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LARGEST EIGENVALUES AND EIGENVECTORS OF BAND

MATRICES

FLORENT BENAYCH-GEORGES AND SANDRINE PÉCHÉ

Abstract. In this text, we consider an N ×N random matrix X such that all but o(N)
rows of X have W non identically zero entries (such as, for example, standard or cyclic
band matrices). We always suppose that 1 ≪ W ≪ N . We first prove that if the entries
are independent, centered, have variance one, satisfy a certain tail upper-bound condition
and W ≫ (logN)6(1+α), where α is a positive parameter depending on the distribution

of the entries, then the largest eigenvalue of X/
√
W converges to the upper bound of its

limit spectral distribution, that is 2, as for Wigner matrices. This extends some previous
results by Khorunzhiy and Sodin [10, 12] where less hypotheses were made on W , but
more hypotheses were made about the law of the entries and the structure of the matrix.
Then, under the same hypotheses, we prove a delocalization result for the eigenvectors
of X, precisely that most of them cannot be essentially localized on less than W/ log(N)
entries. This lower bound on the localization length has to be compared to the recent
result by Steinerberger in [14], which states that either the localization length in the edge
is ≪ W 7/5 or there is strong interaction between two eigenvectors in an interval of length
W 7/5.

1. Introduction

Random band matrices (i.e. random Hermitian matrices with independent entries van-
ishing out of a band around the diagonal) have raised lots of attention recently, mainly
due to the fact that they have been suggested as a model for the the so-called Anderson
transition, between a strongly disordered regime, with localized eigenfunctions and weak
eigenvalue correlation, and a weakly disordered regime, with extended eigenfunctions and
strong eigenvalue repulsion. Indeed, such a model is believed to exhibit a phase transition,
depending on the width W of the band. It is conjectured (and explained on a Physics level
of rigor by Fyodorov and Mirlin in [9]) that for Gaussian band matrices, the localization
length L (i.e. the typical number of coordinates bearing most of the ℓ2 mass) of a typical
eigenvector in the bulk of the spectrum shall be of order min{N,W 2}, so that eigenvectors

of the bulk should be localized (resp. extended) if W ≪
√
N (resp. ≫

√
N). The only

rigorous result in the direction of localization is by Schenker [11]. Therein it is proved that
L ≪ W 8 for Gaussian band matrices. On the other hand, delocalization in the bulk is
proved by Erdös, Knowles, Yau and Yin [7] when W ≫ N4/5. In both regimes, it is known
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from Erdös and Knowles [5, 6] that typically (i.e. disregarding a negligible proportion
of eigenvectors) L ≫ min{W 7/6, N} for a certain class of random band matrices (with
sub-exponential tails and symmetric distribution). We refer the reader to Spencer [13]
and Erdös, Schlein and Yau [8] for a more detailed discussion on the localized/delocalized
regime.

Regarding the edges of the spectrum, little is known about the behavior of the extreme
eigenvalues and the typical localization length of the associated eigenvectors. As far as the
limit of the largest eigenvalue is concerned, Khorunzhiy proved in [10] that for Gaussian
band matrices, if (logN)3/2 ≪ W ≪ N , then the extreme eigenvalues converge to the
bounds of the support of the limiting spectral measure (which is the semicircle law). For
matrices with cyclic band structure and Bernoulli entries, Sodin proved the same resultin
the case where logN ≪ W ≪ N in [12], where he proved important results about the
fluctuations of the extreme eigenvalues around their limits. Concerning the localization
length L of the eigenvectors associated to the extreme eigenvalues, Sodin’s statement [12]
combined with Erdös-Knowles-Yau-Yin’s results [7] suggest that we should have L ∼ N
as soon as W ≫ N5/6. Moreover, Steinerberger proved recently in [14] that for matrices
with Bernoulli entries and cyclic band structure, with probability tending to one, we have
either L ≪ W 7/5 or there is strong interaction between two eigenvectors in an interval of
length W (7/5). Let us also mention that in the quite different framework of band matrices
with heavy tailed entries, a transition between the localized and the delocalized regime at
the edge was proved by the authors of the present text in [3].

