocols can be viewed as a matrix factorization problem. For connected
undirected graphs, we propose a learning method for solving such matrix factorization problem in a
distributed way. More precisely, we first show how solving this problem for the particular case of strongly
regular graphs. Then, a distributed gradient back-propagation algorithm is derived for the general case.
The performance of the proposed algorithm is evaluated by means of simulation results.

Keywords: Protocol design, finite-time average consensus, back-propagation algorithm, matrix
factorization, self-configuration.

1. INTRODUCTION

The consensus issue in networks of autonomous agents has
been widely investigated in various fields, including computer
science and engineering. In such networks, according to an a
priori specified rule, also called protocol, each agent updates its
state based on the information received from its neighbors with
the aim of reaching an agreement to a common value. When
the common value corresponds to the average of the initial
states, average consensus is to be achieved. Average consensus
algorithms are commonly used as building block for distributed
control, estimation or inference algorithms. In the recent liter-
ature, one can find average consensus algorithms embedded in
the Distributed Kalman filter, Olfati-Saber (2007); Distributed
Least Squares algorithm, Bolognani et al. (2008); Distributed
Alternating Least Squares for tensors factorization, Kibangou
and de Almeida (2010); Distributed Principal Component Anal-
ysis, Valcarel Macua et al. (2010); or distributed joint input and
state estimation, Esna-Ashari et al. (2012), to cite few.

In order to run an average consensus algorithm, two main
steps are required: the configuration step (also called design
step) and the execution step. During the configuration step,
the consensus protocol is to be uploaded in each agent. Such
a task can be achieved through a self-configuration algorithm
instead of resorting to a network manager. Self-configuration
can include graph discovering and distributed decision on some
parameters. For instance, if the protocol is the maximum-
degree weights one, each agent first computes the number of
its neighbors before running a max-consensus algorithm for
computing the maximum degree of the underlying graph. In
the case of the Metropolis-Hasting based protocol, also called
local-degree weights, each agent compares its degree with
that of its neighbors in order to compute the weights of the
average consensus protocol. One commonly used protocol is
the constant edge weights, or graph Laplacian based average

consensus protocol, where a common step-size is used by all
the agents. Asymptotic convergence is then guaranteed if the
step-size is strictly positive and lower than 2/λ1(L) where
λ1(L) stands for the largest graph Laplacian eigenvalue. Even
though there are some simple bounds that give choices for the
step-size without requiring exact knowledge of the Laplacian
spectrum, agents have to agree in an adequate step-size. To
the best to our knowledge, there is no paper dealing with self-
configuration protocols for the constant edge weights based
average consensus protocol. It is worth noting that the step-
size influences on the speed of convergence of the average
consensus algorithm when using constant edge weights. That’s
why some recent works have been devoted to accelerating the
speed of convergence of consensus algorithms by solving some
optimization problems in a centralized way; the goal being
to reduce the spectral gap between the matrix of weights and

the average consensus matrix JN = 1
N

11T , where N stands for
the number of agents of the network, Xiao and Boyd (2004);
Kokiopoulou and Frossard (2009).

Since average consensus can be embedded in more sophisti-
cated distributed algorithms, protocols that guarantee a min-
imal execution time are more appealing than those ensuring
asymptotic convergence. For this purpose, several contributions
dedicated to finite-time consensus have been recently pub-
lished in the literature. In most of them, in particular those
formulated in a continuous-time framework, the goal is to
agree on a common value in finite-time without necessarily
specifying such a common value, Cortes (2006); Wang and
Xiao (2010); Shaofu Yang and Lu (2012). Finite-time average
consensus protocols have been mainly proposed in a discrete-
time framework. In Sundaram and Hadjicostis (2007), a finite-
time consensus algorithm based on the minimal polynomial
of the weight matrix was proposed. However, the design of
this protocol requires a strong knowledge on the underlying



