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We consider the problem of option hedging in a market with proportional transaction costs. Since super-replication is very costly in such markets, we replace perfect hedging with an expected loss constraint. Asymptotic analysis for small transaction costs is used to obtain a tractable model. A general expansion theory is developed using the dynamic programming approach. Explicit formulae are obtained in the special cases of exponential and power utility functions. As a corollary, we retrieve the asymptotics for the exponential utility indifference price.

Introduction

As well known, in a complete market with no frictions, every contingent claim can be replicated by continuous trading of the underlying asset. These replicating strategies however typically yield portfolio processes that are of unbounded variations. Hence, any size of transaction cost renders this portfolio to have an infinite trading cost. Indeed, it has been shown that, generically, the cheapest super-replicating portolio is the simple buy and hold strategy leading to a prohibitive cost [START_REF] Soner | There is no nontrivial hedging portfolio for option pricing with transaction costs[END_REF][START_REF] Levental | On the possibility of hedging options in the presence of transaction costs[END_REF][START_REF] Bouchard | Explicit solution to the multivariate super-replication problem under transaction costs[END_REF][START_REF] Cvitanić | A closed-form solution to the problem of super-replication under transaction costs[END_REF][START_REF] Delbaen | Hedging under transaction costs in currency markets: a discrete-time model[END_REF][START_REF] Kabanov | Hedging under transaction costs in currency markets: a continuous-time model[END_REF][START_REF] Koehl | Hedging in discrete time under transaction costs and continuous-time limit[END_REF][START_REF] Koehl | On super-replication under transaction costs in general discrete-time models[END_REF].

Theoretically almost sure replication is an appealing concept which has been extensively studied in the literature. Firstly, it provides the initial building block for the utility maximization problems by providing the exact description of the wealth processes that enter into the maximization. Also it provides complete risk aversion agreeing with all other approaches and in incomplete markets it yields the pricing intervals. When this interval is tight, it can also have practical uses. However, since this is not the case in markets with transaction costs, one has to consider instead expected loss criteria related to the risk attitude of the investors.

In the frictionless Black-Scholes market Föllmer and Leukert [START_REF] Föllmer | Quantile hedging[END_REF][START_REF] Föllmer | Efficient hedging: cost versus shortfall risk[END_REF] studied the quantile and expected shortfall by exploiting the deep connection to the Neyman-Pearson lemma, which applies to general complete markets. A more general approach for Markovian settings was then developed in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF][START_REF] Bouchard | Generalized stochastic target problems for pricing and partial hedging under loss constraints -application in optimal book liquidation[END_REF][START_REF] Moreau | Stochastic target problems with controlled loss in jump diffusion models[END_REF][START_REF] Bouchard | Stochastic target games with controlled loss[END_REF] for diverse markets including jumps and several loss criteria. A particular application of this approach is the utility indifference as introduced by Hodges and Neuberger [START_REF] Hodges | Optimal replication of contingent claims under transaction costs[END_REF] in which the hedging constraint is given through the maximum utility that one may achieve without the liability. However, in the general formulation of hedging with expected loss, one can place more than one constraint [START_REF] Bouchard | A stochastic target approach for p&l matching problems[END_REF] and consider markets with general dynamics as well as frictions.

In this paper, we follow the problem formulation of [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] and develop a coherent asymptotic theory for hedging problems under an expected loss criterion, when the transaction cost is small. Asymptotic analysis allows for more tractable formulae. Our methodology is robust enough to treat models with general dynamics and many loss criteria. For modeling the financial market, we follow the seminal papers [START_REF] Magill | Portfolio selection with transactions costs[END_REF][START_REF] Constantinides | Capital market equilibrium with transaction costs[END_REF] and the rigorous mathematical approaches of [START_REF] Davis | Portfolio selection with transaction costs[END_REF][START_REF] Dumas | An exact solution to a dynamic portfolio choice problem under transactions costs[END_REF][START_REF] Shreve | Optimal investment and consumption with transaction costs[END_REF]. For further information on utility maximization under transaction costs, we refer the reader to the book [START_REF] Kabanov | Markets with transaction costs[END_REF] and the references therein.

On the technical side, we build upon the similar theory that was developed in the case of the classical utility maximization. For this problem, an extensive theory is now available starting with the appendix of [START_REF] Shreve | Optimal investment and consumption with transaction costs[END_REF]. There are now many rigorous results [START_REF] Altarovici | Asymptotics for fixed transaction costs[END_REF][START_REF] Barles | Option pricing with transaction costs and a nonlinear black-scholes equation[END_REF][START_REF] Bichuch | Asymptotic analysis for optimal investment in finite time with transaction costs[END_REF][START_REF] Bichuch | Utility maximization trading two futures with transaction costs[END_REF][START_REF] Gerhold | Asymptotics and duality for the Davis and Norman problem[END_REF][START_REF] Janecek | Asymptotic analysis for optimal investment and consumption with transaction costs[END_REF][START_REF] Moreau | Portfolio choice with small market impact[END_REF][START_REF] Possamai | Large liquidity expansion of super-hedging costs[END_REF][START_REF] Soner | Homogenization and asymptotics for small transaction costs[END_REF] as well as interesting formal derivations [START_REF] Atkinson | Multi-asset portfolio optimization with transaction cost[END_REF][START_REF] Goodman | Balancing small transaction costs with loss of optimal allocation in dynamic stock trading strategies[END_REF][START_REF] Whalley | An asymptotic analysis of an optimal hedging model for option pricing with transaction costs[END_REF]. The partial differential equation (PDE) technique that we use has its origins in a recent paper [START_REF] Soner | Homogenization and asymptotics for small transaction costs[END_REF]. It is based on the theory of the viscosity approach to homogenization of Evans [START_REF] Evans | Periodic homogenisation of certain fully nonlinear partial differential equations[END_REF]. This methodology allows for a flexible asymptotic theory that applies to markets with multiple assets [START_REF] Possamai | Large liquidity expansion of super-hedging costs[END_REF], fixed transaction costs [START_REF] Altarovici | Asymptotics for fixed transaction costs[END_REF] and market impact in factor models [START_REF] Moreau | Portfolio choice with small market impact[END_REF]. A related asymptotic analysis is carried out for stochastic volatility models with different time scales [START_REF] Fouque | Derivatives in Financial Markets with Stochastic Volatility[END_REF][START_REF] Fouque | Multiscale Stochastic Volatility for Equity, Interest-Rate and Credit Derivatives[END_REF], and for utility maximization asymptotics [START_REF] Fouque | Portfolio Optimization and Stochastic Volatility Asymptotics[END_REF]. They also use viscosity solution tools, but their methodology is different.

The asymptotic expansion is derived directly using the PDE characterization of the expected loss based price. This equation follows from the stochastic target formulation with controlled expected loss as in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]. In the frictionless case, the problem described in subsection 2.2 is π(t, s, p) := inf z ∈ R : E Ψ Z t,s,z,ϑ T -g(S t,s T ) ≥ p for some ϑ ∈ U(t, s, z) ,

where Ψ is the given expected loss function, p is the given desired threshold, g is option pay-off, U(t, s, z) is the set of admissible controls and the process Z t,s,z,ϑ is the value of the portfolio with initial stock value s, initial wealth value z and control process ϑ. The diffusion type dynamics of Z t,s,z,ϑ and the exact description of the admissible class U(t, s, z) are given in section 2 below. Then, with the help of the martingale representation, [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] converts this problem into a standard stochastic target problem introduced in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF][START_REF] Soner | Stochastic target problems, dynamic programming, and viscosity solutions[END_REF]. The model with transaction costs is introduced in Section 2.1 and the corresponding dynamic programming equation is a quasi-variational inequality (2.7).

The main result of the paper, outlined in Section 3, is the asymptotic expansion (3.1). It is proved under the hypothesis of Theorem 3.7 and states that the loss due to frictions is proportional to the 2/3 power of the proportional transaction cost and the coefficient of the first term in the expansion is characterized. Although our result is proved for a single risk criteria, it can be generalized to the multi-criteria case by exactly following the steps of [START_REF] Bouchard | A stochastic target approach for p&l matching problems[END_REF]. This extension naturally increases the dimension of the corresponding PDE but does not introduce any additional technical difficulties.

In the case of exponential and power utility functions, Ψ, explicit formulae are available. We collect them in Section 4. In Section 7, we also explain how to construct almost optimal strategies.

In particular, if one chooses the threshold p to be the value function of the same utility maximization problem with transaction costs but without any liability, one recovers the utility indifference price and its asymptotics. In this context this price was first studied by [START_REF] Davis | European option pricing with transaction costs[END_REF]. In the case of an exponential utility, they obtained the price as the difference of two functions. These functions are related to the maximum utility of two similar problems whose solutions are described through a nonlinear parabolic equation with gradient constraints. Related asymptotic formulae were formally derived in [START_REF] Whalley | An asymptotic analysis of an optimal hedging model for option pricing with transaction costs[END_REF] and only recently were proved rigorously by Bichuch in [START_REF] Bichuch | Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment[END_REF]. Later [START_REF] Possamai | General indifference pricing with small transaction costs[END_REF] used an approach similar to ours for this problem. As discussed above, the problem we study is equivalent to hedging the option not perfectly but with a prescribed expected loss. As a consequence, our results described in Section 4 yield the asymptotic formula of [START_REF] Bichuch | Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment[END_REF].

The paper is organized as follows. The next section describes the model and its frictionless counterpart. In Section 3, we state the main theorem and our assumptions. We illustrate this result in the cases of exponential and power utilities in Section 4. Section 5 is devoted to the proof of the main theorem and Section 7 verifies the assumptions in the examples. In Section 6, we prove several technical estimates.

Notations: Given O ⊂ R k and a smooth function ϕ : (t, x 1 , ..., x k ) ∈ [0, T ]×O → R, we write ϕ t and ϕ x i for the partial derivatives with respect to t and x i . Second order derivatives are denoted by ϕ x i x j , and so on... We use the notations Dϕ and D 2 ϕ to denote the gradient and the Hessian matrix with respect to the space component (x 1 , ..., x k ). If we want to define them with respect to a subfamily, say (

x 1 , • • • , x i ), we write D (x 1 ,••• ,x i ) ϕ and D 2 (x 1 ,••• ,x i ) ϕ.
When ϕ depends on only one variable, we simply write ϕ ′ and ϕ ′′ for the first and second order derivatives. Any element of R k is viewed as a column vector, and ⊤ denotes the transposition. For an element ζ ∈ R k and r > 0, the open ball of radius r > 0 centered at ζ is denoted by B r (ζ). We let B and Int(B) denote the closure and the interior of B. Assertions involving random variables have to be understood in the a.s. sense, if nothing else is specified.

Partial hedging under expected loss constraints and pricing equations

As usual, we let (Ω, F , P) be a complete probability space supporting a one dimensional Brownian motion W , F := (F t ) t≤T be the right-continuous augmented filtration generated by W and T > 0 be the fixed time horizon.

Controlled loss pricing with proportional transaction costs

We consider a financial market which consists of a single risky asset S, called stock hereafter. For ease of notations, we assume that the risk free interest rate is 0. Given initial data (t, s) ∈ [0, T ] × (0, ∞), we let S t,s describe the evolution of this asset, and we assume that it follows the dynamics

S t,s = s + • t S t,s τ µ(τ, S t,s τ )dτ + • t S t,s τ σ(τ, S t,s τ )dW τ , (2.1) in which (t, s) ∈ [0, T ] × (0, ∞) → (sµ(t, s), sσ(t, s)) ∈ R × (0, ∞) (2.2)
is Lipschitz continuous in s and continuous in t.

The latter condition implies the existence and uniqueness of a strong solution.

Transactions on this market are subject to a proportional cost1 described by a parameter ǫ 3 > 0. We use the notation ǫ because we will be interested by the asymptotic ǫ → 0. The scaling ǫ 3 is just for notational convenience, as it will be clear later on.

As usual in the presence of transaction costs, a portfolio process has to be described by a two dimensional process (Y, X) in which Y denotes the cash account and X denotes the amount of money invested in the stock. We therefore call (y, x) ∈ R2 an initial endowment at time t if y is the position in cash and x is the amount invested in the stock at time t. Then, a financial strategy is an adapted process L with bounded variations. The quantity L τ -L t-must be interpreted as the cumulated amount of money transferred on the time interval [t, τ ] from the cash account into the account invested in the stock. It admits the canonical decomposition into two non-decreasing adapted processes L = L + -L -. We denote by L the collection of trading strategies.

Given an initial endowment (y, x) at time t, the portfolio process (Y t,y,ǫ,L , X t,x,s,L ) associated to the strategy L ∈ L evolves according to

Y t,y,ǫ,L = y - • t (1 + ǫ 3 )dL + τ + • t (1 -ǫ 3 )dL - τ , X t,x,s,L = x + • t X t,x,s,L τ dS t,s τ S t,s τ + • t dL + τ - • t dL - τ .
In order to rule out any possible arbitrage, we restrict the set of admissible strategies to the elements of L such that the liquidation value of the portfolio is bounded from below, i.e. L ∈ L is admissible if there exists c L ≥ 0 such that

Y t,y,ǫ,L + ℓ ǫ (X t,x,s,L ) ≥ -c L on [t, T ], (2.3) 
where

ℓ ǫ : r ∈ R → r -ǫ 3 |r|.
We denote by L ǫ (t, s, y, x) the set of admissible strategies associated to the initial data (s, y, x) at time t.

We now consider a trader whose aim is to hedge a plain vanilla European option with payoff function g : r ∈ (0, ∞) → g(r) ∈ R. Hereafter, g is assumed to be continuous with linear growth. In general, super-hedging in the presence of proportional transaction costs is much too expensive to make sense in practice, see [START_REF] Cvitanić | Super-replication in stochastic volatility models under portfolio constraints[END_REF][START_REF] Levental | On the possibility of hedging options in the presence of transaction costs[END_REF][START_REF] Soner | There is no nontrivial hedging portfolio for option pricing with transaction costs[END_REF], and [START_REF] Bouchard | Explicit solution to the multivariate super-replication problem under transaction costs[END_REF] for the multivariate setting. We therefore introduce a risk criteria under which the pricing and the hedging of the option will be performed. It is specified through a map Ψ : r ∈ R → Ψ(r) ∈ (-∞, 0], which we call loss function. We assume that Ψ is concave 2 , nondecreasing, continuous on its domain, that Im(

Ψ) := {Ψ(r), r ∈ R s.t. Ψ(r) > -∞} is open and that E Ψ(-g(S t,s T )) > -∞ for all (t, s) ∈ [0, T ] × (0, ∞).
The hedging price associated to the loss function Ψ and a threshold p ∈ Im(Ψ) is then defined by

v ǫ (t, s, p, x) := inf y ∈ R : ∃ L ∈ L ǫ (t, s, y, x) s.t. E Ψ ∆ ǫ,L t,s,y,x ≥ p , (2.4) 
where ∆ ǫ,L t,s,y,x := Y t,y,ǫ,L T + ℓ ǫ (X t,x,s,L T ) -g(S t,s T ).

