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DISCRETE APPROXIMATION OF THE FREE FOCK SPACE

STÉPHANE ATTAL AND ION NECHITA

Abstract. We prove that the free Fock space F(R+;C), which is very commonly used in
Free Probability Theory, is the continuous free product of copies of the space C2. We describe
an explicit embeding and approximation of this continuous free product structure by means
of a discrete-time approximation: the free toy Fock space, a countable free product of copies
of C2. We show that the basic creation, annihilation and gauge operators of the free Fock
space are also limit of elementary operators on the free toy Fock space. When applying these
constructions and results to the probabilistic interpretations of these spaces, we recover some
discrete approximations of the semi-circular Brownian motion and of the free Poisson process.
All these results are also extended to the higher multiplicity case, that is, F(R+;CN ) is the
continuous free product of copies of the space CN+1.

1. Introduction

In [1] it is shown that the symmetric Fock space Γs(L
2(R+;C)) is actually the continuous

tensor product ⊗t∈R+C2. This result is obtained by means of an explicit embeding and ap-
proximation of the space Γs(L

2(R+;C)) by countable tensor products ⊗n∈hNC2, when h tends
to 0. The result contains explicit approximation of the basic creation, annihilation and second
quantization operators by means of elementary tensor products of 2 by 2 matrices.

When applied to probabilistic interpretations of the corresponding spaces (e.g. Brownian
motion, Poisson processes, ...), one recovers well-known approximations of these processes by
random walks. This means that these different probabilistic situations and approximations are
all encoded by the approximation of the three basic quantum noises: creation, annihilation and
second quantization operators.

These results have found many interesting applications and developments in quantum statis-
tical mechanics, for they furnished a way to obtain quantum Langevin equations describing the
dissipation of open quantum systems as a continuous-time limit of basic Hamiltonian interactions
of the system with the environment: repeated quantum interactions (cf [4], [5], [6] for example).

When considering the fermionic Fock space, even if it has not been written anywhere, it is
easy to show that a similar structure holds, after a Jordan-Wigner transform on the spin-chain.

It is thus natural to wonder if, in the case of the free Fock space, a similar structure, a similar
approximation and similar probabilistic interpretations exist. Whereas the continuous tensor
product structure of the bosonic Fock space exhibit its natural "tensor-independence" structure,
it is natural to think that the free Fock space will exhibit a similar property with respect to the
so-called "free-independence", as defined in Free Probability Theory.

The key of our construction relies on the so-called "free products of Hilbert spaces". We
needed to make explicit the constructions of countable free products, as a first step. Then, by
an approximation method, to define the structure of continuous free products of Hilbert spaces.
This structure appears to be exactly the natural one which describes the free Fock space and its
basic operators.
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2. Free probability and the free Fock space

Let us start by recalling the general framework of non commutative probability theory. A non
commutative probability space is a couple (A, ϕ), where A is a complex ∗−algebra (in general
non commutative) and ϕ is a faithful positive linear form such that ϕ(1) = 1. We shall call the
elements of A non commutative random variables. The distribution of a family (xi)i∈I of self-
adjoint random variables of A is the application which maps any non-commutative polynomial
P ∈ C〈Xi|i ∈ I〉 to its moment ϕ(P ((xi)i∈I)). Thus, the map ϕ should be considered as the
analogue of the expectation from classical probability theory. From this abstract framework,
one can easily recover the setting of classical probability theory by considering a commutative
algebra A (see [10, 11, 14]).

In order to have an interesting theory, one needs a notion of independence for non commutative
probability spaces. However, classical (or tensor) independence is not adapted in this more
general setting. Free independence was introduced by Voiculescu in the 1980’s in order to tackle
some problems in operator theory, and has found many applications since, mainly in random
matrix theory. Freeness provides rules for computing mixed moments of random variables when
only the marginal distributions are known. More precisely, unital sub-algebras (Ai)i∈I of A are
called free (or freely independent) if ϕ(a1 · · · an) = 0 for all n ∈ N and ai ∈ Aj(i) whenever
ϕ(ai) = 0 for all i and neighboring ai do not come from the same sub-algebra: j(1) 6= j(2) 6=
· · · 6= j(n). This definition allows one to compute mixed moments of elements coming from
different algebras Ai, when only the distributions inside each algebra Ai are known. Note that
freeness is a highly non commutative property: two free random variables commute if and only
if they are constant.