network topology. Therefore, a decentralized calculation of the
minimal polynomial was proposed. An improvement of this
method has been proposed in Yuan et al. (2013). The author
has proposed algorithms to compute the consensus value using
the minimal number of observations of an arbitrary chosen node
in a network. However, the computation of the rank of a given
matrix and that of its kernel are needed. Therefore, the compu-
tational cost is the weakness of these methods. In Ko (2010) and
Georgopoulos (2011), the finite-time average consensus was
formulated as a matrix factorization problem. The resulting so-
lution yields a link scheduling on the complete graph to achieve
finite time consensus. Such a scheduling is to be controlled
by a central node. Following the idea of matrix factorization,
Laplacian based joint diagonalizable matrices were suggested
in Kibangou (2011, 2012). The proposed solutions make use
of the graph Laplacian spectrum. However, the implementation
of these protocols during the configuration step was not really
discussed. In fact, for self-configuration of Laplacian based
finite-time average consensus protocols, distributed estimation
of Laplacian eigenvalues is required. Such a task can be carried
out by means of distributed or decentralized algorithms such
as those proposed in Tran and Kibangou (2013), Sahai et al.
(2012), and Franceschelli et al. (2009).

The purpose of this paper is to study a new algorithm for
self-configuration protocols for finite-time average consensus
where weighted matrices are not necessarily based on the graph
Laplacian. The aim is to design protocols that allow achieving
average consensus in the fastest possible time, possibly as fast
as the diameter of the underlying graph. More precisely, we
solve a matrix factorization problem in a distributed way.

The remainder of this paper is organized as follows: in Section
2, we give the preliminary views of the theory and formu-
late the problem under study. The particular case of strongly
regular graphs is studied in Section 3. Then, a gradient back-
propagation algorithms is derived in Section 4 for solving a
matrix factorization problem in a distributed way. The perfor-
mance of the proposed algorithm is evaluated in Section 5 by
means of simulation results before concluding the paper.

2. PROBLEM STATEMENT

Through out this paper, we consider a connected undirected
graph G(V,E), where V = {v1,v2, . . .vN} is the set of vertices of
graph G, and E ⊂V ×V is the set of edges. Vertices vi are agents
in a network connected according to E . Before formulating the
problem, we first state some basic notations:

• Ni = {v j ∈V : (vi,v j) ∈ E} stands for the set of neighbors
of node vi.

• Given two vertices vi and v j, the distance dist(vi,v j) is the
length of the shortest path between vi and v j.

• The eccentricity ecc(vi) of a vertex vi is the greatest
distance between vi and any other vertex v j ∈V .

• The radius r(G) of a graph is the minimum eccentricity of
any vertex.

• The diameter d(G) of a graph is the maximum eccentricity
of any vertex in the graph, i.e. d(G) = maxvi,v j

dist(vi,v j).
• We denote by A the adjacency matrix of the graph. Its

entries Ai, j being equal to one if (vi,v j) ∈ E and zero
elsewhere.

• The graph Laplacian L is defined as the matrix with entries

li j given by: li j =







N

∑
k=1,k 6=i

Aik, if j = i

−Ai, j if j 6= i

.

• A regular graph is a graph where each vertex has the same
number of neighbors; i.e. every vertex has the same degree
or valency. A regular graph with vertices of degree k is
called a k−regular graph.

Now, let us state the finite-time average consensus problem.

For each agent vi ∈V , let xi(t) be its state at time-step t. At each
time-step each node updates its state as

xi(t) = wt
iixi(t −1)+ ∑

j∈Ni

wt
i jx j(t −1). (1)

Defining the state of the network as:

x(t) = [x1(t),x2(t), ...,xN(t)]T , where N is the number of nodes
in the network, the dynamics of the network is given as follows:

x(t) = Wtx(t −1), t = 1,2, . . . , (2)

where Wt , with entries wt
i j , is consistent with the graph topolo-

gies, i.e. Wt ∈ SG where SG is the set of matrices that can be
factorized as Wt = Qt ◦ (IN + A) where Qt stands for an arbi-
trary square matrix, IN being the N×N identity matrix, whereas
◦ denotes the Hadamard matrix product that corresponds to an
entry-wise matrix product.