The value v ǫ (t, s, p, x) is the minimal initial price at which the option with payoff g(S t,s T ) should be sold in order to ensure that the expected loss, as evaluated through Ψ, is not below the threshold p. Note that the assumption that Ψ is bounded from above is rather natural since we consider here a risk criterion, i.e. one should not have the possibility of compensating losses by unbounded gains. From the mathematical point, it could be relaxed up to additional integrability conditions ensuring that the corresponding optimization problem Max E[Ψ(∆ ǫ,L t,s,y,x )] over L ∈ L ǫ (t, s, y, x) is well-posed, see e.g. [START_REF] Bouchard | Utility maximization on the real line under proportional transaction costs[END_REF] and the references therein. Also note that this problem is of interest even in the degenerate case g ≡ 0. Then, v ǫ represents the threshold under which the cash account should not go in order for the terminal wealth to satisfy the requirement in (2.4). This threshold is a building block for the analysis of optimal investment problems under risk constraints, see [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF][START_REF] Bouchard | Weak dynamic programming for generalized state constraints[END_REF].

The problem (2.4) is a stochastic target problem with controlled loss in the terminology of [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]. In order to obtain a pde characterization, the first step of their analysis consists of increasing the dimension of the state space and of the set of controls in order to turn the target problem under controlled loss in (2.4) into a target problem with P-a.s. terminal constraint in the form of [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF][START_REF] Soner | Stochastic target problems, dynamic programming, and viscosity solutions[END_REF]. Namely, v ǫ admits the equivalent formulation

v ǫ (t, s, p, x) = inf y ∈ R : ∃ (L, α) ∈ L ǫ (t, s, y, x) × A s.t. Ψ ∆ ǫ,L t,s,y,x ≥ P t,p,α T , (2.5) 
where A denotes the set of a.s. square integrable predictable processes such that

P t,p,α := p + • t α τ dW τ is a martingale on [t, T ]. (2.6) 
One direction follows by taking expectation, the other one is just a consequence of the martingale representation theorem applied to Ψ(∆ ǫ,L t,s,y,x ). Since Im(Ψ) is convex, by the continuity of Ψ on its domain, it is not difficult to see that we can even restrict the martingale P t,p,α to take values in Im(Ψ), see [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF][START_REF] Moreau | Stochastic target problems with controlled loss in jump diffusion models[END_REF].

Note that this reformulation is natural. Indeed, the expectation in (2.4) has to be understood as a conditional expectation given the (trivial) information at the starting point t. The conditional expectation evolves as time passes, and has no reason to stay above the initial threshold p. The martingale process P t,p,α is here to take this evolution into account and turns the problem into a time-consistent one: it describes the evolution of the conditional expectation of Ψ(∆ ǫ,L t,s,y,x ). A geometric dynamic programming principle for problems of the form (2.5) was first obtained by [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF][START_REF] Soner | Stochastic target problems, dynamic programming, and viscosity solutions[END_REF]. In the present framework, in which controls are of bounded variation, it was further studied by [START_REF] Bouchard | Generalized stochastic target problems for pricing and partial hedging under loss constraints -application in optimal book liquidation[END_REF]. Up to slight modifications, see the Appendix, it follows from the analysis in [START_REF] Bouchard | Generalized stochastic target problems for pricing and partial hedging under loss constraints -application in optimal book liquidation[END_REF] 

that v ǫ is a (discontinuous) viscosity solution on D × R of max -L SX ϕ -LP|SX ϕ , -ǫ 3 + 1 + ϕ x , -ǫ 3 -(1 + ϕ x ) = 0 on D <T × R , Ψ(ϕ + x -ǫ 3 |x| -g) = p on D T × R , (2.7) 
in which we use the notations

D <T := [0, T ) × (0, ∞) × Im(Ψ) , D T := {T } × (0, ∞) × Im(Ψ) , D := D <T ∪ D T , and 
L a P|SX ϕ := 1 2 a(σ a + σ0 ) ⊤ Dϕ p , LP|SX ϕ := inf{L a P|SX ϕ : a ∈ R s.t. σ⊤ a Dϕ = 0} , L SX ϕ := ϕ t + μ⊤ Dϕ + 1 2 Tr σ0 σ⊤ 0 D 2 ϕ ,
where Dϕ p is vector of the derivatives of the partial derivative ϕ p and for a given point (t, s, x, a) The above characterization can be exploited to compute the pricing function v ǫ numerically. However, it should be observed that the operator LP|SX involves an optimization over the unbounded set R, which makes it discontinuous, and possibly difficult to handle numerically. Moreover, except if v ǫ is smooth, the above pde does not allow to recover the associated hedging strategy.

∈ [0, T ] × (0, ∞) × R × R, μ(t,
In this paper, we follow the approach of [START_REF] Soner | Homogenization and asymptotics for small transaction costs[END_REF], and try to provide an expansion of v ǫ around ǫ = 0, i.e. for small values of the transaction costs. For ǫ = 0, the financial market is complete and the problem can be solved explicitly by tools from convex analysis as described in the next subsection. We can therefore hope to obtain an explicit expansion, or at least a characterization of the different terms in the expansion which will be more tractable from the numerical point of view.

The frictionless benchmark case

We now consider the frictionless case which will be used to provide an expansion of v ǫ . We refer to [START_REF] Föllmer | Quantile hedging[END_REF][START_REF] Föllmer | Efficient hedging: cost versus shortfall risk[END_REF] for a general exposition of quantile and loss hedging problems in this context, see also [START_REF] Bouchard | Bsdes with weak terminal condition[END_REF].

Let U denote the set of R-valued progressively-measurable and a.s. square integrable processes. Elements of U will be interpreted as amounts of money invested in the risky asset S. Given an initial allocation in amount of cash z at time t and ϑ ∈ U, the corresponding (frictionless) wealth process Z t,s,z,ϑ evolves according to

Z t,s,z,ϑ = z + • t ϑ τ dS t,s τ /S t,s τ ,
and the analog of v ǫ (t, s, p, 0) in (2.4) is

π(t, s, p) := inf z ∈ R : E Ψ Z t,s,z,ϑ T -g(S t,s T ) ≥ p for some ϑ ∈ U(t, s, z) , in which U(t, s, z) is the restriction to controls ϑ ∈ U such that Z t,s,z,ϑ ≥ -c ϑ on [t, T ] for some c ϑ ≥ 0.
Because this frictionless financial market is complete, one can describe π explicitly under mild regularity and integrability conditions. We provide the proof of the following in the Appendix for completeness. Proposition 2.2. Fix (t, s, p) ∈ D. Assume that the function Ψ : R → Im(Ψ) is invertible, and that its inverse Φ is C 1 (Im(Ψ)). Assume further that Φ ′ : Im(Ψ) → (0, ∞) admits an inverse I. Finally assume that λ t,s := (µ/σ)(S t,s ) is square integrable and that the process Q t,s defined by

Q t,s := exp 1 2 • t |λ t,s τ | 2 dτ + • t λ t,s τ dW τ
satisfies E I(qQ t,s T ) = p for some q > 0, and g(S t,s T ) + Φ • I(qQ t,s T ) ∈ L 1 (Q t,s ) where dQ t,s /dP = 1/Q t,s T . Then, π(t, s, p) = E Q t,s g(S t,s T ) + Φ • I(qQ t,s T ) .

(2.9)

As for the case with frictions, one can also obtain a characterization of π in terms of a suitable Hamilton-Jacobi-Bellmann equation, see [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] and the Appendix. As in [START_REF] Soner | Homogenization and asymptotics for small transaction costs[END_REF], it will be used to obtain an expansion of v ǫ around ǫ = 0. We state it in terms of the function

v : (t, s, p, x) ∈ D × R → π(t, s, p) -x, (2.10) 
which is the analog of v ǫ when the initial amount x invested in the stock is non-zero. We note that formally v 0 , obtained by setting ǫ to zero, is equal to v. In the following, we restrict to the case where v is smooth, increasing and strictly convex in the p parameter (the monotony and convexity just follow from the monotony and concavity of Ψ). A similar result in the sense of viscosity solutions can be found in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]. 

Theorem 2.3. Assume that π ∈ C 1,2 (D <T ) and that min{π p , π pp } > 0 on D <T . Then, v(t, x, p, x) = π(t, s, p) -x is a strong solution of -L Sθ v -LP|Sθ v = 0 on D <T × R and Ψ(v + x -g) = p on D T × R, (2.11 

Small transaction costs expansion

It follows from Proposition 2.2 that the value function v associated to the frictionless case is known, or at least can be computed easily. Since it should identify to v ǫ for ǫ = 0, we seek for an expansion of v ǫ as ǫ → 0 in which v is the 0-order term. From [START_REF] Soner | Homogenization and asymptotics for small transaction costs[END_REF], one can expect to obtain an o(ǫ 2 )-expansion if we introduce a second and a fourth order term, the last one depending on a fast variable, ξ ξ ǫ below. Namely, we seek for two functions u and ̟ such that

v ǫ (ζ, x) = v(ζ, x) + ǫ 2 u(ζ) + ǫ 4 ̟ • ξ ξ ǫ (ζ, x) + o(ǫ 2 ) for (ζ, x) ∈ D × R, (3.1) 
in which, for a map w

: (ζ, ξ) ∈ D × R → w(ζ, ξ), we set (w • ξ ξ ǫ )(ζ, x) := w(ζ, ξ ξ ǫ (ζ, x)), with ξ ξ ǫ (ζ, x) := x -θ(ζ) ǫ . (3.2) 
Note that when w has sub quadratic growth in ξ, the term

ǫ 4 ̟ • ξ ξ ǫ (ζ, x) in (3.1
) is in a lower order than ǫ 2 and plays no role in the expansion. We will show that this is indeed the case. However, at least at the formal level, the second derivative of

ǫ 4 ̟ • ξ ξ ǫ (ζ, x)
is exactly of order ǫ 2 and this observation is crucial in deriving the corrector equations. Also, in the context of formal matched asymptotics, one may recognize (3.1) as in the inner expansion.

Remark 3.1. In the case where the domain of Ψ is bounded from below, the convergence v ǫ → v can not hold except if g is linear. Indeed, assume that the domain of Ψ is bounded by

-κ ∈ R, i.e. Ψ ≡ -∞ on (-∞, -κ). Then, it follows from [15] that v ǫ (t, s, p, x) ≥ ĝ(s) -x -κ for all (t, s, p, x) ∈ D <T × R, where ĝ is the concave envelope of g. On the other hand lim t→T v(t, s, p, x) = g(s) -x -κ + Ψ -1 (p) + κ, by (2.11),
where Ψ -1 is the left-continuous inverse of Ψ. If g is not concave, i.e. if {ĝ > g} is non-empty, we therefore obtain that v ǫ does not converges to v on a non-empty subset of {(t, s, p) ∈ D <T : ĝ(s) > g(s) + Ψ -1 (p) + κ}. Hence, we need to assume that g is concave, i.e. ĝ ≡ g. It can actually neither be strictly concave on any interval of (0, ∞).

Otherwise, there will be (t, s) such that E Q t,s g(S t,s T ) =: π(t, s) < g(s) and therefore v(t, s, p, x) < g(s)

-x + Ψ -1 (p) = g(s) -x -κ + Ψ -1 (p) + κ, since adding -x + Ψ -1 (p) to π(t, s) allows to hedge Z T := g(S t,s T ) + Ψ -1 (p) which satisfies Ψ(Z T -g(S t,s T )) = p.
By choosing p such that Ψ -1 (p) + κ is close to 0, we again obtain that v ǫ (t, s, p, x) does not converge to v(t, s, p, x) even if ĝ = g3 .

Our main result provides a precise characterization of the functions u and ̟ under the assumption that v ǫ converges at a rate O(ǫ 2 ). We shall see that this is true in typical examples of application in Section 4 below4 .

Assumption 3.2. For any (ζ o , x o ) ∈ D × R, there exists r o , ǫ o > 0 such that sup u ǫ (ζ, x) := v ǫ (ζ, x) -v(ζ, x) ǫ 2 , (ζ, x) ∈ B ro (ζ o , x o ) ∩ (D × R), ǫ ∈ (0, ǫ o ] < ∞. (3.3) 
It allows us to give a sense to the relaxed semi-limits

u * (ζ, x) := lim sup ǫ↓0,(ζ ′ ,x ′ )→(ζ,x) u ǫ (ζ ′ , x ′ ) and u * (ζ, x) := lim inf ǫ↓0,(ζ ′ ,x ′ )→(ζ,x) u ǫ (ζ ′ , x ′ ), (3.4)
which will be the main objects of our analysis. More precisely, we shall show that u * = u * =: u does not depend on the x-variable and is a viscosity solution of

-Hϕ -h = 0 on D <T , ϕ = 0 on D T , (3.5) 
where

Hϕ = ϕ t + 1 2 σ 2 s 2 ϕ ss + 1 2 (â) 2 ϕ pp + σsâϕ sp - µ σ âϕ p , (3.6) 
in which â is defined in (2.14), and (̟, h) are the solution of the so-called first corrector equation, i.e. for each (ζ, ξ) ∈ D <T × R:

max{- 1 2 [ π pp (π p ) 2 σ 2 ](ζ)ξ 2 + h(ζ) - 1 2 [σ 2 δ 2 ](ζ)̟ ξξ (ζ, ξ); -1 + ̟ ξ (ζ, ξ); -1 -̟ ξ (ζ, ξ)} = 0, (3.7 
) where

δ := sθ s -θ + θ p π p (θ -sπ s ) . (3.8) 
In order to construct the pair (̟, h), we need some smoothness and non-degeneracy conditions on the value function π of the frictionless problem. 

(i) ̟(•, 0) = 0 on D. (ii) ̟ ∈ C 1,2 (D × R) and |̟ ξ | ≤ 1 on D × R. (iii) There exists a continuous function ̺ : D → R such that |̟(•, ξ)| 1 + |ξ| + (|̟ t | + |D̟| + |D 2 ̟|)(•, ξ) ≤ ̺ on D, ∀ ξ ∈ R. (3.9) 
(iv) There exists a continuous positive function ξ ξ on D such that, for all (ζ, ξ) ∈ D×R,

̟ ξ (ζ, ξ) = -1 ⇔ ξ ≤ -ξ ξ(ζ) and ̟ ξ (ζ, ξ) = 1 ⇔ ξ ≥ ξ ξ(ζ).
The proof of this result is postponed to Section 6. In that section, we also derive explicit expressions for ̟, h and ξ ξ in terms of π and its derivatives, see (6.5), (6.3) and (6.4) below. In order to fully characterize u as u * = u * , we also need a comparison principle on (3.5). Assumption 3.6. There exists a set of functions C which contains u * and u * , and such that u 1 ≥ u 2 on D whenever u 1 (resp. u 2 ) is a lower semi-continuous (resp. upper semi-continuous) viscosity super-solution (resp. sub-solution) of (3.5) in C.

