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Abstract—To manage the huge demand on traffic, the Internet
Service Providers (ISP) are offloading its mobile data from
Radio Access Networks (RAN) to Wireless Access Networks
(WLAN). While these RANs are considered trusted networks,
WLANSs need to build a similar trusted zone in order to offer
the same security level and Quality of Service (QoS) to End-
Users (EU). Although IPsec is widely implemented to create
trusted environments through untrusted networks, the industry
is increasingly interested in providing IPsec-based services with
High Availability (HA) features in order to ensure reliability, QoS
and security. Even though IPsec is not originally well suited to
provide HA features, some mechanisms like VRRP or ClusterIP
can work together with IPsec in order to offer HA capabilities.
ClusterIP is actually used by strongSwan (an open source IPsec-
based VPN solution) to build a cluster of IPsec Security Gateways
(SG) offering HA features.

This paper concentrates on how to build a cluster of IPsec SGs
based on ClusterIP. We describe the main issues to overcome
HA within IPsec. Then, we measure how HA may affect the
EU experience, and provide recommendations on how to deploy
ClusterIP. Finally, our tests over an HTTP connection showed
that ClusterIP allows fast recovering during a failure.

Index Terms—IPsec Clustering, ClusterIP, Security Gateway
Handover, Fast IPsec recovering

I. INTRODUCTION

Nowadays, mobile operators are facing the exponential
growth of mobile data. Among different solutions, a short
term alternative consists in switching mobile data from Radio
Access Networks (RAN) to WLAN network. For example, the
iWLAN [1] architecture proposes to carry the IP data between
the End-User (EU) and the operator’s core network through a
WiFi access. Once the EU is transferred to the WiFi access,
it establishes an IPsec connection with a dedicated Security
Gateway (SG) that gives access to some services or simply to
the Internet. Furthermore, this IPsec session should maintain
the QoS prior to offload and the SG must remain available
and reliable to EUs.

The industry is increasingly interested in providing services
with High Availability (HA) capacities. The HA clusters aim
to increase the availability of a service. In terms of IPsec,
an HA IPsec cluster increases the IPsec service’s availability.
For example, when an IPsec tunnel is established towards
a given SG within a cluster, the IPsec parameters could be
spread among its cluster members. In the event of a failure
during an IPsec session, some other SGs must ensure the
VPN service. Actually, the availability and the continuity of
service are guaranteed by different mechanisms.

It is important to distinguish a mobility event from an IPsec
context transfer due to a failover. Mobility means that an EU
changes the IP address of the tunnel but the IPsec parameters
of the communication remains in the same nodes. On the
other hand, a failover mechanism requires a new SG to go
on with an existing VPN session and the IPsec parameters
must be set.Thus, all these parameters should be transferred
towards another SG, and the affected EUs attaches the new SG.

Throughout this article, we concentrate on the methods that
ensure [Psec availability as well as the continuity of an IPsec
service. This mainly involves the transfer of a tunnel between
different SGs. We also evaluate how an EU is affected when
this happens.

The scenario we consider is an EU that wishes to reach
an HTTP server placed within a trusted network protected
by a SG. The EU first establishes a VPN towards a SG
in the trusted network. Hence, the SG authenticates and
protects the traffic between the EU and the HTTP server. We
use strongSwan [2] to establish these tunnels. In order to
provide HA capacities, we use ClusterIP, allowing to build
a cluster of SGs that share a common IP address without
having a physical machine to perform this task. Thus, each
SG determines from the incoming packets whether it is
responsible for it or not.

Our testbed consists in a cluster of two SGs configured
with a common IP address. When a EU establishes a VPN
towards the cluster, one of the SGs is considered the active
SG, whereas the other member is considered the passive
(also known as stand-by SG). The active SG is the one that
takes responsibility of the tunnel, whereas the passive SG is
waiting to become the newly active SG if a failure occurs to
the active SG. Both SGs synchronize all their IPsec tunnels
so that they keep track of every single tunnel established with
any EU. Our experiments are mainly focused in causing a
failure to the active SG during a VPN session and evaluating
the High Availability performances of the platform. At this
point, the passive SG (not affected by the failure) detects
no activity through the Synch Channel between them and
consequently applies a new ClusterIP policy and becomes
the newly active SG for a given IPsec tunnel. This ensures
availability of the VPN services and avoids renegotiation
from scratch of each tunnel of concerned EUs.



