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Abstract:

In this article, we define a non-commutative deformation of the ”symplectic
invariants” (introduced in [I3]) of an algebraic hyperelliptical plane curve. The
necessary condition for our definition to make sense is a Bethe ansatz. The
commutative limit reduces to the symplectic invariants, i.e. algebraic geometry, and
thus we define non-commutative deformations of some algebraic geometry quantities.
In particular our non-commutative Bergmann kernel satisfies a Rauch variational
formula. Those non-commutative invariants are inspired from the large N expansion
of formal non-hermitian matrix models. Thus they are expected to be related to the

enumeration problem of discrete non-orientable surfaces of arbitrary topologies.

1 Introduction

In [13], the notion of symplectic invariants of a spectral curve was introduced. For any

given algebraic plane curve (called spectral curve) of equation:
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an infinite sequence of numbers
FO&) g9g=0,1,2,...,00 (1.2)

and an infinite sequence of multilinear meromorphic forms W (meromorphic on the
algebraic Riemann surface of equation £(x,y) = 0) were defined.

Their definition was inspired from hermitian matrix models, i.e. in the case where
E = &Eu is the spectral curve (y(x) is the equilibrium density of eigenvalues) of a

formal hermitian matrix integral Zy; . = f dM e~ NTr V(M ), the F@ were such that:

ln ZMM = Z N2_2gF(g) (gMM) (13)

g9=0

The F9’s have many remarkable properties (see [I3]), in particular invariance under
symplectic deformations of the spectral curve, homogeneity (of degree 2 — 2g), holo-
morphic anomaly equations (modular transformations), stability under singular limits,

... An important property also, is that the following formal series
T(E) = X NTHEIE) (1.4)

is the ”formal” 7 function of an integrable hierarchy.

Although those notions were first developed for matrix models, they extend beyond
matrix models, and they make sense for spectral curves which are not matrix models
spectral curves. For instance the (non-algebraic) spectral curve Ewp(z,y) = (2my)* —
(sin (274/7))? is such that F©(Ewp) = Vol(M,) is the Weyl-Petersson volume of
moduli space of Riemann surfaces of genus ¢ (see [I1}, [12]). It is conjectured [3] that
the F(9)’s are deeply related to Gromov-Witten invariants, Hurwitz numbers [4] and
topological strings [3]. In particular they are related to the Kodaira-Spencer field
theory [§].

There were many attempts to compute also non-hermitian matrix integrals, and
an attempt to extend the method of [I3] was first made in [7], and here in this paper
we deeply improve the result of [7]. The aim of the construction we present here,
is to define F'9’s for a "non-commutative spectral curve”, i.e. a non commutative

polynomial:

g([lf,y) = Zgi,j 1j ?/j ) [wa] = h (15)
4,

For instance we can view y as y = hd/0z, and & is a differential operator, which

encodes a linear differential equation.



In this article we choose £(z,y) of degree 2 in the variable y, i.e. the case of a
second order linear differential equation, i.e. Schroedinger equation, and we leave to a

further work the general case.

Here, in this article, we define some 9 (), which reduce to those of [13] in the
limit A — 0, and which compute non-hermitian matrix model topological expansions.

For instance consider a formal matrix integral:

7z = / AMeNVBTV(M) _ (5, N2 (0 (1.6)
Eop N

where Eyg y is one of the Wigner matrix ensembles [16] of rank N: E; y is the set of
real symmetric matrices, E5 n is the set of hermitian matrices, and Ej, y is the set of

self-dual quaternion matrices (see [16] for a review). We define:

h= % <\/B - %) (1.7)

Notice that A = 0 for hermitian matrices, i.e. the hermitian case is the classical limit
ly,z] = 0. Notice also that the expected duality 8 < 1/ (cf [I7, [6]) corresponds to
h < —h, i.e. we expect it to correspond to the duality z < y (for i = 0, the x < y
duality was proved in [14]).

Let us also mention that the topological expansion of non-hermitian matrix integrals
is known to be related to the enumeration of unoriented discrete surfaces, and we
expect that our F9) =" . A" F(9k) can be interpreted as generating functions of such
unoriented surfaces.

So, in this article, we provide a method for computing F@*) for any ¢ and k (which

is more consise than [7]).

Outline of the article

e In section 2 we introduce our recursion kernel K(z,x’), and we show that the

mere existence of this kernel is equivalent to the Bethe ansatz condition.

e In section [3, we define the W,Sg)’s and the F9’s; and we study their main prop-

erties, for instance that Wi is symmetric.

e In section Ml we study the classical limit A — 0, and we show that we recover the

algebro-geometric construction of [13].
e This inspires a notion of non-commutative algebraic geometry in section

e In section B we study the application to the topological expansion of non-

hermitian matrix integrals.



e In section [7, we study the application to the Gaudin model.
e Section 8 is the conclusion.

e All the technical proofs are written in appendices for readability.

2 Definitions, kernel and Bethe ansatz

Let V'(x) be a rational function (possibly a polynomial), and we call V' (x) the poten-
tial. Let a; be the poles of V/(x) (one of the poles may be at 00).
For example, the following potential is called Gaudin potential (see section [7)):

Si

Tr — O

V(l}audin(x) =T+ Z (21)
i=1

As another example, we will consider formal matrix models in section [0 for which
V'(z) is a polynomial.

However, many other choices can be made.

2.1 The problem

Our problem is to find m complex numbers sy, . .., s, as well as two functions G(zo, x)

and K (xg,x) with the following properties:

1. G(zp,x) is a rational function of x with poles at = = s;, and a simple pole of

residue +1 at = = x, and which behaves as O(1/x) at © — oo.

2. G(zo,x) is a rational function of xy with (possibly multiple) poles at xy = s;, and
a simple pole at xy = z, and G(x¢,x) behaves like O(1/xg) at zy — 0.
3. B(xg,z) = —%%G(mo,x) is symmetric: B(zg,x) = B(x, o).

4. K and G are related by the following differential equation:

r—S; X

<2h2 L v - hga ) K (x0, %) = G0, ) (2.2)

5. K(zg,x) is analytical when z — s; for alli =1,... m.

We shall see below that those 5 conditions determine K, GG, and the s;’s. In fact
condition 5 is the most important one in this list, it amounts to a no-monodromy
condition, and we shall see below that it implies that the s;’s must obey the Bethe-

ansatz equation.



2.2 Analytical structure of the kernel ¢

The 4th and 5th conditions imply that G(zo,x) has at most simple poles at = = s;.
Then condition 3 implies that G(z, x) has at most double poles at xy = s;.
The first 3 conditions imply that there exists a symmetric matrix A;; such that

G(zo, ) can be written:

_ P 2.3
(2o, ) = T — To 2]21 (v —54) 0_31) 2
and therefore:
) 1 m A
i 11 i,j 2.4
(20, 2) = 5 (-0 zzzjl (@ — s:)*(z0 — 55)° .

We will argue in section [@, that B can be viewed as a non=commutative deformation

of the algebraic geometry’s Bergmann kernel.

2.3 Bethe ansatz and monodromies

First, we study the conditions under which the differential equation eq. (Z:2]) has no
monodromies around s;, in other words the condition under which K (zy, x) is analytical

when x — s;, Vi:
€2 €3
K(zg,8; +€) = K(x0, 8;) + €K' (w0, ;) + §K”(zo, s;) + EK’”(@"O, Si)+ ... (2.5)

Equating the coefficient of ¢! in eq. (Z2)), we get:
hE (z0,5:) = ) i (2.6)
’ (o — 55)?

J

equating the coefficient of € in eq. (Z.2)), we get:

hK' (zo, 8;) = —! + V() K (20, s 2712 K20, 51) = Klxo, 5,) (2.7)

o — S; i — Sj

and equating the coefficient of €! in eq. (2.2)), we get:

113'0, sz an sz 1
2FL — Qh V 7 K ) O1

_ v<si>K’(xo,si>—ﬁ_QZZ (5: — 5)
(2.8) o

2(zp — s1,)?



Notice from eq. (2.6), that K (zo, s;) has only double poles in zq, with no residue:

Res K(xg,s;) =0 (2.9)

To—Sk

Then, taking the residue at xy — sj in eq. (2.1), we see that:

h Res K'(zg,si) = —0ix (2.10)

To— Sk

Then, taking the residue when xy — s; in eq. (2.8)), implies that the s;’s are Bethe
roots, i.e. they must obey the Bethe equation:

Vi=1,....,m, 2712 V'(s:)
j#i 8]

(2.11)

Then eq. (Z8) becomes:

1 " xOvSl Ajk
S 2 — ’ 2.12
(s; — 20)?2 Vi (si) K (o, i) + hz ZZ (s: — 57)2(zo — 1) (2.12)

— 8
J#Z 5i = )

i.e. by comparing the coefficient of 1/(x¢ — sx)? on both sides:

1 Aj
5zk— —V”(sl) Zk+2z#

h J#i B S])2
(2.13)
i.e. A is the inverse of the Hessian matrix 7"
T = 1V” $;) +2 —
A=T"" ) { T;; = 1 —(2 ))2 Z]# SZ_S]) (2.14)

T~ 3 G ONIEED WAEE) (2.15)

kil
Therefore the Bethe ansatz equations eq. (211 (as well as eq. (2I3)) are the
necessary conditions for K (xg, ) to be analytical when x — s;. Those conditions are

necessary, but also sufficient conditions, as one can see by solving explicitely the linear
ODE for K.

o N LwvEH)-vie T — 8 2
K(xg, ) :/ da' G, ') ex (V@) =V@) Hﬁ (2.16)

Remark 2.1 Notice that K(zg,z) is not analytical everywhere, it has a logarithmic singu-
larity at x = g, and it has essential singularities at the poles of V.
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Remark 2.2 Notice that if one solution of the ODE is analytical near all s;’s, then all
solutions have that property. Indeed, all the solutions differ by a solution of the homogeneous
equation, i.e. by:
H(a: — 5;)? e V(@) (2.17)
(2

which is clearly analytical near the s;’s.

So, for the moment, the requirements 1-5 determine G(xg,x) uniquely, but K(zg,x) is
not unique. Let us choose one possible K (xg,x), and we prove below in theorem [3.4], that
the objects we are going to define, do not depend on the choice of K.

Remark 2.3 In what follows, it is useful to compute the Taylor expansion of K near a root
s;. We write:

K(xo,z ZKZ k(x0) (z— ;)" (2.18)

The coefficients K (x() are themselves ratlonal fractions of x(, and are computed in appendix

(Al

2.4 Schroedinger equation

It is well known that the Bethe condition can be rewritten as a Schroedinger equation
[1, 2]. We rederive it here for completeness.

Define the wave function:

P(x) = H({E — ;) e V(@) : w(x) = hz " i 5 (2.19)
Y(z) = —zhﬁ((g = V'(a) — 20(a) = V(a) ~ 203 - ! - (2.20)
then compute: Z
Ulx) = Y?—2rY'(x) = 4h? ﬁ/((;))
= V'(z)* = 20V"(2) + 4(w(z)? — V'(2)w(z) + W' (x)) (2.21)

We have:
, / B ) 1 32 v
w(@) +w'(r) = kA Z (z — ) (z — s;) n ZZ: (z — 5:)?

7]

= }7?2 1

2= s —s)
(2.22)

which is a rational fraction with only simple poles at the s;’s. The residue at s; is
21 Z#, pr—— = hV'(s;), and thus:

w(z)? + ho'(x) = hz (Z/Es;)i) (2.23)




which implies:

w(z)? = V'(2)w(z) + h'(z) = —hz Vi @ —s) (5:) (2.24)

and thus:

Uz) = V'(z)* = 2hV" (x 4712 (5:) (2.25)

T — S

Therefore U(x) is a rational fraction with poles at the poles of V' (of degree at most
those of V’?), in particular it has no poles at the s;’s.