A remarkable setting in which freeness appears naturally is provided by creation and annihi-
lation operators on the full Fock space. Let us now briefly describe this construction. Consider
a complex Hilbert space H and define

F(H) =

∞⊕
n=0

H⊗n,

where H⊗0 is a one-dimensional Hilbert space we shall denote by CΩ. Ω ∈ F(H) is a distin-
guished norm one vector which is called the vacuum vector and it will play an important role in
what follows. For each f ∈ H, we define the left creation operator `(f) and the left annihilation
operator `∗(f) by

l(f)Ω = f, l(f)e1 ⊗ · · · ⊗ en = f ⊗ e1 ⊗ · · · ⊗ en;

l∗(f)Ω = 0, l∗(f)e1 ⊗ · · · ⊗ en = 〈f, e1〉e2 ⊗ · · · ⊗ en.

For every T ∈ B(H), the gauge operator Λ(T ) ∈ B(F(H)) is defined by

Λ(T )Ω = 0, Λ(T )e1 ⊗ · · · ⊗ en = T (e1)⊗ e2 ⊗ · · · ⊗ en.

All these operators are bounded, with ‖l(f)‖ = ‖l∗(f)‖ = ‖f‖ and ‖Λ(T )‖ = ‖T‖. On the space
B(F(H)) of bounded operators on the full Fock space we consider the vector state given by the
vacuum vector

τ(X) = 〈Ω, XΩ〉, X ∈ B(F(H)).

The usefulness of the preceding construction when dealing with freeness comes from the following
result ([11]).

Proposition 1. Let H be a complex Hilbert space and consider the non commutative probability
space (B(F(H)), τ). Let H1, . . . ,Hn be a family of orthogonal subspaces of H, and, for each i,
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let Ai be the unital ∗-algebra generated by the set of operators

{l(f)|f ∈ Hi} ∪ {Λ(T )|T ∈ B(H), T (Hi) ⊂ Hi and T vanishes on H⊥i }.
Then the algebras A1, . . . ,An are free in (B(F(H)), τ).

In the present note, we shall be concerned mostly with the case ofH = L2(R+;C), the complex
Hilbert space of square integrable complex valued functions; in Section 8 we shall consider the
more general case of L2(R+;CN ). Until then, we put Φ = F(L2(R+;C)), and we call this space
the free (or full) Fock space. An element f ∈ Φ admits a decomposition f = f0Ω +

∑
n>1 fn,

where f0 ∈ C and fn ∈ L2(Rn
+). In this particular case we shall denote the creation (resp.

annihilation) operators by a+ (resp. a−):

a+(h)Ω = h, a+(h)fn = [(x1, x2, . . . , xn, xn+1) 7→ h(x1)fn(x2, . . . , xn+1)],

a−(h)Ω = 0, a−(h)fn = [(x2, . . . , xn) 7→
∫
h(x)fn(x, x2 . . . , xn)dx],

where h is an arbitrary function of L2(R+). For a bounded function b ∈ L∞(R+), let a◦(b) be
the gauge operator associated to the operator of multiplication by b:

a◦(b)Ω = 0, a◦(b)fn = [(x1, x2, . . . , xn) 7→ b(x1)fn(x1, . . . , xn)],

and a×(b) the scalar multiplication by
∫
b:

a×(b)Ω =

∫
b(x)dxΩ, a×(b)fn = [(x1, x2, . . . , xn) 7→

(∫
b(x)dx

)
· fn(x1, . . . , xn)].

Finally, we note 1t = 1[0,t) the indicator function of the interval [0, t) and, for all t ∈ R+ and
ε ∈ {+,−, ◦,×}, we put aεt = aε(1[0,t)). Obviously, a×t = t · Id.

3. The free product of Hilbert spaces

In the previous section we have seen that the algebras generated by creation, annihilation
and gauge operators acting on orthogonal subspaces of a Hilbert space H are free in the algebra
of bounded operators acting on the full Fock space F(H). However, one would like, given a
family of non commutative probability spaces, to construct a larger algebra which contains the
initial algebras as sub-algebras which are freely independent. In classical probability (usual)
independence is achieved by taking the tensor products of the original probability spaces. This
is the reason why classical independence is sometimes called tensor independence. In the free
probability theory, there is a corresponding construction called the free product. Let us recall
briefly this construction (see [13, 14] for further details).