This paper considers a HA solution for IPsec using
strongSwan. First, section II positions our work and related
subjects. Then, section III describes the challenge to over-
come VPN counters synchronization during an IPsec context
transfer. Following section IV explains how to set up the
platform with ClusterIP. Section V explains how strongSwan
implements ClusterIP in order to create IPsec SG clusters.
Section VI shows the experiments performed as well as the
results obtained. And section VII gives our conclusions.

II. POSITION OF OUR WORK & RELATED WORK

Concerning High Availability within IPsec, there exist sim-
ilar works and approaches:

- Yu [3] proposes to solve availability issues on IPsec
by simulating a cluster mechanism for IPsec gateways.
As far as we know, this is the only paper that addresses
similar issues. Its seamless switching mechanism aims
to spread SAs among both active and passive SGs.
The author does not recommend a High-Reliable link
between SGs in order to communicate the SAs, but the
article mentions that the members of the cluster could
be deployed in different network segments. The seamless
switching process consists of adding a notify payload
during the IKE_AUTH exchange in order to establish
two tunnels (one VPN towards the active SG and a
second stand-by VPN towards the passive SG of the
cluster). The passive SG receives the IPsec information
from the responsible active SG and installs a passive
VPN towards the EU. Finally, there is also a mechanism
of seamless switching to transparently change from the
active-to-passive SG and to synchronize ESP replay se-
quence number. On the other hand, the case of a heavily
loaded SG is not considered. The results are based on
simulations and not in real implementation. By contrast,
our ClusterIP-based mechanism do not need additional
IKEv2 payloads, so it is transparent for EUs.

- RFC3768: The Virtual Router Redundancy Protocol
(VRRP) [4] aims to solve the failure of a single SG in a
network. It adds redundancy to the network by creating
a group of SGs with a common virtual IP address. This
is similar to our mechanism based on ClusterIP. As such,
those routers which belong to the same VRRP group
will use the same virtual IP. Every interface that is
configured with VRRP owns a virtual IP address that
is common to all routers being part of the redundant
topology. In the case where two or more routers are
configured with VRRP, the responsibility is determined
with the parameter vrrp-priority. It defines which router
has the biggest priority in order to take responsibility as
a SG among all the group. The goal is to create a default
SG with a unique IP address so that any host accesing
through one of the SGs, does not know how many routers
are composing the group. The responsible SG acting as
default SG is called master virtual router, whereas all the
other routers are called backup virtual routers, which are

ready to get the role of master virtual router and forward
packets if the master virtual router fails. Note that VRRP
does not aim to perform load-balancing as it does not
distribute the load of VPNs among different routers,
but it adds fault tolerance (redundancy) to the network.
By contrast, ClusterIP is able to identify IPsec traffic
and spread the load among different SGs. This permits
VPN distribution among different SGs within a cluster.
Additionally, the existing Open Source implementation of
ClusterIP on strongSwan, supports hot-standby clustering
between different SGs during an active VPN session. For
all these reasons, ClusterIP was selected instead of VRRp
over IPsec.

- RFC6311: Protocol Support for High Availability of
IKEv2/IPsec [5]. This RFC proposes an extension to the
IKEv2 protocol. It aims to solve the refreshing of both
IKEv2 (IKE_SA) and IPsec (CHILD_SA or IPsec_SA)
counters due to a mismatch caused by a failure take-
over process. The scenario addressed in the document is
oriented to solve hot-standby IPsec-Clusters failures. A
hot-standby IPsec-Cluster consists of a group of IPsec
SGs in which there is only one member active at a time.
All the IKEv2/IPsec contexts are distributed among
all the members of the cluster. When a failure occurs
on the active SG during an IPsec/IKEv2 communication,
the End-User (EU) continues sending IKEv2/IPsec traffic
towards the cluster, leading to unsynchronized counters
and packets loss. In order to reestablish the synchroniza-
tion of counters, the new SG sends an IKEv2 message
request of type INFORMATIONAL in order to negotiate
counters. Concerning our work, this protocol solves the
main troubles of synchronization of both IKEv2 messages
(IKE_SAs) and IPsec counters (CHILD_SAs). Although
it involves changes to the IKEv2 protocol, this extension
handles the renegotiation of the IKEv2/IPsec counters
in an efficient manner and should be considered if any
IPsec/IKEv2 counters mis-synchronization occurs.