Under the above conditions, we will prove in Section 5 that the expansion announced in (3.1) holds. Proof. This is an immediate consequence of Propositions 5.5, 5.7 and 5.8 below, combined with Assumption 3.6. 2

As explained above, the function π is explicit or can be computed easily, and so is v, while ̟ is given in (6.5) below in terms of π and its derivatives. As for u, it solves the linear equation (3.5) which can be solved numerically whenever the function â defined in (2.14) and âµ/σ are Lipschitz on D. Note that, in this case, it admits the Feynman-Kac representation

u(t, s, p) = E T t h τ, St,s τ , P t,s,p τ dτ ,
in which St,s solves (2.1) with µ ≡ 0, and

P t,s,p := p - • t (âµ/σ)(τ, St,s τ , P t,s,p τ )dτ + • t â(τ, St,s τ , P t,s,p τ )dW τ .
If the probability measure Q t,s of Proposition 2.2 is well defined, this is equivalent to )dW τ .

u(t, s, p) = E Q t,s T t h τ, S
In the examples of Section 4, all these quantities are known, as far as one can compute the price and the greeks of a plain vanilla European option in the Black and Scholes model. Note also that the functions π and ξ ξ can be used to construct almost optimal strategies in the original problem (2.7). This will be explained later on in Section 7 for the exponential and the power risk criterias. Remark 3.8. We restrict here to the case of a single stock mainly for ease of notations. The arguments contained in Section 5 can essentially be reproduced in the multidimensional case. The main difficulties will come from the construction of ̟ in Lemma 3.4, see [START_REF] Possamai | Homogenization and asymptotics for small transaction costs: the multidimensional case[END_REF], and from the existence of a solution to the Skorohod problem in the proofs of Section 7.

Examples

In this section, we discuss two typical examples of application in which Assumptions 3.2, 3.3 and 3.6 are satisfied, and therefore the expansion result of Theorem 3.7 can be applied.

The exponential risk criterion in the Black and Scholes model

We first specialize the discussion to the case where the loss function Ψ is of exponential form:

Ψ(r) := -e -ηr , r ∈ R , (4.1) 
for some η > 0, and the stock price S t,s follows the Black and Scholes dynamics

S t,s = s + • t λσS t,s τ dτ + • t σS t,s τ dW τ , (4.2) 
for some (λ, σ) ∈ R × (0, ∞).

In this case, the pricing function π can be derived explicitly. This is an easy consequence of Proposition 2.2. We recall that h and ξ ξ are given in (6.3) and (6.4) below.

Proposition 4.1. For all (t, s, p)

∈ D := [0, T ] × (0, ∞) × (-∞, 0), π(t, s, p) = π(t, s) + π(t, p) , (4.3) 
where Moreover, the second corrector equation (3.5) can be written as

π(t, p) := - λ 2 (T -t) 2η - 1 η ln(-p) and π(t, s) := E Q g(S t,s T ) with dQ/dP := e -λ 2 2 T -λWT . Moreover, if π ∈ C 0,2 ([0, T ] × (0, ∞)), then    θ(t, s) = sπ s (t, s) + λ ση , δ(t, s) = s 2 πss (t, s) -λ ση , â(p) = -λp , h(t, s) = 3 16 2 3 σ 2 η 1 3 |δ(t, s)| 4 3 , ξ ξ(t, s) = 3
   -ϕ t -1 2 σ 2 s 2 ϕ ss -λ 2 2 p 2 ϕ pp + σλspϕ sp + λ 2 pϕ p -h = 0 on D <T , ϕ = 0 on D T . (4.6) 
If h is bounded, which will be the case under Assumption 4.2 below, it follows from standard arguments that

û : (t, s) ∈ [0, T ] × (0, ∞) → E Q T t h(τ, S t,s τ )dτ , (4.7) 
is the unique viscosity solution of (4.6) in the class of functions having polynomial growth, see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. We now impose conditions under which Assumptions 3.2, 3.3 and 3.6 of Theorem 3.7 hold true. In particular, they are similar to the assumptions used in [5, Assumptions 3.1 and 3.2]. 5 Assumption 4.2. The following holds: 5 These assumptions can be verified directly using the frictionless equation and assumptions on g. a. π ∈ C 1,4 (D). b. There exists K > 0 such that

|g| + |sπ s | + |s 2 πss | + |δ -1 | + |θ t | + |s 2 θ ss | ≤ K on D.
Note that these conditions imply in particular that û, ̟ ∈ C 1,2 (D), see (4.4) and (6.5) below for the exact expression of ̟. The proof of this proposition is postponed to Section 7.

Remark 4.4. [ǫ 2 -optimal strategies] In the course of the proof of Proposition 4.3, we shall explain how to construct strategies which are optimal at the order O(ǫ 2 ), or o(ǫ 2 ) under an additional regularity assumption, for the problem with transaction costs, and which only depends on the knowledge of v, û, ̟ and θ. See Propositions 7.1 and 7.2 below.

Note that, as a by-product, our expansion allows one to recover the result of [START_REF] Bichuch | Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment[END_REF] on the Hodges and Neuberger indifference price. More precisely, let V ǫ be defined as

V ǫ (t, s, y, x) := sup L∈L ǫ (t,s,y,x) E Ψ Y t,y,ǫ,L T + ℓ ǫ (X t,x,s,L T ) -g(S t,s T )
and let Ṽ ǫ be defined similarly but for g ≡ 0. Then, the indifference price associated to the market with transaction costs is given by

q ǫ (t, s, y, x) := inf{q ∈ R : V ǫ (t, s, y + q, x) ≥ Ṽ ǫ (t, s, y, x)}.
It is easy to see that, for the exponential risk criterion, q ǫ does not depend on the y-variable and that

q ǫ (t, s, x) = - 1 η ln Ṽ ǫ (t, s, y, x) V ǫ (t, s, y, x) = v ǫ (t, s, -1, x) -ṽǫ (t, s, -1, x) ,
in which ṽǫ is defined as v ǫ but for g ≡ 0. Under the assumptions of Proposition 4.3, it then follows that

q ǫ (t, s, x) = π(t, s) + ǫ 2 E Q T t ∆h(τ, S t,s τ )dτ + o(ǫ 2 ) , in which ∆h(t, s) := 3 16 2 3 σ 2 η 1 3 |δ(t, s)| 4 3 - λ ση 4 3
.

The power risk criterion in the Black and Scholes model

We now consider the case

Ψ(r) := -(r + κ) -β 1 {r>κ} -∞1 {r≤κ} , r ∈ R, (4.8) 
with β, κ > 0. For this risk function, Proposition 2.2 implies that π = π + π with

π(t, s) = E Q [g(S t,s T )] and π(t, p) := -κ + (-p) -1 β m(t) , (4.9) 
for (t, s, p

) ∈ D, in which m is a C 1 b ([0, T ]) positive function satisfying m(T ) = 1.
In view of Remark 3.1, we can however not expect to have v ǫ → v if g is not linear. Since any linear payoff is hedged perfectly by the same buy-and-hold strategy in the two models, this boils down to considering the case g ≡ 0 up to an initial shift of κ and x, at the costs of an additional ǫ 3 term. We therefore restrict to the degenerate case g ≡ 0. Recall from Section 2.1 that the problem remains of interest, as v ǫ is a building block for the analysis of optimal investment problems under risk constraints, see [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF][START_REF] Bouchard | Weak dynamic programming for generalized state constraints[END_REF]. The proof is postponed to Section 7.

Remark 4.6. [ǫ 2 -optimal strategies] As in the exponential case, we produce in the course of the proof of Proposition 4.5 a strategy which is optimal at the order o(ǫ 2 ) for the problem with transaction costs, and which only depends on the knowledge of v, û, ̟ and θ. See Remark 7.3 below.

5 Derivation of the small transaction costs expansion

Preliminaries

We start with the derivation of easy estimates that will be of important use in the sequel.

Remark 5.1. Observe that, for (ζ, x) ∈ D × R, the initial dotation in cash and amount of stock (v ǫ (ζ, x) + x + ǫ 3 |x|, 0) can be turned into (v ǫ (ζ, x), x) by an immediate transfer ∆L 0 = x, while the initial dotation (v ǫ (ζ, 0)-x+ǫ 3 |x|, x) can be turned into (v ǫ (ζ, 0), 0) by an immediate transfer ∆L 0 = -x. By the definition of v ǫ , this implies that (ii) Moreover, for all ζ ∈ D, we have

v ǫ (ζ, 0) -ǫ 3 |x| ≤ v ǫ (ζ, x) + x ≤ v ǫ (ζ, 0) + ǫ 3 |x|. ( 5 
u * (ζ) = lim sup ǫ↓0,ζ ′ →ζ u ǫ * (ζ ′ , θ(ζ ′ )) and u * (ζ) = lim inf ǫ↓0,ζ ′ →ζ u ǫ * (ζ ′ , θ(ζ ′ )) , (5.2)
in which u ǫ * and u ǫ * denote the upper-and lower-semicontinuous envelopes of u ǫ .

Proof. We only show the result for u * , the same reasoning can be used for the relaxed semi-limit u * . Fix ζ ∈ D and x ∈ R. By the definition of u * , there exists a sequence

(ζ ǫ , x ǫ ) ǫ>0 such that (ζ ǫ , x ǫ ) -→ ǫ↓0 (ζ, x) and u ǫ (ζ ǫ , x ǫ ) -→ ǫ↓0 u * (ζ, x). (5.3) 
Fix also a sequence (x ′ ǫ ) ǫ>0 going to x ′ ∈ R as ǫ → 0. By Remark 5.1 and the definitions of u ǫ and v in (3.3) and (2.10), we have

v ǫ (ζ ǫ , 0) -ǫ 3 |x ǫ | ≤ ǫ 2 u ǫ (ζ ǫ , x ǫ ) + π(ζ ǫ ) ≤ v ǫ (ζ ǫ , 0) + ǫ 3 |x ǫ | , v ǫ (ζ ǫ , 0) -ǫ 3 |x ′ ǫ | ≤ ǫ 2 u ǫ (ζ ǫ , x ′ ǫ ) + π(ζ ǫ ) ≤ v ǫ (ζ ǫ , 0) + ǫ 3 |x ′ ǫ | , so that -ǫ (|x ǫ | + |x ′ ǫ |) ≤ u ǫ (ζ ǫ , x ǫ ) -u ǫ (ζ ǫ , x ′ ǫ ) ≤ ǫ (|x ǫ | + |x ′ ǫ |) .
Sending ǫ → 0 and using (5.3) then leads to

lim ǫ→0 u ǫ (ζ ǫ , x ′ ǫ ) = u * (ζ, x).
This shows in particular that u * (ζ, x ′ ) ≥ u * (ζ, x). By arbitrariness of x, x ′ ∈ R, the reverse inequality holds as well, showing that u * does not depend on its x-variable. Moreover, applied to x = x ′ := θ(ζ) and x ′ ǫ := θ(ζ ǫ ), the above implies that lim sup

ǫ↓0,ζ ′ →ζ u ǫ * (ζ ′ , θ(ζ ′ )) ≥ u * (ζ, θ(ζ)) = lim sup ǫ↓0,(ζ ′ ,x ′ )→(ζ,θ(ζ)) u ǫ (ζ ′ , x ′ ).
To conclude the proof of the left hand-side of (5.2), it remains to show that lim sup

ǫ↓0,(ζ ′ ,x ′ )→(ζ,θ(ζ)) u ǫ (ζ ′ , x ′ ) = lim sup ǫ↓0,(ζ ′ ,x ′ )→(ζ,θ(ζ)) u ǫ * (ζ ′ , x ′ ), (5.4) 
and to use the inequality

lim sup ǫ↓0,(ζ ′ ,x ′ )→(ζ,θ(ζ)) u ǫ * (ζ ′ , x ′ ) ≥ lim sup ǫ↓0,ζ ′ →ζ u ǫ * (ζ ′ , θ(ζ ′ )).
To see that the above holds, note that the continuity of v, see Assumption 3.3 and recall (2.10), implies that for (ζ, ξ)

∈ D × R and ǫ > 0 we can find (ζ ǫ , ξ ǫ ) ∈ D × R such that (v ǫ -v)(ζ, ξ) ≤ (v ǫ * -v)(ζ, ξ) ≤ (v ǫ -v)(ζ ǫ , ξ ǫ ) + ǫ 3 .
Recalling the definition of u ǫ in (3.3), this proves (5.4).

In view of the above result, we shall from now on omit the x-variable in the functions u * and u * .

The key expansion lemma

We now provide the following key lemma, which is the counterpart of [53, Remark 3.4, Section 4.2].

Lemma 5.4. Assume that π, θ ∈ C 1,2 (D <T ). For ǫ > 0, and two C 1,2 (D <T × R) functions φ and w, define

ψ ǫ = v + ǫ 2 φ + ǫ 4 w ǫ with w ǫ := w • ξ ξ ǫ .
(5.5)

Set D ι ǫ := (D <T × R) ∩ {ψ ǫ p > 0} ∩ {ǫ 2 φ p + ǫ 4 w ǫ p ≥ ιπ p } for some ι > -1. Then, ǫ -2 (L SX + LP|SX )ψ ǫ = 1 2 π pp (π p ) 2 σ 2 ξ ξ 2 ǫ + (H + L â X|SP )φ + 1 2 σ 2 δ 2 (w ξξ • ξ ξ ǫ ) + R ǫ on D ι ǫ , (5.6) 
where

L â X|SP φ = 1 2 σ 2 θ 2 φ xx + σ 2 sθφ sx + θσâφ px
with â defined in (2.14), and where R ǫ is a continuous map defined on D ι ǫ such that:

(i) For each bounded set B ⊂ D ι ǫ , there exists ǫ B > 0 such that {ǫ -1 R ǫ (ζ, x) : (ζ, x, ξ ξ ǫ (ζ, x)) ∈ B, ǫ ∈ (0, ǫ B ]} is bounded. (ii) Let B ⊂ D ι ǫ be a bounded set. Assume that φ ∈ C ∞ b (B)
and that w satisfies (3.9). Then, there exists ǫ B > 0 and C B > 0 such that

|R ǫ (ζ, x)| ≤ C B (1 + ǫ|ξ ξ ǫ | + ǫ 2 |ξ ξ ǫ | 2 )(ζ, x) , for all ǫ ∈ (0, ǫ B ] and (ζ, x) ∈ B.
Proof. All over this proof, we work on D ι ǫ and omit the argument for simplicity.