In this text, we consider an random N ×N Hermitian matrix X such that all but o(N)
rows of X have W non identically zero entries (such as, for example, standard or cyclic
band matrices). We always suppose that 1 ≪ W ≪ N . We first prove that if the entries
are independent, centered, have variance one, satisfy a certain tail upper-bound condition
and W ≫ (logN)6(1+α), where α is a positive parameter depending on the distribution of

the entries, then the largest eigenvalue of X/
√
W converges to the upper bound of its limit

spectral distribution, that is 2, as for Wigner matrices. This extends the above mentioned
results by Khorunzhiy and Sodin [10, 12] where less hypotheses were made on W , but
more hypotheses were made about the law of the entries (they use in a crucial way the
fact that the entries are symmetrically distributed) and about the structure of the matrix
(in our result, we only need that most rows have W non zero entries, no matter what
position the entries have on the matrix). Then, under some close hypotheses, we prove
a delocalization result for the eigenvectors of X, precisely that most of them cannot be
essentially localized on less than W/ log(N) entries. This lower bound on the localization
length has to be compared to the recent result by Steinerberger in [14], which states that
either the localization length in the edge is ≪ W 7/5 or there is strong interaction between
two eigenvectors in an interval of length W 7/5.

The paper is organized as follows: our main results are stated in the next section,
Theorem 2.4 is proved in Section 3, Theorem 2.9 is proved in Section 4, and some technical
results needed here are proved in Section 5 and in the appendix.
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Notation. Here, A ≪ B means that A/B −→ 0 as N → ∞. ‖X‖ denotes the spectral
radius of the Hermitian matrix X and λmax(X) denotes its largest eigenvalue. At last, a ·b
denotes the standard scalar product of two complex vectors and | · | denotes the associated
norm.

2. Main results

Let us first introduce some hypotheses needed below.

Hypothesis 2.1. The matrix X = (Xij) is an N×N Hermitian random matrix (depending
implicitly on N) with independent entries (up to the fact that the matrix is Hermitian).

Hypothesis 2.2. There is W = W (N) such that

(1) 1 ≪ W ≪ N

and such that on each row of X, the number of non identically zero entries is ≤ W , with
equality on all but o(N) rows. All non identically zero entries of X are centered with
variance one. Moreover, there exist constants C ∈ [0,+∞) and α ∈ [0,+∞) such that for
all k ≥ 2,

(2) E[|Xij |k] ≤ (Ck)αk,

uniformly on N, i, j.

Then the following theorem has been proved under some slightly different hypotheses in
[4], but can easily be reproved using a standard moment method as in [1, 2].

Theorem 2.3. Under Hypotheses 2.1 and 2.2, as N → ∞, the empirical spectral law of
X√
W

converges weakly in probability towards the law 1
2π

√
4− x2dx, with support [−2, 2].

Our first result is the following one.

Theorem 2.4. Under Hypotheses 2.1 and 2.2, suppose that W satisfies

(3) W ≫ (logN)6(1+α),

with α the constant of (2). Then as N → ∞, we have the convergence in probability

(4)
λmax(X)√

W
−→ 2.

Remark 2.5. This theorem extends some results of [10] and [12]. In these papers, the
convergence of (4) is proved under the respective hypotheses W ≫ (logN)3/2 and W ≫
logN , but for some particular models of matrices: in [10] the matrices considered are
Gaussian and in [12], they have Bernoulli distributed entries. Both make a crucial use
of the fact that the entries are symmetrically distributed. Moreover, in both papers, the
authors also suppose and rely heavily on a particular position of the non zero entries of X.
We do not make such a hypothesis here.
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To state our main result, a lower bound on the localization length of eigenvectors of X,
we slightly modify the hypotheses.
Let X be an N × N Hermitian random matrix satisfying Hypothese 2.1. We make the
following two assumptions.

