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Abstract. The multicolor traveling salesman problem (MTSP) is de-
fined on a complete graph whose vertex set is partitioned into k subsets,
identified with colors. It aims to find a shortest Hamiltonian tour sub-
ject to restrictions: the number of vertices of the subtour between two
consecutive vertices of the same color is bounded from above and from
below.
In this work, we propose new approximation algorithms. Some special
cases with two colors have already received attention: the bipartite trav-
eling salesman problem and the black-and-white traveling salesman prob-
lem. Polynomial-time approximation algorithms are known for these prob-
lems. We cover new cases with two colors and a special case when all
colors have same size. In addition, we find necessary conditions and suf-
ficient conditions for the MTSP to have feasible solutions. Finally, we
establish a connection between the balance properties of words and the
existence of feasible solutions for the MTSP.

Keywords: approximation algorithms, balance properties of words, black-
and-white traveling salesman problem, traveling salesman problem

1 Introduction

1.1 Problem

The Black-and-White Traveling Salesman Problem (BWTSP), introduced
by Ghiani et al. [7], is defined on a complete graph whose vertex set is
partitioned into black vertices and white vertices. The aim is to design a
shortest Hamiltonian cycle on the graph subject to cardinality and length
constraints: both the number of white vertices as well as the length of the
tour between two consecutive black vertices are bounded from above. In
2010, Tresoldi et al. [12] proposed to generalize the problem by considering
more than two colors. They defined the Multicolor Traveling Salesman
Problem on a complete graph whose vertex set V is partitioned into an
arbitrary number k of subsets of vertices, each of these subsets being
identified with a color. The aim is again to find a shortest Hamiltonian
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cycle, subject to cardinality constraints: for i = 1, . . . , k, the number of
vertices between two consecutive vertices of color i is bounded from above
and from below. Note that there are no longer length constraints.

More precisely, the Multicolor Traveling Salesman Problem – or MTSP
for short – requires in input the complete graph, the partition V = V1 ∪
· · ·∪Vk of its vertices, with Vi ∩ Vj = ∅ for i 6= j, the distance function, and
two integer vectors α = (α1, . . . , αk) ∈ Zk+ and β = (β1, . . . , βk) ∈ Zk+. A
Hamiltonian cycle is feasible if between two consecutive vertices of color
i there are at most βi and at least αi vertices, for i = 1, . . . , k.

Multicolor Traveling Salesman Problem

Input. A complete graph Kn = (V,E), an integer k, a partition V =
V1 ∪ · · · ∪ Vk of the vertex set, a distance function d : E → R+ satisfying
the triangle inequality, two integer vectors α,β ∈ Zk+.

Task. Decide whether a feasible Hamiltonian cycle exists, and if ‘yes’,
find a shortest one.

Note that the BWTSP without length constraints is the MTSP with
k = 2, α1 = α2 = 0 and β1 = +∞, where the color 1 is assumed to be
white.

1.2 Complexity

The MTSP is clearly NP-hard since it contains the usual Traveling Sales-
man Problem as a special case. It also contains the Bipartite Travel-
ing Salesman Problem, which is the special case with k = 2 and with
β1 = β2 = 1 and |V1| = |V2|. The Bipartite Traveling Salesman Problem,
which is also a special case of the BWTSP, is known to be NP-hard as
well, see [5] for instance. However, we do not know whether the MTSP
reduced to its decision version is NP-complete, even if k is fixed. In both
subcases mentioned above – Traveling Salesman Problem and Bipartite
Traveling Salesman Problem –, the problem is a priori known to be fea-
sible. Note that in the decision version, the input can be reduced to the
sizes |Vi| of the subsets and to the vectors α,β ∈ Zk+, with the assump-
tion that αi and βi are both smaller than |Vi| for i = 1, . . . , k, since the
distance function and the vertices are then useless. The input is then of
size O(k log n), while it is of size O(n2L) in its full optimization version
with L being the logarithm of the largest distance in the graph, making
the question of a fast algorithm for the decision problem much harder.
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1.3 Some motivations

The BWTSP was originally motivated by optimization problems in air-
craft routing arising when maintenance constraints have to be taken into
account, not all airports being able to ensure maintenance operations.
In addition to be a natural generalization of the BWTSP, Tresoldi et al.
motivated the study of the MTSP by practical applications in the same
spirit: routing where places with some features have to be visited not too
often and no too seldom. For instance, a security agent has a series of
buildings to visit during a night, each building must be visited a pre-
fixed number of times and the number of buildings visited between two
consecutive visits of the same building must lie in some interval.

1.4 Contribution and plan

The contributions of the present paper are threefold.
First, we propose new approximation algorithms, especially in the case

when there are two colors. In this case, we use the indices W and B to de-
note the colors (white and black) instead of 1 and 2. A result of this type
was given in 2007 by Bhattacharya et al. [4]. They proposed a polynomial-
time (4− 3

2βB
)-approximation algorithm for the BWTSP without length

constraints (case when αW = αB = 0 and βW = +∞). The Bipartite
Traveling Salesman Problem is 2-approximable in polynomial time [5]
and corresponds to the case when βW = βB = 1 and |VW | = |VB|. In Sec-
tion 2.2, among other results, we show Theorem 1 stating that there is a
polynomial-time 2.5-approximation algorithm for the problem of finding
a Hamiltonian cycle of minimal length in a two-colored complete graph
with the constraint that each vertex has in the cycle at most one neighbor
of its color. It is the two-color case of the MTSP with αW = αB = 0 and
βW = βB = 2. Moreover, we propose a (4.5 − 3/k)-approximation algo-
rithm for the problem of finding a Hamiltonian cycle of minimal length
in a colored complete graph with the constraint that the cycle visits the
colors in a periodic way. This case is precisely the MTSP with all Vi of
same cardinality and all βi equal to k − 1 (Proposition 2 in Section 2.3).