Step 1: We first provide an expansion for L SX ψ ǫ . The first term follows from the relation x = θ + ǫξ ξ ǫ :

L SX (v + ǫ 2 φ) = L Sθ (v + ǫ 2 φ) -ǫµξ ξ ǫ + ǫ 2 R ǫ 1 , with R ǫ 1 = ǫξ ξ ǫ µφ x + σ 2 2 ((2θ + ǫξ ξ ǫ )φ xx + 2sφ xs ) .
Then, we use the fact that ξ ξ ǫ = ξ ξ 1 /ǫ and the definitions of σa and σθ,a in (2.8) and (2.12) to obtain

L SX (ǫ 4 w ǫ ) = ǫ 2 2 (w ξξ • ξ ξ ǫ )Dξ ξ ⊤ 1 σ0 σ⊤ 0 Dξ ξ 1 + ǫ 2 R ǫ 2 = ǫ 2 2 (w ξξ • ξ ξ ǫ )Dξ ξ ⊤ 1 σθ,0 σ⊤ θ,0 Dξ ξ 1 + ǫ 2 R ǫ 3 ,
where

R ǫ 2 = ǫ 2 (L S w) • ξ ǫ + ǫ (w ξ • ξ ξ ǫ )L SX ξ ξ 1 + 2s 2 σ 2 ∂ s ξ ξ 1 (w sξ • ξ ξ ǫ )
and

R ǫ 3 = R ǫ 2 + σ 2 2 (w ξξ • ξ ξ ǫ )(D (s,x) ξ ξ 1 ) ⊤ 0 sǫξ ξ ǫ sǫξ ξ ǫ θǫξ ξ ǫ + (ǫξ ξ ǫ ) 2 D (s,x) ξ ξ 1 = R ǫ 2 + ǫξ ξ ǫ σ 2 2 (w ξξ • ξ ξ ǫ )(D (s,x) ξ ξ 1 ) ⊤ 0 s s θ + ǫξ ξ ǫ D (s,x) ξ ξ 1 .
Combining the above expansions leads to

L SX ψ ǫ = L Sθ (v + ǫ 2 φ) -ǫµξ ξ ǫ + ǫ 2 2 (w ξξ • ξ ξ ǫ )Dξ ξ ⊤ 1 σθ,0 σ⊤ θ,0 Dξ ξ 1 + ǫ 2 (R ǫ 1 + R ǫ 3 ).
(5.7)

Step 2: We now focus on the operator LP|SX applied to ψ ǫ . Since ψ ǫ p > 0 on D ι ǫ , we have

LP|SX ψ ǫ = L a ǫ P|SX ψ ǫ with a ǫ := -σ ⊤ 0 Dψ ǫ π p × 1 1 + ǫ 2 ∂ p (φ + ǫ 2 w ǫ )/π p . (5.8) 
a. We first provide an expansion for a ǫ around â defined in (2.14). We start by performing a first order expansion on the right-hand side of (5.8) to obtain

a ǫ = -σ ⊤ 0 Dψ ǫ π p × 1 -ǫ 2 ∂ p (φ + ǫ 2 w ǫ )/π p + R ǫ 4 , (5.9) 
where R ǫ 4 is a continuous map satisfying

|R ǫ 4 | ≤ |σ ⊤ 0 Dψ ǫ | π p 2 (1 + ι) 3 ǫ 2 ∂ p (φ + ǫ 2 w ǫ )/π p 2 on D ι ǫ = |σ ⊤ 0 Dψ ǫ | π p 2 (1 + ι) 3 ǫ 2 φ p π p -ǫ 3 θ p (w ξ • ξ ξ ǫ ) π p + ǫ 4 (w p • ξ ξ ǫ ) π p 2 .
Then, we obverse that

-σ ⊤ 0 Dψ ǫ = -σ ⊤ 0 Dv -σ⊤ 0 D(ǫ 2 φ + ǫ 4 w ǫ ) = -σ ⊤ θ,0 Dv + σǫξ ξ ǫ -σθ+ǫξ ξǫ,0 D(ǫ 2 φ + ǫ 4 w ǫ ).
By the definition of â in (2.14), dividing the above by

π p = v p implies -σ ⊤ 0 Dψ ǫ π p = â + ǫ σξ ξ ǫ π p - σ⊤ θ+ǫξ ξǫ,0 D(ǫ 2 φ + ǫ 4 w ǫ ) π p .
Recalling (5.9), this leads to

a ǫ = â + ǫ σξ ξ ǫ π p -ǫ 2 σ⊤ θ,â Dφ π p + R ǫ 5 , (5.10) 
(a ǫ ) 2 = (â) 2 + 2ǫâ σξ ξ ǫ π p + ǫ 2 σξ ξ ǫ π p 2 -2âσ ⊤ θ,â Dφ/π p + R ǫ 6 , (5.11) 
where

R ǫ 5 := R ǫ 4 -ǫ 2 ǫξ ξ ǫ σφ p (π p ) 2 + σ⊤ ǫξ ξǫ,0 Dφ π p + ǫ 4 w ǫ p π p -â -ǫξ ξ ǫ σ π p + ǫ 2 σ⊤ θ+ǫξ ξǫ,0 Dφ π p -ǫ 4 σ⊤ θ+ǫξ ξǫ,0 Dw ǫ π p 1 -ǫ 2 ∂ p (φ + ǫ 2 w ǫ )/π p + ǫ 4 φ p π 2 p σ⊤ θ+ǫξ ξǫ,0 Dφ , R ǫ 6 = -ǫ 2 σ⊤ θ,â Dφ π p + R ǫ 5 2 + 2âR ǫ 5 + 2 σξ ξ ǫ π p -ǫ 2 σ⊤ θ,â Dφ π p + R ǫ 5 .
b. We now plug the expansions (5.10) and (5.11) in the left-hand side equality in (5.8) to obtain

LP|SX ψ ǫ = L â P|Sθ v + ǫ π pp â σξ ξ ǫ π p + σ 2 sπ sp ξ ξ ǫ π p (5.12) +ǫ 2 1 2 π pp σξ ξ ǫ π p 2 -2â σ⊤ θ,â Dφ π p -σsπ sp σ⊤ θ,â Dφ π p + L â P|Sθ φ +ǫ 2 1 2 (w ξξ • ξ ξ ǫ )Dξ ξ ⊤ 1 (σ θ,â σ⊤ θ,â -σθ,0 σ⊤ θ,0 )Dξ ξ 1 + R ǫ 7 , with R ǫ 7 = 1 2 R ǫ 6 π pp + R ǫ 5 σsπ sp + 1 2 ((a ǫ ) 2 -(â) 2 )(ǫ 2 φ pp + ǫ 4 w ǫ pp ) + σs(a ǫ -â)(ǫ 2 φ sp + ǫ 4 w ǫ sp ) +[(a ǫ -â)(ǫξ ξ ǫ + θ) + âǫξ ξ ǫ ]σφ px + ǫ 3 2 (â) 2 (ǫw pp -2θ p w pξ -θ pp w ξ ) • ξ ξ ǫ +ǫ 3 âσ (ǫsw sp -sθ p w sξ -sθ s w pξ -sθ sp w ξ + θw pξ ) • ξ ξ ǫ .
Step 3: It remains to combine the results of Steps 1 and 2. We first observe that (2.11) and the definition â implies that

L Sθ v + L â P|Sθ v = L Sθ v + LP|Sθ v = 0.
Second, we use (2.14) and the identity v = π -x to obtain â = µ σ π p -σsπ ps π pp , which leads to

ǫξ ξ ǫ -µ + π pp â σ π p + σ 2 sπ sp 1 π p = 0, and 
L Sθ φ + L â P|Sθ φ -π pp â σ⊤ θ,â Dφ π p -σsπ sp σ⊤ θ,â Dφ π p = L Sθ φ + L â P|Sθ φ - µ σ σ⊤ θ,â Dφ = (H + L â X|SP )φ.
Finally, we use the identities ξ ξ 1 = θ -x and â = (θ -sπ s )σ/π p , recall (2.15), to obtain

σ 2 δ 2 = Dξ ξ ⊤ 1 σθ,0 σ⊤ θ,0 Dξ ξ 1 + Dξ ξ ⊤ 1 (σ θ,â σ⊤ θ,â -σθ,0 σ⊤ θ,0 )Dξ ξ 1 ,
where δ is defined in (3.8). The above identities combined with (5.7) and (5.12) leads to (5.6) for R ǫ defined as

R ǫ := R ǫ 1 + R ǫ 3 + R ǫ 7 .
(5.13)

Step 4: The estimates on R ǫ follow from direct computations. 2 We have

Viscosity subsolution property

u ǫ * ≤ m on B o for ǫ ∈ (0, ǫ o ], (5.17) 
and, by Assumption 3.3,

π pp ∧ π p > ι on B ro (ζ o )
, for some ι ∈ (0, 1).

(5.18)

Step 1: We first construct a suitable test function for v ǫ , for ǫ ∈ (0, ǫ o ].

Since the function ϕ is continuous,

sup 2 + m -ϕ(ζ) ; ζ ∈ Bro (ζ o ) =: M < +∞.
On the other hand, (5.16) implies that there is γ > 0 such that

|ζ -ζ ǫ | 4 ≥ γ for ζ ∈ Bro (ζ o )\ B ro 2 (ζ o ). (5.19)
We choose a strictly non-negative constant c o satisfying c o (γ ∧ ( ro 4 ) 4 ) ≥ M and define for ǫ ∈ (0, 1)

φ ǫ : (ζ, x) ∈ D × R → c o |ζ -ζ ǫ | 4 + |x -θ(ζ)| 4 .
Consider now the following subset of Bo :

B o, 1 2 := (ζ, x) ∈ Bo s.t. ζ ∈ B ro 2 (ζ o ) and x ∈ B ro 2 (x o ) .
It follows from (5.19), (5.15) and the choice of c o that

φ ǫ ≥ 2 + m -ϕ on Bo \B o, 1 2 .
(5.20)

We now define, for η ∈ (0, 1],

ψ ǫ,η := v + ǫ 2 (∆ ǫ + ϕ + φ ǫ ) + ǫ 4 (1 + η)̟ • ξ ξ ǫ ,
where the function ξ ξ ǫ is defined in (3.2) and ̟ is given in Lemma 3.4.

Step 2: Given ǫ ∈ (0, ǫ o ] and η ∈ (0, 1], we now show that v ǫ * -ψ ǫ,η admits a local maximizer ( ζǫ , xǫ ) in B o .

Note that, a-priori, this local maximizer should depend on η. We shall not emphasize this to alleviate notations but will come back to this point at the end of the proof. We set

I ǫ,η := u ǫ * -∆ ǫ -ϕ -φ ǫ -ǫ 2 (1 + η)̟ • ξ ξ ǫ .
Combining the fact that ̟(•, 0) = 0, see Lemma 3.4, (5.16) and the definitions of x ǫ , ∆ ǫ and φ ǫ , we obtain

sup Bo I ǫ,η ≥ sup Bo, 1 2 I ǫ,η ≥ I ǫ,η (ζ ǫ , x ǫ ) = 0.
On the other hand, by (5.16), (5.17), (5.20), the fact that ̟ ≥ 0, see Lemma 3.4, and the defnition of m, we have

I ǫ,η ≤ u ǫ * -m -1 -ǫ 2 (1 + η)̟ • ξ ξ ǫ < 0 on Bo \ Bo, 1 2 ,
after possibly changing ǫ 0 . Also I ǫ,η is upper-semicontinuous. Hence, we may find a maximizer ( ζǫ , xǫ ) ∈ Bo, 1 2 ⊂ B o which satisfies

I ǫ,η ζǫ , xǫ ≥ 0 and ǫξ ξ ǫ ( ζǫ , xǫ ) ∨ ζǫ -ζ o ≤ r 1 , (5.21) 
for some constant r 1 > 0. We recall that ǫξ ξ ǫ ( ζǫ , xǫ ) = xǫ -θ( ζǫ ).

(5.22)

Step 3: We now prove that there exists ǭo ≤ ǫ o such that for all ǫ ∈ (0, ǭo ] we have

-ξ ξ( ζǫ ) < ξ ξ ǫ ( ζǫ , xǫ ) < ξ ξ( ζǫ ), (5.23) 
where ξ ξ is given in Lemma 3.4.

We only prove the right hand-side. The other inequality is proved similarly. We first observe that Theorem 2.1 and step 2 imply that

-ǫ 3 + 1 + ψ ǫ,η x ζǫ , xǫ ≤ 0.
(5.24)

Recalling the definitions of ψ ǫ,η , v and φ ǫ , direct computations lead to

1 + ψ ǫ,η x ζǫ , xǫ = 4ǫ 2 c o ǫξ ξ ǫ ( ζǫ , xǫ ) 3 + ǫ 3 (1 + η)̟ ξ • ξ ξ ǫ ( ζǫ , xǫ ),
so that we may rewrite (5.24) as

-ǫ + ǫ(1 + η)̟ ξ • ξ ξ ǫ ( ζǫ , xǫ ) ≤ -4c o ǫξ ξ ǫ ( ζǫ , xǫ ) 3 .
(5.25)

Assume now that the right hand-side of (5.23) does not hold for all ǫ > 0, small enough. Then, there exists a sequence (ǫ k ) k≥1 satisfying ǫ k → 0 as k → ∞ such that

ξ ξ ǫ k ( ζǫ k , xǫ k ) ≥ ξ ξ ζǫ k .
Recall from Lemma 3.4 that this implies that

̟ ξ • ξ ξ ǫ k ( ζǫ k , xǫ k ) = 1 and ξ ξ ǫ k ( ζǫ k , xǫ k ) > 0.
Combined with (5.25) the later leads to a contradiction since c o , η, ǫ k > 0.

Step 4: We now prove that there is ξ ∈ R such that

0 ≥ - 1 2 π pp (π p ) 2 σ 2 ξ2 -Hϕ - 1 2 σ 2 δ 2 (1 + η)̟ ξξ (•, ξ) (ζ o ) . (5.26)
Recall that ξ ξ is a continuous functions. In view of (5.23) and (5.21), it follows that ( ζǫ , xǫ , ξ ξ ǫ ( ζǫ , xǫ )) 0<ǫ≤ǭo is bounded.

(5.27)

We can then find a sequence (ǫ n ) n≥1 ⊂ (0, ǭo ] such that ǫ n → 0 as n → ∞ and For n large enough: 

( ζǫn , xǫn , ξ ξ ǫn ( ζǫn , xǫn )) → ( ζ, x, ξ) ∈ D × R × R as n → ∞. ( 5 
0 ≥ - π pp 2 (π p ) 2 σ 2 ξ ξ 2 ǫn -H φǫn -L â X|SP φ ǫn - σ 2 δ 2 (1 + η)(̟ ξξ • ξ ξ ǫn ) 2 +

Viscosity supersolution property

For sake of completeness, we report here [47, Lemma 5.4] that will be used in the proof below.