Hypothesis 2.6. For a certain sequence W = W (N) ≫ 1, we have the convergence in

probability ‖X‖√
W

−→ 2 as N → ∞.

For example, Hypothesis 2.6 is satisfied if X satisfies the hypotheses of Theorem 2.4
or those the papers [10] and [12] (see Remark 2.5 above). However we emphasize that
Hypothesis 2.6, focused on the extreme eigenvalues, does not make (at least directly) any
assumption on the maximal number of non zero entries per row of X (it may be N), neither
on the relative growth of W with respect to N .

We also reinforce the assumption on the tail of the distribution of the entries. Let δ > 0
and K < ∞ be fixed.

Hypothesis 2.7. The entries Xij of X belong to the set Eδ,K of complex random variables
Y such that

EY = 0, Eeδ|Y |2 ≤ K.

The following theorem is the main result of this text.

We use the following Definition 7.1 from Erdös, Schlein and Yau [8]: for L a positive
integer and η > 0, a unit vector v = (v1, . . . , vN ) ∈ CN is said to be (L, η)-localized if there
exists a set S ⊂ {1, . . . , N} such that |S| = L and

∑

j∈Sc |vj|2 ≤ η.

Remark 2.8. The largest L and η are, the strongest the statement “there is no (L, η)-
localized eigenvector” is.

Theorem 2.9. We suppose Hypotheses 2.1, 2.6 and 2.7. Fix η ∈ (0, 1/2) and choose
L = L(N) such that

(5) L ≪ W

logN
.

Let λ1, . . . , λN be the eigenvalues of X and let v1, . . . ,vN be some associated normalized
eigenvectors. Then for any κ such that

√

η/(1− η) < κ < 1,

P(∃i, |λi| ≥ 2κ
√
W and vi is (L, η)-localized) −→

N→∞
0.

Remark 2.10. The same proof can also lead to a version of this theorem where η =
η(N) −→ 0. In this case, κ = κ(N) is allowed to tend to zero, thus the theorem allows to
lower bound the localization length of most eigenvectors of X.
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3. Proof of Theorem 2.4

The proof goes along the same lines as the proof of Theorem 2.1.22 of [1]. First note that

by Theorem 2.3, we already know that for any η > 0, P(λmax(X) < (2− η)
√
W ) −→ 0.

For any η > 0, for any k ≥ 1,

P(λmax(X) > (2 + η)
√
W ) ≤ P(TrX2k ≥ (2 + η)2kW k) ≤ W−k(2 + η)−2k

ETrX2k,

hence it suffices to find a sequence k = k(N) such that for any η > 0,

(6) ETrX2k ≪ W k(2 + η)2k.

We have

ETrX2k =
∑

EXi1i2 · · ·Xi2ki1,

where the sum is over collections i = (i1, . . . , i2k) such that for all ℓ, iℓ ∈ {1, . . . , N}. For
each i, let Gi be the simple, non oriented graph with vertex set {i1, . . . , i2k} and edges
{iℓ, iℓ+1} (1 ≤ ℓ ≤ 2k, with the convention i2k+1 = i1). For the expectation in the RHT
above to be non zero, we need all edges to be visited at least twice by the path i (because
the Xij ’s are centered) and the edges {iℓ, iℓ+1} to be such that Xiℓ,iℓ+1

is non identically
zero. The symmetric group SN acts on the set of i’s by σ ·(i1, . . . , i2k) := (σ(i1), . . . , σ(i2k)).
Following Section 2.1.3 of [1], we denote by W2k,t the set of equivalence classes, under the
action of SN , of i’s such that all edges of Gi are visited at least twice by the path i and Gi

has exactly t vertices (this set is actually stable under this action).

