
MECHANISMS TO ENSURE CONTINUITY OF SERVICE FOR

IPSEC/IKEV2 BASED COMMUNICATIONS

Daniel Palomares

Orange Labs, Issy-les-Moulineaux, France

Telecom SudParis , Evry, France

daniel.palomares@orange.com

Maryline Laurent

Institut TELECOM, TELECOM SudParis,

CNRS Samovar UMR 5157, Evry, France

maryline.laurent@it-sudparis.eu

Abstract – Today, the internet is crucial in almost any possible

area, idea or project. The exponential growth of such network

(particularly the growth of mobile internet in short term) makes

the security a very important issue to manage. The IPsec suite is

presented as one of the most used and deployed protocols on the

net, commonly implemented as VPN 1 , accompanied by a

mechanism called IKE 2 (IKEv2 stands for version two). It

ensures maintaining a shared state between the connected

entities in a dynamic way, called Security Associations (SAs).

IPsec and IKE protocols both maintain what is called an

IPsec/IKEv2 security context. When implementing IPsec/IKEv2

clusters, the main goal is to maintain the same security level

even if the connection is moved from one gateway to another

with no need for starting a new IPsec/IKEv2 negotiation. This

would save ISP’s3 costs and would assure high availability. In

the other hand, in order to offer a continuous service, the main

issue is to synchronize all security context parameters. This

document gives first the definition of an IPsec/IKEv2 context,

the description of what a Security Association is and how to

establish them. Following sections define the parameters needed

as well as the manner to successfully transfer a security context

in order to ensure continuity of service for an IPsec/IKEv2

based communication, and finally, the framework defined under

StrongSWAN, a well known OpenSource IPsec-based VPN

Solution for Linux systems.

I. WHAT ARE IPSEC AND IKE?

IPsec [KS05] is a protocol used to secure IP datagram based

communications. It is mostly deployed to implement VPNs and

offers data authentication, anti-replay protection, data

confidentiality, and data integrity protection. IPsec protects

from unauthorized viewing or modification of data within a

network or when transferred over an unprotected network like

the public internet. It could be configured manually even though

this is not scalable for large networks. Fortunately IKE is

concerned to sort this out as it dynamically exchanges keys and

negotiates SAs, as explained below.

When two devices share an IPsec connection, their operating
systems keep record of different databases:

1
 Virtual Private Networks

2
Internet Key Exchange

3
 Internet Service Provider

1. Security Association Database: it gives the security
context details for protecting each one of the

unidirectional IPsec connections. This security context

is called IPsec SA.

2. Security Policy Database: it defines how some IP

traffic is handled by the device: bypass IPsec,

protection with IPsec SA or denied traffic.

II. WHAT ARE IPSEC AND IKE SECURITY

ASSOCIATIONS?

When two entities are negotiating a secure channel in between,

IKE protocol starts negotiating parameters for setting up the

IKE Security Associations (IKE_SA) and further IPsec Security

Association (IPsec_SA).

It is important to differentiate an IPsec_SA from an IKE_SA.

Both will assure an IP datagram based communication but they

accomplish different tasks. In order to establish a secure

communication, basically two phases must be accomplished

(see figure 1): first, IKE is negotiating and assigning SAs

(called IKE_SA) for each IPsec peer (Phase 1 exchange called

IKE_SA_INIT), so this policy states the security parameters that

are used to protect the following IKE negotiations, and

negotiations of IPsec SA. Second, in Phase 2 called IKE_AUTH,

authentication of phase 1 is done and IKE negotiates parameters

and sets up matching IPsec_SA (called CHILD_SA) into the

peers. These CHILD_SAs will actually protect the user data

transmission thanks to the algorithms previously negotiated

during “Phase 2”. Finally, both IKE_SA and IPsec_SA define

what is called the IPsec/IKEv2 security context. If more than

one IPsec_SA is needed, additional exchanges of IKE could be

transmitted through a CREATE_CHILD_SA message.

Let’s see into details all the parameters negotiated in order to

establish an IKE_SA and an IPsec_SA (for more details refer to

[Kau05]):

Figure 1 - IKE exchanges.

One SA defines a one-way transmission (for incoming or

outgoing IP packets). If one intends to transmit bi-directional

traffic, then two single SAs are needed for both IKE_SA and

IPsec_SA. Hence, when two end-points establish a bi-

directional connection, each one is negotiating four single SAs:

two IKE_SA (to handle in and out IKE messages) and two

IPsec_SA (to handle in and out IP traffic).

III. THE IPSEC/IKEV2 SECURITY CONTEXT

Our goal is to transfer smoothly the whole IPsec/IKEv2 security

context from one gateway to another. For this purpose, we

identified each parameter of the IKE_SAs and the IPsec_SAs.

Parameters negotiated in phase 1 (IKE_SA_INIT) are:

1. SPI (Security Parameter Index): is the IKE_SA unique

identifier for initiator and responder.

2. Encryption algorithm for the IKE_SA

3. Hash function for the IKE_SA

4. Authentication method to use for the IKE_SA

5. Diffie-Hellman mathematical group

At this point, an IKE_SA is negotiated. The keys in order to

protect further exchanges are calculated and include:

 SKe (encryption key ensure confidentiality),

 SKa (authentication key ensure integrity)

 SKd (derivation key master secret that will be used to

compute further IPsec_SA keys)

Parameters negotiated in phase 2 (IKE_AUTH) correspond to

an IPsec_SA. They are stored in the SAD and SPD (mentioned

in section I):

1. SAD: to uniquely identify a SA, it includes three

parameters called selectors:

o SPI: 32 bits value SA unique identifier

o Destination and Source IP addresses

o IPsec Protocol: AH or ESP

The selectors help identifying a SA, but the security association

is defined by the following parameters:

o Sequence number counter: A 32-bit value that

represents the sequence number field in AH or ESP

headers.

o Anti-replay window: value to determine whether an

inbound AH or ESP packet is a replay.

o AH information: Authentication algorithm, keys,

and key lifetimes.

o ESP information: Encryption and authentication

algorithm, keys, initialization values, key lifetimes.

o Lifetime of this SA: A time interval or byte count

after which an SA must be replaced with a new SA

(and new SPI).

o IPSec Protocol Mode: for tunnel or transport.

o Path MTU: maximum size of an IPsec packet that

can be transmitted without fragmentation.