Lemma 5.6. For all η ∈ (0, 1), there exists c η > 1 and a smooth function

h η : R → [0, 1] satisfying h η = 1 on [-1, 1], h η = 0 on [-c η , c η ] c and |x||h ′ η (x)| ≤ η, and |x||h ′′ η (x)| ≤ 2C * , (5.33) 
for some constant C * > 0 independent of η. (5.37)

ζ ǫ -→ ǫ↓0 ζ o , x ǫ := θ(ζ ǫ ) -→ ǫ↓0 θ(ζ o ) =: x o , u ǫ * (ζ ǫ , x ǫ ) -→ ǫ↓0 u * (ζ o ) and ∆ ǫ := u ǫ * (ζ ǫ , x ǫ ) -ϕ(ζ ǫ ) -→ ǫ↓0 0 . ( 5 
Observe for later use that

(u ǫ * -φ ǫ )(ζ ǫ , x ǫ ) = 0 , (5.38)
by the definition of ∆ ǫ . For η ∈ (0, 1), we now set

ψ ǫ,η := v + ǫ 2 φ ǫ + ǫ 4 (1 -η) (̟H η ) • ξ ξ ǫ ,
in which

H η : ξ ∈ R → h η ξ ξ * ,
for some ξ * ≥ 1 to be chosen later on, see (5.49) in Step 6, and where h η is as in Lemma 5.6.

Step 2: Let

Q o := Bro (ζ o ) × R and fix ǫ ∈ (0, ǫ o ]. We now show that, for each n ≥ 1, there exists ( ζǫ,n , xǫ,n ) ∈ Int(Q o ) satisfying I ǫ,η ζǫ,n , xǫ,n ≤ inf Qo I ǫ,η + 1 2n , (5.39)
in which 

I ǫ,η := ǫ -2 (v ǫ * -ψ ǫ,η ) = u ǫ * -φ ǫ -ǫ 2 (1 -η)(̟H η ) • ξ ξ ǫ . ( 5 
I ǫ,η ≥ -φ ǫ -ǫ 2 (1 -η){|ξ ξ ǫ |1 {|ξ ξǫ|≤cηξ * } } ≥ -φ ǫ -ǫ 2 (1 -η)c η ξ * .
In particular,

I ǫ,η ≥ -φ ǫ -1 if ǫ ≤ ǫ η := ǫ o ∧ ((1 -η)c η ξ * ) -1 2 .
(5.42)

The set Bro (ζ o ) being compact, the inf over Bro (ζ o ) of the right-hand side is finite, which proves our claim.

Step 3: For η ∈ (0, 1), ǫ ∈ (0, ǫ η ] and n ≥ 1, we now construct a C 2 function ψ ǫ,η,n and

(ζ ǫ,n , x ǫ,n ) ∈Int(Q o ) such that min Qo (v ǫ -ψ ǫ,η,n ) = (v ǫ -ψ ǫ,η,n )(ζ ǫ,n , x ǫ,n ). Let f ∈ C ∞ b (R) be an even function satisfying 0 ≤ f ≤ 1, f (0) = 1 and f (x) = 0 whenever |x| ≥ 1. We set ψ ǫ,η,n (•, x) := ψ ǫ,η (•, x) + ǫ 2 n f (x -xǫ,n ) and I ǫ,η,n (•, x) := 1 ǫ 2 (v ǫ * -ψ ǫ,η,n ) (•, x) = I ǫ,η (•, x) - 1 n f (x -xǫ,n ) .
By (5.39) and the identity f (0) = 1,

I ǫ,η,n ζǫ,n , xǫ,n = I ǫ,η ζǫ,n , xǫ,n - 1 n ≤ inf Qo I ǫ,η - 1 2n . (5.43)
Moreover, by the definition of f ,

I ǫ,η,n = I ǫ,η on Q o \Q n 1 , where Q n 1 := {(ζ, x) ∈ Q o s.t. |x -xǫ,n | ≤ 1}.
Since ( ζǫ,n , xǫ,n ) ∈ Q n 1 , the later combined with (5.43) implies that inf

Q n 1 I ǫ,η,n < inf Qo I ǫ,η ≤ inf Qo\Q n 1 I ǫ,η = inf Qo\Q n 1 I ǫ,η,n , so that inf Qo I ǫ,η,n = inf Q n 1 I ǫ,η,n .
By the lower semi-continuity of I ǫ,η,n and the compactness of Q n 1 , we can then find (ζ ǫ,n , x ǫ,n ) ∈ Q o which minimizes I ǫ,η,n on Q o . It remains to show that it belongs to Int(Q o ). Indeed, the left hand-side of (5.35), the property f ≥ 0, and (5.41) imply that

I ǫ,η,n (ζ ǫ,n , x ǫ,n ) ≤ I ǫ,η,n (ζ ǫ , x ǫ ) ≤ I ǫ,η (ζ ǫ , x ǫ ) = 0,
whereas by (5.37), (5.42) and the fact that -f ≥ -1, we have

I ǫ,η,n ≥ I ǫ,η - 1 n ≥ 2 - 1 n > 0 on ∂Q o = ∂B ro (ζ o ) × R.
(5.44)

Step 4: Given η ∈ (0, 1) and ǫ ∈ (0, ǫ η ], we now show that there exists

N ǫ,η ≥ 1 such that -L SX v ǫ + LP|SX ψ ǫ,η,n (ζ ǫ,n , x ǫ,n ) ≥ 0 for n ≥ N ǫ,η . (5.45)
In view of step 3 and Theorem 2.1, it suffices to show that

max -ǫ 3 + 1 + ψ ǫ,η,n x ; -ǫ 3 -(1 + ψ ǫ,η,n x ) (ζ ǫ,n , x ǫ,n ) < 0, or equivalently that |1 + ψ ǫ,η,n x | (ζ ǫ,n , x ǫ,n ) < ǫ 3 . Recalling that f ∈ C ∞ b (R) is even, we first compute 1 + ψ ǫ,η,n x (ζ ǫ,n , x ǫ,n ) = ǫ 3 (1 -η)(̟H η ) ξ • ξ ξ ǫ (ζ ǫ,n , x ǫ,n ) + ǫ 2 n f ′ (|x ǫ,n -xǫ,n |) . Since f ∈ C ∞ b (R) is constant outside [-1, 1]
, there exists 0 < c f < +∞, which does not depend on ǫ nor n, such that

|1 + ψ ǫ,η,n x (ζ ǫ,n , x ǫ,n )| = ǫ 3 (1 -η) |̟ ξ H η | + ̟H ′ η • ξ ξ ǫ (ζ ǫ,n , x ǫ,n ) + ǫ 2 c f n .
In view of (3.7), (ii) of Lemma 3.4, Remark 3.5 and the fact that |H η | ≤ 1 by Lemma 5.6, this implies that

|1 + ψ ǫ,η,n x (ζ ǫ,n , x ǫ,n )| = ǫ 3 (1 -η) 1 + |ξ ξ ǫ | ξ * h ′ η ξ ξ ǫ ξ * (ζ ǫ,n , x ǫ,n ) + ǫ 2 c f n .
Recalling from Lemma 5.6 that |x||h ′ η (x)| ≤ η for x ∈ R, we finally obtain

|1 + ψ ǫ,η,n x (ζ ǫ,n , x ǫ,n )| ≤ ǫ 3 (1 -η 2 ) + ǫ 2 c f n <ǫ 3 for all n≥ 1 + c f ǫη 2 =: N ǫ,η . (5.46) Step 5: We now show that {ξ ξ ǫ (ζ ǫ,n , x ǫ,n ) ; ǫ ∈ (0, ǫ η ], n ≥ N ǫ,η } is uniformly bounded.
We first appeal to Lemma 5.4, recall Assumption 3.3, Lemma 3.4 and that (ζ ǫ,n , n ≥ 1, ǫ ∈ (0, ǫ η ]) is bounded, see step 3. Since φ ǫ does not depend on the x-variable, this implies

-ǫ -2 (L SX + LP|SX )ψ ǫ,η,n = - 1 2 π pp (π p ) 2 σ 2 ξ ξ 2 ǫ -Hφ ǫ - 1 -η 2 σ 2 δ 2 (̟H) ξξ • ξ ξ ǫ + R ǫ,n ,
at the point (ζ ǫ,n , x ǫ,n ), in which, by (ii) of Lemma 5.4, (5.47) for some C η > 0 independent on n and ǫ. By (5.45), we then have

|R ǫ,n | ≤ C η (1 + ǫ|ξ ξ ǫ | + ǫ 2 |ξ ξ ǫ | 2 )(ζ ǫ,n , x ǫ,n ),
1 2 π pp (π p ) 2 σ 2 ξ ξ 2 ǫ (ζ ǫ,n , x ǫ,n ) -|R ǫ,n | ≤ -Hφ ǫ + 1 -η 2 σ 2 δ 2 (̟H) ξξ • ξ ξ ǫ (ζ ǫ,n , x ǫ,n ).
(5.48) We first consider the last term of the previous inequality. By Lemma 3.4 and the boundedness of (ζ ǫ,n , ǫ ∈ (0, ǫ η ], n ≥ 1), we can find C η > 0, independent on n, ǫ and η, such that such that

|̟ ξξ • ξ ξ ǫ |(ζ ǫ,n , x ǫ,n ) ≤ C.
The same Lemma and Remark 3.5 also imply that

|̟ ξ • ξ ξ ǫ |(ζ ǫ,n , x ǫ,n ) ≤ 1 and |̟ • ξ ξ ǫ |(ζ ǫ,n , x ǫ,n ) ≤ |ξ ξ ǫ (ζ ǫ,n , x ǫ,n )|.
Using Lemma 5.6, and the fact that ξ * ≥ 1 and η ≤ 1, it follows that, at the point (ζ ǫ,n , x ǫ,n ),

|(̟H η ) ξξ | • ξ ξ ǫ = ̟ ξξ H η + 2̟ ξ H ′ η + ̟H ′′ η • ξ ξ ǫ ≤ C η + 2 ξ * h ′ η ξ ξ ǫ ξ * 1 [ξ * ,cηξ * ] (|ξ ξ ǫ |) + |ξ ξ ǫ | (ξ * ) 2 h ′′ η ξ ξ ǫ ξ * ≤ C η + 2|ξ ξ ǫ | (ξ * ) 2 h ′ η ξ ξ ǫ ξ * + |ξ ξ ǫ | (ξ * ) 2 h ′′ η ξ ξ ǫ ξ * ≤ C η + 2 ξ * (η + C * ) ≤ C η + 2(1 + C * ) =: Cη .
Plugging this result into (5.48) leads to 1 2

π pp (π p ) 2 σ 2 ξ ξ 2 ǫ (ζ ǫ,n , x ǫ,n ) -|R ǫ,n | ≤ -Hφ ǫ - C 1 -η 2 σ 2 δ 2 (ζ ǫ,n , x ǫ,n ).
The later combined with Assumption 3.3, (2.2), (5.47) and the fact that both ζ ǫ,n and ζ ǫ lie in B ro (ζ o ), and the identity ǫξ ξ ǫ (ζ ǫ,n , x ǫ,n ) = x ǫ,n -θ(ζ ǫ,n ), allows us to find a constants K η > 0, independent on n and ǫ, such that

(ξ ξ ǫ ) 2 -K η 1 + |ǫξ ξ ǫ | + |ǫξ ξ ǫ | 2 (ζ ǫ,n , x ǫ,n ) ≤ 0.
This proves our claim.

Step 6: We are now in position to conclude the proof. By the previous step, for all ǫ ∈ (0, ǫ η ], we may assume, after possibly passing to a subsequence, that (

ζ ǫ,n , x ǫ,n , ξ ξ ǫ (ζ ǫ,n , x ǫ,n )) → ( ζǫ , θ( ζǫ ), ξǫ ) ∈ D × R 2 as n → ∞.
Classical arguments then show that ( ζǫ , ξǫ ) → (ζ o , ξ) for some bounded ξ ∈ R, and therefore θ( ζǫ ) → θ(ζ o ) = x o , as ǫ → 0, after possibly passing to a subsequence. Moreover, (i) of Lemma 5.4 now implies that R ǫ,n → 0 as n → ∞ and then ǫ → 0. Hence, sending n → ∞ and then ǫ → 0 in (5.48) provides 1 2

π pp (π p ) 2 σ 2 (ζ o ) ξ2 ≤ -Hϕ(ζ o ) - 1 -η 2 {σ 2 δ 2 (̟H η ) ξξ }(ζ o , ξ).
The same arguments as in step 5 then shows that

ξ2 ≤ -Hϕ + σ 2 δ 2 C(1 -η)/2 1 2 πpp (πp) 2 σ 2 (ζ o ).
We now choose ξ * ≥ 1 defined by

(ξ * ) 2 := 2 ∨ 2 -Hϕ + σ 2 δ 2 C/2 1 2 πpp (πp) 2 σ 2 . (ζ o ). (5.49) 
Note that all the quantities on the right-hand side are given a-priori. Then, | ξ| < ξ * . In particular, H η = 1 in a neighborhood of ξ, see Lemma 5.6, and the above then implies that 1 2

π pp (π p ) 2 σ 2 (ζ o ) ξ2 ≤ -Hϕ(ζ o ) - 1 -η 2 σ 2 δ 2 ̟ ξξ ζ o , ξ .
Since ̟ is solution of (3.7), it follows that

Hϕ(ζ o ) ≤ -h(ζ o ) + η 2 σ 2 δ 2 ̟ ξξ (ζ o , ξ).
It remains to let η → 0 and recall from Lemma 3.4 that |̟ ξξ (ζ o , •)| is bounded. Proof. The fact that u * (T, •) ≥ 0 follows from Remark 5.2. In the following, we prove that u * (T, •) ≤ 0. We assume to the contrary that we can find (T,

The Terminal condition

s o , p o ) := ζ o ∈ D T such that u * (ζ o ) ≥ 4κ for some κ > 0 (5.50) 
and work towards a contradiction.

Step 1: We construct a test function ψ ǫ for v ǫ * and show that v ǫ * -ψ ǫ admits a local maximizer ( tǫ , sǫ , pǫ , xǫ ) = ( ζǫ , xǫ ) ∈ D <T × R. By Lemma 5.3, there are (ζ ǫ ) ǫ>0 ⊂ D and x o ∈ R such that

ζ ǫ -→ ǫ↓0 ζ o , x ǫ := θ(ζ ǫ ) -→ ǫ↓0 θ(ζ o ) =: x o and u ǫ * (ζ ǫ , x ǫ ) -→ ǫ↓0 u * (ζ o ) , (5.51) 
in which (t ǫ , s ǫ , p ǫ ) := ζ ǫ . Note that, after possibly passing to a subsequence, one can assume that

ζ ǫ ∈ D <T for all ǫ > 0. (5.52) 
Indeed, Theorem 2.1 and Theorem 2.3 imply that

u ǫ * (ζ, x) ≤ ǫ|x| for all (ζ, x) ∈ D T × R,
which would lead to a contradiction of (5.50) if (5.52) was not satisfied, at least along a subsequence, since, by (5.51), (ζ ǫ , x ǫ ) ǫ>0 is bounded.