Note that for W2k,t to be non empty, we need to have t ≤ k + 1. Indeed, Gi is always
connected hence its number of vertices is at most its number of edges plus one.

Note that for any w ∈ W2k,t, the number of i’s in the class w is at most NW t−1.

It follows from the previous remarks that

ETrX2k ≤ N

k+1
∑

t=1

W t−1
∑

w∈W2k,t

max
i∈w

EXi1i2 · · ·Xi2k−1i1 .

Now, let us fix t ∈ {1, . . . , k + 1}, w ∈ W2k,t and i ∈ w. Let us denote by l (resp. m)
the number of edges of Gi visited exactly twice (resp. at least three times). Obviously,
2l+3m ≤ 2k. Moreover, as l+m is the number of edges of the Gi, hence by connectedness
of Gi again, we have t ≤ l +m+ 1. So

6t ≤ 6m+ 6l + 6 = 2(3m+ 2l) + 2l + 6 ≤ 4k + 2l + 6,

so

2k − 2l ≤ 6(k − t+ 1).



6 FLORENT BENAYCH-GEORGES AND SANDRINE PÉCHÉ

Now, notice that as the Xij’s have variance one, EXi1i2 · · ·Xi2ki1 can be reduced to the
expectation of a product of 2k − 2l Xij ’s, hence by (2) and Hölder’s inequality,

EXi1i2 · · ·Xi2ki1 ≤
(

C(2k − 2l)
)α(2k−2l)

≤ {6C(k − t+ 1)}6α(k−t+1).

As a consequence,

ETrX2k ≤ N

k+1
∑

t=1

W t−1#W2k,t × {6C(k − t+ 1)}6α(k−t+1).

Now, we shall use Lemma 2.1.23 of [1], which states that #W2k,t ≤ 4k(2k)6(k−t+1) as soon
as t ≤ k + 1 (the case t = k + 1 is technically not contained in Lemma 2.1.23 of [1], but
follows from Equation (2.1.20) and Lemma 2.1.3 of the same book). It follows that

ETrX2k ≤ N4k
k+1
∑

t=1

W t−1(2k)6(k−t+1){6C(k − t + 1)}6α(k−t+1)

= NW k4k
k

∑

i=0

W−i(2k)6i(6Ci)6αi

≤ NW k4k
(

1− (2k(6Ck)α)6

W

)−1

,

where the last inequality is true as soon as W > (2k(6Ck)α)6. Then it is easy to see that

(6) holds for k = k(N) such that logN ≪ k ≪ W
1

6(1+α) .

4. Proof of Theorem 2.9

Before proving Theorem 2.9, we shall need the following theorem and its corollary. The
proof of Theorem 4.1 is postponed to Section 5.

Theorem 4.1. Under Hypotheses 2.1 and 2.7, there are constants c2 = c2(δ,K) > 0 and
C2 = C2(δ,K) < ∞ independent of all the other parameters such that for all t > 0,

(7) P(‖X‖ > t
√
N) ≤ e−c2(t2−C2)N .

Let us denote by ρ(X) the spectral radius of X and, for L ≥ 1, by ρL(X) the maximum
spectral radius of its L × L principal submatrices (a principal submatrix is a submatrix
chosen by extracting a certain set of columns and the same set of rows, but this set does
not need to be an interval).

Corollary 4.2. Under Hypotheses 2.1 and 2.7, there exists t < ∞ and c3 > 0 such that

(8) P(ρL(X) ≥ t
√

L logN) ≤ e−c3L logN .



7

Proof. The number of ways to choose an L×L principal submatrix is ≤ NL = eL logN . For
each submatrix S, P(ρ(S) ≥ t

√
N logN) ≤ exp{−c2(t

2 logN − C2)L}, hence by the union
bound,

P(ρL(X) ≥ t
√

L logN) ≤ exp{[−c2(t
2 logN − C2) + logN ]L},

thus if c2t
2 > 1, then (8) holds for a certain c3 > 0. �

To prove Theorem 2.9, we shall also need the following lemma (see Lemma 4.2 in [3]).