Consider a family (Hi,Ωi)i∈I of non commutative probability spaces where Ωi is a distin-
guished norm one vector of Hi. Let Ki be the orthocomplement of Ωi in Hi and define the free
product

(1) (H,Ω) = F
i∈I

(Hi,Ωi) := CΩ⊕
⊕
n>1

⊕
i1 6=i2 6=···6=in

Ki1 ⊗ · · · ⊗ Kin ,

where the direct sums are orthogonal and, as usual, ‖Ω‖ = 1. As in [14], we proceed with the
identification of the algebras of bounded operators B(Hi) inside B(H). To this end, we shall
identify an operator Ti ∈ B(Hi), with the operator T̃i ∈ B(H) which acts in the following way:

T̃i(Ω) = Ti(Ωi)(2)

T̃i(ki ⊗ kj1 ⊗ · · · ⊗ kjn) = Ti(ki)⊗ kj1 ⊗ · · · ⊗ kjn(3)

T̃i(kj1 ⊗ · · · ⊗ kjn) = Ti(Ωi)⊗ kj1 ⊗ · · · ⊗ kjn(4)
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where j1 6= i and we identify an element of Hi with the corresponding element of H. The main
interest of this construction is the following straightforward result.

Proposition 2. The algebras {B(Hi)}i∈I are free in (B(H), ϕ).

Proof. Consider a sequence Ti(1), . . . , Ti(n) of elements of B(Hi(1)), . . . ,B(Hi(n)) respectively such
that i(1) 6= i(2) 6= · · · 6= i(n) and 〈Ωi(k), Ti(k)Ωi(k)〉 = 0 for all k. By the definition of freeness,
it suffices to show that 〈Ω, T̃i(1) · · · T̃i(n)Ω〉 = 0. Using the previously described embedding, we
get T̃i(n)Ω = Ti(1)Ωi(1). Since i(n − 1) 6= i(n) and T̃i(n)Ω /∈ CΩ, it follows that T̃i(n−1)T̃i(n)Ω =

[Ti(n−1)Ωi(n−1)] ⊗ [Ti(n)Ωi(n)]. Continuing this way, it is easy to see that T̃i(1) · · · T̃i(n)Ω =
[Ti(1)Ωi(1)]⊗ · · · ⊗ [Ti(n)Ωi(n)], and the conclusion follows. �

We look now at the free Fock space of a direct sum of Hilbert spaces. In the symmetric case
(see [1]), it is known that one has to take the tensor product of the symmetric Fock spaces in
order to obtain the Fock space of the sum. The free setting admits an analogue exponential
property, where instead of the tensor product one has to use the free product introduced earlier.

Lemma 1. Consider a family of orthogonal Hilbert spaces (Hi)i∈I . Then

(5) F(⊕i∈IHi) =Fi∈IF(Hi).

Proof. Fix for each Hi an orthonormal basis (Xj(i))j∈B(i). Then, an orthonormal basis of
F(⊕Hi) is given by {Ω} ∪ {Xj1(i1) ⊗ · · · ⊗ Xjn(in)}, where n > 1, ik ∈ I and jk ∈ B(ik) for
all 1 6 k 6 n. One obtains a Hilbert space basis of FF(Hi) by grouping adjacent elements of
Xj1(i1) ⊗ · · · ⊗Xjn(in) with the same i-index (i.e. belonging to the same Hi). Details are left
to the reader. �

4. The free toy Fock space

In this section we introduce the free toy Fock space, the main object of interest in our paper.
From a probabilistic point of view, it is the “smallest” non commutative probability space sup-
porting a free identically distributed countable family of Bernoulli random variables (see Section
7).

The free toy Fock space is a countable free product of two-dimensional complex Hilbert spaces:
in equation (1), take Hi = C2 for all i. In order to keep track of which copy of C2 we are
referring to, we shall label the i-th copy with C2

(i). Each copy is endowed with the canonical
basis {Ωi = (1, 0)>, Xi = (0, 1)>}. Since the orthogonal space of CΩi is simply CXi, we obtain
the following simple definition of the free toy Fock space TΦ:

(TΦ,Ω) := F
i∈N

(C2
(i),Ωi) = CΩ⊕

⊕
n>1

⊕
i1 6=···6=in

CXi1 ⊗ · · · ⊗CXin ,

where, as usual, Ω is the identification of the vacuum reference vectors Ωi (‖Ω‖ = 1). Note
that the orthonormal basis of TΦ given by this construction is indexed by the set of all finite
(eventually empty) words with letters from N with the property that neighbouring letters are
distinct. More formally, a word σ = [i1, i2, . . . , in] ∈ Nn is called adapted if i1 6= i2 6= · · · 6= in.
By convention, the empty word ∅ is adapted. We shall denote by Wn (resp. W∗n) the set of all
words (resp. adapted words) of size n and by W (resp. W∗) the set of all words (resp. adapted
words) of finite size (including the empty word). For a word σ = [i1, i2, . . . , in], let Xσ be the
tensor Xi1 ⊗Xi2 ⊗ · · · ⊗Xin and put X∅ = Ω. With this notation, an orthonormal basis of TΦ
is given by {Xσ}σ∈W∗ .
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We now turn to operators on C2
(i) and their embedding into B(TΦ). We are interested in the