Given any set of initial values x(0), we are interested in a finite
sequence of weighted matrices, Wt ∈SG, that allows all agents
to reach average consensus in a finite number of steps (or finite-

time) D, i.e. x(D) = 1
N

11Tx(0) = JNx(0). Ultimately, we desire
a finite sequence of matrices {W1,W2, . . . ,WD} such that

x(D) =
1

∏
t=D

Wtx(0) = JNx(0) for all x(0) ∈ RN , (3)

meaning that
1

∏
t=D

Wt = JN . (4)

Within this framework the fundamental problems concern exis-
tence, minimality, and design issues: For a given graph G, does
there exist a finite sequence of matrices Wt ∈ SG such that (4)
is achieved ? If it exists, what it is the minimal value of D ?
How can we carry out such a factorization?

The existence issue has been deeply considered in Ko (2010)
and Georgopoulos (2011). It has been pointed out that no so-
lution exists if the factor matrices Wt are all equal except if
the graph is complete. For trees and graphs with minimum
diameter spanning tree, solutions have been also provided. For
more general graphs, solutions based on graph Laplacian have
been recently introduced in closed-form, Kibangou (2011) and
Kibangou (2012). The factors matrices are constrained to be
equal to Wt = αtI + βtL where αt and βt are parameters to
be designed. More precisely, in Kibangou (2012), the solution

was given by αt = 1 and βt = − 1
λt+1(L) , λt(L) being a nonzero

Laplacian eigenvalue. Therefore, the number of factor matrices
is equal to the number of distinct nonzero Laplacian eigenval-
ues. Intuitively, since the diameter of the graph characterizes the
time necessary for a given information to reach all the agents
in the network, the number of factor matrices cannot be lower
than the diameter d(G). According to the results in Kibangou
(2012), the number D is upper bounded by N −1. For distance
regular graphs, Brouwer et al. (1989), D = d(G). In Hendrickx



et al. (2012), an upper bound is given by 2r(G) where r(G)
stands for the radius of the graph.

Now, for a given value of D lower bounded by the diameter
of the graph and upper bounded by two times the radius of
the graph, how could we compute the factor matrices without
the Laplacian constraint? Strictly speaking, equation (4) gives
rise to a system of multivariate polynomial equations, which
can be solved using Groebner basis theory and Buchberger’s
algorithm, in Buchberger (1976). However, the computational
complexity and centralized nature of such an approach is crip-
pling.

In what follows, we first consider the particular case of strongly
regular graphs where closed form solutions of the factoriza-
tion problem can be obtained in a distributed way, Godsil and
Royle (2001). Then, for the general case, we design a dis-
tributed method that makes use of learning sequences. Indeed,
in most systems where communications are involved, learning
sequences are used for communication channel identification
or for synchronization. These sequences are used during the
mandatory configuration step before transmitting informative
data, i.e. running average consensus in our case. We assume
that all the agents know the average of the learning sequence.

3. CLOSED FORM SOLUTION OF THE MATRIX
FACTORIZATION PROBLEM FOR STRONGLY

REGULAR GRAPHS

A graph G is said to be strongly regular, SRG(N,k,a,c), if it is
neither complete nor empty and there are integers k, a, and c
such that:

• G is regular with valency k;
• any two adjacent vertices have exactly a common neigh-

bors;
• any two distinct non-adjacent vertices have exactly c com-

mon neighbors.

These parameters are linked as follows:

(N − k−1)c = k(k−a−1). (5)

In addition, the following interesting property can be stated as
in Godsil and Royle (2001):

A2 − (a− c)A− (k− c)IN = NcJN . (6)

Examples of strongly regular graphs are: Petersen graph
(SRG(10,3,0,1)), Clebsch graph (SRG(16,5,0,2)), Payley

graphs (SRG(q, q−1
2

, q−5
4

, q−1
4

) ,with q congruent 1 (mod 4)),

two dimensional Hamming graphs (SRG(n2,2n− 2,n− 2,2),
n ≥ 2), a cycle with N < 6. The most obvious property of
the strongly regular graphs is that the diameter is equal to two
(d(G) = 2).

Let us state the following theorem:

Theorem 1. Let γ2 be a nonzero free parameter. For a strongly
regular graph SRG(N,k,a,c), average consensus can be reached
in two steps with the weights given by the matrices Wi =
wiIN + γiA, i = 1,2 with γ1γ2 = 1

cN
, w1w2 = 1

N

(
1− k

c

)
, and

w2 =
γ2

2

(

c−a±

√

(a− c)2 + 4(k− c)

)

.