Second, we find necessary conditions and sufficient conditions for the
MTSP to have a feasible solution. There is an easy necessary condition
(Proposition 6 in Section 3.4), namely that

αi ≤
∑

j 6=i |Vj |
|Vi|

≤ βi for all i = 1, . . . , k. (1)

In the case of the BWTSP, and more generally in the case of the MTSP
with two colors, the condition (1) is also a sufficient one (Proposition 3



4 The Multicolor Traveling Salesman Problem: approximation and feasibility

in Section 3.2). For three or more colors, things become less clear. The
example with

k = 3, |V1| = 3, |V2| = 2, |V3| = 1
α1 = α2 = α3 = 0, β1 = 1, β2 = 2, β3 = 5

satisfies the necessary condition (1) but has no feasible solution, since it
does not satisfy another necessary condition stated in Section 3.4 (Propo-
sition 7).

Third, we reformulate the question of the existence of a feasible solu-
tion for the MTSP as a word problem (Section 4). Words are already used
in Section 3 as a useful tool to establish necessary or sufficient conditions.
In Section 4, we go further with words and show the links between the
MTSP and notions like the balance property or the partial derivative for
words.

All the proofs are given in Appendix.

1.5 Tools

Let v1, . . . , vn be n distinct vertices of a graph G = (V,E) with vivi+1 ∈ E
for i = 1, . . . , n. We use the convention vn+1 = v1. Then we denote by
(v1, . . . , vn) the Hamiltonian cycle with edge set {vivi+1 : i = 1, . . . , n}.

2 Approximation algorithms

2.1 Preliminaries

Christofidès’ heuristics [6] is used for each of the approximation algo-
rithms proposed in our paper. It is a well-known polynomial-time ap-
proximation algorithm for the Traveling Salesman Problem. The approx-
imation factor is 1.5 in its best version. We use this latter without further
mention.

2.2 Case with two colors

As mentioned in the Section 1.4, the two colors are assumed to be black
and white, denoted respectively B and W . As already noted, the case
with two colors, αW = αB = 0, and βW = +∞ has been proved to be
(4 − 3

2βB
)-approximable in polynomial-time by Bhattacharya et al. [4].

The case βW = βB = 1 and |VW | = |VB| is the Bipartite Traveling Sales-
man Problem and is 2-approximable in polynomial time. It is a result by
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Chalasani and Motwani [5]. Before, a 2.5-approximation algorithm was
proposed by Anily and Hassin [2]. We prove new approximation results.

The first approximation algorithm deals with the case αB = αW = 0
and βB = βW = 2 (Theorem 1). It corresponds to the problem of finding
a minimal length Hamiltonian cycle in a two-colored complete graph such
that each vertex has in the cycle at most one neighbor of its color.

The algorithm uses the construction of a map f : E → {0, 1, 2} such
that

∑
e∈δ(v) f(e) = 2 for all v ∈ V and satisfying an additional property

we explain now. Note that the edges e with f(e) 6= 0 form a collection
Cf of cycles and edges, all being pairwise vertex-disjoint. We require that
each cycle in Cf satisfies the same constraint as the Hamiltonian cycle we
look for: each cycle has no subpath of three or more vertices of the same
color. We also require that each edge in Cf has one of its endpoint in black
and the other in white. The set of all maps satisfying those constraints is
denoted F .

Lemma 1. The problem minf∈F
∑

e∈E d(e)f(e) can be solved in polyno-
mial time.

Using Lemma 1, we are able to prove the following theorem, see Ap-
pendix.

Theorem 1. In the two-color case of the MTSP, if αB = αW = 0, and
βB = βW = 2, there is a polynomial-time 2.5-approximation algorithm.

Another approximation result is the following one.

Proposition 1. In the two-color case of the MTSP, if βW = 1 or αB >

0, there is a polynomial-time
(

2
⌈
βB
2

⌉
+ 1.5

)
-approximation algorithm.

Theorem 1, Proposition 1, and the results of the literature cover all
cases with αB, αW , βB, βW simultaneously in {0, 1, 2}. Indeed, suppose
without loss of generality that |VB| ≤ |VW |. There is no feasible solution
if αW = 2 or βB = 0. The case with αW = 1 or βB = 1 is the Bipartite
TSP. The case with βW = 0 is the usual TSP. The remaining cases are
contained in Theorem 1 or Proposition 1.

2.3 Case with three colors and more

When there are strictly more than two colors, i.e. k > 2, things seem to
be more difficult. The following proposition deals with a special case of
the MTSP that generalizes the Bipartite Traveling Salesman Problem.
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Proposition 2. There is a polynomial-time (4.5− 3
k )-approximation al-

gorithm for the MTSP when |V1| = · · · = |Vk| and βi = k − 1 for
i = 1, . . . , k.