U is the potential for the Schroedinger equation for :

ARY" = U

(2.26)

As announced in the introduction, this equation can be encoded in a D-module

element:

0

—he . [pal=h (2.27)

1
Ewy) =y - U@
ie.
E(x,y)p=0 (2.28)
Notice that the Schroedinger equation is equivalent to a Ricatti equation for Y =

—2! [

Y2 —2nY'=U

(2.29)

2.5 Classical limit

We shall come back in more detail to the classical limit 2z — 0 in section 4. However,

let us already make a few comments.

e In the classical limit, the Ricatti equation becomes an algebraic equation (hyper-

elliptical), which we call the (classical) spectral curve:

YZ=U(x) (2.30)

cl

The function Yy (z) = y/U(z) is therefore a multivalued function of z, and it should
be seen as a meromorphic function on a branched Riemann surface (branching points
are the zeroes of U(x)). We shall see below that in the limit 7 — 0, the kernel B(zo, )
tends towards the Bergmann kernel of that Riemann surface.
In other words the classical limit is expressed in terms of algebraic geometry.
In fact, in this article we are going to define non-commutative deformations of

certain algebraic geometric objects in section [5l

8



3 Definition of correlators and free energies

In this section, we define the quantum deformations of the symplectic invariants intro-
duced in [0, 13]. The following definitions are inspired from (not hermitian) matrix
models. The special case of their application to matrix models will be discussed in
section [0

3.1 Definition of correlators

Definition 3.1 We define the following functions W,gg)(xl, ..

relation function of “genus’tl g) by the recursion:

., Tp) (called n-point cor-

W (@) =) =Y L WOm) = Blenm)  (31)

W9, (zo, J)

n

(g-1)
= Z:f{_?SK(xoa x) (an+2 z,2,J) +ZZW\1\+1 z, W, m+1($ J/D)

i=1 h=0 ICJ

(3.2)
where J is a collective notation for the variables J = {x1,...,x,}, and where 3.
means that we exclude the terms (h = 0,1 = 0) and (h = g,I = J), and where:

01.204.0 1

79) _ 1179
“e n) — g )ty in
W (21, ey ) = W9 (21, .0y ) > =)

(3.3)

Remark 3.1 This is exactly the same recursion as in [I3], the only difference is that the
kernel K is not algebraic, but it is solution of the differential equation eq. (2:2]). We shall
show in section M that in the limit & — 0, it indeed reduces to the definition of [13].

Remark 3.2 We say that Wr(Lg ) is the correlation function of genus g with n marked points,
and sometimes we say that it has characteristics:

X=2—-2g—n (3.4)

By analogy with algebraic geometry, we say that WT(LQ) is stable if ¥y < 0 and unstable if

x > 0. We see that all the stable WT(Lg )’s have a common recursive definition def[3.1], whereas
the unstable ones appear as exceptions.

Remark 3.3 In order for the definition to make sense, we must make sure that the be-
haviour of each term in the vicinity of x — s; is indeed locally meromorphic so that we can
compute residues, i.e. there must be no log-singularity near s;. In particular, the require-
ment of section for the kernel K is necessary. In other words, a necessary condition for
definition eq83.2] to make sense, is the Bethe ansatz !

3here g is any given integer, it has nothing to do with the genus of the spectral curve.



3.2 Properties of correlators

The main reason of definition. 311 is because the W, have many beautiful proper-
ties, which generalize those of [13].

We shall prove the following properties:

Theorem 3.1 Each W\ is a rational function of all its arguments. It has poles only
at the s;’s (except W2(0), which also has a pole at x1 = x3). In particular it has no poles

at the «;’s. Moreover, it vanishes as O(1/x;) when x; — 00.

proof:

in appendix [B] (]

Theorem 3.2 The Wég) ’s satisfy the loop equation, i.e. Virasoro-like constraints.
This means that the quantity:

Pf(zfj-)l(x; Ty, Tp) = —Y(SL’)WS}A(SL’, L1y ey T) + ﬁ&pWigj_l(x, Ty Tp)
S W e )W, /D) + T (2, )
IcJ W(g) (x J/{ N W(g) ’ ]
Yo, < 2w ) =T (s J/{g}))
J

(x — ;)

(3.5)

is a rational fraction of x (possibly a polynomial), with no pole at x = s;. The only
possible poles of Pé‘jr)l(x;atl...,:zn) are at the poles of V'(x), with degree less than the
degree of V.

proof:

in appendix [ O
Theorem 3.3 Each W9 is a symmetric function of all its arguments.

proof:

in appendix [D| with the special case of Wéo) in appendix [Fl O

Theorem 3.4 The correlation functions W are independent of the choice of kernel
K, provided that K is solution of the equation eq. (Z.2).

proof:

in appendix [E [

10



Theorem 3.5 The 3 point function Wéo) can also be written:

B(x,z1)B(x,z2)B(x, x3)
Y'(x)

Wi (@1, 22, 23) =4 Y Res (3.6)

(In section[d, we interpret this equation as a non-commutative version of Rauch vari-

ational formula).

proof:

in appendix [F] O
Theorem 3.6 Under an infinitesimal variation of the potential V- — V +0V , we have:

Vn>0,g>0, W9 (zy,... x,)=— Z Res W,(i)l(z, X1, .., %) 0V (z)  (3.7)

proof:
in appendix [G OJ
This theorem suggest the definition of the ”loop operator”:

Definition 3.2 The loop operator 6, computes the variation of W under a formal

variation 6,V (z') = -

Oy WO (g, .. xn) = W (21, .. 2, o) (3.8)

n

The loop operator is a derivation: 0,(uv) = ud,v + véu, and we have 6z, 0z, = 0z,04,,

0102y = 03,04, .

Theorem 3.7 Forn > 1, 1A% satify the equation:

; ox; Wig) (@1,...,2,) = — ;aneESi V! (2p11) Wizgll(xl’ e Ty Tpy1) (3.9)

and

~ 0 () o
; or; T; an (X1, ., xp) = — ; "En]E}leESi Tn+1 V’(xn+1) anﬂ(xl, ey Ty Tpy)
(3.10)

proof:

in appendix [H O

Theorem 3.8 Forn > 1, W\ satify the equation:

0 — —
(2 - 2g -—n- h%) Wig)(xla RS xn) = = Zx ];:S’le_s)s_ V(,’L’n+1) Wilg-i)-l(xlv <oy T, xn-i—l)

(3.11)

11



proof:

We give a ”long” proof in appendix [Il

There is also a short cut:

If one changes h — Ah, and V' — AV, the s;’s don’t change, B and GG don’t change,
and K changes to ; K, thus W9 changes by A2=20-7 179 The theorem is obtained
by computing g—‘;)@g_“"W,S = > tkaWn , and computing the RHS with theorem
B6 ie. 0V =V.

O

3.3 Definition of free energies
So far, we have defined W, with n > 1. Now, we define F@ = W\
Theorem [3.6, and the symmetry theorem B.3] imply that:
o W9 (25) = WA (21, 5) = WP (29, 1) = 8, W (21) (3.12)

Thus, the symmetry of WQ(g ) implies that there exists a ”free energy” F9) = Wo(g ) such
that:
W9 (z) = §,F9 (3.13)

which is equivalent to saying that for any variation 0V:

SF9 = — Z Res W9 () 6V (z) (3.14)
Therefore, we know that there must exists some F'(9) = Wo(g ) which satisfy theorem
for n = 0.

Now, let us give a definition of F9)| inspired from theorem B.8] and which will be
proved to satisfy theorem for n = 0.

Definition 3.3 We define F19) = Wo(g) by a solution of the differential equation in h:

Ygz2 . (2-2-ho a Z Res W, (z) V() (3.15)

more precisely:

h
(9) — K2-29 (9)
F@ —p /0 - § Res V() W, (z)‘ﬁ (3.16)
And the unstable cases 2 —2g > 0 are defined by:

0) _ h2 Z]n (Si — Sj) — ﬁz V(SZ) (317)

i#]

12



(0)

1 F
FO = 5 ndet A+1n (A(s)%) + - (3.18)

s; — 8;j) is the Vandermonde determinant of the s;’s.

where A(s) =]

i

Properties of the F(9)’s:
The definition of the F¥)’s, is made so that all the theorems for the Wég)’s, hold
for for n = 0 as well. Proofs are given in appendices [ [K], [l

Explicit computations of the first few F'9)’s are given in section [1 and appendix [Ml

4 Classical limit and WKB expansion
In the A — 0 limit, all quantities can be expanded formally into powers of A: Write:

WO 2y, own) =S BWO @y, w) , FO =3 pF6H (4.1)
k k

4.1 Classical limit

Here we consider the classical limit A~ — 0. We noticed in section 2.5 that in that
limit, the Ricatti equation

Y2 - 2RY' =U =V"—-2hV" — 4P (4.2)
where P(z) =h)_, %, becomes an algebraic hyperelliptical equation:
Ya® = U(z) = V'(2)* — 4P(x) (4.3)

1.e.

Y(2) ~ Ya(r) = V'(x)? — 4P(x) (4.4)

Ya(z) is a multivalued function of z, and it should be seen as a meromorphic function
on a 2-sheeted Riemann surface, i.e. there is a Riemann surface 3 (of equation 0 =
Ea(x,y) = y* —4U(x), such that the solutions of £4(z,y) = 0 are parametrized by two
meromorphic functions on X:

x=x(2)

y =y(z) (4.5)

Calr,y) =0 <& 3262{

The Riemann surface ¥ has a certain topolong characterized by its genus g. It has

a (non-unique) symplectic basis of 2g non-trivial cycles A; N B; = 6; ;.

4This genus g has nothing to do with the index g of F(9) or Wég).

13



The meromorphic forms on ¥ are classified as 1st kind (no pole), 3rd kind (only
simple poles), and 2nd kind (multiple poles without residues).

There exists a unique 2nd kind differential B, on ¥, called the Bergmann kernel,
such that: Bg(z1, 22) has a double pole at z; — 25, and no other pole, without residue

and normalized (in any local coordinate z) as:

dzdz : _
Ba(z1, 22) s ﬁ + reg , Vi=1,...,7, %4 Bya=0 (4.6)

We define a primitive:
Galz0,2) = —2/ Ba(z0,2") (4.7)

which is a 3rd kind differential in the variable zy, it is called dE.(zp) in [13].
When £ = 0, the kernel K(zy, z) satisfies the equation:

Galz0,2) 5 [ Ba(z0,7')

Kl == e

(4.8)

which coincides with the definition of the recursion kernel in [13].

4.2 WKB expansion of the wave function

When £ is small but non-zero, we can WKB expand (), i.e.:

1 T / / 1
(z) ~ ez S Yale)de 1+ Ry (z) (4.9)
NECARRE
ie. -
Y ~Ya+ Y Y (4.10)
k=1
The expansion coefficients Y} can be easily obtained recursively from the Ricatti equa-

tion: -
Vi =2V | =Y Y Vi (4.11)
j=1
For instance:
Yo Y Y2 Yo" 3Ya"
Y, = Yo=—— = - - .. et 4.12
Y. 7 YT Ya 24 YaE 2V ’ o (4.12)
4.3 h expansion of correlators and energies
The kernel K (zg,x) can also be expanded:
K(xg, 1) = Kg(zg,7) + Z R K 3 (20, ) (4.13)
k=1

14



where K(g) = Kq is the kernel of [13]:

dEm 0((170)
Ka(xg,x) = —— 4.14
1(:150 SL’) }/;1(1,> ( )
This implies that the correlators W,Sg ) can also be expanded:
W @y, an) = Y RE WO (@, ) (4.15)
where the W% are obtained by the recursion:
- (9—1.1)
WP (w0, ) = D3 Res Kgyleo, @) [y (w2, )
=0 i '
(h (9—h.l
+ZZZW\I\+J1 o W, . I (4.16)
h=0 j=0 ICJ
where J = {z1,...,2,}.