following four operators acting on C2:

a+ =

[
0 0
1 0

]
, a− =

[
0 1
0 0

]
, a◦ =

[
0 0
0 1

]
, a× =

[
1 0
0 0

]
.

For ε ∈ {+,−, ◦,×}, we shall denote by aεi the image of aε acting on the i-th copy of C2,
viewed (by the identification described earlier in eq. (2) - (4)) as an operator on TΦ. The
action of these operators on the orthonormal basis of TΦ is rather straightforward to compute
(σ = [σ1, . . . , σn] is an arbitrary non-empty adapted word and 1 is the indicator function):

a+i Ω = Xi, a+i Xσ = 1σ1 6=iX[i,σ];(6)

a−i Ω = 0, a−i Xσ = 1σ1=iX[σ2,...,σn];(7)
a◦iΩ = 0, a◦iXσ = 1σ1=iXσ;(8)

a×i Ω = Ω, a×i Xσ = 1σ1 6=iXσ.(9)

5. Embedding of the toy Fock space into the full Fock space

Our aim is now to show that the free toy Fock space can be realized as a closed subspace of
the full (or free) Fock space Φ = F(L2(R+;C)) of square integrable functions. What is more,
to each partition of R+ we shall associate such an embedding, and, as we shall see in the next
section, when the diameter of the partition becomes small, one can approximate the full Fock
space with the (much simpler) toy Fock space.

Let S = {0 = t0 < t1 < · · · < tn < · · · } be a partition ofR+ of diameter δ(S) = supi |ti+1−ti|.
The main idea of [1] was to decompose the symmetric Fock space of L2(R+) along the partition
S. In our free setting we have an analogue exponential property (see eq. (5)):

Φ = F
i∈N

Φi,

where Φi = F(L2[ti, ti+1)), the countable free product being defined with respect to the vacuum
functions. Inside each Fock space Φi, we consider two distinguished functions: the vacuum
function Ωi and the normalized indicator function of the interval [ti, ti+1):

Xi =
1[ti,ti+1)√
ti+1 − ti

=
1ti+1

− 1ti√
ti+1 − ti

.

These elements span a 2-dimensional vector space CΩi ⊕ CXi inside each Φi. The toy Fock
space associated to the partition S is the free product of these two-dimensional vector spaces:

TΦ(S) = F
i∈N

(CΩi ⊕CXi).

TΦ(S) is a closed subspace of the full Fock space Φ and it is naturally isomorphic (as a countable
free product of two-dimensional spaces) to the abstract free toy Fock space TΦ defined in the
previous section. It is spanned by the orthonormal family {Xσ}σ∈W∗ , where Xσ = Xσ(S) is
defined by

Xσ = Xσ1
⊗Xσ2

⊗ · · · ⊗Xσn = [(x1, . . . , xn) 7→
∏n
j=1 1[tσj ,tσj+1)(xj)∏n
j=1

√
tσj+1 − tσj

],

with σ = [σ1, . . . , σn]. We shall denote by PS ∈ B(Φ) the orthogonal projector on TΦ(S). For a
function f ∈ Φ, which admits a decomposition f = f0Ω+

∑
n>1 fn with f0 ∈ C and fn ∈ L2(Rn

+),
the action of PS is straightforward to compute:

PSf = f0Ω +
∑
n>1

∑
σ∈W∗n

〈Xσ, fn〉Xσ,
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where the scalar products are taken in the corresponding L2 spaces.
We ask now how the basic operators aεt , ε ∈ {+,−, ◦,×}, t ∈ R+ of the free Fock space

relate to their discrete counterparts aεi . In order to do this, we consider the following rescaled
restrictions of a+t , a

−
t and a◦t on the toy Fock space TΦ(S):

a+i (S) = PS
a+ti+1

− a+ti√
ti+1 − ti

PS = PSa
+

(
1[ti,ti+1)√
ti+1 − ti

)
PS ;(10)

a−i (S) = PS
a−ti+1

− a−ti√
ti+1 − ti

PS = PSa
−
(

1[ti,ti+1)√
ti+1 − ti

)
PS ;(11)

a◦i (S) = PS(a◦ti+1
− a◦ti)PS = PSa

◦ (1[ti,ti+1)