Note that the feasible solutions in this case are exactly the Hamil-
tonian cycles visiting the Vi in a periodic way. The case k = 2 is the
Bipartite Traveling Salesman Problem.

When k = 3, it is possible to improve slightly the approximation ratio
to (3− 1/6). When k = 2, a similar argument gives a ratio equal to 2.5,
which is Anily and Hassin’s result [2].

3 Feasibility and circular words

In this section, we provide necessary conditions and sufficient conditions
for an instance of the MTSP to have a feasible solution. Except when there
are two colors, i.e. k = 2, finding compact conditions for the existence of
solutions is still an open question. We believe this question to be difficult,
since it resembles to difficult questions in word theory, see Section 4.

3.1 Reformulation with words

As noted earlier, the existence of a feasible Hamiltonian cycle only de-
pends on the number of colors k, the number of vertices of each color
|Vi|, and the two integer vectors α,β. This leads us to consider a new
formulation of the decision problem as a problem of words. This point of
view turns out to be useful in the proofs of existence results.

We remind basic notions from word theory, see [9] for more back-
ground.

An alphabet Σ is a nonempty finite set, the elements of which are
called letters. Words are finite sequences of letters. The length |w| of a
word w is the number of its letters, and |w|a denotes the number of occur-
rences of a letter a in w. A word x is a factor of w if there exist two words
u and v such that w = uxv. A a-factor is a factor of w not containing
the letter a, it is said to be maximal if it is maximal for the order relation
“being a factor of”. Any subsequence of w is called a subword of w.

Two words w and w′ are conjugate if there exists two words x and y
such that w = xy and w′ = yx. Conjugation is an equivalence relation.
We identify conjugacy classes and circular words, which are finite circu-
lar sequences of letters. Given a word w, its conjugacy class is denoted
(w). The length of a circular word (w) is the length of w. A factor (resp.
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a-factor) of a circular word (w) is a factor (resp. a-factor) of some conju-
gate of w. Equivalently, a factor (resp. a-factor) of (w) is a factor (resp.
a-factor) of ww of length not greater than |w|.

Interpreting the set of colors as an alphabet {1, . . . , k}, the circular
sequence of colors visited by a Hamiltonian tour T = (v1, . . . , vn) is a cir-
cular word (w). Formally, the circular word (w) is such that w = i1 · · · in
and vj ∈ Vij for j = 1, . . . , n.

Note that in general there are two possible circular words induced
by T since (i1 · · · ik) is in general distinct from (ik · · · i1). We arbitrarily
choose one of them. If T is feasible, the number of vertices between two
consecutive vertices of color i is at most βi and at least αi, for i = 1, . . . , k.
It translates on (w) in the following property: any maximal i-factor of (w)
contains at least αi and at most βi letters, for i = 1, . . . , k.

3.2 Case with two colors

When there are only two colors, there is a necessary and sufficient condi-
tion. As already mentioned, the two colors are assumed to be black and
white, denoted respectively B and W .

Proposition 3. In the two-color case, the MTSP has a feasible solution
if and only if

αW ≤
|VB|
|VW |

≤ βW and αB ≤
|VW |
|VB|

≤ βB.

3.3 Case with three colors

Contrary to what happens with two colors, the necessary condition (1),
given in Section 1.4, is no longer sufficient when there are three colors, as
already noted in the introduction. However, with an additional condition,
condition (1) turns out to be sufficient.

Proposition 4. Assume that k = 3 and that two of the Vi’s have same
cardinality. Then the MTSP has a feasible solution if and only if

αi ≤
∑

j 6=i |Vj |
|Vi|

≤ βi for all i ∈ {1, 2, 3}.

The fact that it is a sufficient condition in this case is a consequence
of a result by Altman et al. [1] for balanced words, see Section 4.

We have another sufficient condition, dealing with the case when there
is a color more represented than the two others together.
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Proposition 5. Assume k = 3, |V1| ≥ |V2|+ |V3|, |V2| ≥ |V3|, and α1 =
α2 = α3 = 0. If

β1 ≥ 1, β2 ≥ 2

(⌈
|V1|

|V2|+ |V3|

⌉)
+ 1,

and β3 ≥
(⌈
|V2|
|V3|

⌉
+ 1

)(⌈
|V1|

|V2|+ |V3|

⌉
+ 1

)
− 1,

then the MTSP has a feasible solution.

3.4 General case

We start with two necessary conditions. The first one is condition (1) of
Section 1.4. The second one allows to prove that the example of Section 1.4
is not feasible. Note that the cardinalities of the Vi are not involved in
this latter.

Proposition 6. If the MTSP has a feasible solution, then

αi ≤
∑

j 6=i |Vj |
|Vi|

≤ βi for all i = 1, . . . , k.

Proposition 7. If the MTSP has a feasible solution, then

j∑
`=1

βi` ≥ j
2 for all j = 1, . . . , k − 1 and all 1 ≤ i1 < · · · < ij < k.