Therefore, we observe that to leading order in A, the lims_o Wi = W¢% do
coincide with the WY computed with only K., and thus they coincide with the W,
of [13].

And also, the i expansion must coincide with the diagrammatic rules of [7].

5 Non-commutative algebraic geometry

We have seen that in the limit 2z — 0, the correlation functions and the various functions
we are considering, are fundamental objects of algebraic geometry. For instance B is the
Bergmann kernel, and K is the recursion kernel of [I3], which generates the symplectic

invariants F, and the correlators W9 attached to the spectral curve Yy (z).

In this paper, when h # 0, we have defined deformations of those objects, which
have almost the same properties as the classical ones, except that they are no longer
algebraic functions.

For instance we have:

e Spectral curve

The algebraic equation of the classical spectral curve is replaced by a linear
differential equation:

) :Z&-,jx"yj —  0=E&(z, ho)y Zé'”x (ho)’ (5.1)
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In other words the polynomial £(z,y) is replaced by a non-commutative polyno-
mial with y = ho,, i.e. [y, z] = h.

Here, our non-commutative spectral curve is:
E@y)=y"~Ulx) , y=ho, (5.2)

Notice that it can be factorized as:

E@y)=y-5)+3) (5:3)
where Y'(z) is solution of Y2 — 2RY’ = U,

Bergmann Kernel B(zq,xs)

The non-commutative Bergmann kernel B(x1, z5) is closely related to the Inverse
of the Hessian T', i.e. to A=T""

B — _ bl 5.4
(21, 2) 2ty — 1) + ; (51— (5.4)

i)% (2 — s5)?

A property of the classical Bergmann kernel B(x1, x5) is that it computes deriva-
tives, i.e. for any meromorphic function f(z) defined on the spectral curve we
have:

df(x)=— Res  Ba(z,z2) f(z2) (5.5)

rg—polesof f

Here, this property is replaced by: for any function f(z) defined on the non-

commutative spectral curve (i.e. with poles only at the s;’s), we have:
f'(x) = =2 Res B(x, ) f(12) day (5.6)
- To—S;

The factor of 2, comes from the fact that the interpretation of x, and thus of
derivatives with respect to x, is slightly different. In the classical case, the dif-
ferentials are computed in terms of local variables, and x is not a local variable
near branch-points. A good local variable near a branchpoint a, is /= — a. In
the non-commutative case, the role of branchpoints seems to be played by the

s;’s, and x is a good local variable near s;.

Rauch variational formula: In classical algebraic geometry, on an algebraic
curve of equation £(z,y) =3, ; & jx'y? = 0, the Bergmann kernel depends only
on the location of branchpoints a;. The branchpoints are the points where the

tangent is vertical, i.e. dz(a;) = 0. Their location is x; = x(a;). The Bergmann
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kernel is only function of the x;’s, and the classical variational Rauch formula

reads:
0 Ba(z1, 22) _ Res Bu(z,z1) Bal(z, 22)

or; z—a; dz(z)
Equivalently, we can parametrize the spectral curve as z(y) instead of y(x), and

(5.7)

consider the branchpoints of y, i.e. dy(b;) = 0, whose location is y; = y(b;), and

we have:

0 Ba(z1, 22) ~ Res Bu(z, z1) Bal(z, z9)
9y z—b; dy(z)

Here, in the non-commutative version, theorem and theorem implies that

(5.8)

under a variation of the Spectral curve, we have:

1 B(x,z1)B(x, x2)
6B(z1,20) = Z Res 7o) 5Y (x) (5.9)

Consider the branchpoints b; such that Y'(b;) = 0, and define their location as

Y; = Y (b;), by moving the integration contours we have:

Bz, xl B(x, )

0B(z1,29) = = qub Vi) —=2 §Y (z) dx
— 1 5Y Res ([L’ 1'1) (xVIQ) dr
2 p x—>b /([L')
(5.10)
OB(n:) 1. Blow) Blo,o)
X1, T9 _ 1 T, Ty X, T2
Gy = Res i) dx (5.11)

which is thus the quantum version of the Rauch variational formula eq. (5.8]).

Those properties can be seen as the beginning of a dictionary giving the deforma-

tions of classical algebraic geometry into non-commutative algebraic geometry.

Conjecture about the symplectic invariants

The F,’s of [13] are the symplectic invariants of the classical spectral curve, which
means that they are invariant under any cannonical change of the spectral curve which
conserves the symplectic form dx A dy. For instance they are invariant under x —
Y,y — —x.

Here, we conjecture that we may define some non-commutative F¥)’s which are
invariant under any cannonical transformation which conserves the commutator [y, x| =
h. This duality should also correspond to the expected duality § — 1/4 in matrix
models, cf [17, [6].

However, to check the validity of this conjecture, one needs to extend our work to
differential operators of any order in y, and not only order 2. We plan to do this in a

forthcoming work.
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6 Application: non-hermitian Matrix models

The initial motivation for the work of [13], as well as this present work, was initially
random matrix models. The classical case corresponds to hermitian matrix models,
and here, we show that A # 0 corresponds in some sense to non-hermitian matrix
models [5] 6], @].

In this section, we show that non-hermitian matrix models satisfy the loop equation
eq. ([CI) of theorem B.21

We define the matrix integral over E,, o5 =set of m X m matrices of Wigner-type 23
(Ep1 = real symmetric matrices, E,, » = hermitean matrices, E,, 4 = real quaternion

self-dual matrices, see [16]):
Z = / dM e NVB TV (6.1)
Em,2ﬁ

where N is some arbitrary constant, not necessarily related to the matrix size m.

It is more convenient to rewrite it in terms of eigenvalues of M (see [16]):

7 = / dhi . dhy, TG = X)? JJe VPV (6.2)

i>j i
This last expression is well defined for any (3, and not only 1/2, 1,2, and for any contour
of integration C on which the integral is convergent.

We also define the correlators:

_ 1
Wozy,...,z,) = < Tr

T
M n oM
P

05T g
- (N \/B) W Wy 7 (6.3)

e

i.e. in terms of eigenvalues:

Wolan, o) =< 3 Loy (6.4)

X1 — >\i1 Lp — >\in

In order to match with the notations of section [3, we prefer to shift W, by a second

order pole, and we define:

594 6n,2
Wn(xl,,xn) —Wn(xl,,xn)—i—m (65)

We are interested in a case where Z has a large IV expansion of the form:

InZ~Y N*%F, (6.6)
g=0

and for the correlation functions we assume:

1 o
W1, ..., ) S N () (6.7)
g=0

:W
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6.1 Loop equations

The loop equations can be obtained by integration by parts, or equivalently, they
follow from the invariance of an integral under a change of variable. By considering

the infinitesimal change of variable:

1
Ai = A +e—— + O(é 6.8
— +€£E—)\i+ (€) (6.8)
we obtain:
N\/7 n+1.CL’33'1,...,5(7”)—Pn+1(l’;xl,...,$n))
= ZW1+\J| (2, J) Wign_1s(z, L/ J)
JCL
+OW po(z, 2, .. )
0 —
_(1 - 6) 8_:6 WTL+1('T L1y 7:1:n)
i 0 Waw, 1/ {,}) = Wil L/ {z,}) 69
— O, T — '
where P, 41(x;21,...,2,)) is a polynomial in its first variable z, of degree §,, 1 +deg V —
2.

If we expand this equation into powers of N using eq. (6.7]), we have Vn, g:
TR 7 @ (..
V( ) W1 (x, xl,...,xn) - P (zy 2, ., 20))
= Z S WAL, WL, L))

g'=0JCL
—(g—1
+6W£Lg+2)(x z xlw"vxn)

WS]H(:C, 1, )

(6.10)

where
(6.11)

Those loop equations coincide with the loop equations eq. ([3.H) of theorem 3.2

Moreover we have:

—=(9)
WY = avg‘,}_l (6.12)
and near x — 00:
> —9)!
VB Wile) ~ = S0 S (v (6.13)
p ! !



i.e.

m_h h—2g (29 - 2)|

0 mh 2 g 2
Wl()(x)~7+0(1/m) : Wf’(:c>~—x g!(g_l)!+0(1/x)(6.14)

One should notice that the loop equations are independent of the contour C
of integration of eigenvalues. The contour C is in fact encoded in the polynomial

Pz, ... x).

6.2 Solution of loop equations

To order g = 0,n = 1 we have:

0
V(@) Wi (@) = P () = W (@) + b W (a) (6.15)

which is the same as the Ricatti equation eq. (2.21)).

As we said above, the contour C is in fact encoded in the polynomial Pl(o) (). From
now on, we choose a contour C, i.e. a polynomial Pl(o) (x) such that the solution of the
Ricatti equation is rational:

m

WO =S — (6.16)

T — S;
i=1 v

It also has the correct behaviour at oo: WI(O) (x) ~ mTh . This corresponds to a certain
contour C which we do not determine here.
Since Wl(o)(x) = w(z) satisfies the Ricatti equation, i.e. the Bethe ansatz, the kernel

K exists, and we can define the functions K(x¢,x), G(xo, z) and B(zo, z).

Then, from eq. (6.12), we see that every WS}) is going to be a rational fraction of

x, with poles only at the s;’s. In particular, Cauchy theorem implies:

Wigil(zo, x1,...,%,) = Res G(xg, 7) Wflgll(x, Tly ey Ty) (6.17)
T—x0
and since both G(z,x) and Wigll(:c, x1,...,%,) are rational fractions, which vanish

sufficientely at oo, we may change the integration contour to the other poles of the

integrand, namely:

W,(i)rl(:co, Tl Ty)
= _ZResG(x0>$)W£Lgil($7xl>'"axn)
= =Y Res WYL (w0, ) (2(a) = V/(w) = h,) K (0, 2)

= =" Res K(ao,7) (2w(z) = V/(2) + ho) W1 (@21, )
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(6.18)

Now, we insert loop equation eq. (6.10) in the right hand side, and we notice that the
(9)
term P(g)1 and 6 % do not have poles at the s;’s, so they don’t contribute.
J
We thus get:

Wig_i)_l(l'o, L1y - ,ZL’n)

Z Res_ K(z, ) <W£Lg+21)(:c Ty X1,y Tp)

+ Z S WS (L)) (6.19)

g'=0JCL

i.e. we find the correlators of def 3.1l

Special care is needed for WQ(O). We have:

(0
Wé )([L’o,l'l,. .. ,ZL’n)

= =D Res K(wo,2) (2w(z) = V'(2) + W)Wy (2,21)

= Z?ﬁf“&”%

_ h?: LU(),‘
S—[L’l

A%]
B Z (50— 025y — 20)?
(6.20)

which also agrees with def 3.1l

7 Application: Gaudin model

The Gaudin model’s Bethe ansatz is obtained for the potential:

n S,
Véaudin(z) =T+ Z (71)
im1 U
i.e. it corresponds to a Gaussian matrix model with sources:
7 = / AM e~ ¥ T [ det(a; — ar)=V5:vP (7.2)
Em 28 !
with h = ]\1/ VB

Z can also be written in eigenvalues:

1", e — B2 H 25
Z:/dkl.. d\,, i= (A — Nj) (7.3)
[T T (o = X)NVES
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7.1 Example

Consider:

82 2

V’(I)Zx—; , V(x)z%—sﬂnx

(7.4)

With only 1 root m = 1, the solution of the Bethe equation V'(x) =0 is z = s.