)
PS .(12)

The operators aεi (S) ∈ B(Φ) are such that aεi (S)(TΦ(S)) ⊂ TΦ(S) and they vanish on TΦ(S)⊥,
so one can also see them as operators on TΦ(S). For ε = ×, one can not define a×i (S) from a×t
as it was done in eq. (10) – (12). Instead, we define it as the linear extension of a×i (via the
isomorphism TΦ ∼= TΦ(S)) which vanishes on TΦ(S)⊥. Hence, a×i (S) = PS(Id− a◦i (S))PS .

Proposition 3. For ε ∈ {+,−, ◦,×}, the operators aεi (S), acting on the toy Fock space TΦ(S),
behave in the same way as their discrete counterparts aεi .

Proof. For each σ = [σ1, σ2, . . . , σn] ∈ W∗, consider the corresponding basis function of TΦ(S):

Xσ(S) =
1σ(S)∏n

j=1

√
tσj+1 − tσj

,

where 1σ(S) is the indicator function of the rectangle ×nj=1[tσj , tσj+1). We have:

a+i (S)Xσ(S) = PS
a+(1[ti,ti+1))√

ti+1 − ti
Xσ(S) = PSX[i,σ](S) = 1σ1 6=iX[i,σ](S),(13)

a−i (S)Xσ(S) = PS
a−(1[ti,ti+1))√

ti+1 − ti
Xσ(S) = PS1σ1=iX[σ2,...,σn](S) = 1σ1=iX[σ2,...,σn](S),(14)

a◦i (S)Xσ(S) = PSa
◦(1[ti,ti+1))Xσ(S) = PS1σ1=iXσ(S) = 1σ1=iXσ(S).(15)

These relations are identical to the action of the corresponding operators aεi on the abstract toy
Fock space TΦ ∼= TΦ(S) (compare to eq. (6) – (8)). For a×i (S), the conclusion is immediate
from equation (15) and its definition:

a×i (S)Xσ(S) = PS [Id− a◦i (S)]Xσ(S) = Xσ(S)− 1σ1=iXσ(S) = 1σ1 6=iXσ(S).

�

6. Approximation results

This section contains the main result of this work, Theorem 1. We show that the toy Fock
space TΦ(S) together with its operators aεi approach the full Fock space Φ and its operators aεt
when the diameter of the partition S approaches 0.

Let us consider a sequence of partitions Sn = {0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k < · · · } such

that δ(Sn) → 0. In order to lighten the notation, we put TΦ(n) = TΦ(Sn), Pn = PSn and
aεi (n) = aεi (Sn).

Theorem 1. For a sequence of partitions Sn of R+ such that δ(Sn)→ 0, one has the following
approximation results:

(1) For every f ∈ Φ, Pnf → f .
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(2) For all t ∈ R+, the operators a±t (n) =
∑
i:t

(n)
i 6t

√
t
(n)
i+1 − t

(n)
i a±i (n), a◦t (n) =

∑
i:t

(n)
i 6t

a◦i (n)

and a×t (n) =
∑
i:t

(n)
i 6t

(
t
(n)
i+1 − t

(n)
i

)
a×i (n) converge strongly, when n → ∞, to a±t , a◦t

and a×t respectively.

Proof. For the fist part, consider a (not necessarily adapted) word σ = [σ1, . . . , σk] and denote
by 1

(n)
σ the indicator function of the rectangle ×kj=1[t

(n)
σj , t

(n)
σj+1) of Rk

+. It is a classical result in

integration theory that the simple functions {1(n)
σ }σ∈Wk,n>1 are dense in L2(Rk

+) for all k. It is
obvious that the result still holds when replacing Wk with the set of adapted words W∗k .

As for the second statement of the theorem, let us start by treating the case of a+t . For fixed
n and t, let t(n) = t

(n)
i+1 , where i is the last index appearing in the definition of a+t (n), i.e.

t
(n)
i 6 t < t

(n)
i+1. With this notation, we have a+t (n) =

∑
i:t

(n)
i 6t

√
t
(n)
i+1 − t

(n)
i a+i (n) = Pna

+
t(n)Pn.