III. TPSEC/IKEV2 AND HIGH AVAILABILITY
CONSTRAINTS

IKEv2 and IPsec were primarily designed for static config-
urations. IPsec/IKEv2 states has accordingly been designed to
remain installed in the same device during a session or VPN
Tunnel establishment. However, todays requirements demand
facilities to profit from mobility, handover, offload or even
VPN session migration between SGs. This situation leads
often to new extensions. For example: MOBIKE extension for
mobility [6], MOBIKE-X draft for mobility and multihom-
ing [7] [8] [9], CXTP and mechanisms to transfer security
contexts [10] [11] [12] or a High Availability protocol to
synchronize counters [5].

The huge demand on mobile data have increased the de-
mand on system’s availability. This is the goal of ClusterIP.
Clustering a VPN service at the network layer level (e.g. IPsec)
seems to have positive impact when dealing with reliability of
IPsec-based communications. Because IPsec imposes a strict
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Fig. 1. IKE/IPsec counters desynchronization

check of its counters, the main issue is to synchronize both
SG’s IPsec parameters and counters. When an EU establishes
an IPsec protected communication with a server, it first needs
to configure how to protect the communication with the SG.
The protocol used to negotiate the security parameters of
the communication is IKEv2. Further exchanges allow to
agree on a secure channel that serves to negotiate the IPsec
parameters (to actually protect the IP traffic). IKEv2 and IPsec
are different protocols with their own counters. The message
ID counters provide anti-replay protection and keep track of
every IKEv2 exchange, whereas the sequence numbers provide
anti-replay protection and strict control of IPsec traffic. Even
though the amounts of IKE messages do not represent as much
traffic as the IPsec traffic, the synchronization of messages ID
is critical due to the very strict control of the IKE_SAs when
setting up a VPN tunnel and a very narrow window size.

A. IKEv2/IPsec Counter Synchronization

The IKEv2/IPsec suite aims to protect IP traffic. How-
ever, IKEv2 and IPsec act at different layers. IKEv2 is an
application layer protocol which queries and responds to
port 500 and 4500 in order to negotiate a secure channel
between two endpoints sharing an IKE Security Association
(IKE_SA). On the other hand, IPsec is a protocol that takes
place at the IP layer and protects the traffic according to
IPsec Security Associations (IPsec_SAs) policies, which are

previously negotiated through the IKE_SA secure channel.
All IKEv2 exchanges consist of a request-response pair of
messages. It is mandatory to retransmit a request until it has
been acknowledged. The IKEv2 window mechanism allows
to send some IKEv2 requests without receiving a response,
but once the window’s limit is achieved, the oldest request
must be acknowledged resulting in a window increase by
one. This window is managed through the IKEv2 counters
called: Message ID. Each IKEv2 message header includes its
corresponding message ID, so that IKEv2 can strictly control
the window as well as all unacknowledged messages. When
the message ID is n and the window size is w, only IKEv2
messages between n + 1 < Message ID < n 4+ w can
be processed. If no acknowledgment is received after a long
period of time, then the IKE_SA is deleted. Figure 1a shows an
example of the mis-synchronization during IKEv2 exchanges
between two endpoints with a window size w = 1.

Challenges concerning IKEv2 when implementing cluster
of IKEv2/IPsec SGs are:

o Stale Value of Message ID: when takeover takes place,
it is possible that the newly active SG is not aware of
the last IKEv2 response made by the previously active
SG. If this happens when taking responsibility, then the
message ID used by the new responsible SG will be
stalled. Figure 1a illustrates this case.

o Unacknowledged Request: when a passive SG takes re-
sponsibility during a fail-over, it may happen that it is
unaware of the last request sent, and thus the counter
is stale. Receiving an unexpected message ID response
would result in discarding the packet. This leads to
IKE_SA destruction.