2. SPD: includes the following negotiated parameters:

o Destination IP addresses.

o Source IP address.

o Upperspec: upper-layer protocol to be used.

IV. STRONGSWAN AND IMPLEMENTATION

Our first efforts to recover the IPsec/IKEv2 security context

have been developed within StrongSWAN. This software

consists in an open-source IPsec-based VPN solution. It

implements both IKEv1 and IKEv2 key exchange protocols,

even though we are focusing uniquely on IKEv2. Nowadays,

StrongSWAN benefits from an active community of developers

and users. Big efforts had been taken to make it work even

between different constructors.

StrongSWAN is basically composed by modules. A daemon

called starter is the starting daemon of the architecture. Once

the starter is running, different modules could be launched

depending on the configuration settings. Each IPsec related

connection is defined in the configuration files: ipsec.conf (IPsec

configuration parameters), ipsec.secrets (where information

about private keys is stored) and strongswan.conf (starter

daemon parameters). In order to launch IKEv1, the concerned

daemon is called pluto and for IKEv2 it is called charon. These

daemons intercept the IP packets at the IP layer so they can

detect any traffic that should be handled by IPsec. Also,

multithreading is present in StrongSWAN, so when the daemon

is launched as a thread, it has multiple processes deriving from

the master thread. This way of programming is called parallel

computing. In order to communicate with charon (IKEv2) or

pluto (IKEv1) daemons, StrongSWAN has a bus module which

receives signals from threads and sends them to their

corresponding listeners. For example, the ha module (which

handles High Availability in StrongSWAN) registers listeners

on the bus and each time an event concerning the ha module

occurs, a desired action is launched. StrongSWAN is handled by

the command line ipsec. The following command would

launch the starter daemon of StrongSWAN:

 > ipsec start

The daemons (charon and pluto) are launched in background

and waiting to interact with the user’s requests. At this point we

could initiate a connection as follows:

> ipsec up <conn-name>

There is a daemon called stroke. It consists in a command line

utility to control charon via the stroke protocol. It handles the

actions launched through the ipsec command and builds a

standard stroke_t message object that is understandable for all

daemons.

Loads

Connection
>ipsec up « conn-name »

IKE exchangesConnection Established

> ipsec starter

Figure 2 - Launching StrongSWAN and initiating connections

In order to initiate the transfer of a security context, we have

modified the database containing different tasks that

StrongSWAN performs. For example, in Figure 2, ipsec up

statement initiates a connection with the name conn-name. At

this point, up defines the action, which is to initiate a

connection through the IKE_INIT exchange.

We have added two new keywords to StrongSWAN’s database

in order to support two further actions: get and put. They are

responsible whether to get (to receive) a security context from

another gateway or to put (to send) a security context towards

another gateway.

> ipsec start

> ipsec up example

> ipsec get example

After ipsec up command is done, an IPsec connection with the

name example is established between two peers. At this point

we are able to break an IPsec connection (thanks to ipsec get

command) and to reestablish it again in the same gateway.

All parameters are stored in a list and then are used to restore

the same IPsec connection between the same two peers. These

parameters are those defined in section III.

V. RELATED WORK

Related works, as [Ala06], already handled to transfer a security

context between two routers, even though the implementation is

based on raccoon4 instead of StrongSWAN, which is a more

powerful IKE daemon tool, furthermore, it handles IKEv2, an

improved version of IKEv1 protocol.

There is actually no extension already implemented in order to

make a VPN gateway highly available between different

4
 Racoon: tool for handling Internet Key Exchange (IKE) in IPsec for Linux,

FreeBSD and NetBSD.

constructor’s devices. There is a StrongSWAN’s module called

ha (High Availability), it distributes all SAs over all

IPsec/IKEv2 cluster members, but once again, there is no

standard. By the way, [SK11] presented at the IETF, proposes

an extension to IKEv2 in order to synchronize IPsec High

Availability clusters.

VI. CONCLUSION

We have been able to recover an IPsec/IKEv2 context in

StrongSWAN. Further investigations will let us transmit this

context between two StrongSWAN implementations and

measure the time it takes to reestablish an IPsec session between

two devices. The goal is to maintain a session without

compromising the security level. Our work should improve

scalability and high availability communications based on

IPsec/IKEv2 protection.

VII. REFERENCES

|Ste05| Andreas Steffen. StrongSWAN, 2005.

http://www.strongswan.org.

|Ala06| F. Allard. Étude de faisabilité concernant le transfert de

contexte pour la sécurité. 2006.

|Kau05| C. Kaufman. Internet Key Exchange (IKEv2) Protocol.

RFC 4306 (Proposed Standard), December 2005.
Updated by RFC 5282.

|KS05| S. Kent and K. Seo. Security Architecture for the

Internet Protocol. RFC 4301 (Proposed Standard),

December 2005.

|SK11| R. Singh, G. Kalyani, Y. Nir, Y. Sheffer, D. Zhang.

Protocol Support for High Availability of IKEv2/IPsec.

July 2011.

http://en.wikipedia.org/wiki/Internet_Key_Exchange
http://en.wikipedia.org/wiki/IPsec
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://www.strongswan.org/