Hence, for any function f ∈ F , we obtain:

‖a+t (n)f − a+t f‖ = ‖Pna+t(n)Pnf − a+t f‖ 6
6 ‖Pna+t(n)Pnf − Pna+t(n)f‖+ ‖Pna+t(n)f − Pna+t f‖+ ‖Pna+t f − a+t f‖ 6
6 ‖Pna+t(n)‖‖(Pn − I)f‖+ ‖Pna+1[t,t(n))‖‖f‖+ ‖(Pn − I)(a+t f)‖.

By the first point, Pn → I strongly, hence the first and the third terms above converge to 0. The
norm of the operator appearing in the second term is bounded by the L2 norm of 1[t,t(n)) which
is infinitely small when n → ∞. Hence, the entire quantity converges to 0 and we obtained the
announced strong convergence. The proof adapts easily to the cases of a−t and a◦t .

Finally, recall that a×i (n) = Pn(Id− a◦i (n))Pn. Hence, with the same notation as above,∑
i:t

(n)
i 6t

(
t
(n)
i+1 − t

(n)
i

)
a×i (n) = t(n)Pn +

∑
i:t

(n)
i 6t

(
t
(n)
i+1 − t

(n)
i

)
a◦i (n).

The second term above converges to zero in the strong operator topology thanks to the factor
t
(n)
i+1 − t

(n)
i which is less than δ(Sn), and thus we are left only with t(n)Pn which converges, by

the first point, to t · Id. �

7. Applications to free probability theory

This section is more probabilistic in nature. We use the previous approximation result to
show that the free Brownian motion and the free Poisson operators can be approached, in the
strong operator topology, by sums of free Bernoulli-distributed operators living on the free toy
Fock space. We obtain, as corollaries, already known free Donsker-like convergence results.

Let us start by recalling some basic facts about free noises and their realization on the free
Fock space Φ. The free Brownian motion Wt and the free Poisson process Nt were constructed
in [12] as free analogues of the classical Brownian motion (or Wiener process) and, respectively,
classical Poisson jump processes. Recall that a process with stationary and freely independent
increments is a collection of non commutative self-adjoint random variables (Xt)t with the fol-
lowing properties:

(1) For all s < t, Xt −Xs is free from the algebra generated by {Xu, u 6 s};
(2) The distribution of Xt −Xs depends only on t− s.

A free Brownian motion is a process with stationary and freely independent increments (Wt)t
such that the distribution of Wt−Ws is a semi-circular random variable of mean 0 and variance
t− s. Recall that a standard (i.e. mean zero and variance one) semicircular random variable has
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distribution
dµ(x) =

1

2π

√
4− x21[−2,2](x)dx.

IfX is a standard semicircular random variable, then (t−s)X is semicircular of variance (t−s). In
an analogue manner, a free Poisson process is a process with stationary and freely independent
increments (Nt)t such that the distribution of Nt − Ns is a free Poisson random variable of
parameter λ = t− s. In general, the density of a free Poisson random variable is given by

dνλ(x) =


√

4λ−(x−1−λ)2
2πx χ(x)dx if λ > 1,

(1− λ)δ0 +

√
4λ−(x−1−λ)2

2πx χ(x)dx if 0 < λ < 1,

where χ is the indicator function of the interval [(1−
√
λ)2, (1 +

√
λ)2].

The free Brownian motion and the free Poisson process can be realized on the full Fock space
Φ asWt = a+t +a−t and, respectively, Nt = a+t +a−t +a◦t + t · Id. Generalization of these processes
and stochastic calculus were considered in [7, 8, 9].

For the sake of simplicity, throughout this section we shall consider the sequence of partitions
Sn = {k/n; k ∈ N}; obviously δ(Sn) = 1

n → 0. The following result is an easy consequence of
Theorem 1.

Proposition 4. On TΦ(n), consider the operator X(n)
i = a+i + a−i , i ∈ N. Then

(1) For all n > 1, the family {X(n)
i }i∈N is a free family of Bernoulli random variables of

distribution 1
2δ−1 + 1

2δ1.
(2) For all t ∈ R+, the operator

W
(n)
t =

1√
n

bntc∑
i=0

X
(n)
i

converges in the strong operator topology, when n→∞, to the operator of free Brownian
motion Wt = a+t + a−t .

Let us show now that the strong operator convergence implies the convergence in distribution
of the corresponding processes. Let t1, . . . , ts ∈ R+ and k1, . . . , ks ∈ N. Since, by the previ-
ous result, W (n)

t → Wt strongly, and multiplication is jointly strongly continuous on bounded
subsets, we get that (W

(n)
t1 )k1 · · · (W (n)

ts )ks → W k1
t1 · · ·W

ks
ts strongly. Strong convergence implies

convergence of the inner products 〈Ω, ·Ω〉 and thus the following corollary (which is a direct
consequence of the Free Central Limit Theorem [11, 13]) holds.