Thus we have:

h
w(z) = p—
1 h
B p—
(1'1, 115'2) 2(213‘1 — 213'2)2 + Q(Jfl - 5)2<.§L’2 - 8)2
We find:
" B B 1 1 1
W3 (1’1,;(,’2,253) - 2(1,1 _ 8)2(213‘2 _ 8)2(2173 _ 8)2 (ajl — 3 + To — 8 r3 — S

1 n 1 n 1
hx—s) 4ds(x—s)?2 2(x—s)?

For the free energies we have:

W () =

2
FO = 7%9 (Ins* — 1)

1 h. FO
FO = Z 1n(=

s G+ 53
@@__ L _F9

12hs? h4

0
Fo L 2F©

12h3 52 16

and . .
7 — @l N?TFW) _ NVBV(s) (1~
© © NG (= o ©

which is indeed the beginning of the saddle point expansion of:

Z = / da e~ NV V(@)

8 Conclusion

)

(7.5)

(7.6)

(7.9)

(7.10)
(7.11)

(7.12)

(7.13)

(7.14)

In this article, we have defined a special case of non-commutative deformation of the

symplectic invariants of [13]. Many of the fundamental properties of [I3] are conserved

or only slightly modified.

The main difference, is that the recursion kernel, instead of beeing an algebraic

function, is given by the solution of a differential equation, otherwise the recursion is

the same.
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The main drawback of our definition, is that it concerns only a very restrictive
subset of possible non-commutative spectral curves. Namely, we considered here only
non commutative polynomials £(x,y) = Z” Ei; x'y? with y = hd,, of degree 2 in y,
and such that the differential equation £(x, hd).7» = 0 has a ”polynomial” solution of
the form ¢(z) = [[I",(z — s;) e”V @/,

It should be possible to extend our definitions to other "non-polynomial” solutions
¢ (with an infinite number of zeroes m = oo for instance), and/or to higher degrees
in y. In other words, what we have so far, is only a glimpse on more general structure
yet to be discovered.

For example, it is not yet clear how our definitions are related to matrix integrals.
We have said that the integration contour for the eigenvalues should be chosen so that
the solution of the Schroedinger equation is polynomial of degree m, however, it is not
known how to find explicitly such integration contours. Conversely, the usual matrix
integrals with eigenvalues on the real axis, do probably not correspond to polynomial
solutions of the Schroedinger equation. Similarly, it is not clear what the relation-
ship between our definitions and the number of unoriented ribbon graphs is, for the
same reason. The solution of the Schroedinger equation for ribbon graphs, should be
chosen such that all the W,¢*s are power series in ¢, and it is not known which inte-
gration contour it corresponds to, and which solution of the Schroedinger equation it

corresponds to.

Therefore it seems necessary to extend our definitions to arbitrary solutions, i.e. to
arbitrary integration contours for the matrix integrals. A possibility could be to obtain

non-polynomial solutions as limits of polynomial ones.

The extension to higher degree in y, can be obtained from multi-matrix integrals,

and extension seems rather easy for polynomial solutions again.

Finally, like the symplectic invariants of [I3], we expect those "to be defined” non-
commutative symplectic invariants, to play a role in several applications to enumerative
geometry, and to topological string theory like in [3]. In other words, we expect our
F)’s to be generating functions for intersection numbers in some non-commutative

moduli spaces of unoriented Riemann surfaces, whatever it means...

Acknowledgments

We would like to thank O. Babelon, M. Bergere, M. Bertola, L. Chekhov, R. Dijkgraaf,
J. Harnad and N. Orantin for useful and fruitful discussions on this subject. This work
is partly supported by the Enigma European network MRT-CT-2004-5652, by the ANR

23



project Géométrie et intégrabilité en physique mathématique ANR-05-BLAN-0029-01,
by the Enrage European network MRTN-CT-2004-005616, by the European Science
Foundation through the Misgam program, by the French and Japaneese governments
through PAI Sakurav, by the Quebec government with the FQRNT.

A Appendix: Expansion of K

Since we have to compute residues at the s;’s, we need to compute the Taylor expansion
of K(xg,x) when x — s;:

K(zg,x) = Z(x — 5)" K; 1 (20) (A1)
k
For instance we find:
Kip= 4is (A2)
W h (o — 5;)? .

porier To — ;)
(A.3)
hK = h L Ly K
i3 = (2 Z m + 7—1‘/ (32)) i1
a#i
1 1V"(s;)
—h(2 — K;
( ;(s —S')?’_'_h 2 ) o
A
T 2 2
(xo — i) ; ZJ: —5;)3 (xo — 55)?
(A.4)

Thanks to property eq. (E.4]), we may assume (but it is not necessary) that:
Ki»=0 (A.5)

Then, we have the recursion for k& > 0:

Kk 1
(1 PINEE) ppomec T m—ﬁz o)
a#i =0 1=0
- (:)30—8 (20 — si)FH1 222 (S0 — 57) k+1 xo—sj)2 (A.6)

a#ti  J

This proves that each K; (o) is a rational fraction of z(, with poles at the s;’s.
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A.1 Rational fraction of z

Thus we write:

1
K k(z0) = 5 Kk (A.7)
%: (w0 — 55)" ’
For instance we have: 4
K30 = 7;’3 (A.8)

hKi,l;j,k’ = _6k/ 162]' — 26k’ 2 Z

For higher k£ we have the recursion:

k
| VD (s4)
zk l]k i
h((l — k‘ ik+155,k" — 2 E E S — S l+1 - E, g 7“ Kz’,k—l;j,k’)

a#i =1 =1
A,
= =0 Ok k41 — 208 2 Z . )k—l—l (A.10)
a;éz ¢
In particular, it shows that if &’ > 2, then K, .; s is proportional to 9 ;.
A.2 Generating functions
We introduce generating functions:
zyk’ Zszjk’ LU—S) (All)
We have
Y'(x) Kol Aaj
h <2w<x> _a,c) Rio(@) = =8i5(x = )~ 4 2000 Y - (A.12)
ie.
Rijw (2) K -1
— W (z) D ( o) ) = 0 (x — )%V 4 Opracy + 200 Zx_sa (A.13)
In particular with &' = 1 we find:
i j
Rija(w) = == ¢(w)o(x) (A.14)
where _—
T / /
¢(x) = @D(l‘)/ DR ¢'(x)h(x) — ' (2)o(x) =1 (A.15)
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B Appendix: Proof of theorem [3.1]

Theorem 3.1 Bach W9 is a rational function of all its arqguments. If 2g+n—2 > 0,
it has poles only at the s;’s. In particular it has no poles at the a;’s, and it vanishes

as O(1/z;) when x; — oc.

proof:
It is easy to check that Wl(o), Wz(o) satisfy the theorem.
We will now make a recursion over —y = 2g — 2 4+ n to prove the result for every

(n,g). We write:

Wrgi)l(IOa L1ye.. >$n) = Z:B_(?SS K(l’(), Zlf) Ursggl($7 L1y axn) (B]')
where J = {zy,...,z,}, and
h) h)
U9 (2, 0) =W (@2, 0) + Z S W@ DWW (@, /1) (B.2)
h=0 ICJ
First, the recursion hypothesis clearly implies that Un +1(x,x1, ..., T,) is a rational

fraction in all its variables z, x1, ...z,.
Then we Taylor expand K (xg,z) as in eq. (AT) or eq. (A7)

W9 (x0, 21, ... 20) = Ziesf((xo, ) U9 (z,11,.. ., 2,)

- ZZK”“ xo) Ei?ss( s:)" Unﬁl(:c Tlyenoy Tp)
(B.3)

Since U +1(x x1,...,T,) is a rational fraction of x, the sum over k is finite, and there-
fore, W +1(1’0, x1,...,%,) is a finite sum of rational fractions of xy, with poles at the
s;’s, therefore it is a rational fraction of zy with poles at the s;’s

It is also clear that W, +1(x0, T1,...,T,) is a rational fraction of the other variables
Z1,...,%,. The poles in those variables are necessarily at the s;’s, because as long
as the residues can be computed, w9 wo1 (o, 21, ..., ) is finite. The residue cannot
be computed everytime an integration contour gets pinched, and since the integration

contours are small circles around the s;’s, the only singularities may occur at the s;’s.

It remains to prove that each WY behaves like O(1/z;) at co. The proof follows
the same line: each K (o) behaves like O(1/x¢), and by an easy recursion the result
holds for all other variables. [
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C Appendix: Proof of theorem

In this subsection we prove theorem [3.2, that all W satisfy the loop equation.

Theorem The W9 s satisfy the loop equation, i.e. the following quantity
Péi)l(% L1y Tp)

P,Ei)l(x;:cl...,xn) = —Y(x )Wnll(x L1y ooy Tpy) + B0, Wn+1(35 xl xn)

+ZW\1\+1 $=551)W£L—|1|+1(557 J/T) + Wn+2 (557% J)
IcJ
(9) —5(9)
+Z o (W (z, J/{j}) — W+ <x3,J/{y}>>

(x — )

(C.1)

is a rational fraction of x (possibly a polynomial), with no pole at x = s;. The only
possible poles of Pr({i)1 (x;21..., x) are at the poles of V'(x), and their degree is less than
the degree of V.

proof:
First, from theorem 3.1, we easily see that P,Eﬁ'r)l (x;21...,x,) is indeed a rational
function of x. Moreover it clearly has no pole at coinciding points z = z;.

Then we write Cauchy’s theorem for Wfl‘i)l:

W,Eﬁ'r)l(xo,...,xn) = Res —— Wn+1(:c,x1,...,xn)
T—x0 T — T
= :(Eexso G(,’,Uo,x) Wr(L—I—)l(x7x17"'7xn) (C2>

and using again theorem B.1] i.e. that Wn /1 has poles only at the s;’s, and that both

W(il and G(zg, x) behave as O(1/x) for large x, we may move the integration contours:
W (0, con ) = = Res G(xo, 2) W (z,21, ..., ) (C.3)
Then we use the definition of K, and integrate by parts:
W,Ei)l(:co, ey Ty) = Zﬁas(Y(z)K(xo, x) + hK'(xo, x))W,(fjr)l(:)s, Ty ey Tp)
= if:ess K (xg, ) <Y(I’)W7§i)1(l', Ty ey Tpy)

h@xWéi)l (x, 1, ..., xn)>
(C.4)

From the definition we have also
Wr(i)1($07 ey X))
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= > ResK(z,x (ZZW&;I W I/1) + W (e, J))
i h=0 ICJ
(C.5)

then we shift W.? to Wﬁlg) in the RHS, i.e.:
W(i)l(xo, ey X))

n

= Y ResK(ap.z (3 ST DT 0/1) + T .

h=0 ICJ
W, (x, 1/43})
+; (x — x;)? )
- ZEE?S%K To, T (ZZWW‘H \1\4—1( J/I) + Wn+2 (SL’,JJ, J)
i h=0 ICJ
3o, (Wff’)@c, J/{j})) )
- ZE?SSK (ZZWIIIH Wi, /1) + Wy (2,2, )
i h=0 ICJ
Yo, (Wff’) (e, J/{}) = W, (a J/{j})) )

(C.6)

in the last line we have added for free, the term Wig)(xj, J/{j}) because it has no pole
at x = s;.