The anti-replay parameter of the IPsec Security Association
is called sequence number counter. When the Anti-Replay
service is enabled, it controls every incomming/outgoing IP
packet protected with IPsec. Note that IPsec allows a sender to
skip forward by sending a higher sequence number. Remember
also that a duplicated usage of a sequence number is forbidden.
Thus, when the sequence number counter is n and the window
size is w, any message with sequence number < n —w + 1
will be discarded. A big window size (E.g. 1024) means that a
node is capable to handle a bigger range of packets that arrive
out of order. On the other hand,when sequence number =n
and the window size is very little (E.g. w = 1), the node
is capable to remember only the last sequence number. The
following packet must have a value sequence number > n—1
, otherwise the packet is dropped.

The biggest challenge concerning IPsec when implementing
cluster of IKEv2/IPsec SGs is:

o Stale Sequence Number value: when a passive SG
takes responsibility and becomes the newly active SG,
it may happen that the sequence numbers are out of
date. Figurefefesp illustrate this situation. This occurs
when the newly active SG starts sending IPsec protected
packets with staled sequence numbers, implying that the
EU rejects all the duplicated packets due to anti-replay



protection of IPsec. Instead, note that IPsec allows to
increase these sequence numbers without preventing the
EUs, and the communication would not be interrupted.

There are three ways to avoid sequence number values.
First, in the case that the newly active SG keeps an IPsec
session from another SG, it may send an IKEv2 message
to the EU in order to update both the Message ID and
the sequence number value. However, this solution requires
to create a new notify payload and thus to modify the
IKEv2 protocol itself. Indeed, [5] proposes this method of
resynchronization.

The second approach is a client unaware method. It consists
in creating a cluster of IPsec SGs which maintain synchronized
Message ID values as well as sequence number values. These
latter can be synchronized by implementing ClusterIP (see
sectionfefsec:clusterip).

The third approach concerns the sequence number values
only. When a newly active SG takes responsibility of a tunnel,
it may skip a big number of sequence number values and the
IPsec session will still not be interrupted. Note that the IPsec
protocol allows both endpoints to skip some sequence number
values without prior agreement.

IV. CLUSTERING METHODS FOR IPSEC

This section positions Load-Balancing facing High Avail-
ability, details how takeover may impact the client and finally
describes ClusterIP configuration and operation with IPsec.

A. Load-Balancing Versus High-Availability Clusters

A Load-balancing cluster is a set of nodes where more than
one of the members may be active at the same time. Load-
balanced clusters are implemented by sharing the workload
between cluster nodes and offering better performance. HA-
clusters operate by having redundant nodes intended to provide
a service when other node fails. For Linux, the latter has been
implemented using a free software package developed by the
Linux-HA project, having the heartbeat software as the main
product. Heartbeat automatically monitors resources so that
they can be restarted or moved to another node on failure.

B. ClusterIP Implementation

When using a ClusterIP approach, no special hardware is
required to benefit from Load-Balancing. Indeed, ClusterIP
is intended to provide load-balancing features without having
a load-balancer. The configured members of the cluster does
share a multicast MAC address and thus receive the same
packets. Then, a lower-layer mechanism (netfilter code) on
each node, filters packets by calculating responsibility through
an algorithm (E.g hashing the IP source of each packet). When
applied, ClusterIP acts as a parameter for the iptables
command.

The nodes in a cluster usually have two Network Interface
Cards (NIC). One of the NICs MAC address is replaced
by the shared cluster MAC address and then a common

virtual IP address is mapped onto it. The other NIC, being
completely independent, can be used for any other purpose,
as for example inter-nodes communications (E.g. Hearbeat
mechanism). Given the case where a machine counts with
only one NIC, it is also possible to install a second virtual
IP address on the same interface.