Lemma 4.3. For all i, if vi is (L, η)-localized, then |λi| ≤ ρL(X)+
√
ηρ(X)√

1−η
.

Let us now prove Theorem 2.9.

Proof. Let us choose ε > 0 such that
√

η/(1− η)(1 + ε) < κ and set

δ := κ−
√

η/(1− η)(1 + ε).

We know, by (2.6), that with probability tending to 1, ρ(X) ≤ (1 + ε)2
√
W , i.e.

√
ηρ(X)√
1− η

≤ (κ− δ)2
√
W.

Moreover, by Corollary 4.2, there is t < ∞ such that with probability tending to one,
ρL(X) ≤ t

√
L logN . But by (5), for N large enough,

t
√
L logN√
1− η

≤ 2δ
√
W,

so the theorem is proved. �

5. Proof of Theorem 4.1

5.1. A preliminary lemma.

Lemma 5.1. Under Hypotheses 2.1 and 2.7, there are constants c1, C1 depending only on
δ,K such that for any z ∈ CN with |z| ≤ 1,

(9) P(z∗X∗Xz ≥ Nt) ≤ e−c1(t−C1)N .

Remark 5.2. If X is a random N ×N matrix whose maximum number of non identically
zero entries per row is W (like for a band matrix with band width W ), then (9) remains
true with N replaced by W everywhere (for some constants still depending only on δ and
K).

Proof. We denote by X1, . . . ,XN the columns of X. We have , for any τ, C as in Lemma
6.2 of the appendix,

Eeτ
2z∗X∗Xz = Eeτ

2|Xz|2 = Eeτ
2
∑

j |Xj ·z|2 ≤ eNCτ2

Hence
P(z∗X∗Xz ≥ Nt) ≤ Eeτ

2z∗X∗Xze−τ2Nt ≤ e−τ2(t−C)N .
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So the lemma is proved. �

5.2. Proof of Theorem 4.1. The following lemma is well known.

Lemma 5.3. Let N ≥ 1. For any fixed 0 < ε < 1/4, there exists a family (zi)i∈I of
elements of the unit ball of CN such that |I| ≤ (2/ε)2N and any element of the unit sphere
of CN is within a distance at most ε of one of the zi’s. Moreover, for any positive N ×N
Hermitian matrix P ,

λmax(P ) ≤ maxi z
∗
iPzi

1− 2ε
.

Let us now prove Theorem 4.1.

Proof. By Lemma 5.1, we know that there are constants there are constants c1, C1 depend-
ing only on δ,K such that for any z ∈ CN with ‖z‖ ≤ 1,

P(z∗X∗Xz ≥ Nt) ≤ e−c1(t−C1)N .

Now, by Lemma 5.3, we have

P(λmax(X
∗X) ≥ Nt) ≤ P(max

i
z∗iX

∗Xzi ≥ Nt(1 − 2ε))

≤ (2/ε)2Ne−c1(t(1−2ε)−C1)N

= e(−c1(1−2ε)(t− C1
1−2ε

)+2 log(2/ε))N

= e−c2(t−C2)N

As a consequence,

P(‖X‖ > t
√
N) = P(λmax(X

∗X) ≥ t2N) ≤ e−c2(t2−C2)N .

�

6. Appendix: technical results

Lemma 6.1. For any real centered random variable Y and any r ∈ R, we have

EerY ≤ 1 + 3E[eδY
2

](er
2/δ − 1) ≤ e3r

2E[eδY
2
]/δ

for any δ > 0.

Proof. The second inequality follows from the fact that for any u ≥ 1, we have the inequal-
ity 1 + u(er

2/δ − 1) ≤ er
2u/δ (this is obvious with the series expansion of exp).