The two following propositions give sufficient conditions for the exis-
tence of solutions. The proof of Proposition 8 uses a circular version of
the so-called “billiard words” [3] and is actually a straightforward gener-
alization of the proof of Proposition 3.

Proposition 8. If we have

αi ≤
∑
j

⌊
|Vj |
|Vi|

⌋
and βi ≥

∑
j

⌈
|Vj |
|Vi|

⌉
for all i = 1, . . . , k,

then the MTSP has a feasible solution.

Proposition 9. Suppose that |V1| ≥ · · · ≥ |Vk| and that |Vi| divides∑i−1
j=1 |Vj | for i = 2, . . . , k. If we have

αi ≤
∑i−1

j=1 |Vj |
|Vi|

and βi ≥
∑i−1

j=1 |Vj |
|Vi|

+ k − i for all i = 1, . . . , k,

then the MTSP has a feasible solution.
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4 Words, partial derivative, and balance properties

In this section the connection between the question of existence of solu-
tions for the MTSP and the word theory is detailed. There is a notion in
word theory that fits perfectly for the MTSP: the partial derivatives. This
notion provides a straightforward formulation of the decision problem as
a problem of ‘integration on words’.

4.1 Reformulation as an integration problem

The partial derivative ∂a(w) of a circular word (w) with respect to a letter
a is a circular word over the alphabet Z+ of length |w|a. For a circular
word (w) = (af1a · · · afr), where the fi’s are maximal a-factors, we have
∂a(w) = (|f1| · · · |fr|). We use the notation Σ∗ to refer to the set of all
words over an alphabet Σ.

The problem of deciding whether there is a feasible solution for the
MTSP is reformulated as a problem of ‘integration on words’ as follows.
Given an integer k, a set of integers (n1, . . . , nk), and two integer vectors
α,β ∈ Zk+, decide whether there exists a circular word (w) over the
alphabet {1, . . . , k} satisfying

|∂i(w)| = ni and ∂i(w) ∈ {αi, . . . , βi}∗ for i = 1, . . . , k.

4.2 Links with the balance properties

Similarities between the decision problem of the MTSP and the balance
property problem are now emphasized.

For a non-negative integer m and a circular word (w) over an alphabet
Σ, a letter a ∈ Σ is m-balanced in (w) if any pair (f, f ′) of factors of w
such that each of f and f ′ is preceded and followed immediately by a letter
a in (w) and such that |f |a = |f ′|a satisfies ||f | − |f ′|| ≤ m. A word is
m-balanced on Σ, if for all a ∈ Σ, the letter a is m-balanced. This notion
was introduced by Sano et al. [10] and used in [8] with the terminology m-
uniform distribution. When m = 1, we use balanced instead of 1-balanced.

Given an alphabet Σ, a family of integers (na)a∈Σ , and an integer
m, the balance property problem aims to decide whether there exists an
m-balanced word (w) with |w|a = na for a ∈ Σ.

Mantaci et al. [8] gave the following characterization of m-balanced
words. The jth partial derivatives of a circular word (w) with respect to
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a letter a is defined by

∂ja(w) =
(

(

j∑
`=1

|f`|)(
j+1∑
`=2

|f`|) · · · (
j+r−1∑
`=r

|f`|)
)
,

with the convention fr+i = fi. Note that the jth partial derivative with
respect to a is a circular word of length |w|a and it is not the derivative
of the (j − 1)th partial derivative.

Proposition 10. A letter a is m-balanced in the word (w) if and only if
for all j ∈ Z+, there exists an integer dja such that ∂ja(w) ∈ {dja, . . . , dja +
m}∗.

An m-balanced word (w) over the alphabet {1, . . . , k} induces a feasi-
ble solution for the MTSP with k colors, with |Vi| = |w|i, and with αi ≤ d1i
and βi ≥ d1i +m, where d1i is the integer of Proposition 10. However, the
existence of m-balanced words does not insure the existence of solutions
for the MTSP with the |Vi|’s and α, β given a priori. We can nevertheless
deduce from Proposition 10 the following proposition, see Appendix.

Proposition 11. Assume that no |Vi| divides
∑

j 6=i |Vj | for i = 1, . . . , k.
A balanced circular word (w) over {1, . . . , k} with |w|i = |Vi| for all i =
1, . . . , k induces a feasible solution for the MTSP for any α, β such that

αi ≤
∑

j 6=i |Vj |
|Vi|

≤ βi for all i = 1, . . . , k.

In other words, if the condition of Proposition 11 is satisfied and if
there exists a balanced circular word (w) over {1, . . . , k} with |w|i = |Vi|
for all i = 1, . . . , k, the condition (1) is necessary and sufficient.

Given the ni’s, deciding whether there is a balanced word is difficult in
general. This problem has been solved for a size of alphabet equal to two
or three, and partially for a size equal to four. For a two-letter alphabet
there exists a balanced word for any choice of na’s. The balance property
problem over a three-letter alphabet has been studied by Altman et al. [1].

Theorem 2. Given n1, n2, n3 ∈ Z+, there exists a balanced circular word
(w) over the alphabet {1, 2, 3} with |w|i = ni for i = 1, 2, 3 if and only if(

n1
n1 + n2 + n3

,
n2

n1 + n2 + n3
,

n3
n1 + n2 + n3

)
=

(
4

7
,
2

7
,
1

7

)
or two ni’s are equal.
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Applying this theorem with Proposition 11, we get the following corol-
lary.