Proof: With matrices Wi = wiIN + γiA, i = 1,2, we get:
W2W1 = w2w1IN +(w2γ1 + w1γ2)A + γ1γ2A2. For a strongly
regular graph SRG(N,k,a,c), using (6), we get

W2W1 = Ncγ1γ2JN +(w2w1 +(k− c)γ1γ2) IN

+((w2γ1 + w1γ2)+ γ1γ2 (a− c))A. (7)

As a consequence, the matrices W1 and W2 are factors of
JN if and only if w2w1 + (k− c)γ1γ2 = 0, (w2γ1 + w1γ2) +
γ1γ2 (a− c) = 0, and Ncγ1γ2 = 1. After few manipulations,

we get the following equation to solve: Ncγ1w2
2 +(a− c)w2 −

γ2(k − c) = 0, whose discriminant ∆ = (a− c)2 + 4(k − c) is
strictly positive. Meaning that for any nonzero value of the
free parameter γ1 we can always get a factorization of JN with
factors in the form Wi = wiIN + γiA. �

Assuming that the structural property is known, the agents can
determine the factor matrices in a distributed way. Indeed, the
number a of common parameters can be easily computed by
comparing the ID of neighbors then, using (5), parameter c can

be deduced as c = k(k−a−1)
N−k−1

. Agreement on γ2, after a random

selection, can be reached using a max or a min consensus 1 .

Example: Considering a Petersen Graph (SRG(10,3,0,1)). Us-

ing (6), we get the equation: 1
10

A2 + 1
10

A− 1
5
IN = JN . With an

arbitrary γ2, by Theorem 1 , we can compute:

w2 =
γ2

2
(1±3);w1 = −

1

5w2

;γ1 =
1

10γ2

.

Then, these results give us W1,W2 as follows:

For w2 = 2γ2:

W1 = −
1

10γ2

IN +
1

10γ2

A;W2 = 2γ2IN + γ2A.

For w2 = −γ2:

W1 =
1

5γ2
IN +

1

10γ2
A;W2 = −γ2IN + γ2A.

In both cases, we can easily check that:

W2W1 = −
1

5
IN +

1

10
A+

1

10
A2 = JN .

Deriving closed form solutions is not always possible. There-
fore, in next section, we derive a distributed solution of the
matrix factorization problem for more general graphs.

4. DISTRIBUTED SOLUTION OF THE MATRIX
FACTORIZATION PROBLEM

Let
{

xi,p(0),yi,p

}
, i = 1, · · · ,N, p = 1, · · · ,P, be the input-

output signals defining the learning sequences, with yi,p = yp =

1
N

N

∑
i=1

xi,p(0). Our aim is to estimate the factor matrices Wt ,

t = 1, · · · ,D, by minimizing the quadratic error

E(W1, · · · ,WD) =
1

2

N

∑
i=1

P

∑
p=1

(xi,p(D)− yp)
2, (8)

with xi,p(t) = ∑
j∈Ni∪{i}

wt
i jx j,p(t − 1), wt

i j being the entries of

matrices Wt . We can rewrite the cost function (8) as

E(W1, · · · ,WD) =
1

2

∥
∥
∥
∥
∥

1

∏
t=D

WtX(0)−Y

∥
∥
∥
∥
∥

2

F

, (9)

where ‖.‖F stands for the Frobenius norm, Y = JNX(0), Y
and X(0) being N × P matrices with yi,p and xi,p as entries,

respectively. We assume that X(0)X(0)T = IN which means

1 Max and Min consensus can be reached in a finite number of steps, Olfati-

Saber and Murray (2004)



that the input vector is orthogonal. For instance, vectors of
the canonical basis of ℜN can be used as inputs. Hence, we

can note that E(W1, · · · ,WD) = 1
2

∥
∥
∥
∥

1

∏
t=D

Wt −JN

∥
∥
∥
∥

2

F

, meaning

that minimizing (9) is equivalent to solving the factorization
problem (4):

{W∗
t }|t=1,...,D = arg min

{Wt}t=1,...,D

1

2

P

∑
p=1

tr
(
εp(W)εT

p (W)
)
, (10)

with

εp(W) =
1

∏
t=D

Wtxp(0)−yp, (11)

where tr(.) denotes the trace operator and yp = JNxp(0).