Corollary 1. The distribution of the family {W (n)
t }t∈R+ converges, as n goes to infinity, to the

distribution of a free Brownian motion {Wt}t∈R+
.

We move on to the free Poisson process Nt and we state the analogue of Proposition 4.

Proposition 5. On TΦ(n), consider the operator Y (n)
i = a+i + a−i +

√
na◦i + 1√

n
a×i . Then

(1) For all n > 1, the family {Y (n)
i }i∈N is a free family of Bernoulli random variables of

distribution 1
n+1δn+1√

n
+ n

n+1δ0.
(2) For all t ∈ R+, the operator

N
(n)
t =

1√
n

bntc∑
i=0

Y
(n)
i

converges strongly, when n → ∞, to the operator of the free Poisson process Nt =
a+t + a−t + a◦t + a×t .
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Proof. As an operator on C2, Y (n)
i has the form

Y
(n)
i =

[ 1√
n

1

1
√
n

]
.

The k-th moment of Y (n)
i is easily seen to be given by the formula

〈Ω, (Y (n)
i )kΩ〉 =

1

n+ 1

(
n+ 1√
n

)k
,

which is the same as the k-th moment of the probability distribution 1
n+1δn+1√

n
+ n

n+1δ0, and the
first part follows. For the second part, we have

N
(n)
t =

1√
n

bntc∑
i=0

Y
(n)
i =

∑
i;t

(n)
i 6t

[
1√
n
a+i +

1√
n
a−i + a◦i +

1

n
a×i

]
=

=
∑

i;t
(n)
i 6t

√
t
(n)
i+1 − t

(n)
i

(
a+i (n) + a−i (n)

)
+

∑
i;t

(n)
i 6t

a◦i +
∑

i;t
(n)
i 6t

(
t
(n)
i+1 − t

(n)
i

)
a×i .

Using Theorem 1, one obtains N (n)
t → Nt in the strong operator topology. �

Again, we obtain as a corollary the convergence in distribution of the process (N
(n)
t )t to the

free Poisson process, which is in fact a reformulation of the Free Poisson limit theorem ([11], pp.
203).

Corollary 2. The distribution of the family {N (n)
t }t∈R+ converges, as n goes to infinity, to the

distribution of a free Poisson process {Nt}t∈R+
.

8. Higher multiplicities

We generalize now the previous construction of the free toy Fock space by replacing C2 with
the N + 1-dimensional complex Hilbert space CN+1. Much of what was done in the C2 extends
easily to the generalized case, so we only sketch the construction, leaving the details to the reader
(for an analogue setup in the symmetric Fock space, see [3]). In what follows, N > 1 is a fixed
integer, called the multiplicity of the Fock space.

Start with a countable family of copies ofCN+1, each endowed with a fixed basis (Ω, X1, . . . , XN ).
We shall sometimes note X0 = Ω. We introduce the free toy Fock space of multiplicity N (see
Section 4):

TΦ = F
i∈N

CN+1(i),

where the countable tensor product is defined with respect to the stabilizing sequence of vectors
Ω(i) ∈ CN+1(i). An orthonormal basis of this space is indexed by the set WN∗ of generalized
adapted words σ = [(i1, j1), (i2, j2), . . . , (in, jn)], where n ∈ N, i1 6= i2 6= · · · 6= in and j1, . . . , jn ∈
{1, . . . , N}, the corresponding basis element being Xσ = Xj1(i1)⊗Xj2(i2)⊗ · · · ⊗Xjn(in).

On each copy of CN+1 we introduce the matrix units aij defined by

aijX
k = δikX

j , i, j, k = 0, 1, . . . , N.

We shall now show how the discrete structure of the free toy Fock space of multiplicity N
approximates the free Fock space Φ = F(L2(R+;CN )). To this end, consider a partition S =
{0 = t0 < t1 < · · · < tn < · · · } of R+ and recall the decomposition of the free Fock space of
multiplicity N as a free product of “smaller” Fock spaces:

F(L2(R+;CN )) = F
i∈N
F(L2([ti, ti+1);CN )).
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In each factor of the free product we consider N+1 distinguished functions: the constant function
Ωi (sometimes denoted by X0(i)) and the normalized indicator functions