Combining arguments similar to those of the proof of Proposition 5.5 (Step 1) with (5.50), (5.51), Assumptions 3.2 and 3.3 allow us to construct 0 < r o ≤ ro , ǫ o ∈ (0, 1], c o > 0 and ι > 0 such that, for all ǫ ∈ (0, ǫ o ],

(ζ ǫ , x ǫ ) ∈ B o, 1 2 and u ǫ * (ζ ǫ , x ǫ ) ≥ 2κ, (5.53) 
π p ≥ 2ι on B o , (5.54) 
u ǫ * -φ(•; s ǫ , p ǫ ) < 0 on B o \B o, 1 2 , (5.55) 
where

B o := [T -r o , T ] × Bro (s o , p o ) × Bro (x o ), B o, 1 2 := (ζ, x) ∈ B o s.t. ζ ∈ [T - r o 2 , T ] × B ro 2 (s o , p o ) and x ∈ B ro 2 (x o ) , φ(•; s ǫ , p ǫ ) : (t, s, p, x) ∈ D × R -→ c o |s ǫ -s| 4 + |p ǫ -p| 4 + |x -θ(t, s, p)| 2 .
Recalling (5.52) and Assumption 3.3, we may then define, for each ǫ ∈ (0, ǫ o ], the smooth function

ψ ǫ := v + ǫ 2 φ ǫ with φ ǫ : (t, s, p, x) ∈ D × R -→ κ T -t T -t ǫ + φ(t, s, p, x; s ǫ , p ǫ ).
By the upper semi-continuity of v ǫ * , we deduce from (5.53) and (5.55) that v ǫ * -ψ ǫ admits on B o a local maximizer ( ζǫ , xǫ ) ∈ B o, 1 2 for every ǫ ∈ (0, ǫ o ], and that moreover

u ǫ * ( ζǫ , xǫ ) ≥ κ.
By the argument used above, this implies that ζǫ ∈ D <T for all ǫ ∈ (0, ǫ o ] after possibly choosing a subsequence.

Step 2: We now show that (ξ ξ ǫ ( ζǫ , xǫ )) ǫ∈(0,ǫo] is uniformly bounded. We fix ǫ ∈ (0, ǫ o ]. The previous step and Theorem 2.

1 imply that max -(L SX + LP|SX )ψ ǫ ; -ǫ 3 + 1 + ψ ǫ x ; -ǫ 3 -1 -ψ ǫ x ( ζǫ , xǫ ) ≤ 0. (5.56) 
Straightforward computations based on the gradient constraints give

- 1 2c o ≤ ξ ξ ǫ ( ζǫ , xǫ ) ≤ 1 2c o . (5.57) 
Step 3: We can now conclude the proof. We fix ǫ ∈ (0, ǫ o ] and focus on the second order operator in (5.56). It follows from (5.54) that ψ ǫ p ( ζǫ , xǫ ) ≥ ι > 0, after possibly changing ǫ o . Hence, Step 2 and (i) of Lemma 5.4 imply that

- 1 2 π pp (π p ) 2 σ 2 ξ ξ 2 ǫ -Hφ ǫ -L â X|SP φ ǫ + R ǫ ( ζǫ , xǫ ) ≤ 0 ,
where sup ǫ∈(0,ǫo] |R ǫ | ( ζǫ , xǫ ) < ∞. Recalling (5.57), the fact that ( ζǫ , ǫ ∈ (0, ǫ o ]) is bounded, that xǫ = ǫξ ξ ǫ (ζ ǫ ) + θ(ζ ǫ ), and Assumption 3.3, we finally deduce that

κ T -t ǫ ≤ 1 2 π pp (π p ) 2 σ 2 1 4c 2 o + H + L â X|SP φ(•; s ǫ , p ǫ ) + R ǫ ζǫ , xǫ ≤ C for all ǫ ∈ (0, ǭo ] ,
for some constant C > 0 (independent of ǫ). As t ǫ → T , we obtain a contradiction.

Explicit resolution of the first corrector equation

In this section, we prove Lemma 3.4. We follow the steps of [START_REF] Soner | Homogenization and asymptotics for small transaction costs[END_REF]. Namely, we look for a solution of the first order equation (3.7) with an additional condition at the boundary ξ = 0. We fix ζ ∈ D and simply write ̟(ξ) for ̟(ζ, ξ). We recall that we work under Assumption 3.3.

It is natural to search for a solution of the form

̟(ξ) =    k 4 ξ 4 + k 2 ξ 2 + k 1 ξ ξ 1 ≤ ξ ≤ ξ 0 , -ξ + k 3 ξ ≤ ξ 1 , ξ + k 0 ξ ≥ ξ 0 ,
for some real numbers k 4 , k 3 , k 2 , k 1 , k 0 and ξ 1 ≤ ξ 0 . Since the fourth order polynomial solves the second order equation, we find

k 4 = - 1 12 π pp δ 2 (π p ) 2 and k 2 = h σ 2 δ 2 . ( 6.1) 
If we now assume that ̟ ξξ is continuous at the point ξ 0 and ξ 1 , we have

12k 4 (ξ 0 ) 2 + 2k 2 = 12k 4 (ξ 1 ) 2 + 2k 2 = 0, that is (ξ 0 ) 2 = (ξ 1 ) 2 = 2 h σ 2 × (π p ) 2 π pp ,
which, by the fact that π pp > 0, implies that h ≥ 0 and

ξ ξ := ξ 0 = -ξ 1 = 2 h σ 2 × (π p ) 2 π pp 1 2 
.

Assuming now that ̟ ξ is continuous at the point ξ 0 and ξ 1 leads to

4k 4 ( ξ ξ) 3 + 2k 2 ξ ξ + k 1 = 1 , -4k 4 ( ξ ξ) 3 -2k 2 ξ ξ + k 1 = -1 , (6.2) 
which gives k 1 = 0. By substituting (6.1) into (6.2),

- π pp δ 2 (π p ) 2 ( ξ ξ) 3 + 6h σ 2 δ 2 ξ ξ = 3.
Since, by the above,

h = σ 2 π pp 2(π p ) 2 ( ξ ξ) 2 , (6.3) 
we obtain

ξ ξ = 3 2 δ 2 (π p ) 2 π pp 1 3 . (6.4) 
The remaining constants k 0 and k 3 are obtained by assuming the continuity of ̟ at the points ξ 0 and ξ 1 . Gathering the above terms together, we finally obtain

̟(ξ) =      -1 8 ξ ξ 3 ξ 4 + 3 4 ξ ξ ξ 2 -ξ ξ ≤ ξ ≤ ξ ξ , -ξ -3 ξ ξ 8 ξ ≤ -ξ ξ , ξ -3 ξ ξ 8 ξ ≥ ξ ξ . (6.5)
The remaining properties stated in Lemma 3.4 are straightforward under Assumption 3.3.

Verification of the assumptions in the examples

In this section, we provide the proofs of Propositions 4.3 and 4.5. We also explain how to construct an explicit almost optimal strategy.

Exponential case

We provide here the proof of Proposition 4.3.

Proof of Proposition 4.3 First note that (4.3) together with Assumption 4.2 imply Assumption 3.3. Under the boundedness condition b. of Assumption 4.2, the function h is bounded, see (4.4). It follows that the map defined in (4.7) is bounded. Moreover, standard arguments show that comparison holds in the viscosity solution sense for the above equation in the class of functions with polynomial growth, see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Then, Assumption 3.6 will hold if one shows that there exists C > 0 such that 0 ≤ u ǫ (ζ, x) ≤ C(1 + ǫ|x|) for all (ζ, x) ∈ D × R and ǫ ∈ (0, 1], (7.1) in which the left-hand side inequality is already a consequence of Remark 5.2. This will also imply Assumption 3.2. The following arguments aim at proving the right-hand side inequality of (7.1).

Step 1. We restrict to 0 < ǫ ≤ 1. Set

ψ ǫ (t, s, p, x) := v(t, s, p, x) + ǫ 4 ̟ • ξ ξ ǫ (t, s, x) for (t, s, p, x) ∈ D × R, (7.2) 
in which ̟ is the solution of (3.7) as constructed in Section 6 but for δ = σ = 1 and π 2 p /π pp = 1. For later use, observe that it takes non-negative values. We denote by ξ ξ the corresponding ξ ξ and ȟ the corresponding h. Then, ξ ξ and ȟ are constant, and ̟ depends only on ξ. Let us also define

âǫ := -σ ⊤ 0 Dψ ǫ π p = ηpσ (θ -x)(1 -ǫ 3 ̟ ξ • ξ ξ ǫ ) + ǫ 3 ̟ ξ • ξ ξ ǫ ( λ ση -s 2 πss ) - λ ση
and

J ǫ := {(t, s, x) ∈ [0, T ] × (0, ∞) × R : -ξ ξ(t, s) < ξ ξ ǫ (t, s, x) < ξ ξ(t, s)} = {(t, s, x) ∈ [0, T ] × (0, ∞) × R : -ǫ ξ ξ(t, s) < x -θ(t, s) < ǫ ξ ξ(t, s)}, (7.3) 
recall Proposition 4.1 and (4.5). Lemma 3.4 allows one to characterize the boundaries of this domain in terms of the function ̟:

∂J ± ǫ := ξ ξ ǫ = ∓ ξ ξ ⊂ {̟ ξ • ξ ξ ǫ = ∓1}. (7.4) 
For later use, note that Assumption 4.2 implies that

(t, s, x) ∈ J ǫ =⇒ |x| ≤ C K and |p -1 âǫ (t, s, x, p)| ≤ C K for all p < 0 , (7.5) 
in which C K denotes from now on a generic positive constant which depends only on the constant K > 0 of Assumption 4.2, and that may change from line to line. We now fix (t o , s o , x o ) in the closure of J ǫ . The general case will be discussed in the last step of the proof. We define (X ǫ , L ǫ ) as the solution of the following Skorokhod problem

             X ǫ = x o + • to X ǫ τ dS τ S τ + • to dL ǫ+ τ - • to dL ǫ- τ , (•, S, X ǫ ) ∈ J ǫ dt ⊗ dP-a.e. on [t o , T ] , L ǫ± = • to χ {(τ,Sτ ,X ǫ τ )∈∂J ± ǫ } dL ǫ± τ , (7.6) 
in which S = S to,so and L ǫ = L ǫ+ -L ǫ-where L ǫ+ , L ǫ-are continuous and nondecreasing. To see that the above admits a solution, first observe that Assumption 4.2 ensures that we can find κ ∈ R such that -ξ ξ + θ > κ on [0, T ] × (0, ∞). Hence, the process X ǫ satisfies the above if and only if X ǫ -κ > 0, in which case

X ǫ -κ = (x o -κ) exp • t0 (µ -1 2 σ 2 )dτ + • t0 dW τ + • t0 d Lǫ+ τ - • t0 d Lǫ- τ on [t o , T ] ,
with d Lǫ± = dL ǫ± /(X ǫ τ -κ). Thus, solving (7.6) is equivalent to finding the solution ( Xǫ , Lǫ ) of the Skorohod problem

             Xǫ = ln(x o -κ) + • t0 (µ -1 2 σ 2 )dτ + • t0 dW τ + • t0 d Lǫ+ τ - • t0 d Lǫ- τ , U -≤ Xǫ ≤ U + dt ⊗ dP-a.e. on [t o , T ] , Lǫ± = • to χ { Xǫ τ =U ± } dL ǫ± τ ,
in which U ± := ln -κ + (±ǫ ξ ξ + θ)(•, S) .

Existence now follows from [39, Lemma 6.14], see the constructive proof for the fact that the solution is adapted.

We next define (Y ǫ , P ǫ ) as the solution of

Y ǫ = y o - • to (1+ǫ 3 )dL ǫ+ τ + • t (1-ǫ 3 )dL ǫ- τ , P ǫ = p o + • to âǫ (τ, S τ , P ǫ τ , X ǫ τ ) dW τ , (7.7) 
in which p o < 0 and y o := ψ ǫ (t o , s o , p o , x o ) + c for some c > 0 to be chosen later on. The existence of a unique strong solution to (7.7) follows from (7.5), the process P ǫ is a martingale.

Step 2. We now apply Itô's Lemma to ψ ǫ . The definition of âǫ and the above dynamics lead to

Y ǫ T -ψ ǫ (T, S T , P ǫ T , X ǫ T ) = c - T to L SX + LP|SX ψ ǫ (τ, S τ , P ǫ τ , X ǫ τ ) dτ - T to (1 + ǫ 3 ) + ψ ǫ x (τ, S τ , P ǫ τ , X ǫ τ ) dL ǫ+ τ + T to (1 -ǫ 3 ) + ψ ǫ x (τ, S τ , P ǫ τ , X ǫ τ ) dL ǫ- τ ≥ c - T to L SX + LP|SX ψ ǫ (τ, S τ , P ǫ τ , X ǫ τ ) dτ -ǫ 3 T to [1 + ̟ξ • ξ ξ ǫ (τ, S τ , X ǫ τ )] dL ǫ+ τ + ǫ 3 T to [-1 + ̟ξ • ξ ξ ǫ (τ, S τ , X ǫ τ )] dL ǫ- τ .
We next appeal to (7.4) and the characterization of L ǫ+ , L ǫ-in (7.6) to provide a lower bound to the last expression:

Y ǫ T -ψ ǫ (T, S T , P ǫ T , X ǫ T ) ≥ c - T to L SX + LP|SX ψ ǫ (τ, S τ , P ǫ τ , X ǫ τ ) dτ =: c -ǫ 2 E ǫ .(7.8)
We first consider the left-hand side term. The definition of ψ ǫ and the identities v(T, s, p, x) = g(s) -x -1 η ln(-p), see Proposition 4.1, lead to

Y ǫ T + ℓ ǫ (X ǫ T ) -g(S T ) + 1 η ln(-P ǫ T ) ≥ Y ǫ T -ψ ǫ (T, S T , P ǫ T , X ǫ T ) + ψ ǫ (T, S T , P ǫ T , X ǫ T ) +ℓ ǫ (X ǫ T ) -g(S T ) + 1 η ln(-P ǫ T ) ≥ Y ǫ T -ψ ǫ (T, S T , P ǫ T , X ǫ T ) + ǫ 4 ̟ • ξ ξ ǫ (T, S T , X ǫ T ) -ǫ 3 |X ǫ T |.
Recall that ̟ ≥ 0. We also know from (7.5) and (7.6) that |X ǫ T | ≤ C K . Hence, we deduce from the above that

Y ǫ T + ℓ ǫ (X ǫ T ) -g(S T ) + 1 η ln(-P ǫ T ) ≥ Y ǫ T -ψ ǫ (T, S T , P ǫ T , X ǫ T ) -C K ǫ 3 . (7.9)
We now consider the right-hand side term in (7.8). Since π p > 0 and ̟ do not depend on p, one can apply the expansion of Lemma 5.4. It implies 

E ǫ = T to σ 2 2 ηξ ξ ǫ (τ, S τ , X ǫ τ ) 2 + σ 2 2 δ 2 ( ̟ξξ • ξ ξ ǫ )(τ, S , X ǫ τ ) + R ǫ (τ, S τ , P ǫ τ , X ǫ τ ) dτ (7.
Y ǫ T + ℓ ǫ (X ǫ T ) -g(S T ) ≥ c - 1 η ln(-P ǫ T ) -C K ǫ 2 . (7.12)
Recall that C K depends only on K but not on c. Hence, we can choose c = (C K + 1)ǫ 2 , and obtain from the previous inequality that

Ψ (Y ǫ T + ℓ ǫ (X ǫ T ) -g(S T )) ≥ P ǫ T e -ηǫ 2 , so that E [Ψ (Y ǫ T + ℓ ǫ (X ǫ T ) -g(S T ))] ≥ p o e -ηǫ 2 , (7.13) 
since P ǫ is a martingale.