Therefore we have:

0 = Z Res K(a:o,x)( Y (@)W, (2, 21, .., m0) + BV, (2, 21, .., )

(
+ZZW\I\+1 z, W, |I|+1(95 J/[)+Wn+2 (957% J)

h 0IcJ

+Zé‘x < W, (@, 7/{5}) - Wi"’(xj,J/{j})))

LU—SL’j

= ZIR'_?SSK Lo, T )Pf(L—i-)l(xﬂxlavxn)

= ZZsz xO Z‘Rfs ) Pn+1($;xl>"'axn)
(C.7)

Notice that this equation holds for any z,. Since K (zo) is a rational fraction with
a pole of degree k + 1 in zp = s;, the K; ;(x¢) are linearly independent functions, and

thus we must have:

Vk,i 0= Res(z—s)"PY (x; 21, ... 1) (C.8)

T—S;
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this means that P,Eﬁ'r)l has no pole at z = s;.
One easily sees that P,Eﬁ'r)l (x;21,...,x,) is a rational fraction of z, and its poles are
at most those of Y (z), i.e. at the poles of V'(x). O

D Appendix: Proof of theorem

Theorem 3.3 Each W\ is a symmetric function of all its arguments.

proof:

The special case of Wg(o) is proved in appendix [E] above. It is obvious from the
definition that W,(fjr)l(xo,xl, ..., Ty) is symmetric in zy,x9,...,x,, and therefore we
need to show that (for n > 1):

W,Ei)l(xo,xl,J) Wn+1(l’1,$0,J) =0 (Dl)

where J = {zs,...,x,}. We prove it by recursion on —y = 2g — 2 + n.
Assume that every Wk(h) with 2h + k — 2 < 2g 4+ n is symmetric. We have:

Wr(i)1(1'0, L1, J)
= Y ResK(aoa) (W wmen, ) +2 Blaa) Wi, )

235 Wi, (@ a, HWY D e, J/I))

h=0 IeJ
(D.2)

where >’ means that we exclude the terms (I = (), h = 0) and (I = J,h = g). Notice
also that W,(ﬂ:;) = Wéi}l) because n > 1. Then, using the recursion hypothesis, we
have:

WT(L‘Z-)l(xO? Ty, J)
= QZRes K(xo, z) Bz, )W\ (z, J)

T—8;

+Z Res Res K(zo,2)K(z1,2) (Wr(if)(:)s,x,x',x',J)

Tr—3S; x/ —8y

+2ZZW§1H| (a2, W0 @ 2, I/ )
+QZZW§LII oz, WA (! /)

+QZZ W @, /1) (Wit (2! ! T)

h IeJ
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+22 Z W2+\1/ )Wﬁll}lL || ( I/I )} )

WoICI
(D.3)
Now, if we compute W,E‘_’Bl (21,20, J), we get the same expression, with the order of
integrations exchanged, i.e. we have to integrate a2’ before integrating x. Notice, by

moving the integration contours, that:

Res Res — Res Res = —0; ; Res Res (D.4)

xr—S; x’—>5j x’—)sj r—S8; r—8; o' —x

Moreover, the only terms which have a pole at x = 2’ are those containing B(z, z').

Therefore:

Wé—l—)l(l’ojxlaj) Wé@l(xl>I0>J)
= QZ Res (z0,7) B(z,21) — K(x1,2) B(z,z0)) W9 (z,.J)

—QZ Res Res K(xg,2)K(z1,2") B(z,2") (

r—S; T’ —x

oWV (2 x, ) +2ZZ Wb (e, J/J)Wff;m(x',f))
h IeJ
(D.5)

The residue Res,/_,, can be computed:

Wn+1(3507$17 J) — Wrgi)l(xlafb’oa J)
= 22 Res (K (v, 2) B(w,21) = K(w1,2) B(x, 20)) W9 (z,.J)

_ZEE?SSZ K xo,x)%(K(xhx/> (

2L, (@, ) +QZZ Wi (1w D) )

h IeJ

= QZ Res (K (z, ) B(z,21) — K(21,7) B(x,%0)) W9 (z,J)

n

r'=x

—ZRes K(xg, 1)K (21, 1) (

2W D (w, 2, ) +2ZZ W @, g WY (1))

h IeJ

— Z Res_ K(:co,x)K(:cl,x)%<

oWV (! z, J) +2ZZ Wb (2, J/1) 1+m(g:’,f)) ,

ho IeJd e

= QZ Res (K (z9,z) B(z,21) — K(21,7) B(x,%0)) W9 (z,J)
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— Zgiess K(zo,2)K' (11, 7) (

/
W )+ 230 S WD @, 1 W, (e, D)

h IeJ

__Zg]sfssl LE‘O, (Il,l’)%(

/
_ —h h
oW, 1)+ 233 WD @, 3y W, (o, 1) )
hoIeJ
(D.6)
The last term can be integrated by parts, and we get:
Wé—l—)l(l’()axlaj) Wr&?l(xl>I07J)
= QZ Res (z0,7) B(z,21) — K(x1,2) B(z,z0)) W9 (z,.J)

4 Z Res ( (20, 2) K (21, ) — K (w0, :c)K’(:cl,x)> (

h)
oW (2, J) +2ZZ WM (e, J/[)Wl(+|l|(9:,l)>
ho Ied
(D.7)
Then we use theorem [3.2

Wl (o, 01, 7) - Wé’i&(xl, 0, J)
= QZ Res (z0,2) B(x,x1) — K(21,2) B(z,z0)) W9 (z,J)

+megessl ( xo,x)K(:)sl,x)—K(;):O,x)K’(xl’z)> (prgg)(% J)

WA (x;, J/{%.})))

ZL’—LE‘]‘

HY (1)~ W)W )+ 3 0
J
(D.8)
Since P (x,J) and Wﬁ)l (x;, J/{x;}) have no poles at the s;’s, we have:

W(-i-)l(x()axla J) W(-‘rl(xlvav J)

n

= 2ZRes (z0,2) B(x, 1) — K(x1,2) B(z,20)) W9 (x,.J)

+ fogess ( ZL’O,ZL’)K(ZL’l,ZL’)—K(:L’O,;L’)K/(l’l’x))

(Y (z) — O )W, (z, J)
(D.9)

Notice that: )
K(/)Kl - K(]K{ == _ﬁ (G()Kl - K(]Gl) (DlO)
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and B = —= G’ therefore:

W(S—’i-)l(x()?xl?"]) Wn+1(l’1,$0,J)

n

= - Z Res (KoG — K1Gy) W9 (x, J)

1 7
- Z Res (GOK1 - K0G1> (Y () — hd)W9 (z, J)
(D.11)
we integrate the first line by parts:
W£?1($Oa Iy, J) - Wf(zg-]‘,-)l(xla Lo, J)
= Z Res (K(Gy — K|Go) W9 (x, J)

+2Res (KoGy — K1Go) W9 (z, J)

T—8;

_ﬁ Zg];i?ss (GOKI — KOG1> ( (l’) - ham>W7(Lg)(x7 J)
(D.12) i

Notice that: v
KyGi — GoK}| = % (KoG1 — GoKy) (D.13)

So we find
W(i)l(xo,xl,J) — W(i)l(:cl,xo,J) =0 (D14)

n n

E Appendix: Proof of theorem [3.4

Theorem E.1 The correlation functions W9 are independent of the choice of kernel
K, provided that K is solution of the equation eq. (2.2).

proof:
Any two solutions of eq. ([2.2), differ by a homogeneous solution, i.e. by ¥?(x).
Therefore, what we have to prove is that the following quantity vanishes:

foi_t?ssigﬁ(x [Wfl‘izl (x,z,J) —I—ZZ Wl(illl finh‘l‘(z J/I)] (E.1)

h ICJ

Using theorem [3.2] we have:

Res ¢/2(x) [W,Ei; (z,2,J) + ZZ W (e, HWED (. J/I)]

e hoICT
— Res ?(x) (Y(x)w,gw (2, J) — R, W (2, J) + P9 (z; J)) (E.2)
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Then we notice that P,gg) gives no residue, and then we use Y = —2h¢’ /1, and we

integrate by parts:

— —hResy?(z) (2

r—S;

s %

—~

W &Bwygm)
= —hReso, <w2 W

g )
T—S;

= 0 (E.3)

3

This means that adding to K (zg, z) a constant times v?(z) doesnot change the W9 g
In fact we may chose a different constant near each s;, or in other words, we may

assume that
Ki2(z) = 0 (E.4)

O

F Appendix: Proof of theorem

Theorem [B.1] The 3 point function Wg(o) 18 symmetric and we have:

ngo)(xl,x%x?,) -4 Z Res B(x,21)B(x, x2) B(z, x3)

- Rex Y (F.1)

proof:
The definition of Wg(o) is

W3(0) (ZI:(], X1, I2)
= QZ Res K(xg,z)B(x,x1)B(z, x2)

T—S8;

= —ZRes KyG,G),

) Z Res Ko ((hKY + YK + Y'Ky) (b + Y K) + Y'K))
1 K3
= 5D Res Ko (RK{KY + RY (K{ K3 + K{K3) + hY'(KY Ko + KY )

YK Ky + YY' (K Ky + K1 K,) + YK K)
(F.2)

where we have written for short K; = K(x;,z), G; = G(z;, x), and derivative are w.r.t.

x.
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Since K (x;,z) has no pole when z — s;, the first term vanishes. Using the Ricatti
equation Y? = 2hY’ + U (where U has no pole at s;), we may replace Y? by 2hY” and
Y'Y’ by hY" without changing the residues, i.e.:

I{I/3(O) ($07 xlaxQ)
- Z Res Ky (hY (K| K} + KI'K}) + hY' (KK, + K/ K))

T—8;

oy K KY 4+ BY" (K Ky 4+ K Ky) + YK K5 )

1
~ Z Res Ko (Y (K{3)' + WY (K K)o+ BY (K ) + Y?K K, )

- Z Res Y K(]KlKQ + ﬁ(Y K(](KlKQ) (YK())/K{KQ — (Y/K(])/(KlKg)/)

T—8;

- Z Res Y KoK 1 Ky — W(Y Ko)' K| Ky + V'K (K, K5)')

T—S;

- Z Res Y2 KoK Ky — hY K} KK} — hY' (KoK, Ky + KK K + KK K>)

T—S;

This expression is clearly symmetric in xg, x1, z2 as claimed in theorem [3.3]

Let us give an alternative expression, in the form of the Verlinde or Krichever
formula [15]:

B(x,z1)B(x,x9)B(z, x3)
Wg(o)(xl,@, T3) = 42&2 1 y'(x; 3

proof:

In order to prove formula [F.4] compute:

thus:

1
B(w,a;) = —5C'(a,2;) = ——G’ hK! + YK +Y'K;)

2(

B(x,z1)B(x,x9)B(z, x3)
Z Res Y (@)

S Z Res W (hK! + YK, +Y'Ko)(hK! + YK + Y'K;)
(hK” + YK, +Y'K))
Y
R _K//K//K// h2
foi Y7 + 13
+h§£K0K”K” + K{K K + K/ K] K>)
‘l’hY (K//K/K/ + K/K//K/ ‘I’ K/K/K//)

K/ K//K// + K//K/ K// + K//K//K/)

(F.4)

+hY (KoK Ky + KoK} Ky + KK 1 Ky + K(K{ Ky + K{ K1 Ky + K{ K] K>)
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Y3
+hY (KK Ky + KoK Ky + KoK KG) + 37 KKK