Corollary 1. Assume that no |Vi| divides
∑

j 6=i |Vj | for i = 1, 2, 3. If

( |V1||V | ,
|V2|
|V | ,

|V3|
|V | ) = (47 ,

2
7 ,

1
7) or two of the |Vi|’s are equal, then there exists

a feasible solution for the MTSP for any α, β such that

αi ≤
∑

j 6=i |Vj |
|Vi|

≤ βi for all i = 1, 2, 3.
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Appendix

Proof (of Lemma 1). We build a new graph G, containing the original
graph Kn = (V,E) as an induced subgraph, as follows. We make a copy
V ′W of VW and a copy V ′B of VB. We keep the original edges. We add all
edges uv with u ∈ VW ∪ V ′W and v ∈ V ′B and all edges uv with u ∈ V ′W
and v ∈ VB ∪ V ′B. The edges of G are weighted: the weight w(uv) of an
edge uv of G is d(ūv̄), where ū ∈ VW is u itself or the vertex u is the copy
of, depending on whether u ∈ VW or u ∈ V ′W , and where v̄ ∈ VB is v itself
or the vertex v is the copy of, depending on whether v ∈ VB or v ∈ V ′B.

Now, we show that a f in F provides a perfect matching M in G such
that w(M) =

∑
e∈E d(e)f(e), and conversely that any perfect matching

M in G provides a f in F such that
∑

e∈E d(e)f(e) = w(M). Once this
equivalence has been shown, the conclusion follows, since a perfect match-
ing of minimal weight can be computed in polynomial time.

Let f be a map in F . We deal first with the cycles of Cf and then its
edges.

Let C be a cycle in Cf . We choose an orientation for C and we make a
round trip starting from an arbitrary vertex. Each time a black-black arc
(b, b′) is encountered, with b, b′ ∈ VB, we select the edge bb′ with b, b′ ∈ VB
in G. The same holds for the white-white edges: each time a white-white
arc (w,w′) is encountered, with w,w′ ∈ VW , we select the edge ww′ with
w,w′ ∈ VW in G.

Each time a black-white arc (b, w) is encountered, two possibilities. If
the previous arc is a black-black one, we select in G the edge b′w′ where
b′ ∈ V ′B is the copy of b and w′ ∈ V ′W is the copy of w. If the previous arc
is a white-black one, we select in G the edge bw′ where w′ ∈ V ′W is the
copy of w.

Each time a white-black arc (w, b) is encountered, two possibilities. If
the previous arc is a white-white one, we select in G the edge w′b′ where
w′ ∈ V ′W is the copy of w and b′ ∈ V ′B is the copy of b. If the previous
edge is a black-white one, we select in G the edge wb′ where b′ ∈ V ′B is
the copy of b.

Let bw be an edge in Cf . We select in G the edge bw and the edge
b′w′, with b ∈ VB, b′ ∈ V ′B, w ∈ VW , and w′ ∈ V ′W .

The set of all edges selected in G by this process is a perfect matching
whose weight is the cost of f .
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Conversely, any perfect matching M in G gives a map f in F such
that

∑
e∈E d(e)f(e) = w(M): for uv ∈ E, we define

f(uv) =
∣∣{uv, u′v, uv′, u′v′ : with u′ being the copy of u

and v′ being the copy of v} ∩M
∣∣.

ut

Proof (of Theorem 1). The algorithm proceeds in three steps.

During the first step we compute a map f∗ ∈ F minimizing
∑

e∈E d(e)f(e)
over all f ∈ F . This is done with the polynomial algorithm of Lemma 1.

The second step consists in picking a black vertex in each element –
cycle or edge – of Cf∗ . According to the property required for Cf∗ , we
know that such vertices exist. We compute then a tour TB = (b1, . . . , br)
on these black vertices using Christofidès’ heuristics. The element of Cf∗
the vertex bi belongs to is denoted Ci. Note that each bi has at least one
neighbor wi of color white on Ci. If Ci is not a simple edge, we denote ui
the neighbor of bi on Ci that is distinct from wi; otherwise, ui is defined
as being wi.

In the third step, we build the Hamiltonian cycle T we look for: take
the union of all elements Ci of Cf∗ ; delete from this union all edges uibi
for the Ci being cycles, leading to a collection of r open paths; finally, add
to this collection the edges uibi+1 to get the tour T , with the convention
br+1 = b1. Note that the tour TB is used to determine the cyclic order on
the black vertices picked from each component of Cf∗ .

Figure 1 depicts the construction of the approximate solution.

It remains to show that the length of T is less than 2.5 times the best
achievable length. We denote T ∗ an optimal solution. We have

d(T ) =
r∑
i=1

d(Ci)−
∑

i: Ci is a cycle

d(uibi) +

r∑
i=1

d(uibi+1)

≤
r∑
i=1

d(Ci)−
∑

i: Ci is a cycle

d(uibi) +
r∑
i=1

(
d(uibi) + d(bibi+1)

)
=
∑
e∈E

d(e)f∗(e) + d(TB)
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C1

C2

C3

TB

C1

C2

C3

TB

Fig. 1. Two-color case: construction of the approximate solution from a black tour and
a collection of cycles and edges when αB = αW = 0 and βB = βW = 2

With the help of the triangle inequality and since Christofidès’ heuristics
achieves a 1.5-approximation, we get

d(TB) ≤ 1.5 d(T ∗).

