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Abstract: Copulas are increasingly studied both in theory and practice as they are a convenient tool

to construct multivariate distribution functions. However the material essentially covers the bi-variate

case while in applications the number of variables is much higher. Furthermore, when one wants to take

into account tail dependence, a desirable property is to have enough flexibility in the tails while avoiding

the exponential growth of the number of parameters. We propose in this communication a one-factor

model which exhibits this feature.

Key words and phrases: copula, tail dependence, parsimony, flexibility, one-factor model

1 Introduction

Copulas have been of increasing interest in the last decade. Nowadays they are widely used in
areas like finance and hydrology. They are a convenient tool to construct multivariate distribution
functions. Recall that copulas are distribution functions whose marginals are standard uniform.
For a detailed account, see, e.g., the book of Nelsen [5]. Most of the material has been developed
for the bi-variate case. As soon as the dimension gets higher, constructing multivariate copulas is a
tough task. When studying extreme events, this is even more true as one has to take into account
tail dependence. A simple way to do this is to consider the so called (upper) tail dependence

coefficient (tdc) defined as:

λij = lim
u↑1

P (Ui > u|Uj > u) = lim
u↑1

1 − 2u + Cij(u, u)

1 − u
(1.1)

when the limit exists and where Ui, Uj are two uniform random variables whose joint distribution
is the copula Cij. A high value of this coefficient is interpreted as the two variables tend to be
large together. For the sake of simplicity, we will only consider pairwise tdc’s and assume they
represent a good picture of the dependence in the tails overall. In this communication, we propose
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a multivariate copula which has a closed-form expression and exhibits a good compromise between
flexibility in the tails and parsimony. It is generated by pairwise Cuadras-Augé copulas [1] through
a one-factor model as described below.

2 One-factor copula generated by Cuadras-Augé copulas

Let U0 be a latent standard uniform random variable and C1|0, . . . , Cd|0 be conditional copulas
given U0. Draw independently Ui from Ci|0, i = 1, . . . , d, so that the Ui are independent given U0.
The distribution function of U = (U1, . . . , Ud) at u = (u1, . . . , ud) is then given by

C(u) = P (U1 ≤ u1, . . . , Ud ≤ ud) =

∫ 1

0

C1|0(u1, x) . . . Cd|0(ud, x)dx. (2.1)

This construction was mentioned by Joe [3] and was called a one-factor copula. As noted by the
author, it is a particular case of a vine copula. It can also be embedded within the framework
of Kirshner [4] as a special case of a latent tree copula. We consider the case when one plugs
Cuadras-Augé copulas into (2.1). Let

Ci|0(ui, u0; θi) =

{

u1−θi

i if u0 < ui,

(1 − θi)uiu
−θi

0 if u0 > ui

be Cuadras-Augé conditional copulas, (u(1), u(2), . . . , u(d)), u(i) < u(i+1), i = 1, . . . , d − 1 be the
ordered vector associated with u and θi ∈ [0, 1], i = 1, . . . , d. Observe that λ0i = θi is the tdc of
the pair (U0, Ui). In addition, we can show that

C(u) =
d

∑

k=1

πkC̃k(u), (2.2)

where

C̃k(u) =
d

∏

j=1

u
1−ξ(j)k

(j) , ξ(j)k =







0 if j ≤ k,

−1 +
∑k+1

i=1 θ(i) if j = k + 1,
θ(j) if j ≥ k + 2.

and

πk = −θk+1

∑k

j=1 θ(j)

∏k

j=1(1 − θ(j))
(

1 −
∑k

j=1 θ(j)

) (

1 −
∑k+1

j=1 θ(j)

) , (2.3)

k = 1, . . . , d− 1, πd =
∏d

j=1(1− θ(j))/
(

1 −
∑d

j=1 θ(j)

)

,
∑d

k=1 πk = 1. At a first glance (2.2) looks

similar to a standard mixture model, but we can actually show that each πk /∈ (0, 1). In addition,
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the C̃k are not copulas in general. This copula is parsimonious in the sense that it has only d
parameters θ1, . . . , θd. Another interesting property of this copula is that the tdc λij between the
variable Ui and Uj has a very simple form

λij = θiθj. (2.4)

Another copula model derived from bi-variate Cuadras-Augé copulas is the pair-wise multivariate
extreme value model in Durante and Salvadori [2] (section 5, p. 150). It has d(d−1)/2 parameters
θij which must satisfy d constraints (2.5). The tdc’s between the variables Ui and Uj are

λij = θij, under the constraints ∀i = 1, . . . , d,

d
∑

j=1,j 6=i

θij ≤ 1. (2.5)

3 A study of flexibility

Let θ be the parameter vector of a copula model C(θ) of dimension d and let P =
{

{ij} :
i = 1, . . . , d − 1, j = 2, . . . , d, i < j

}

to be the set of all index pairs. The number of pairs is
p = |P| = d(d− 1)/2. Further let λ =

(

λij, {ij} ∈ P
)

be the vector of the true pairwise tdc’s and
let λ(θ) =

(

λij(θ), {ij} ∈ P
)

be the pairwise tdc’s under the model of interest C(θ); for instance,
λij can be one of (2.4) or (2.5). In order to measure the discrepancy between the true λ and the
model λ(θ), we define the tail dependence (quadratic) loss (tdl) as

ℓ(θ, λ) =
1

p

∑

{ij}∈P

(

λij − λij(θ)
)2

∈ [0, 1]. (3.1)

To investigate the tail dependence accuracy, we shall process as follows. For each k = 1, 2, . . .
generate λ(k) ∈ [0, 1]p from some distribution, compute the minimum loss under the model ℓ

(k)
∗ =

min
θ

ℓ(λ(k), θ). Then examine the sample ℓ
(1)
∗ , ℓ

(2)
∗ , . . . through a boxplot. Figure 3.1 presents

some primary results where each component of λ(k) is sampled independently from the uniform
distribution on [0, 1]p. We observe that the losses converge to a limit and the structure (2.4) is
more accurate than (2.5). Even though our model (2.2) is more parsimonious than the pairwise
extreme value model of Durante and Salvadori [6], it offers a largest flexibility for modeling tail
dependence.

In future work, we will investigate other sampling schemes for λ(k) and compute accuracies for
other models. We will study theoretical properties of the tdl (3.1). Note that it can be used as
the basis of a fitting strategy by replacing the λij in (3.1) with empirical estimators λ̂ij, as in [6].
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Figure 3.1: Tail dependence loss for two tdc structures. Each box is estimated from a sample of
size 100. Green (bottom) is the proposed one-factor model (2.4). Yellow (top) is the Durante and
Salvadori model (2.5).
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