Denoting Ep(W) = 1
2
tr

(
εp(W)εT

p (W)
)
, the solution of this

optimization problem can then be obtained iteratively by means
of a gradient descent method:

Wt := Wt −α
P

∑
p=1

∂Ep(W)

∂Wt

or a stochastic gradient one:

Wt := Wt −α
∂Ep(W)

∂Wt

,

where the gradient of the cost function is approximated by the
gradient at a single input-output sequence. In what follows, we
resort to a stochastic gradient method. For this purpose, we first
state the following technical lemma:

Lemma 1. The derivatives of the cost function Ep(W) =
1
2
tr

(
εp(W)εT

p (W)
)

with εp(W) defined in (11) can be com-
puted as follows:

∂Ep(W)

∂Wt

= δδδ t,pxT
p (t −1),t = 1, . . . ,D (12)

∂Ep(W)

∂WD

= δδδ D,pxT
p(D−1) (13)

where δδδ D,p = xp(D)− x̄p is the difference between the actual

output and the desired output with x̄p = yp = 1
N

N

∑
i=1

xi,p(0); and

δδδ t−1,p = WT
t δδδ t,p,t = 1, . . . ,D. (14)

Proof. See Appendix.�

Applying the results of Lemma 1, the updating scheme of the
optimization algorithm is as follows:

Wt [m+ 1] = Wt [m]−α
∂Ep(m)(W)

∂Wt

= Wt [m]−αδδδ t,p(m)x
T
p(m)(t −1), (15)

where p(m) ∈ {1,2, · · · ,P}, and m stands for the mth iteration
of the optimization process.

The gradient descent algorithm (15) acts by alternating the fol-
lowing steps: the learning sequence is first propagated forward.
Then the error between the targeted output and x(D) is com-
puted and then propagated . This mechanism is similar to the
gradient backpropagation algorithm. Its convergence has been
well studied in the literature, see Chong and Zak (2012) and
Mangasarian and Solodov (1994) for instance. Convergence

towards a local minimum is guaranteed if the step-size α is ap-
propriately chosen (0 < α < 1). Such a step-size also influences
on speed of convergence of the algorithm. Several rules have
been proposed for accelerating the convergence speed. How-
ever, these techniques are not consistent with the distributed
framework of the proposed algorithm. One trick to speed-up the
convergence is to add a regularization term in the cost function
to be minimized.

{W∗
t }|t=1,...,D = arg min

{Wt}t=1,...,D

P

∑
p=1

Ep(m)(W)

+
1

2

D

∑
t=1

β‖Wt [m]−Wt [m−1]‖2. (16)

By minimizing such a cost function, the udpate equation is
given by:

Wt [m+ 1] = Wt [m]−αδδδ t,p(m)x
T
p(m)(t −1)

+β (Wt [m]−Wt [m−1]).

Entry-wise, each agent updates its entries as follows:

wt
i j := wt

i j −αδi,tx j(t −1)+ β (wt
i j −w

(t−1)
i j ),

where δi,t is the ith entry of δδδ t and x j(t − 1) the j-th entry
of x(t − 1). α and β are learning rate and momentum rate
respectively.

The distributed algorithm is then described as follows:

(1) Initialization:
• Number of steps D, number of patterns P
• Learning sequence {xi,p(0),yp}, where i = 1, · · · ,N,

p = 1, · · · ,P, with yp = 1
N

N

∑
i=1

xi,p(0).

• Random initial weighted matrices Wt [0], t = 1, . . . ,D,
and Wt [−1] = 0

• Learning rate: 0 < α < 1;
• Momentum terms: 0 < β <1;
• Select a threshold γ
• Set m = 0

(2) Set p = 0;
(a) Set p := p + 1,
(b) Select the corresponding input-output sequence

xi(0) = xi,p(0), x̄ = yp.
(c) Learning sequence propagation:

xi(t) = ∑
j∈Ni∪{i}

wt
i j[m]x j(t −1), t = 1, · · · ,D.