1) ClusterIP & IPsec : Originally, ClusterIP does NOT
handle IPsec traffic. In fact, a given IPsec communication
is associated to counters, and thus must be treated by a
single s. Two SGs cannot handle a given IPsec communica-
tion unless the two SGs share a common IPsec context for
the same communication. However, if an IKE daemon (E.g.
strongSwan) handles to synchronize IKE_SAs and IPsec_SAs
states, a modified version of ClusterIP that handles IPsec traffic
could solve synchronization troubles; but the overhead for
synchronizing ESP sequence numbers could be very high.
Thus, deploying IKEv2 and IPsec in a cluster requires the
synchronization of a large amount of information among all
the cluster members. On the other hand, if less information
is synchronized, fail-over would take longer to perform. As
stated in III-A, synchronizing counters might be the major
barrier to overcome when it comes to setting up a cluster
with IPsec. Some states involved in an IKEv2/IPsec session
establishment are long lasting:

e IKE Security Associations: a SG may establish hundreds
or thousands of IKE_SAs. Also, they may live for several
minutes, hours, or days. They contain keys, selectors and
other information concerning IKE traffic.

e [Psec Security Associations: a SG may establish hundreds
or thousands of IPsec_SAs. Also, they may live for sev-
eral minutes, hours, or days. They contain keys, selectors
and other information concerning IPsec traffic.

e Security Policy Database SPD: they may live as long as
an IKE_SA but they also tend to live longer in some
operative systems.

IKE Counters (Message ID Counters) are the longest living
states but at the same time are required to synchronize less
often since synchronization might only occur whenever an
IKE_SA is created or some INFORMATIONAL or REKEY
exchange occurs. However, IKE needs to update the Message
ID Counter immediately, as processing a message having a
higher ID is not allowed (see III-A). This is achieved by
synchronizing IKE message counters after every single IKE
exchange.

Concerning the anti-replay counters, every ESP/AH pro-
tected packet carries a sequence number that cannot be reused
since the anti-replay feature would consider it as an attack,
leading to drop all the packets and issuing attack warnings.
Synchronizing anti-replay IPsec counters is not reasonable
neither, due to the high load introduced (for each packet
emitted). As a result, the designed solution synchronizes the
counters every n-th packets (10.000 packets). This choice
is justified since skipping sequence numbers is allowed in
IPsec, and highly reliable delivery service (as in IKEv2) is
not provided.



V. STRONGSWAN’S HA PLUGIN

StrongSwan is a complete OpenSource IPsec-based VPN
Solution for Linux operating systems. Its High-Availability
plugin implements a Cluster[P-based mechanism that is able
to maintain IKE_SAs and IPsec_SAs in case of failover. The
current release strongSwan 5.x supports clusters of two nodes
maximum. This section explains how the HA plug-in achieves
active/active High Availability and Load Sharing capabilities.

The IKE daemon of strongSwan synchronizes the IKE state
and the basic IPsec SA state without Sequence Numbers. The
remaining tasks are carried out by a modified ClusterIP plug-
in called High Availability (HA). The HA plug-in requires
two patches against the kernel in order to allow ClusterIP
to work with IPsec. These patches modify the ClusterIP
netfilter module, more specifically, the PREROUTING hook
that marks received packets for forwarding before the decryp-
tion/encryption process. A third patch is required to modify
the Linux firewall (iptables) in order to work over the patched
kernel.

A. IKE Daemon Implementation

o Daemon Hooks: a hook is a function that is in charge of
collecting information (in this case Synchronization data)
for later use in preparing messages that are going to be
sent to other members in the cluster in order to notify SA
state changes or pushing information towards the plugin.
Hooks are created and registered by the plugin at the
daemon bus. Table I shows the hooks used by the HA
plugin.

o Synchronization messages: table II shows the different
synchronization messages types that can be exchanged
between nodes in a cluster according to the implemented
HA plugin of strongSwan. Messages are sent with no en-
cryption by the hook functions using UDP datagrams on
port 4150. However, an IPsec tunnel could be established
in order to transmit this information.