Let f̃ be the map E → {0, 1, 2} such that f̃(e) = 1 if e in T ∗ and 0
otherwise. This map f̃ is in F . Since f∗ has been chosen in order to
minimize

∑
e∈E d(e)f(e), we have∑

e∈E
d(e)f∗(e) ≤

∑
e∈E

d(e)f̃(e) = d(T ∗).

The conclusion follows. ut

Proof (of Proposition 1). If βB = 0, the problem admits a feasible solu-
tion only if VW = ∅ and then coincides with the usual Traveling Salesman
Problem for which Christofidès’ heuristics achieves a 1.5-approximation.
We suppose now that βB ≥ 1. The algorithm proceeds in two steps.

During the first step, we compute a subset F ⊆ E such that each edge
in F has one white endpoint and one black endpoint and such that

degF (v) = 1 if v ∈ VW and max(1, αB) ≤ degF (v) ≤ βB if v ∈ VB (2)

and with minimal d(F ). Such a subset exists necessarily if there is a fea-
sible solution to the MTSP. The one with minimal d(F ) can be computed
in polynomial-time. Indeed this is a special case of the problem studied
p.353 of Combinatorial Optimization [11] which seeks an optimal edge
subset in a bipartite graph that is simultaneously a “b-matching” and a
“a-vertex cover” and reduces to a minimum cost circulation.
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The idea behind the computation of F is roughly the following. An
optimal Hamiltonian tour T ∗ of the MTSP with βW = 1 or αB > 0 has
no adjacent black vertices. There exists thus a subset F̃ of edges with an
endpoint in each color, satisfying condition (2), and with a total length
not too far from d(T ∗): indeed, define F̃ to be the subset of E such that
wb ∈ F̃ if w ∈ VW , b ∈ VB, and b is the closest black vertex to w in T ∗.

During the second step, we build the Hamiltonian cycle T we look
for. We compute a tour TB = (b1, . . . , b|VB |) on the vertices of VB us-
ing Christofidès’ heuristics. The neighbors of bi in (V, F ) are denoted
wi1, . . . , w

i
ri where ri = degF (bi). We define Pi to be the path whose vertex

set is {bi, wi1, . . . , wiri} and whose edge set is {biwi1, wi1wi2, . . . , wiri−1w
i
ri}.

We define then T to be

T = P1 ∪ {w1
r1b2} ∪ P2 ∪ · · · ∪ P|VB | ∪ {w

|VB |
r|VB |

b1}

identifying the tour T and its edge set. Figure 2 depicts this construction.

Fig. 2. Two-color case: construction of an approximate solution when βW = 1 or
αB > 0

It remains to show that the length of T is less than (2 dβB/2e + 1.5)
times the best achievable length. We denote T ∗ an optimal solution of
the MTSP.
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d(T ) =

|VB |∑
i=1

(
d(Pi) + d(wiribi+1)

)
≤
|VB |∑
i=1

d(biw
i
1) +

ri−1∑
j=2

(d(biw
i
j) + d(biw

i
j+1))

+

|VB |∑
i=1

(d(wiribi) + d(bibi+1))

≤ 2 d(F ) + d(TB).

With the help of the triangle inequality and since Christofidès’ heuristics
achieves a 1.5-approximation in its best version, we get

d(TB) ≤ 1.5 d(T ∗).

It remains to bound d(F ). We use the subset F̃ already mentioned: F̃ is
the subset of E such that wb ∈ F̃ if w ∈ VW , b ∈ VB, and b is the closest
black vertex to w in T ∗ in terms of the number of vertices between them.
There is a tie precisely when there is an odd number of white vertices
between two black vertices. In this case, for the central white vertex w,
any of the two black vertices closest to w could be selected. We break the
tie by orienting the tour and by selecting the black vertex being forward.

By the triangle inequality we have

d(F̃ ) ≤
⌈
βB
2

⌉
d(T ∗).

Since F̃ satisfies the same constraints as F , and since F has been chosen
of minimal length, we have

d(F ) ≤
⌈
βB
2

⌉
d(T ∗).

The conclusion follows. ut

Proof (of Proposition 2).
The algorithm proceeds in four steps.

In the first step, we consider the complete bipartite graph with vertex
partition given by Vi∪Vj for each pair i, j with i 6= j. The weight w(e) of
an edge e is its length d(e) in the input graph. For each of these k(k−1)/2
bipartite graphs, we compute a minimal-weight perfect matching Mij .
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The second step considers the complete graph Kk whose vertices are
identified with the colors 1, 2, . . . , k. Each edge ij in Kk gets a length
l(ij) = w(Mij). We compute a Hamiltonian tour C = (j1, . . . , jk) in Kk

with the help of Christofidès’ heuristics.

In the third step, we build a Hamiltonian tour Hi on the vertices in
Vji , again with the help of Christofidès’ heuristics, for each i = 1, . . . , k.