Step 3. Note that the strategy L ǫ does not satisfy the admissibility condition (2.3). However, in Step 4, below we overcome this by replacing L ǫ by an appropriately stopping it (see definition (7.15)). Towards this goal we start by proving below that the latter inequality implies that sup L∈L ǫ (to,so,yo,xo)

E Ψ(∆ ǫ,L ) > p o , (7.14) 
in which we abbreviate notations by setting ∆ ǫ,L := Y to,yo,ǫ,L T + ℓ ǫ (X to,xo,so,L T ) -g(S to,so T ).

Hence,

y o = v(t o , s o , p o ) + ǫ 4 ̟ • ξ ξ ǫ (t o , s o , p o , x o ) + (C K + 1)ǫ 2 ≥ v ǫ (t o , s o , p o , x o ),
and therefore

u ǫ (t o , s o , p o , x o ) = ǫ -2 (v ǫ -v) (t o , s o , p o , x o ) ≤ ǫ 2 ̟ • ξ ξ ǫ (t o , s o , p o , x o ) + (C K + 1).
Recall that Assumption 4.2 implies that ǫ ̟ • ξ ξ ǫ has linear growth in x, uniformly in its other variables and in 0 < ǫ ≤ 1, see Remark 3.5. The latter leads to the right-hand side inequality of (7.1).

Step 4. We now prove our claim (7.14). Recalling (7.5) and the fact that g is bounded, (7.12) implies that

Y ǫ T + ℓ ǫ (X ǫ T ) ≥ -C K - T to γ ǫ τ dW τ ,
for some predictable process γ ǫ which satisfies |γ ǫ | ≤ C K for all 0 < ǫ ≤ 1. Then, it follows from [START_REF] Kabanov | Hedging and liquidation under transaction costs in currency markets[END_REF] that

Y ǫ + ℓ ǫ (X ǫ ) ≥ -C K -E Q [ T to γ ǫ τ dW τ |F • ] ≥ -C K + ǫ , in which M ǫ := - • to γ ǫ τ dW τ satisfies E e 2η sup [to,T ] |M ǫ | ≤ C K . Given k ≥ C K , we now denote by τ k the first time after t o such that Y ǫ + ℓ ǫ (X ǫ ) = -k. Set L ǫ,k := L ǫ •∧τ k . (7.15) Then, L ǫ being continuous, L ǫ,k ∈ L ǫ (t o , s o , y o , x o ) for all k ≥ 1. Moreover, since Ψ ≤ 0, Ψ(∆ ǫ,L ǫ ) -Ψ(∆ ǫ,L ǫ,k ) ≤ -Ψ(-k)1 {τ k ≤T } ≤ -Ψ(-k)1 {sup [to ,T ] |M ǫ |≥k-CK } .
We next use (7.13) and the Markov's inequality to obtain

p o e -ηǫ 2 ≤ E Ψ(∆ ǫ,L ǫ ) ≤ E Ψ(∆ ǫ,L ǫ,k ) -Ψ(-k)C K /e 2ηk = E Ψ(∆ ǫ,L ǫ,k ) + C K e -ηk .
Then, taking 

k := -η -1 ln p o (e -ηǫ 2 -1)/C K + 1 ( 7 
:= y o + ℓ ǫ (x o -x ′ o ) , (7.17) 
x

′ o := x o + [-ǫ ξ ξ(t o , s o ) + θ(t o , s o ) -x o ] + -[x o -ǫ ξ ξ(t o , s o ) -θ(t o , s o )] + . (7.18) By Remark 5.1, one has v ǫ (t o , s o , p o , x o ) ≤ v ǫ (t o , s o , p o , x ′ o ) + x ′ o -x o + ǫ 3 |x o -x ′ o | ≤ v ǫ (t o , s o , p o , x ′ o ) + x ′ o -x o + ǫ 3 (C K + |x o |) ,
in which the last inequality follows from Assumption 4.2. Hence,

(v ǫ -v)(t o , s o , p o , x o ) ≤ (v ǫ -v)(t o , s o , p o , x ′ o ) + x o -x ′ o + x ′ o -x o + ǫ 3 (C K + |x o |) ≤ (v ǫ -v)(t o , s o , p o , x ′ o ) + ǫ 3 (C K + |x o |).
Since (t o , s o , x ′ o ) belongs to the closure of J ǫ , we can apply the analysis of the preceding steps to conclude. 2

A by-product of the above argument is the explicit construction of a strategy L ǫ which is O(ǫ 2 )-optimal for the problem with transaction costs. The constant C K in the following proposition can be recovered in terms of the constant K of Assumption 4.2.

Proposition 7.1. Let the conditions of Proposition 4.3 hold. Then, there exists a constant C K > 0 such that the following holds:

Fix (t o , s o , x o , p o ) ∈ [0, T ] × (0, ∞) × R × (-∞, 0), ǫ ∈ (0, 1), let y o := ψ ǫ (t o , s o , p o , x o ) + ǫ 2 (C K + 1) ,
where ψ ǫ is defined as in (7.2), (y ′ o , x ′ o ) be defined as in (7.17)-(7.18), L ǫ,k be given by the solution of (7.6)-( 7 

ǫ := L ǫ,k + x ′ o -x o , then E Ψ(∆ ǫ,L ǫ to,so,yo,xo ) ≥ p o and y o = v ǫ (t o , s o , p o , x o ) + O(ǫ 2 ). ( 7 
ψ ǫ (t o , s o , p o , x o ) = ψ ǫ (t o , s o , p o , x ′ o )+x ′ o -x o +ǫ 3 |x o -x ′ o | = ψ ǫ (t o , s o , p o , x ′ o )-ℓ ǫ (x o -x ′ o ),
by Proposition 4.1 and (6.5).

To prove the right-hand side identity in (7.19), it suffices to use Proposition 4.3 and to recall (6.5):

(ψ ǫ -v ǫ )(t o , s o , p o , x o ) = (ψ ǫ -v)(t o , s o , p o , x o ) + (v -v ǫ )(t o , s o , p o , x o ) = O(ǫ 2 ). 2 
Under an additional regularity conditions, one can obtain a strategy which is optimal at the leading order ǫ 2 . Proposition 7.2. Let the conditions of Proposition 4.3 hold. Assume further that |s 2 δ ss | ≤ K on D. Then, there exists C K > 0 such that the following holds: Fix

(t o , s o , x o , p o ) ∈ [0, T ] × (0, ∞) × R × (-∞, 0), ǫ ∈ (0, 1), set y o := (v + ǫ 2 û + ǫ 4 ̟ • ξ ξ ǫ )(t o , s o , p o , x o ) + ǫ 3 (C K + 1) , let (y ′ o , x ′ o )
be defined as in (7.17)-(7.18) with ξ ξ in place of ξ ξ, L ǫ,k be given by the solution of (7.6)-(7.15) for J ǫ defined with ξ ξ in place of ξ ξ and for

k := -η -1 ln p o (e -ηǫ 3 -1)/C K + 1 and the initial condition (t o , s o , x ′ o , y ′ o ), and set L ǫ := L ǫ,k + x ′ o -x o , then E Ψ(∆ ǫ,L ǫ to,so,yo,xo ) ≥ p o and y o = v ǫ (t o , s o , p o , x o ) + O(ǫ 3 ).
Proof. We only sketch the proof since it is a straightforward adaptation of the proof of Proposition 7.1, see also the proof of Proposition 4.5 below. We follow line by line the arguments of the proof of Proposition 7.1 but with ψ ǫ and J ǫ defined by

ψ ǫ := v + ǫ 2 û + ǫ 4 ̟ • ξ ξ ǫ , J ǫ := {(t, s, x) ∈ [0, T ] × (0, ∞) × R : -ξ ξ(t, s) < ξ ξ ǫ (t, s, x) < ξ ξ(t, s)}.
The fact that û is a classical solution of (3.5) while ̟ solves (3.7) implies that the counterpart of (7.10) is

E ǫ = T to R ǫ (τ, S τ , P ǫ τ , X ǫ τ ) dτ ,
where R ǫ is given by (5.13) for φ := û and w := ̟. Observe that (7.5) From now on, we fix a compact subset B o ⊂ (-∞, 0). We also fix another compact set B ⊂ (-∞, 0) such that B o ⊂ Int(B), and denote by C B > 0 a generic constant that depends at most on B, and that may change from line to line. It will be clear later on that B can be chosen in terms of B o .

Step 1. We first deduce from (4.9) that, for (t, p) ∈ [0, T ] × (-∞, 0) one has    θ(t, p) = λm(t) σ(1+β) (-p) -1 β , δ(t, p) = θ(t, p)( λ σ(1+β) -1) , â(p) = λβ β+1 (-p) , h(t, p) = σ 2 2 πpp (πp) 2 (t, p) ξ ξ(t, p) 2 , ξ ξ(t, p) = 3 2 δ(t, p) 2 (πp) 2 πpp (t, p) for some c > 0 to be chosen later on. We next define (Y ǫ , X ǫ , S, L ǫ , P ǫ ) as in the proof of Proposition 4.3 but with (̟, ξ ξ) in place of ( ̟, ξ ξ), namely We claim that a solution exists and that, for all q > 0, there exists C q B > 0, which depends only on B and q, such that sup ǫ∈(0,1]

                    
E sup t∈[t0,T ] |P ǫ t | q + |P ǫ t | -q ≤ C q B . (7.26) 
This will be proved in Step 3 below. Since û, ̟ ≥ 0, and û does not depend on x, the same arguments as in Step 2 of the proof of Proposition (1 + |P ǫ | -q β + |P ǫ | q β ) , t ∈ [t o , T ].

(7.28) We now take c = 3ǫ 5/2 . Since v ≥ -κ, (7.27) implies Y ǫ + ℓ ǫ (X ǫ ) ≥ -κ + 2ǫ 5/2 + ǫ 5/2 (1 -ǫ 1/2 Γ ǫ ).

Let τ ǫ be the first time such that Y ǫ + ℓ ǫ (X ǫ ) is equal to ǫ 5/2 -κ. We let ( Ỹ ǫ , Xǫ ) be defined by the strategy in which we follow L ǫ on [t o , τ ǫ [ and liquidate the position at τ ǫ , i.e.

( Ỹ ǫ , Xǫ ) = (Y ǫ , X ǫ Note that this strategy is admissible by construction. Set A ǫ := {ǫ in which we used the fact that P ǫ is a martingale by (7.26). We now appeal to (7.26) and (7.28) to obtain

E |P ǫ T | 2 ≤ C B , |Ψ(ǫ 5/2 -κ)| = 1 ǫ 5β/2 and P [A c ǫ ] ≤ ǫ 6+5β E |Γ ǫ T | 12+10β ≤ ǫ 5β C B ǫ 6 .
Combining the above shows that, for some c B > 0, which only depends on B,

E Ψ( Ỹ ǫ T + ℓ ǫ ( Xǫ T )) ≥ p o -c B ǫ 3 ,
and therefore, by (7.24), our choice c = 3ǫ for some constant cB > 0 that only depends on B.

Step This proves (7.20).

Step 3. It remains to prove our claim. Using (7.22) and (6.5) below, we obtain that âǫ is locally Lispchitz on J ǫ and that there exists a function f ∈ C ∞ b ([0, T ]) such that |â ǫ (t, p, x)| ≤ (-p) and for ǫ small enough with respect to f and m. In particular, the existence to the system (7.25) will automatically imply (7.26). For ρ > 0, set B ρ := [-e ρ , -e -ρ ] and let âǫ,ρ be a Lipschitz function such that âǫ,ρ = âǫ on [0, T + 1] × B ρ × R and âǫ,ρ = 0 on [0, T + 1] × B c 2ρ × R. Here all functions are extended to [0, T + 1] by taking their
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 3334 The functions π, θ and δ are C 1,2 (D) and (π pp ∧ π p ∧ |δ|) > 0 on D. Let the Assumption 3.3 hold. Then, there exists a locally bounded function h on D and a non-negative function ̟ on D × R such that, for all ζ ∈ D, the map ξ ∈ R → ̟(ζ, ξ) is C 2 (R) and solves (3.7) on R. Moreover, it satisfies
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 35 It follows from Lemma 3.4 that we indeed have |̟(•, ξ)| ≤ |ξ| for all ξ ∈ R. This is a straightforward consequence of (3.7) and (i).
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 37 Let the Assumptions 3.2, 3.3 and 3.6 hold. Then, (3.1) holds with ̟ as in Lemma 3.4 and u given by the unique viscosity solution of (3.5) in C. Moreover, u = u * = u * .

  They are well-defined under the conditions of Assumption 4.2 below. Note in particular that θ, δ, h and ξ ξ only depend on (t, s).(4.5)
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 43 Let Ψ be as in (4.1) and S as in (4.2). Then, Assumption 4.2 implies Assumptions 3.2, 3.3 and 3.6 of Theorem 3.7.
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 45 Let Ψ be as in (4.8), S as in (4.2) and g ≡ 0. Then Assumptions 3.2, 3.3 and 3.6 of Theorem 3.7 hold.
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 152 Remark It follows from the same arguments as in [15, Proposition 6.1] that v ǫ ≥ v.Lemma 5.3. (i)The functions u * and u * are independent of the x-variable;
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 554 Let the conditions of Theorem 3.7 hold. Then, u * is a viscosity subsolution of(3.5).Proof. Let ζ o ∈ D <T and ϕ ∈ C 1,2 (D <T ) be such that max D<T (strict)(u * -ϕ) = (u * -ϕ)(ζ o ). By Lemma 5.3, there exists (ζ ǫ ) ǫ>0 satisfying ζ ǫ -→ ǫ↓0 ζ o , x ǫ := θ(ζ ǫ ) -→ ǫ↓0 θ(ζ o ) =: x o , u ǫ * (ζ ǫ , x ǫ ) -→ǫ↓0 u * (ζ o ) and ∆ ǫ := u ǫ * (ζ ǫ , x ǫ ) -ϕ(ζ ǫ ) 3.3 entail the existence of ro > 0, 0 < r o ≤ ro and ǫ o > 0 such that m := sup {u ǫ * (ζ, x), (ζ, x) ∈ B o , ǫ ∈ (0, ǫ o ]} < ∞, and θ x o ) on Bro (ζ o ), (5.15) where B o := B ro (ζ o ) × B ro (x o ). After possibly changing ǫ o , we can also assume that |ζ ǫ -ζ o | ∨ |x ǫ -x o | ≤ r o 4 and |∆ ǫ | ≤ 1 for all ǫ ∈ (0, ǫ o ]. (5.16)

. 28 )

 28 Moreover, classical arguments show that ( ζ, x) = (ζ o , x o ).(5.29)Observe for later use thatξ ξ(ζ o ) ≤ ξ ≤ ξ ξ(ζ o ) ,(5.30) by (5.23) and the continuity of ξ ξ. By Step 2 and Theorem 2.1 again, we have -L SX ψ ǫn,η -LP|SX ψ ǫn,η ζǫn , xǫn ≤ 0 for all n ≥ 1. (5.31) Moreover, (5.27), (5.18) and Lemma 3.4 imply that we can apply Lemma 5.4 to ψ ǫn,η .
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 57 Let the conditions of Theorem 3.7 hold. Then, u * is a viscosity supersolution of (3.5). Proof. Let ζ o ∈ D <T and ϕ ∈ C 1,2 (D <T ) be such that min D<T (strict)(u * -ϕ) = (u * -ϕ)(ζ o ) = 0. By Lemma 5.3 and the continuity of ϕ, there exists (ζ ǫ ) ǫ>0 such that
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 3414 Let r o > 0 and ǫ o ∈ (0, 1] be such that|ζ ǫ -ζ o | ≤ r o 2 and |∆ ǫ | ≤ 1 for all ǫ ≤ ǫ 0 . (5.35) We fix ǫ ∈ (0, ǫ o ] and construct a first test function for u ǫ * . Since ϕ is smooth, there exists a constant M < ∞ such that sup ϕ(ζ) ; ζ ∈ Bro (ζ o ) ≤ M -4. (5.36) By (5.35), there exists a finite d > 0 such that |ζ -ζ ǫ | 4 ≥ d for all ζ ∈ ∂B ro (ζ o ). We fix c o > 0 such that c o d ≥ M and define φ ǫ (ζ) := ϕ(ζ) + ∆ ǫ -c o |ζ -ζ ǫ | It follows from (5.35), (5.36) and the choice of c o that -φ ǫ ≥ 3 on ∂B ro (ζ o ).