o State synchronization: state changes are executed by
Synchronization messages exclusively. They carry all the
information required to create a duplicate of the active
node IKE_SAs and IPsec_SAs. Duplicated IKE_SAs do
not handle traffic and are installed in a PASSIVE state
while duplicated IPsec_SAs are installed in the Kernel
and subjected to ClusterIP algorithms.

o Control messages : table III shows the different control
messages implemented by the HA plugin. These mes-
sages are sent along with the synchronization messages
with the purpose of notifying segment responsibility
changes.

o Failover: the state of a segment in a cluster is set by
the HA plugin to either ESTABLISHED or PASSIVE.
This is decided on each node using the same ClusterIP
hashing function based on the source IP address. By using
the same hashing function it guarantees that the cluster
responsibility will not be assigned to both nodes at the
same time. The activation/deactivation of a segment is
performed over all the IKE_SAs that are found on that

Hook
ike_keys( )

Description

Receives IKE key material (DH,
nonce, proposals)

Monitors state changes of IKE_SAs
message( ) Used to update IKE Message IDs
child_keys( ) Receives CHILD key material
child_state_change( ) Monitors state changes of I[Psec_SAs

ike_updown( )

TABLE I
HOOKS USED BY THE STRONGSWAN’S HA PLUGIN

Synch Description

Message

IKE_ADD Message used when a new IKE_SA is
established. It contains all information to
derive keys

IKE_UPDATE  Message used to update information of a
concerned IKE_SA, for example, when
authentication is done

IKE_MID I Updates the Message ID of the initiator

IKE_MID_R Updates the Message ID of the respon-
der

IKE_DELETE It is used to delete a corresponding
IKE_SA

CHILD_ADD  Message used when adding a new
IPsec_SA

CHILD_DELETE Message used to delete an IPsec_SA

TABLE I
SYNCHRONIZATION MESSAGES OF THE HA PLUGIN

actual segment. There is no impact on their [Psec_SAs,
they are always active.

e Node reintegration: reintegration is meant to take the
failed node after its recovery and reinserting it into
the cluster as a backup node again. The recently rein-
corporated node needs to fully synchronize the state
information; this is achieved by pushing all the active
IKE_SAs messages, cached in the active node, onto
the newly arrived node. Synchronizing IPsec_SAs is not
possible using the cache, as the messages do not contain
Sequence Number information managed in the kernel. To
reintegrate a node, the active node initiates rekeying on
all IPsec_SAs.

VI. PERFORMANCE TESTS & RESULTS
A. Testbed description

Our performance tests are conducted in two different
topologies, one with HA-plugin enabled (i.e. based on
ClusterIP) and the second one with no HA features (i.e.
no Cluster]P) to compare how ClusterIP improves the
performances. The first scenario, shown in figure 2a, counts
with an HTTP server, an IPsec peer and two VPN SGs;
strongSwan is configured to provide High-Availability cluster



Control Description

Message

SEG_DROP Message to drop responsibility of segments

SEG_TAKE Message to take responsibility of segments

STATUS Heartbeat mechanism to prove liveness and
segment responsibility

RESYNC Used to resynchronize a list of segments

TABLE III
CONTROL MESSAGES FOR SEGMENT CHANGES NOTIFICATION

between the SGs and its members keep in synch through the
Heart Beat link (Synch Channel). In the second topology,
illustrated in figure 2b, the whole traffic goes through a
single active SG, meaning that strongSwan is used as a VPN
solution but with no fail-over node, thus the HA plugin is not
loaded.

The results are represented in graphs with box-and-
whiskers style. This kind of representation is mostly used to
plot statistical data. For every measurement made (>1000
samples per measure), the box-and-whisker plot indicates: (i)
the smallest observation, (ii) the lower quartile, (iii) the upper
quartile, (iv) the largest observation and (v) the median. The
space between the lower and upper quartile represents 50%
of the samples. For more clarifications, refer to [13].