+Y (KoK Ky + K)K 1 Ky + K K KS)
+YY' (KK Ky + KoK Ky + KoK Kb) 4+ Y? K K K,
(F.6)

Notice that K; has no pole at the s;’s, and 1/Y” has no pole, Y/Y” has no pole, Y?/Y’
has no pole, thus:

B(z,x1)B(x,x9) B(x, x3)
2 Res V()

_ _memmKW+mWK+KmW+KW&+WmK

Y3
4«%%ﬁwmﬁm&+me+mme?m%%'
+Y A KoK Ky + KjK 1K) + KK KS)
+Y Y (KK Ky + KoK Koy + KoK K3) + Y? KoK Ko

(F.7)

Notice that Y2 = 2hY’ + U, thus we may replace Y3/Y” by 2hY, and Y2 by 2hAY” and
YY' by hY”. thus:

[L’ xy B(Z’,I‘Q)B([L’,[L'g)
>R ,
T—S8; Y (l’)

= = Z Res hY (KoK Ky + KoK Ky + KoK Ky + KgK{ Ky + K K1 K,

+mmmwm%mmm+me+mmemwmmm
2hY (Ko K| Ky + KjK Ky + KK K) + BY " (KK Ky + KoK Ky + KoK, K))
TW%K&
=§ZX§WWWW®%MMMJHM%MW
ﬁW%M@+W%M&+MW%M&+%M&+%MQW
= 22 Res WY (Ko(K{Ky) + Ko (Ko hG) + Ka(KGKY)')
+2hYAﬂkﬂkﬂ4-Ykakgkg
:-—Zﬁm%wwwgmwmmm+mm&+mmm)

—2hYA$Aqu-Yﬂkmkgkg
1
zzwwmm@) (F.8)
F.1 Direct computation
We write

Wg(O) (Zh 22, Z3)
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2 Z Res K (21, 2)B(22, 2)B(z3, 2)

z—8;

1
K m.
ZZ (20 — ZR_(?SSL (21, 2 )(Z — 5)2(z3 — 2)? + sy

1
2 Z Z Z 22 23 — Sk)2 ZRﬁs K(Zl’ Z) (Z — Si)2(2’ — Si’)2 + Sym.-

AN
Aij 1
2 g g Res K (z1,
* - (29 — 55)%(23 — sk)2 A (21,2) (z — s;)%

Kii(z 2K;0(z
ZZ (2 _7 )2 < e ’—(5-32 + (2 7—(51-)2”) + sym.
Kii(z 2K;o(z
+2ZZZ (20 — 8;)%(23 — sk) ((s,-/ —( 532 * (s —(s,))?’> +sym.

i i#E gk

+2 Z Z (2 = 3]2 (s — 51)? Ki3(21)
K;1(z 2K;0(z
ZZ (22 —7 )2 ( (23 —(5-32 * (23 —(SZ)Z’) +sym.
Kii(z 2K;0(z
2 Z Z Z (20 — 8;)%(23 — sk) ((s,-/ —(532 + (s —(s,))?’> +sym.

i i#E gk

—222 22_8; 3_8k> ST K (21)
B D ) D

- ?(zs — Sk) oz (s = si)

A Ak
+ﬁzz (29 — 57)%(23 — s)% (21 — si)3
A jAi 1 Ay,
hZZZZ o o

i £ 1 gk - Sk) (Sz’ - Si)3(21 - Sl)2

Az ]Az k Aj iAj k
— + b 9
h ”Zk (21— 8i)%(22 — 85)%(23 — sk)? (21— 5:)%(22 — 55)3(23 — s8)?

n AkiAr,j
(21 — 8:)? (22 — 55)%(23 — s1)°
K; 1 (1) (
+§ Ajubi+ A — Aiy 3 T Av
22 _ SJ 23 _ sk)z .]7k )] .77k 7k 5] - ’ 7k

_AszEz Az j)
2Ki70(21)
+zzzz — Zg_Sk)Q 2ol

i i'#E gk

A”Alk V" (s;) 1
2;2 (22 — 57)2(23 — 51)? ( 2% + 22 (s — Si)g)Kz,O(Zl)
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| =~

AZ]AZkA/l
h - ;;]Zk(zg—sj) (23 = 5)* (s — 8i)*(z1 — 1)

2 1 0i1Ai jAik 0 AiiAik
N h Z Zl — Sl 22 — 8j)2(23 — Sk)z ; ( (21 — 82‘) * (ZQ - 82‘)
52 Az lAz ] )

(23 — S
Az ]AZ kA i’ 1 + Az ]A ! kAz 1+ Az kAz ]AZ [ — Ai,in,kAi,l
ﬁl]zk;,z# (21— 51)% (22 — 5j)2(25 — sk)2(sir — 5)3

Az Az kAz lvm(sz)
Z Z (21— 51)? ]

=5 (29 — 57)2(23 — si)?

_l_

(F.9)
Thus we have:

(O) (21, 29, 23)

|2 CEAR P
hiz (- Sl)2(22 — 55)%(23 — sx)?
é ZZ ZkA/l+AZjA/kAZl+AZ kAz jAZl Ai,in,kAi,l
h Gk il (21 — 81)%(22 — 5;)%(23 — s)% (s — 81)°
1 A”AMA”V’”( ;)
R Zk; (21 — 51)%(22 — 5;)%(23 — sp)?

(F.10)

G Appendix: Proof of theorem

Theorem Under an infinitesimal variation of the potential V- — V + 46V, we have:

Vn>0,g>0, W9,... x, ZRes +1 (x,21,...,2,)0V () (G.1)

G.1 Variation of w
We have:

and
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Thus taking a variation we have:

5s; — 6
SV (1) + 8s:V" (54 zhz i SJ
(si—sj)?
JF#i
1.e.
5V (s ——ﬁZTM&SJ

which implies:
1
5Si = _ﬁ Z AZ’J(SV/(S]')
J

and therefore:

bole) == S

which can also be written:
Aij
(5&)(3}) = — Zmessk Z (gj — 3-)2 (J';(;/ — 3-) (5‘/’(;1;/)
k ij v p J
- _ i,J 5 /
;fi,essk ; (z — 52 (2 — 5,)2 V(')

= —Z Res B(z,2) 6V (')
k ' —s),

and finally we obtain the case n = 1, g = 0 of the theorem:

dw(x Z Res B(z,z') 6V (2')

' —sg

.2 Variation of B

Consider:
—(0) , ~n 1 1 Aij
W =B ST 3 ’
2 (,7) (@, 27) 2 (x —a)? ; (x —s5)%(a! — ;)2
Due to eq. (2.6) we have:
—(0) h,K(SL’, Si)
Wy (z,2) = Z (' — s;)2

= Z&sK(x,z)%

w(z) —w(2)

9,
o ZZ:zRfsSK(z’Z) z—a
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(G.11)
On the other hand, since W;O)(:)s, x') has poles only at the s;'s we have:
W (x,2/) = ResGlz,2) Wy (z,a')

= Y ResGlz,2) Wy (z,2)

= =3 Res ((2w(z) = V'(2) + hd.)K(x,2)) Wy (z,2")
B Z , —0,_
—  —Y ResK(x,2) ((2w(z) V) = 10) Wz, @ ))

G12)

This implies that Va:

0= ResK(z2) <(2w(2> — V() = hd) Wy (,2/) + EM)

ox’ z—a
(G.13)

and therefore, Wéo) (x,2") satisfies the loop equation:

2w(z) — V'(z) — 1d,) W (x,2') + %w = —POz,2)  (G.14)

where P2(0)(x, x') has no pole at z — s;’s.
Then we take the variation:
Qu(z) — V'(z) — 10,) W (z,2)) =  —(20w(x) — 6V'(x)) WY (z,2')
/

0 ow(x) — dw(z’) 0) ,
B P 0P (x,x")

(G.15)

5W§0) (x,2") is a rational fraction of x, with poles only at the s;’s, and 5P2(0) (x,2') has

no pole at x — s;’s. We thus write:

5W2(0) (x,2) = 5Wéo) (x,2") )
=  ResG(x,2) 5Wé )(z, ')

. Z sts G(z,z) Wéo)(z, )
= =) Res(20(2) ~ V() + B0 K(x,2)) sWO ()
= Y ResK(r,2) ((20() - V'(2) — B oW, (2,0

= X ResK(n,2) ((20(:) ~0V'(:) WY (e )
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0 dw(z) — dw(z')

ox’ z—a

+ 5P2(0)(z, x'))

= D ResK(r,2) ((20w() V') W) + oo g

— Z Res K (v, 2) (20w(z) = 6V'(2)) B(z,7)
(G.16)

Then, we use eq. (G9), and we get:

oW (z,2') = _2ZRGSZ Res K(z,2) B(z,2")0V (z") B(z,2')

zZ—8; x _’Sk

—25521( z,z) 6V'(2) B(z,a')

= — Z Res Z Res G(z ,xﬂ)(svl(a?”) B(z, 1’/)

— > Res Res K(z,2) G(z,2")oV'(2") B(z,2")

= - Res Z Res K (v, 2) G(z,2")0V'(z") B(z,2")

= =2 Res ZResK z,2) B(z,2")6V(2") B(z,2')

(G.17)

We thus obtain the case n = 2, g = 0 of the theorem:

SWi%( Z Res W (z, 2, 2") §V (2"

" —sy

G.3 Variation of other higher correlators

We prove by recursion on 2g + n, that:

5W,§i)1(x, L)=—- Res oV (z") W,Ei)z(z, L,x")

z!' = sy,

where L = {zy,...,2,}.

We write:

U9 (2, L) =W (2,2, L) +ZZWS;|J‘ (2, J)y WD (2 L))

h JCL

By definition we have:

Wi, L) =Y Res K(x,2) Uy (2, L)
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From the recursion hypothesis, we have:

UL(=1) = = Res oV(a") (W% (22 La!)

! — s

_2ZZW2(-}£|J\ )Wl(f—nhU\(Z? L/J)>

h JCL
= =3 Res oV(2") (U,g?g2(z,L,xf') —2B(z, 2" )W, (2, L))
(G.22)
Thus:
oW, +1($ L)
= Y ResdK(r,2) U9 (2, L) = > Res K(z,2) Y Res 6V(a") (
Uhy(z Lya") = 2B(z 2" YW (2, 1)
- ZRes SK(2,2) U\ (2. L) = Y Res > Res K(x,2) 6V(a") (
UgiQ(z L,a") = 2B(z, 2" )W (=, L))
= }:Ihﬁékfxz)tﬁﬁggzg
+2 Res > Res K(z,2) 6V (") B(z, 2" )W, (2, L)
- Res Z Res K (z,2) 6V (2") U¥y(2, L, 2")
T — sy ; zZ—8;
= Z Res 6K (z, z) U,(le(z L)
+22&352ng1 K(z,z) 6V (2") B(z,x”)Wé‘fl(z,L)
+2 Res_ Res K(,2) 6V (v )B(z,x")Wéi)l(z, L)
— Res oV (x )Wn+2(z,L,x”)
(G.23)

We use the loop equation of theorem B.2], which says that Un+1(27 L)+ (2w(z)—V'(z)+
"o, )Wn+1(z L) has no pole at z — s;, and thus:

5W i(z, L)
- _Z Res 65 (z, 2) (2w(z2) — V'(2) + hd, )W), (2, L)
+2Z ZR_(;QZIREEk 2) 6V (2") B(z,2"YW9,(z, L)

+2 Z Res Res K(x,2) 6V (2") B(z,x")W,EJr)l(z L)

zZ—8; ! —z
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— Res oV (2") W

n

22(27 L7 SL’”)

= — Z Res L) (2w(z) — V/(Z) — ho,)0K (z, 2)
+2 Z ZR_)ess Z xREEk z) 6V (a") B(z, 55//)Wn+1(2 L)

+2 Z Res Res K(z,2) 0V (2") B(z 2" )WY (2, L)

zZ—S8; ;1,‘ —>z

— Res oV (z") W,Ei)Q(z, L,x")

z'' sy,
(G.24)

and we have:

(2w(z) = V'(2) — hd,)0K (x,2) = 0G(x,2) — (20w(z) — 0V'(2)) K (x, 2) (G.25)

SW9\ (x, L)
= —ZZR,_)GE Wflﬁ_)l(zyL) 5G(I7 Z)

+ZRes W9, (2, L) (26w(z) — 6V'(2)) K (x, 2)

zZ—8;

+23 "R R ) 8V LYW, (2, L
szgzxggk («") B(z, 2" )W, (2, L)
+ Z Res K (z,z) V'(2) Wfl‘il(z, L)
— Res oV (z") W,Ei)z(z, L,z")
z!’'— sy,
(G.26)
We have:
> Res Wi (2, L) 6G(x,2) = 0 (G.27)
because the integrand is a rational fraction, and we have taken the sum of residues at
all poles.
Using eq. (G.9), we are thus left with:
W9, (x, L) = — Res ov(a") W9, (z, L, ") (G.28)

which proves the recursion hypothesis for 2g +n + 1. QED.