. 40 )

 40 Note that ξ ξ ǫ (ζ ǫ , x ǫ ) = 0 since x ǫ = θ(ζ ǫ ). Recalling that ̟(•, 0) = 0 by Lemma 3.4, (5.38) implies that I ǫ,η (ζ ǫ , x ǫ ) = 0. (5.41)On the other hand, (5.40) combined with Remark 5.2, Remark 3.5 and Lemma 5.6 implies that

Proposition 5 . 8 .

 58 Let the conditions of Theorem 3.7 hold. Then, u * = u * = 0 on D T .

  10) in which the map R ǫ is given by (5.13) for φ := 0 and w := ̟. Direct computations based on condition b. of Assumption 4.2, the specific forms of â and π, and (7.5) lead to |R ǫ | ≤ C K on the closure of J ǫ , and therefore: |R ǫ (•, S, P ǫ , X ǫ )| ≤ C K . It also follows from Assumption 4.2, (4.4) and (7.3) that |ξ ξ ǫ (•, S, X ǫ )| ≤ C K . Finally (6.5) above for the coefficients entering in the definition of ̟ provides a uniform bound for the remaining term. Therefore |E ǫ | ≤ C K . (7.11) Combining (7.8), (7.9) and (7.11) leads to

2 7. 2

 22 Power caseWe now provide the proof of Proposition 4.5. Since it is very close to the one of Proposition 4.3, we focus on the differences.Proof of Proposition 4.5. We only show that, for any compact subset B o ⊂ (-∞, 0), there exists c o , ǫ o > 0 such thatu ǫ (ζ, x) ≤ c o (1 + ǫ|x|) for all (ζ, x) ∈ [0, T ] × (0, ∞) × B o × R , ǫ ∈ (0, ǫ o ].(7.20) 

1 β

 1 h) be defined as inLemma 3.4 and note that (̟(•, ξ), h) depends only on p, for ξ ∈ R. Let û be the solution of (3.7). It is not difficult to deduce from (7.21) that one hasf (t, p) = f (t, -1)(-p) -with f (•, -1) ∈ C ∞ b ([0, T ]), f ∈ {θ, δ, ξ ξ, h, û}. (7.22)We setψ ǫ = v + ǫ 2 û + ǫ 4 ̟ • ξ ξ ǫ , âǫ := -σ ⊤ 0 Dψ ǫ ψ ǫ p ,andJ ǫ := {(t, p, x) ∈ [0, T ] × (-∞, 0) × R : -ξ ξ(t, p) < ξ ξ ǫ (t, p, x) < ξ ξ(t, p)}. (7.23) We now fix (t o , s o , x o ) in the closure of J ǫ , the general case being handled as in Step 5 of the proof of Proposition 4.3. We let p o ∈ B and y o := c + ψ ǫ (t o , s o , p o , x o ) , (7.24)

( 1 -

 1  P ǫ = p o + • to âǫ (τ, S τ , P ǫ τ , X ǫ τ ) dW τ , X ǫ = x o + P ǫ , X ǫ ) ∈ J ǫ dt ⊗ dP-a.e. on [t o , T ] , ǫ 3 )dL ǫ- τ , y o := c + ψ ǫ (t o , s o , p o , x o ).

4 . 3 2 (

 432 leads toY ǫ + ℓ ǫ (X ǫ ) ≥ c + ψ ǫ (•, S, P ǫ , 0) -ǫ 2 E ǫ (•) ≥ c + v(•, S, P ǫ , 0) -ǫ 2 E ǫ ,(7.27) whereE ǫ := ǫ|X ǫ | + ̟ ξξ • ξ ξ ǫ ) + Hû + R ǫ (τ, X ǫ τ , P ǫ τ )dτ = ǫ|X ǫ | + • to R ǫ (τ, S τ , P ǫ τ , X ǫ τ )dτ,in which the second equality follows from the fact that û and ̟ solve (3.5) and (3.7) respectively, and R ǫ is defined in (5.13) for φ := û and w := ̟. Observe that all the functions in the definition of R ǫ are powers of the p-variable multiplied, at least, by ǫ. Moreover, the definition of X ǫ combined with (7.23) and (7.21) implies that X ǫ is also controlled by a polynomial in |P ǫ |. Namely, we can find q β , C β > 0, which only depend on β, such thatǫ -1 t to |R ǫ (τ, S τ , P ǫ τ , X ǫ τ )|dτ + |X ǫ t | ≤ Γ ǫ t := C β sup [to,t]

  )1 [[to,τǫ∧T [[ + (Y ǫ τǫ∧T , ℓ ǫ (X ǫ τǫ∧T ))1 [[τǫ∧T,T ]] .

1 2 | 2 1 2 + 1 2 =| 2 1 2 +

 22122 Γ ǫ T ≤ 1}. The inclusion A ǫ ⊂ {τ ǫ ≥ T } follows from the last inequality and the fact that Γ ǫ is nondecreasing. We then obtainE Ψ( Ỹ ǫ T + ℓ ǫ ( Xǫ T )) ≥ E Ψ(2ǫ 5/2 + Φ(P ǫ T ))1 Aǫ -|Ψ(ǫ 5/2 -κ)|P [A c ǫ ] ≥ E [P ǫ T ] -E |P ǫ T |Ψ(ǫ 5/2 -κ)| P [A c ǫ ] p o -E |P ǫ T |Ψ(ǫ 5/2 -κ)| P [A c ǫ ]

2 . 2 B 1 +

 221 Since cB does not depend on p o ∈ B, the above is true for any p ∈ B in place of p o . Set ι(p) := p + ǫ 5/2 for p ∈ B o , recall that B o ⊂ Int(B). Then, 0 > ι(p) -cB ǫ 3 = p + ǫ 5/2 -cB ǫ 3 ≥ p for all p ∈ B o and 0 < ǫ ≤ ǫ B , for some ǫ B ∈ (0, 1) such that p + ǫ 5/∈ B for all p ∈ B o . For the rest of the proof, we assume that p o ∈ B o . Then, (7.30) applied to ι(p o ) in place of p o and the fact that v ǫ is non-decreasing in p imply thatv ǫ (t o , s o , p o , x o ) ≤ v ǫ (t o , s o , ι(p o ) -cB ǫ 3 , x o ) ≤ v(t o , s o , ι(p o ), x o ) + cB ǫ 5/2 .We now use (4.9) to obtainv ǫ (t o , s o , p o , x o ) ≤ v(t o , s o , p o , x o ) + ǫ 5/2 β -1 |m(t o )| p o + ǫ cB ǫ 5/2 .

1 β

 1 +1 m(t) + ǫ 2 f (t) -σx + ǫ 4 σx̟ ξ • ξ ǫ (t, p, x) , (t, p, x) ∈ [0, T ] × (-∞) × R.It follows from(7.22) and (ii) of Lemma 3.4 that |â ǫ (t, p, x)| ≤ C K |p| for (t, p, x) ∈ J ǫ ,(7.31) 

  .[START_REF] Bouchard | A stochastic target approach for p&l matching problems[END_REF] leads to(7.14), recall that p o < 0.Step 5. It remains to explain how to consider the general case (t o , s o , x o ) ∈ [0, T ] × (0, ∞) × R. First note that an immediate transfer allows one to pass from the initial position (y o , x o ) to (y ′

	o , x ′ o ) with
	y ′ o

  .15)-(7.16) for the initial condition (t o , s o , x ′

o , y ′ o ), and L

  , y o ) and this is an immediate by-product of the construction made in the proof of Proposition 4.3. The general case is treated as in Step 5 of the proof of Proposition 4.3, observing that

.

[START_REF] Cvitanić | A closed-form solution to the problem of super-replication under transaction costs[END_REF] 

Proof. We first prove the left-hand side inequality of

(7.19)

. When (t o , s o , x o ) belongs to the closure of J ǫ defined in

(7.3)

, then (x ′ o , y ′ o ) = (x o

  remains in force since neither û nor ̟ depend on p and sû s and s̟ s • ξ ξ ǫ 1 Jǫ are bounded. Under our additional assumptions, it is easy to check from the proof of Lemma 5.4, see(5.13), that |E ǫ | ≤ ǫC K : the additional assumption that s 2 δ ss is bounded allows to control the term L S ̟ in R ǫ 2 whereas the other terms are bounded by Assumption 4.2.

  5/2 , the fact that û, ̟ satisfy(7.22) and thatv ǫ is non-decreasing in p, v ǫ (t o , s o , p o -cB ǫ 3 , x o ) ≤ v(t o , s o , p o , x o ) + cB ǫ 5/2 ,(7.30)

See[START_REF] Kabanov | Markets with transaction costs[END_REF] for a general presentation of models with proportional transaction costs.

We make this assumption to obtain the representation in Proposition 2.2. This representation is then used to verify the assumptions. Hence, the main result applies to general loss functions provided the assumptions are verified.

When the lower bound is zero, the boundary of the natural domain of the problem is given by the super-replication cost. We believe that in this case there is a boundary layer near this boundary.

This assumption states that the expansion in the small parameter ǫ starts with a quadratic term. In other words, we assume that the order of proposed expansion is "correct". Under this and other regularity assumptions, we prove the expansion and derive formulae for the coefficients in the expansion. Indeed this assumption holds in many examples. However, in the case discussed in the Remark 3.1 we believe that there is a boundary layer and this assumption would only hold away from the superreplication cost.

* Research of the first author is partly supported by ANR Liquirisk and Labex ECODEC. Research of the last two authors was partly supported by the European Research Council under the grant 228053-FiRM, by the ETH Foundation and by the Swiss Finance Institute.

values at T on [T, T + 1]. The set J ρ ǫ := ([0, T + 1] × (B 2ρ ) c × R) ∩ J ǫ is bounded and it follows from [START_REF] Dupuis | SDEs with oblique reflection on nonsmooth domains[END_REF] that there exists a strong solution (P ǫ,ρ , X ǫ,ρ ) to (7.25) with âǫ,ρ in place of âǫ . Let τ ρ ǫ be the first time after t o when P ǫ,ρ reaches the boundary of B ρ . For ρ > | ln(-p o )|, (X ǫ,ρ , P ǫ,ρ ) solves (7.25) 

where C > 0 can be computed explicitly.

Appendix

We provide here the proofs of Theorem 2.1, Theorem 2.3 and Proposition 2.2 for completeness. These results are essentially known but our framework requires some slight adjustments.

Proof of Theorems 2.1 and 2.3: We focus on the proof of Theorem 2.1. Theorem 2.3 is proved by combining the following arguments with the results of [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] instead of [START_REF] Bouchard | Generalized stochastic target problems for pricing and partial hedging under loss constraints -application in optimal book liquidation[END_REF]. The arguments of [START_REF] Bouchard | Generalized stochastic target problems for pricing and partial hedging under loss constraints -application in optimal book liquidation[END_REF] can not be applied per-se to obtain Theorem 2.1 because their Standing Assumption 4 may not hold in our context. We explain briefly how to modify it. First, this does not alter the proof of (GDP1) in [9, Corollary 2.9], which in turn leads to the viscosity supersolution property by the same arguments as in [9, Section 5].

Similarly, the proof of the subsolution property [9, Section 5] can be reproduced once (GDP2) stated in [9, Corollary 2.9] is valid. It is the case, by [START_REF] Bouchard | Generalized stochastic target problems for pricing and partial hedging under loss constraints -application in optimal book liquidation[END_REF], if one imposes the additional constraints Y t,y,ǫ,L +ℓ ǫ (X t,x,s,L ) ≥ -c on [t, T ], with c > 0 fixed independent of the control L. Their standing Assumption 4 is then satisfied, see [START_REF] Kabanov | Hedging and liquidation under transaction costs in currency markets[END_REF]Lemma 3.3] which imposes a uniform L 2 bound on the admissible controls L. Then, the corresponding value function v ǫ,c satisfies that its upper-semicontinuous envelope v ǫ,c * is a viscosity subsolution of (2.7) on {v ǫ,c, * (t, s, p, x)+ℓ ǫ (x) > -c}, by [9, Section 5]. The sequence of corresponding operators converges to the one of (2.7) as c → ∞. By standard stability results for viscosity solutions, see e.g. [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF], this implies that the relaxed semi-limit v ǫ,∞ * defined by v ǫ,∞ * (t, s, p, x) := lim sup (c,t ′ ,s ′ ,p ′ ,x ′ )→(∞,t,s,p,x) v ǫ,c * (t ′ , s ′ , p ′ , x ′ ) is a viscosity subsolution of (2.7). Note that v ǫ,∞ * ≥ v ǫ * by monotonicity. It remains to check that the converse inequality holds. But the admissibility constraint entering in the definition of L ǫ means that, for all ι > 0, we can find

Proof of Proposition 2.2: Let us first fix z > π(t, s, p). Then, we can find (ϑ, α) ∈ U × A such that Ψ(Z t,s,z,ϑ T -g(S t,s T )) ≥ P t,p,α T . Recall from the discussion after (2.6) that we can restrict P t,p,α T to take values in the image of Ψ, and therefore in the domain of