The fourth step aims to build a Hamiltonian tour Ti on the whole
input graph, for i = 1, . . . , k. We explain the construction for T1, the
other Ti’s being built in a similar way. Let H1 = (v1, . . . , vs). The edges
of Mj1j2∪Mj2j3∪· · ·∪Mjk−1jk are partitioned into s vertex-disjoint paths,
each of them having an endpoint in Vj1 and an endpoint in Vjk . For each
vertex v` ∈ Vj1 , we denote by P` the path among them having v` as an
endpoint, and by w` ∈ Vjk its other endpoint. We define T1 to be

T1 = P1 ∪ {w1v2} ∪ P2 ∪ {w2v3} ∪ · · · ∪ Ps ∪ {wsv1}.

The other Ti’s are obtained by taking Hi in place of H1 and by considering
the Mjtjt+1 except for t = i− 1.

The Ti with minimal d(Ti) is the tour T we look for.

Fig. 3. The construction of T1

Figure 3 depicts this construction.
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It remains to show that the length of T is less than
(
4.5− 3

k

)
times the

best achievable length. We denote T ∗ an optimal solution of the MTSP.
Using the triangle inequality we have

d(T ) ≤ d(H1) + 2

s∑
`=1

d(P`)

≤ 1.5 d(T ∗) + 2
k−1∑
t=1

w(Mjtjt+1)

We have similar inequalities when we replace T1 by Ti. Summing all
these k inequalities, we obtain

k d(T ) ≤ 1.5k d(T ∗) + 2(k − 1)
k∑
t=1

w(Mjtjt+1)

≤ 1.5k d(T ∗) + 2(k − 1)l(C)

≤ 1.5k d(T ∗) + 3(k − 1)l(C∗)

where C∗ is an optimal Hamiltonian tour on the complete graph Kk whose
vertices are identified with the colors and with length function l.

Since any feasible solution visits the colors in a periodic way, the
optimal tour T ∗ induces a Hamiltonian tour C ′ on the complete graph
on the colors Kk. Moreover, T ∗ induces a perfect matching M ′ij on the
complete bipartite graph with vertex partition Vi ∪ Vj for each edge ij in
C ′. We have thus

d(T ∗) =
k∑

e∈E(C′)

w(M ′e) ≥
k∑

e∈E(C′)

w(Me) = l(C ′) ≥ l(C∗).

The conclusion follows. ut

Proof (of Proposition 3). Consider a feasible Hamiltonian cycle and the
associated circular word (w) on the alphabet {W,B}. Each occurrence
of the letter W is in exactly one maximal B-factor of (w). Therefore we
have

|VW | =
∑
f∈FB

|f |, (3)

where FB is the set of all maximal B-factors. Note that |FB| = |VB|.
Since αB ≤ |f | ≤ βB for all f ∈ FB, we have αB|VB| ≤ |VW | ≤ βB|VB|. A
similar reasoning exchanging the roles played by the two colors leads to
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αW |VW | ≤ |VB| ≤ βW |VW |.

Conversely, suppose that the inequalities are satisfied. Consider the
trigonometric circle on which we put a mark W every 2π

|VW | and a mark

B every 2π
|VB | , such that no two marks have same position. By a per-

turbation argument, such a construction is possible. Reading the marks
on the circle in an arbitrary direction, we obtain a circular word over
{W,B}. Between two consecutive W ’s, there is at most d|VB|/|VW |e and
at least b|VB|/|VW |c occurrences of B’s. Similarly, the number of occur-
rences of W ’s between two consecutive B’s is between d|VW |/|VB|e and
b|VW |/|VB|c. Hence this word provides a feasible solution for the MTSP.

ut

Proof (of Proposition 4). It is the necessary condition (1). It is a sufficient
condition as a consequence of Corollary 1 in Section 4. ut

Proof (of Proposition 5). We consider a circular word (w′) on the alphabet
{1, X} with |V1| occurrences of letter ‘1’ and |V2| + |V3| occurrences of
letter X, such that there is at most one X between two ‘1’ and at most⌈

|V1|
|V2|+|V3|

⌉
occurrences of letter ‘1’ between two consecutive occurrences

of letter X. Such a circular word exists according to Proposition 3. Now,
we replace the occurrences of X by |V2| occurrences of letter ‘2’ and |V3|
occurrences of letter ‘3’ with the conditions that there is at most one
occurrence of letter ‘3’ between two occurrences of letter ‘2’ and at most⌈
|V2|
|V3|

⌉
occurrences of letter ‘2’ between two occurrences of letter ‘3’. It

is possible, again because of Proposition 3. A straightforward calculation
shows that the obtained circular word on alphabet {1, 2, 3} corresponds
to a feasible solution for the MTSP with the βi satisfying the constraint
of the statement. ut

Proof (of Proposition 6). Consider a feasible Hamiltonian cycle, the asso-
ciated circular word (w), and a letter i ∈ {1, . . . , k}. Each letter distinct
from i is in exactly one maximal i-factor. Therefore∑

j 6=i
|Vj | =

∑
f∈Fi

|f |, (4)

where Fi is the set of all maximal i-factors of (w). Note that |Fi| = |Vi|.
Since αi ≤ |f | ≤ βi for all f ∈ Fi, we have αi|Vi| ≤

∑
j 6=i |Vj | ≤ βi|Vi|. ut

Proof (of Proposition 7). Let j be an integer in {1, . . . , k − 1} and let
i1, . . . , ij be integers such that 1 ≤ i1 < · · · < ij < k. We start with a
small claim.
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Claim. Let u be a word on alphabet {i1, . . . , ij , k} with one occurrence
of k and two occurrences of i` for ` = 1, . . . , j. If the letters i` are such
that i`ki` is a subword of u for ` = 1, . . . , j, then

j∑
`=1

λi` = j2,

where λi` is the length of the i`-factor between the two occurrences of
letter i`.