(d) Error computation:

δi,D = xi(D)− x̄; ei,p = δ 2
i,D.

(e) Error propagation:

δi,t−1 = ∑
j∈Ni∪{i}

wt
ji[m]δ j,t , t = D, · · · ,2.

(f) Matrices updating: for t = 1, · · · ,D, i = 1, · · · ,N, and
j ∈ Ni ∪{i},

wt
i j[m+ 1] = wt

i j[m]−αδi,tx j(t −1)

+β (wt
i j[m]−wt

i j[m−1]).

(g) Increment m.
(h) If p = P, compute the mean square error

Ei = 1
N

P

∑
p=1

ei,p, else return to 2a.



(i) If Ei < γ stop the learning process else return to 2.

5. SIMULATION RESULTS

In this section, we consider two examples of different network
topologies to evaluate the developed algorithm. The learning
sequence is constituted with the vectors of the canonical basis
of ℜN .

The performance of designed protocols are evaluated by means
of the MSE:

MSE =
1

NP

N

∑
i=1

P

∑
p=1

(xi,p(D)− yp)
2.

5.1 Example 1:

Fig. 1. 6-node graph

Let us consider the graph depicted in Figure 1. Its diameter
is d(G) = 3 while the radius is r(G) = 2. The eigenvalues of
the corresponding Laplacian matrix L are: 0, 1, 2, 3 and 5.
According to Kibangou (2012), the factorization of the average
consensus matrix by means of graph Laplacian based consen-
sus matrices needs D factor matrices, D being the number of
nonzero distinct eigenvalues of the Laplacian matrix, this num-
ber being, in general, greater or equal to the diameter of the
graph. Therefore, we get the following factorization:

(IN −L)(IN −
1

2
L)(IN −

1

3
L)(IN −

1

5
L) = J6,

meaning that consensus is achieved in 4 steps. Since the optimal
number of steps is not a priori known, we run the algorithm
for different values of D taken in the interval of [d(G),2r(G)].
Here, the two possible values of D are 3 and 4.

0 0.5 1 1.5 2

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

Iterations

M
S

E

 

 

D=3

D=4

Fig. 2. MSE comparison for the two possible numbers of factors

Figures 2 shows that the best solution is obtained for D =
3. With the proposed algorithm for design protocol we get
a number of step lower than that given by Laplacian based
matrices proposed in Kibangou (2011, 2012). The weighted
matrices are:

W1 =











−0.4028 0.0415 0 0 0 0

0.4418 −0.0455 0 0 0 0

0.5749 0 0.0537 0.0537 0.9219 0

0 0.4053 0.3675 0.3675 0 0.3902

0 0 0 0 −1.3034 0.0806

0 0 0 0 0.1122 −0.0069











W2 =











0.7767 0.2508 0.1706 0 0 0

0.0201 0.6826 0 0.4527 0 0

0.6941 0 0.7680 0.2985 0.4385 0

0 0.2560 0.1578 0.5424 0 0.6013

0 0 0.3756 0 0.5232 0.8876

0 0 0 0.2684 −0.1270 0.5548











W3 =











0.7429 0.6296 0.3653 0 0 0

0.2881 0.2741 0 0.5699 0 0

0.7055 0 0.6403 0.2695 0.3771 0

0 0.4246 0.0716 0.1496 0 0.5491

0 0 0.4218 0 0.4556 0.9515

0 0 0 0.4958 0.3039 0.5832











We can easily check that:

W3W2W1 = J6.