Xj(i) =
1j[ti,ti+1)√
ti+1 − ti

=
1jti+1

− 1jti√
ti+1 − ti

, 1 6 j 6 N,

where 1jA(x) = (0, . . . , 0, 1, 0, . . . , 0)> with the 1 in the j-th position if x ∈ A and 0 otherwise.
For a generalized word σ = [(i1, j1), (i2, j2), . . . , (in, jn)], define the element Xσ(S) ∈ Φ by

Xσ(S) = Xj1(i1)⊗ · · · ⊗Xjn(in) = [(x1, . . . , xn) 7→

∏n
k=1 1

jk
[tik ,tik+1)

(xk)∏n
k=1

√
tik+1 − tik

],

with σ = [(i1, j1), (i2, j2), . . . , (in, jn)]. The toy Fock space associated to S (denoted by TΦ(S))
is the span of Xσ(S) for all generalized adapted words σ ∈ WN∗. TΦ(S) is a closed subspace of
the full Fock space Φ and it is naturally isomorphic to the abstract toy Fock space of multiplicity
N , TΦ. For a given sequence of refining partitions Sn whose diameters converge to zero, the toy
Fock spaces and the operators aij approximate the Fock space Φ and its corresponding operators
(compare with Theorem 1):

Theorem 2. Let Φ be the free Fock space of multiplicity N and Sn a sequence of refining
partitions of R+ such that δ(Sn)→ 0. Then one has the following approximation results:

(1) For every f ∈ Φ, Pnf → f .
(2) For i, j ∈ {0, 1, . . . , N}, define εij = 1

2 (δ0i + δ0j). Then, for all t ∈ R+, the operators∑
k:t

(n)
k 6t

(t
(n)
k+1 − t

(n)
k )εijaij(k)

converge strongly, when n→∞, to aij(t).

An example for N = 2. Let us end this section by constructing an approximation of a two-
dimensional free Brownian motion constructed on a free Fock space of multiplicity N = 2. To
this end, define the free Fock space Φ = F(L2(R+;C2)) and its discrete approximation, the
free toy Fock space TΦ = Fk∈NC3

(k). The simplest realization of two freely independent free
Brownian motions on Φ is the pair of operator processes W1(·),W2(·) ∈ B(Φ) defined by:

W1(t) = a01(t) + a10(t) and W2(t) = a02(t) + a20(t).

First of all, it is obvious that both W1(·) and W2(·) are free Brownian motions (see Section 7).
Moreover, the families (W1(t))t and (W2(t))t are freely independent since the functions 11

s and
12
t are orthogonal in F(L2(R+;C2)) (see Proposition 1). We consider, as we did in Section 7,

the sequence of refining partitions Sn = {k/n; k ∈ N}. We introduce the following two families
of operators:

Y1(k) = a01(k) + a10(k),

Y2(k) = a02(k) + a20(k),

and respectively

Z1(k) = a01(k) + a10(k)− a22(k),

Z2(k) = a02(k) + a20(k)− [a12(k) + a21(k) + a22(k)],
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for k ∈ N. It follows from Thorem 2 that for all t ∈ R+, both families are approximations of a
two-dimensional Brownian motion:

1√
n

bntc∑
i=0

Y1(n),

bntc∑
i=0

Y2(n)

 −→
n→∞

(W1(t),W2(t))

and
1√
n

bntc∑
i=0

Z1(n),

bntc∑
i=0

Z2(n)

 −→
n→∞

(W1(t),W2(t)) ,

where the limits hold in the strong operator topology. However, the building blocks of these
approximating processes have completely different behaviours at fixed k. To start, note that the
self-adjoint operators Y1(k) and Y2(k), represented, in the basis (Ω, X1, X2), by the hermitian
matrices

Y1 =

0 1 0
1 0 0
0 0 0

 and Y2 =

0 0 1
0 0 0
1 0 0


do not commute. Hence, they do not admit a classical joint distribution, i.e. it does not exist a
probability measure µ on R2 such that

(16)
∫
R2

ym1 y
n
2 dµ(y1, y2) = 〈Ω, Y m1 Y n2 Ω〉.

On the contrary, for each k, the operators Z1(k) and Z2(k), which act on C3 as the matrices

Z1 =

0 1 0
1 0 0
0 0 −1

 and Z2 =

0 0 1
0 0 −1
1 −1 −1

 ,
commute and they admit the following classical joint distribution (in the sense of equation (16)):

µ =
1

2
δ(1,0) +

1

3
δ(−1,1) +

1

6
δ(−1,−2).

More details on high multiplicity Fock spaces and the analogue construction in the commutative
case can be found in [2, 3].
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