During the tests, we used two different implementations
(time and top) in order to measure the [Psec performance
under different circumstances. The command t ime, launches
the specified program command with given arguments. When
the command has finished to run, time writes a message
to the standard output giving timing statistics about this
program run. The outputs of time are (i) the elapsed real
time between invocation and termination of the command, (ii)
the user CPU time or cpu-us spent executing instructions of
the calling process and (iii) the system CPU time or cpu-sys
spent in the system while executing tasks on behalf of the
calling process.

The command top, provides the real-time CPU activity.
It shows a list of the ongoing system tasks . We identified
the IPsec related task ID within this list and we collected all
the information concerning the CPU consumption during the
tests. All tests were done using different number of CPUs in
order to compare the impact of having several CPUs sharing
the workload (1,2,3 or 4 CPUs).

1) First Test - ClusterIP overhead Measurements Test: The
purpose of this test is to evaluate how much CPU resources and
time the modified ClusterIP adds to the whole VPN service.
Note that when the HA plugin of strongSwan is activated
(i.e. 2a), for each incoming packet the modified ClusterIP
hashes the IP header to check whether or not the SG is the

CLUSTERIP

3com

3com GIGABIT

<
192.168.1.4 GIGABIT B SWITCH
eth2 SwiTcH X 2ap0rts  WORKSTATION
' - @
192.168.1.1 i I
/\ 10.0.0.4
FTP SERVER NS
X
(a) Scenario using ClusterIP
WORKSTATION
192.168.1.4
eth2
FTP SERveR %232 10.0.0.4

10.0.0.161
VPN GATEWAY (SG)
(b) Scenario NOT using ClusterIP

Fig. 2. Scenarios

responsible node to handle that packet.

This test is performed using both topologies described in
figures 2a and 2b, thus comparing the impact of ClusterIP.
The test consists of downloading a file of 1GB from an
HTTP server (placed behind the SG) towards the peer by
using the command wget on the peer’s side. During the
tests based on figure 2a, the HA plugin is enabled whereas
during tests as in figure 2b the HA plugin is deactivated. We
measured the CPU impact and the time spent by the system
to complete an HTTP download (using the wget command).
The IKEv2 exchanges are always protected with AES128-
SHAI1, whereas two different algorithms for ESP encryption
were also analyzed throughout the test: AES128-SHA1 and
NULL-SHA1 (where NULL means no encryption, note that
strongSwan does not support no integrity check and it is
always SHA1). We also varied from one (1) to four (4), the
number of CPUs available on each SG; this allows analyzing
the evolution of the CPU consumption of both types of
encryption. As mentioned in VI-A, the CPU consumption
and the download time (user and system time) are obtained
through the top and t ime command respectively.

CPU Consumption: figures 3a and 3c represent the
CPU usage with no HA features. They implement different
encryption algorithms. Figure 3c uses NULL encryption
whereas figure 3a uses AES128. When NULL encryption is
used, packet treatment is improved and the CPU consumption
decreases around 30% . The CPU consumption of the
userland is practically the same for both cases. So, NULL
encryption might improve CPU performance but it also might
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downgrade the security level as the flow is integrity protected
but not encrypted.

Considering AES128 and NULL encryption but with
HA-plugin activated, figures 3b and 3d illustrate the CPU
consumption and show with different active CPUs a 3 to 8%
CPU Usage. AES128 registers more activity (3% to 8% of
CPU Usage) than a node using NULL encryption (2.5%to
5% of CPU Usage). Once again, the CPU consumptions of
the userland have the same behavior for both scenarios. As in
AES128 with no HA-plugin, a peak is observed in the case
where 2CPUs are used. We observe that the ClusterIP-based
plugin is not well suited when 2CPUs are being used.

Download Time: Results concerning the HTTP download
time are shown in figures 4a, 4b, 4c and 4d. Two main
scenarios are compared: the impact of HA-plugin on the
download time and the impact of the encryption method
used during these downloads. When no HA-plugin is used,
AES-128 encryption introduces more System Time than
when NULL encryption method is used. The System Time
and the Elapsed Time (total time to complete the download)
increase by 11% using AES128. However, no variation is
observed in the User Time, which means that the operating
system always performs the same user mode tasks. Note that
the modified ClusterIP requires the kernel to be patched in
order to allow IPsec packet filtering. No variation of the User
Time was observed when using the HA-plugin. It always
stayed around 1s in all scenarios of the first test. Finally,
when comparing the impact of the encryption methods
showed that a cluster with AES128 takes around 30% more
time to download than a download that uses NULL encryption.