Proof (of the claim). Let u = a1a2 · · · a2j+1. Note that aj+1 = k. Define
χ(s, `) to be 1 if as is strictly between the two occurrences of the letter
i`, and 0 otherwise. We have then

j∑
`=1

λi` =

j∑
`=1

2j+1∑
s=1

χ(s, `) =

2j+1∑
s=1

j∑
`=1

χ(s, `).

If s ≤ j, we have
∑j

`=1 χ(s, `) = s − 1. If s ≥ j + 2, we have∑j
`=1 χ(s, `) = 2j + 1− s. Moreover,

∑j
`=1 χ(j, `) = j. Therefore,

j∑
`=1

λi` =

j∑
s=1

(s− 1) + j +

2j+1∑
s=j+2

(2j + 1− s) = 2

j∑
s=1

(s− 1) + j = j2.

The claim is proved.

Now, take a feasible solution of the MTSP, and (w) an associated
circular word. Choose an occurrence of the letter k in (w) and for each
i` with ` = 1, . . . , j, consider the closest occurrences of the letter i` on
the left and on the right of this occurrence of k (the word being circular
it can be the same occurrence). It provides a finite word u exactly as
in the statement of the claim. The length λi` on this word is necessarily
bounded by βi` for ` = 1, . . . , j. Finally, we obtain

j∑
`=1

βi` ≥
j∑
`=1

λi` = j2,

as required. ut

Proof (of Proposition 8). Consider the trigonometric circle on which we
put a mark i every 2π

|Vi| for i = 1, . . . , k such that no two marks have same
position. By a perturbation argument, such a construction is possible.
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Reading the marks in an arbitrary direction gives a circular word in which

any maximal i-factor f satisfies
∑

j 6=i

⌊
|Vj |
|Vi|

⌋
≤ |f | ≤

∑
j 6=i

⌈
|Vj |
|Vk

⌉
for any

i. The length of the arc of the circle between two consecutive marks i

being 2π
|Vi| , there are indeed at least

⌊
|Vj |
|Vi|

⌋
and at most

⌈
|Vj |
|Vi|

⌉
marks j

between two consecutive i’s. ut

Proof (of Proposition 9). The proof works by induction on k.

If k = 2 and |V2| divides |V1|, then the circular word with one occur-
rence of letter 2 every |V1|/|V2| occurrences of letter 1 corresponds to a
feasible solution for the MTSP.

Assume now that k > 2 and that |Vi| divides
∑i−1

j=1 |Vj | for all i =
2, . . . , k. We build a word as follows. We consider a solution for the MTSP
with k− 1 colors as in the statement, which exists by induction, and take
the associated circular word. We now insert the letter k exactly |Vk| times

in a periodic way along the circular word, that is every
∑k−1

j=1 |Vj |
|Vk| letters.

Any maximal k-factor f satisfies |f | =
∑k−1

j=1 |Vj |
|Vk| . Consider now i 6= k

and a maximal i-factor f . We note f̄ the subword of f we get by removing
all occurrences of k. By induction, we have∑i−1

j=1 |Vj |
|Vi|

≤ |f̄ | ≤
∑i−1

j=1 |Vj |
|Vi|

+ k − 1− i. (5)

Suppose for a contradiction that |f |k ≥ 2. By construction, the factor f̄

is then such that |f̄ | ≥
∑k−1

j=1 |Vj |
|Vk| . As

∑k−1
j=1 |Vj |
|Vk| ≥

∑i−1
j=1 |Vj |
|Vk| +

∑k−1
j=i |Vj |
|Vk| ≥∑i−1

j=1 |Vj |
|Vi| + k − i, it would contradict Equation (5). Therefore |f |k ≤ 1,

and the i-factor f satisfies |f̄ | ≤ |f | ≤ |f̄ | + 1, which, combined with
Equation (5), leads to the desired conclusion. ut

Proof (of Proposition 11). Consider a balanced circular word (w) over
{1, . . . , k} with |w|i = |Vi| for all i = 1, . . . , k. According to Proposi-
tion 10, there is an integer d1i such that the maximal i-factors of (w) are
of size d1i or d1i + 1. By a straightforward argument similar to the one

used in the proof of Proposition 6, we have d1i <
∑

j 6=i |Vj |
|Vi| < d1i + 1 for all

i = 1, . . . , k. If

αi ≤
∑

j 6=i |Vj |
|Vi|

≤ βi for all i = 1, . . . , k,
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then we have d1i ≥ αi and d1i + 1 ≤ βi for i = 1, . . . , k and (w) induces a
feasible solution for the MTSP.