H Appendix: Proof of theorem [3.7

Theorem 3.7
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For k = 0,1, W\ satify the equation:

( Zn:x )W(g (T1,...,2)

(9)
g Res n+1 Vi (@ng1) Wi (1, ..o, T,y T
- In+1—>si

proof:

Since W,Ei)l has poles only at the s;’s we have (with as usual J = {z4, ...

ZE?SS V() W (J,x)
= 3" Res 2" Y(2) W () 0)
(H2)

Then using theorem [B.2] we have:
> Res a* V'(a) W2 ()

— chfgess 2* Y (2) W,Ei)l(J, x)

= Y Res 4 [h&xwﬁglu, )+ U (@, J) = PO () = 0,

j=1
= ) Res o [haxw,gi)l(J, )+ U9 (x, J)]
(H.3)

(H.1)

, T}

7&9)((])]

Z'—l’j

Notice that if n > 1, W,(L‘i)l(J, r) behaves like O(1/2?) at ¥ — oo, and thus, if k¥ < 1,
a® OxW,(i)l(J, r) behaves like O(1/2?). Since we take the residues at all poles, the sum

of residues vanish and thus:
> Res a* V'(2) W2 (J,)

— chfgass zk U,ﬂ)l(z, J)
(H.4)

Notice that Uﬂ)l(m, J) (defined in eq. (M)) behaves at most like O(1/23) for large
x, and thus, if k& < 1, the product z* U +1(:B J) is a rational fraction, which behaves

like O(1/2?) for large z. Its only poles can be at x = s; or at & = x;. Therefore the

sum of residues at s;’s, can be replaced by the sum of residues at z;’s:
> Res a* V'(x) W%, (J,)
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= —ZRes z" n+1xJ)
(H.5)

The only terms in Ufﬂzl(x, J) which have poles at x = x;, are the terms containing a
B(z,x;), ie.

> Rey MV W) = =23 Rey o Blaw) Wi, I/ (1)

= —Zﬁff; o (@ :

— ;)

= Za% (1’ Wg xl,...,xn))

Wi, T {z;})

O

I Appendix: Proof of theorem

Theorem [3.8}
Forn >1, W satify the equation:

0. — —
(2 - 2g —n—= h%) Wig) (xh RS .Z’n) - Z T ]::Ele—shg,- v(xn—l-l) Wizg—i)-l(xh <oy T, xn-i—l)
(L1)

I.1 & derivatives for w(z)

We have:

1
V'(s;) = 2h
" ; Si = 8
Taking the derivative with respect to h gives:
AV (s:)0hss = V' (s:) — 20" Z Onsi — Ons;
(s;

jAe ! =)

and so

V,(Si) — h <V//( )aﬁ,sz _I_ 2hz M)
S

A T )
We recognize the general term of the matrix 7" and find:
V/(SZ') = hz Z ,Tl"jﬁth
J
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Multiplying by the matrix A gives:

h2aﬁ8i = Z Am-V'(sj)
J

(1.2)

We can use this result to compute:

8hsi
T — 8;)?

- a4w+22%$?§§
AijV’ x’

- +ZszsskZ x—s)z(;’zsj)
A,V (2

= +Zfie§kz x_s)2<:£f—)sj)2

= ) + Z Bes Wé (z,2")V(2))

hopw(z) = w(x) + A? Z (

= +Z Res Wi (z, 2)V (2

!/ — s

(1.3)

Thus we have proved the case n = 1, g = 0 of the theorem:

hopw(z) = w(x) + Z Res VV2 (:)3 )V (2"

' —sg

(14)

I.2 & derivatives for Wéo)(z)
We have seen in appendix [G] eq. (G.14)), that Wéo) (x,2") satisfies the loop equation:

(2(x) = V() + hdy) W, o) + 2 &) =@

g = —BV) (1)

where PQ(O) (x,2’) has no pole at  — s;’s.

Then we take the derivation hdy of this equation:

(2w(z) — V(z) + 7dy) KOS (z,2') + ho, Wy (z, 2') + 2hdw () Wy (z, 2')

_ 0 hopw(x) — hopw(2') hatho) (2, 2)

ox’ T —a

(1.6)

45



h@hWéo) (x,2') is a rational fraction of z, with poles only at the s;’s, and hdpP\” (z, z')
has no pole at z — s;’s. We thus write:
hopWi (z, 2)
= w2, 2)
= ResG(z,2) h@hWéo)(z,x')
= - Z Res G(z, z) h@hW;O) (z,2")

— z—38;

= =) Res((2(2) = V'(z) — h0)K (. 2)) hohTTy (2. )
= =Y ResK(w2) ((20(:) - V() + kL) OTT ()

= X R K(e) ((200m() W2(:.)
Zi hopw(2) + hopw(z")

ox' z—a

— Y Res K(x,2) (2W;°)(z,x') hopw (2) +

+ 1P (2, 2') + ho Wéo)(z, x'))
hﬁﬁw( )
- (z—a')?
— Y Res K(x,2) <2W2(0)(z,x’) hopw (2) + hazwg‘”(z,xf))

RO (2, ))

(1.7)
Then, we use eq. ([L4), and we get:

hoWS (, 2')
- Z Res K (z, 2) (2W2(0)(z, 2w (z) + ho, Wiz, :)3’))
—|—2 Res Res K(z, AW (2, 2 YW (2, ")V (2)

z—8; &'’ — s

i,k

= Y Res W) (20(2) = 1. ) Kz, 2)

+3 Res Res K(z, 2)W3" (2,2")G(z,2")V'(z")
R z2—8; "' — sy,

= Z Res Wy (z,2') (G, 2) + V' (2) K (, 2))

—i—ZRes Res K(z,2)W," (z,2')G(z,2")V'(z")

z—8; &' —sp

= X:ResVV2 (z,2") G(z, 2)

+ Z Res Res K(z (2, 2)Wi (2, 2)G(z, ")V (")

z—8; x!'— sy

+Z Res Res K(z, Z)VV2 ( 2)G(z, ")V (2")

z2—s; ' —z

= X:Res_VV2 (z,2") G(z, 2)
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+ Res Res K(z, z)W2 ( 2 )G(z, ")V (2")

! —sp 2—8;

= Z Res Wiz, 2') G(z, 2)

—|—2 Res Res K(z, W (2, 2')B(z, 2"V (2)
x/ _’Sk zZ—8;

i,k
= Z Res B(z,2") G(x, 2)
Z Res W (z, 2, ")V (")
/' —sp

(1.8)

We now use the fact that G(z,z) and B(z,2') are rational fractions whose only poles

are s;’s, as well as z = x and z = 2/, and we write:

> Res B(z,2') G(x,2)
= —ZRes B(z,2') G(x,z) — Res B(z,2') G(x, 2)

Z—x z—x’

1 1 1
= —ResB(z, 2
165 (z,2) c—x 2w (z— )2

1
= —ResB(z,2')
Z—T z
= —B(xz,2') + B(x,2)
=0

So that eventually we have proved the case n = 2, g = 0 of the theorem:

hopWAY (2, /) Z Res Wi (z, ', 2") V(2"

' — sy

I.3 Recursion for higher correlators

We proceed by recursion on 2g + n.
From theorem [3.2] we have that:

(Y () — hda)hOpW,, (, L)
= hOWUY) (5 L) + hd, W), (a, L) — W9, (x, L) hdyY (x)
ERIN

Or; = —x;

—hdh | Py (23 L) + Y

Z‘jEL

where the term on the last line has no pole at x = s;. This implies that:

3" Res Ko, ) (¥ (@) ~ B0 hop Vil (. 1)
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> Res K(0,) (hahU,(f’ (; L) + hd, W9, (z, L)
- @ (2,L) h@hY(:c)) (1.12)
We have:
> Res K (a0,) <(Y(a:) — KOOV, (x, L))
- Z Res hopW %) (2, L) (Y (@) + hd) K (a0, 2)
- —ZZ Res howW,9, (z, L) Gz, z)

= Res h@thffl (x, L) G(xg, x)
T—x0
= h@hW +1(x0,L) (I.13)
and therefore:

- Z Res_ K (0, 7) (h&hU 9 (; L) + "o, W9, (&, L) — W9, (2, L) h@hY(x))

(1.14)
From the recursion hypothesis we have:
hoRU +1(3: L)
— hoWL (2,2, L) +ZZW}_’;J‘ (2, oW Y™ (2, L) J)

1+n—|J|
k=0 JCL
+ZZWI+” (@ L) DWW (2, )
k=0 JCL
= (2-2(¢g—-1)— (7”L+2))VV,§Jr2 (z,z,L) +Z Res W,(L‘igl (v, 2, L, x") V()

z'—s;

D@29 k) = (1 n = [T)) W (@ )WL (2, L))

k=0 JCL

+3 D @ =2k— A+ [T WS (@, Lf D) W (2, )

k=0 JCL
+ZxR§§ V(x ZZWM,| v, J YW (2, L))
k OJCL
+ xf,{ff V(e ZZWH-\Jl Wyt u|(93 L/J,x')
k=0 JCL
— (-2 U£~11<x L
—I—Z Res V(') (UYy (252, L) — 2B(z, 2" YW,9, (x, L)) (L.15)
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Thus we have:

haﬁW +1(l’0, L)
(2—29g—n Z Res K(xg, ) U,(Li)l(:z' L)

+ZResK Zo, T Z Res n+2(:c 2, L) — 2B(z, ZL’)Wn
+ Z Res K (0, 2 (h@anH(x, L) - W9 (L) haﬁY(x))

— 1—s5;
i

(2 - 29 — )W, (0, L)

+1(£L’, L))

+ Z Res Z Res K (o, )V (2') (U, (52, L) — 2B(x, "YW, (2, L))

+ Z Res K (0, 2) (ha W (z, L) — W9, (2, L) hahy(x))

r—S;

(2 —2g —n)Wé‘il (2o, L +Z Res V(z Wé‘iz(:)so,x L)

—22 Res_z Res K (2o, )V (2) B(x, x)WnH(:c,L)

J
+ Z Res K (0, ) (haxw,g?gl(x, L) - W9 (L) haﬁY(x))

T—8;

(2—2¢g —n)Wé‘il (2o, L +Z Res V(z Wé‘iz(:)so,x L)

—22 Res Z Res (zg,2)V (2') B(x,z )WnH(x,L)

-2 Z Res Res K(zg, )V (2') B(x, :E')Wr(fjr)l(x, L)

Tr—S; ' —z

+ Z Res K (0, 2) (haxw,g?gl(x, L) - W9 (L) haﬁY(x))

— x—5;

Notice that:

hoRY (2 +22 Res B(z,2')V(a) + 2 Res B(x,2')V(2/) = Y (x)

therefore:

fE—>S /' —x

ROWW,2, (o, L)
= (2—-29g—n)W, n+1 (xo, L —i—Z ReSV n+2(x0,x L)
+ Z Res K (20, ) (haxwgil(x, L) - Y(2)WY, (x, L))

= (2—2g—n)W,§+)1(x0, —1—2 ResV )Wnﬁz(xo,x L)

_ZwR_(?ssiWnH(z,L)( ()+h6x) (20, )
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(2= 29 = )WY (w0, L) +Zgge§ V(@) Wily(xo,a’, L)

+ Z Res Wn+1(z, L) G(zy, z)

(2 =29 — )W, 2, (w0, L

SC—>S

_ J}R_)exso W7§+1(.§(,’, L) G(LU(), )

—I-Z Res V(z

n+2($07 ' L)

(2 =29 —m)W,% (20, L) + ) Res V(') W% (w0, 2", L)
j J

_Wrsg-]i-)l (x0> L)

(2—2g9— n—l)W+1 zg, L +Z Res

i.e. we have proved the theorem for 29 +n + 1.