Now, let us consider the finite-time consensus protocol in its
execution step, i.e. after the configuration step. For arbitrary
initial values, the trajectories of the state of the network are
depicted in Figure 3(a). Exact average consensus is achieved in
3 steps. When using the optimal constant edge weights protocol

W = IN −αL where α = 2
λ1(L)+λN−1(L) proposed in Xiao and

Boyd (2004), we get the trajectories in Figure 3(b). Showing
that more iterations are actually needed to reach consensus.
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Fig. 3. (a)Trajectory of a finite-time consensus protocol
(b)Trajectory of an asymptotic consensus protocol by us-
ing optimal constant edge weights protocol

5.2 Example 2:

Now considering the network in Figure 4, we can see that
diameter of this graph equals to 2, and the radius of the graph
equals to 2. Running the proposed algorithm, the performance
in Figure 5 tells us that this network cannot achieve the average
consensus in 2 steps, which is diameter of a graph. Such a result
has been demonstrated analytically by Hendrickx et al. (2012).
However, by running the algorithm as well as varying the value
of D in the interval of [d(G),2r(G)], we can pick the optimal
D in this case. The final MSE was obtained by considering a
sufficient large number of iterations.

For this topology, D = 3 gives us the best solution for finite-
time average consensus, see in Figure 5. Also, the trajectory of



Fig. 4. 10-node graph

2 3 4
0

2

4

6

8
x 10

−5

X: 3

Y: 2.056e−08

D

M
S

E

Fig. 5. Final MSE comparison for different values of D

an arbitrary vector of initial value is depicted in Figure 6 after
getting the sequence of weighted matrices.
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Fig. 6. Trajectory of an arbitrary vector for a 10-node network

6. CONCLUSION

In this paper, we have proposed a way for distributively de-
signing the finite-time average consensus protocol. By using
a learning sequence, we have shown how to solve a matrix
factorization problem (4) in a fully distributed way. The method
is based on the gradient back-propagation method. The fac-
torization gives rise to factor matrices that are not necessarily
symmetric or stochastic. Given the diameter and the radius of
the graph, we can find out the optimal value of the number
of steps necessary for reaching average consensus. However,
the speed of convergence of the proposed algorithm is still an
actual issue. For this purpose, future works encompass optimal
step-size for gradient descent based method and other opti-
mization methods with a particular focus to large size graphs.
In addition, the dependency of the convergence speed on the
learning sequence is to be studied. Hence, another interesting
issue will be the design of optimal learning sequences. Beside
that, the robustness of the finite-time average consensus should
be definitely paid a great attention.

APPENDIX

The consensus network being a linear system we know that
xp(t) = Wtxp(t − 1), therefore we can explicitly write the
output according to the weighting matrix of interest, i.e.

xp(D) = WDxp(D − 1) and xp(D) = ∏t+1
j=D W jWtxp(t − 1),

t = 1, · · · ,D−1. Equivalently, by defining Zt+1 = ∏t+1
j=D W j, we

get xp(D) = Zt+1Wtxp(t−1). The cost function can be written
as

Ep(W) =
1

2
tr((WDxp(D−1)− x̄p)(WDxp(D−1)− x̄p)

T ).

We can easily deduce that
∂Ep(W)

∂WD
=δδδ D,pxT

p (D−1) with δδδ D,p =

xp(D)− x̄p.

Now, we can express the cost function according to any matrix
Wt , t = 1, · · · ,D−1 as

Ep(W) =
1

2
tr((Zt+1Wtxp(t −1)− x̄p)(Zt+1Wtxp(t −1)− x̄p)

T ).

Expanding the above expression and taking into account the
linearity of the trace operator yield

Ep(W) =
1

2
[tr(Zt+1Wtxp(t −1)xp(t −1)T WT

t ZT
t+1)

− tr(Zt+1Wtxp(t −1)x̄T
p)

− tr(x̄pxp(t −1)T WT
t ZT

t+1)

− tr(x̄px̄T
p )].

Now, computing the derivative, we get:

∂Ep(W)

∂Wt

=
1

2
[2×ZT

t+1Zt+1Wtxp(t −1)xp(t −1)T

−2×ZT
t+1x̄pxp(t −1)T ]

= ZT
t+1(Zt+1Wtxp(t −1)− x̄)xp(t −1)T

= ZT
t+1 (xp(D)− x̄p)

︸ ︷︷ ︸

δδδ D,p

xp(t −1)T

= ZT
t+1δδδ D,pxp(t −1)T

= WT
t+1WT

t+2 . . .WT
Dδδδ D

︸ ︷︷ ︸

δδδ D−1,p

xp(t −1)T

= WT
t+1δδδ t+1,pxp(t −1)T

= δδδ t,px(t −1)T .
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