So let us prove the first inequality. Note that up to a replacement of Y by rY and of δ
by δ/r2, we shall suppose that r = 1.

The case where E[eδY
2
] = ∞ is obvious, hence we focus on the other case, which allows

to expend all sums with the moments of Y .
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Claim : for all x ≥ 0, ex ≤ 1 + x + 3 ex+e−x−2
2

. Indeed, both terms are equal for x = 0
and the derivative of 2RHT−2LHT is ex − 3e−x + 2, which is increasing, hence has the
same sign as x.

It follows that

EeY ≤ 1 + 3
∑

n≥1

EY 2n

(2n)!
≤ 1 + 3

∑

n≥1

n!δ−n
EeδY

2

(2n)!
≤ 1 + 3E[eδY

2

](e1/δ − 1),

where we used first EY = 0, then δnEY 2n

n!
≤ EeδY

2
and at last n!

(2n)!
≤ 1

n!
. �

Lemma 6.2. Let us fix δ,K > 0. Then there is τ = τ(δ,K) > 0 and C = C(δ,K) > 0
such that for all N ≥ 1, all z ∈ CN such that |z| ≤ τ , for any Y random vector taking
values in CN with independent components in the set Eδ,K defined at Hypothesis 2.7,

Ee|Y·z|2 ≤ eC|z|2.

Proof. First step: Let us first prove the result for Y having independent components in

ER

δ,K := {Y ∈ Eδ,K ; Y is real-valued}

and z ∈ RN . Let τR > 0 be such that for any t ∈ [0, τR), we have

12t2K/δ < 1 and
(

1− 12t2K/δ
)−1/2 ≤ e12t

2K/δ.

Let g be a standard real Gaussian variable, independent of the other variables, let Eg

denote the expectation with respect to g and let E denote the expectation with respect to
all other variables than g.

For any τ > 0 and z ∈ R
N such that |z| ≤ τ , using the formula ex

2
= Ege

√
2xg, we have

Ee|Y·z|2 = EEge
√
2gY·z = EgEe

√
2gY·z = Eg

∏

i

Ee
√
2gYizi.

Hence by Lemma 6.1,

Ee|Y·z|2 ≤ Eg

∏

i

e6g
2z2i K/δ = Ege

6g2|z|2K/δ =
(

1− 12|z|2K/δ
)−1/2 ≤ e12|z|

2K/δ.

Second step: Let us now extend the result to the complex case. For Y ∈ Eδ,K complex
valued, we have Y = Y1 + iY2 with Y1, Y2 ∈ ER

δ,K and z ∈ C
N , we have z = z1 + iz2 with

z1, z2 ∈ RN such that |z1|, |z2| ≤ |z|. Hence

Y · z = (Y1 · z1 +Y2 · z2) + i(Y1 · z2 −Y2 · z1),

so, using the fact that for any a, b ∈ R, (a+ b)2 ≤ 2a2 + 2b2, we have

|Y · z|2 ≤ 2(Y1 · z1)2 + 2(Y2 · z2)2 + 2(Y1 · z2)2 + 2(Y2 · z1)2.
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It follows that if τR and CR convenient constants for the real case, we have, for any z ∈ CN

such that |z| ≤ τR√
8
,

Ee|Y·z|2 ≤ Ee2{(Y1 ·z1)2+(Y2·z2)2+(Y1·z2)2+(Y2·z1)2}

≤
(

Ee8(Y1·z1)2Ee8(Y2·z2)2Ee8(Y1·z2)2Ee8(Y2·z1)2
)

1
4

≤ e
8CR

4
(|z1|2+|z2|2+|z1|2+|z2|2) = e4CR|z|2,

so that the constants τ = τR√
8
and C = 4CR are convenient in the general case. �

Acknowledgments: we would like to thank Stefan Steinerberger for having brought to
our attention the fact that we had misunderstood his paper [14] in the first version of this
text.
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