J Appendix:

Free Energies

Here we consider g > 2.

Wly(xo,a', L) (118)

The free energies defined in eq. (3.16]), automatically satisfy theorem B.8, and thus

are homogeneous:

F9(AV, \R)

Here we show that they satisfy theorem [B.6l

We start from the definition:

(9) _ 32-2
F=h g/o B3—29 ZE{_?SSZV

and we compute the loop operator applied to F'):

02, 79

2—2g
h /0 h3 29 Z?fi(
h
dh
h2—2g/0 T Zf{_?ss <V(x)

" dh
2—2
L /0 B3—29 ZxR—islV

h2 29

WQ(Q) (LL’, S(Zl) +

d(h?~ Wi (1))

= \272 pO(V, p) (J.1)

Wi @), (3:2)

W (2, 1) + 0p, V(z) WO (:c))ﬁ

W9 ()

r — I -
h

e, a:1>) - Wff')(wl))
I3

h2—2g /h ~dh 72— -
o h32 dh

h
1 ~
h2=% /O =d (h2g—1 ng’(:cl)) —

50

h3—2g

— W (a)

dh
W (1)



(J.3)

we integrate by parts, and since 2g — 2 > 0, there is no boundary term coming from
the bound at 0, and thus:

h
6o FO = WP (2y) + h22 / (B2 Wi @) = B W(w))
0

Therefore we have proved that the loop operator acting on F9 is indeed Wl(g ), ie. we
have proved theorem [3.0

K Appendix: FO©

We have defined F© as

:—th )+ h* ) In(s; — s5) (K.1)

i#]

e Proof of theorem for O

consider a variation 0V, we have:

SFO = —hZéV hZV' si 5sl+2h22 05

R
= —hz V(s
= - Z Res w(z) 6V () (K.2)
e Proof of theorem B.8 for F(©
we have:
hopF© = —hz V(s) +20 Y In(s
i#]
0s;
_ 52 4 / .
s (v 271; — s]>
= —hZV +2h221n
2#)
= 2FO 4 Z Res w(z) V() (K.3)
Therefore:
(2 — hOp) Fo = Z Res V(z (K.4)
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L Appendix: FW

We have defined FO) as

1 FO
FO = 5 In(det A) + ? +1In (A(s)?)
1
= 5111 (det A) ——ZVsz—l—Zln S; — Sj +Zln
1 i#] i#]
= 5 n (det A) ZV (s;) +221n
i#]
e Proof of theorem 3.6 for F()
Let us start from Wl(l)
Wil@) = 3 Res K(r,2) Wz, 2)

- ;zR—?sSiK(x’z) [ (z — ) +22 32)2(2'—5))2

AZZ

—I-QZZK'a?s AS)

i jFi
A
—4ZZKx S —53)3

1 jF#L
(L.2)

We have:
A
zi: sts K(z,z) (2 — ;)
1 / Ai,z’
- g;zR—?sSiK@’Z) (z — 5;)3
= LS Res(—2 4 2ui(z) - V() K (s, 2)
34 zfsséz—si wive) Ty T

1 A,
35 2 Res Gle.2) = s

Therefore:

(L.1)



1 Ai,i
- Z,sts G(x,z) s

2w;(2) l z
- ZZR—?SZ [ z— 8 Kz, z)} (z —s4)?
" A
2h Z,B—(?siG (z,2) (z —s;)?

= ZA“ [2% o SlV/(Z) K(x, z)}

: z=S8;
A
§ Res B(z, 2) 72
h zZ—8; — Si)

e 5 Z 2&)2{/ Si — ﬁV'/l(si))K(x, 82‘) Ai,i
- Z K’(% Si) AHTH
’ A

1
+= Z Res B(x, 2) o) (L.4)

!/

Notice that:
)
Res K (x,s;)0V =
es K(z,s;)0V (x) hzx—w @5,

= E, ZAiJé‘// Sj

J
s,
K’ = -2 J L.
I;{SE (x,8)0V (z Z&,]av (s5) Z p— (L.6)
J#i
Res Res Bz, 2) 0V (z) = ResRes Bz, 2) oV (x)

2—8; T—8 (z — Si)2

B
+ Res Res (,2) oV (x)

Z—8; T—Z (Z — Si)z

TS 2—8; (z — Si)2

= Re R oG fjij)z(z — OV @)
% ResRes o= z)zl(z —52 V@)

= ResRes - _I;()f(jfz 5 V(@)
% Res oy V'@

— 7 Res 05, + L v




08 1
= 2h—L 4+ = §V"(s; L.
ity V) (L.7)
That gives:
K A
Res Res % V()
1 1/ ]' " ]‘
= —5(2(4)2 (S,) — ﬁV (Sz))(SSZ Ai,i + ﬁ Zéi,j(ﬂ/(sj) Ai’iirm'
NN V) Az 7 + - 5V//(Sz> Ai,i
(i — Sy)
1 0s;
= 26(TH> it ZMV ) ATt 2) oAl (L)
J#Z
and thus:
1)
Res W7 (2)dV (z)
0s;
- Z 5 zz Z”LHZZ(S’J(;V Sj Azzirzz_‘_Q;sl A’l’lj—‘ll
7 Zz zl5V (s1)
_QZZ (si — 5;) 4222 si — 1) 5_5)2AM
1 jFi 1 jFi l;éz J
+4ZZ G, Aij
i JF#i

5
—4222 TIREDS) e

1 jFi l;éz 7 j;éz

5.
= —TrA 0T + 7 2225@]'5‘/(3]‘)14@!7}7@' +22 s; _S]Sj
581
+4ZZ si — Sj)(si — s1)? 42 (58 — s1)( Sz—sj)2Ai7j

' j#i ls«éz S 27%#
= —TrA5T+—Z<W(3j)_Zu
2 h - #Z 5i — 5,
= %5lndetT+125 ZV/SJ s — ZM
S; — S
gAY
= 15111detT+ 25 (s; —222 05 _ZM
- 5 h J oy 3]_82 oy 5; — 5
1
= §5lndetT+—Zé ZZ(SS] _Zész 3s;
| s A T
- §51ndetT+ 25 (s;)) _QZM (L.9)
a9

o4



That implies:

o= ——lndetT——ZVsj +221n (si — s)

i#]

F = 1n@u4——§:v3]+2§:m
i#]

M Appendix: Example m=1

We choose s = 0, and V'(s) = vgs + v38% + > v 18~
We have

. 1 Vs
T B3 B2
hxy  hvoxy

1 A

+
2(xy —x9)? a3}

B(Jfl, I‘Q) =

2h 111 2h
W = ST s(——+ ) -

2,2,2 .2 T 03,222

6h 1 1 1 1

W

4() = S5 33(3 2 2 2
Vs T{ X5 x5 T XT3 0 TF T

1 1 1 1
3 2 .2 0.2 ( + + +
Uy X7 X5 T3 T1T2 13 T1X4 T3 Loy
12hvs 1 1 1 1 12hv?

s (—F—+—+ )+ -
4 .2 .2 .2 5 2 2 2

1,.2,.2.2
Vg T7 Ty X3

(L.10)
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wo _ 3 L 1 o 1 ty 11
2 vixdzd ta? 1l 3xae hvy 22 3 vg’ 23x3 w1
4v3 3y
v i3 vl adal (M.10)
2 T1%5 V3 X1
o 12 1 1 1
W= gmam@tatw
2 T1X5T3 T3 2 I3
( T N )
vix3wdad “atry  ad3xs 2ir mad xexd  m3al
. Lol
virdaded  hwdxirdad ‘xy w3
24v3 = 1 n 1 . 1 . 1 203
var?ziald x? a2 23 ximy  xews  xswmy’ hwiziasad
3202 1 1 1 3203 18, ,1 1 1
LT (:17_ T x_) 8224202 vla2a2a? (:17_ T x_)
312%”2)31121]2 3 24123 20123 Pl 2 3
304 5
+U5£L’2I2SL’2  vAr2,2.2 (M.11)
2T1T2T3  VaTiTT3
e _ 1 n 3 dug 5v3 B 5v3 L
! R3x  hoiz®  hodzt  huyxd  hoia?  hodad
8usz vy 35
hvya?  hodz?
(M.12)
15 1 1 1 12 1 1 1
W = s (gt + + + -
2 hvs 233 (:)3‘1l 5 1ol ) hovd 2323 (x‘i’xg T 2h3 Vo T30
321}3 1 1 301)3 1 1 45U 1 1
+,4,.2.2 ( 3 + 3) ( 2 + ) + 3 ( 2 + _2)
40v3 50113 11 501)3 241)4 11
Bod 33 (_ - ) ( + _2)
18vy 64213 vy 11 10903 vy 24214
Chvdadad ' hodalad 'z xy’  RoSa2al | Rl ol
18wy 50v3 vs 15vg
—(—+ — — M.13
ried o T n) T haea  hoad (M.13)
we 2 n L3 35 dvU3 5003 B 5v3
! RPr  R2uda®  RAwiz®  R2oujab  RPodat  RZodad RAws a2t
60v3 5vus 60v3 60v3 24w, 34

RZo§xt  meda?  RZujaxd h2o82?2 RZojad R ol ad

o6



750304 U3y 125@%04 185U§’v4 241)2 991)31)2

RZodxt RRosz? h2oSad 0 R2ola? o hRodad 2o a?

_ 21y 3vs 56v3v5 _ 106U§U5 450405 _ 15vg
R2ogat  h3vdaz?  h2oda’d h2oSa? 0 h2oda? h2ogad
50 15
Ut oW (M.14)

2ol a2  h2vs a2
The free energies are:

Fl = %ln (Ug/h) (M15)

5v3 vy
o 3 T 2
6hvs  4hv;

Fy = (M.16)

5v2 Hus RIN 25v3vy  3vi  Tusus 5vg

_ _ _ _ M.17
6h3v3  hZoS  4hPvs  2h%20)  h2ous h2ous 2R2 03 ( )

Fy
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