2) Second Test - QoS on an HTTP connection: The second
test is evaluates the quality of service (QoS) ensured by the HA
plugin in terms of upper-layers (E.g. HTTP-based downloads)
reactivity. The test consists of downloading a file of size
50MB from the HTTP server towards the VPN peer. On
the client side, we measured the Elapsed Time (obtained via
the command time), which represents the time to complete
the download. We do the same for both topologies (with &
without HA-plugin, figures 2a and 2b correspondingly), thus
comparing the impact of the HA-plugin and added overhead
during the download.

Both scenarios consider the encryption and integrity
protection with AES128 and SHAI1 algorithms respectively.
With the ClusterIP-based plugin activated, both figures
illustrate the time to download a file of size H0MB.
Figures 5a, 5b show the download time through Ethernet
connections. The User Time stays invariable.

On the other hand, differences are observed when the
HA-plugin is activated. The fact to decide either to treat
or not a packet (by filtering at the IP layer), increases the
System Time by 35%. Also the Elapsed Time increases by
25%, which introduce some overhead.
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Fig. 5. Second Test - QoS on an HTTP Connection

Throughout this test, the fact of using 1,2,3 or 4CPUs
did not impact noticeably the download time. For example,
figures 5a and 5b show that the behavior of the download
time is very similar for each CPU scenario. Finally, as we can
see, upper-layers might be impacted when this HA feature is
activated. Administrators wanting to implement a cluster of
VPN SGs should justify the need for this solution. A typical
example is an environment where thousands of tunnels should
be established, so letting the cluster to spread responsibility
over different nodes, and thus spreading the load on each SG.
Even if the load for a single connection would be slightly
higher by using the HA-plugin, a real positive impact would
be noticeable only when a large number of VPN connections
are spread among the cluster members.

3) Third Test - Interruption Time of an HITP communica-
tion: When a failure event occurs, the Cluster]P module used
by strongSwan allows the cluster to switch transparently from
the active node to the passive SG node. We concentrate on
evaluating the handover network time (see figure 1b) during
fail-over. The scenario is illustrated in figure 2a. The test
consists of downloading a file of size 500M B from the
HTTP server towards the VPN peer. After five 5 seconds of
download, we interrupt the outgoing network interface of the
active VPN SG, causing a failure event. The passive SG of the



cluster stops receiving responses through the Synch Channel,
and thus takes responsibility of the VPN tunnel. We captured
the traffic between the VPN peer and the cluster during the
test. Figure 1 represents some protected ESP traffic at the IP
layer. The period of time between the last ESP packet emitted
by the active SG (SG1) and the first ESP packet emitted by
the passive SG (SG2) is considered as the Handover Time.
This time corresponds to the network delay of takeover from
the active node to the passive SG.

Figure 6 represents the results obtained when measuring
the Handover Time. The quartiles illustrate the download
time. The black colored quartiles shows the download time
during a fail-over event, taking 3 — 4 seconds more than a
download without interruption (colored in red).

Note that the handover time (at the right-bottom and right-
upper side) are illustrated with three vertical lines that rep-
resent the lower quartile, the median and the upper quartile.
The handover time with no traffic control varies from 1.63s
to 1.66s (right-bottom figure). This time is considered as
network-friendly time to perform a fail-over. However, the
difference between the download time on both scenarios (with
and without fail-over) stays over 3s, 1.7s, 3.2s, and 3.1s for
1,2,3 and 4CPUs respectively. This overhead or difference is
due to updating the IPsec databases. An update action is block-
ing the database and thus blocking the communication. This
delay is expected to increase as the number of tunnel increases.
Upper-layers treatment add more delay to the communication
as well the system also takes some time in order to accomplish
all tasks. The results are compliant to the expected 1s to 3s
performances as required in strongSwan’s specifications. We
also tested an additional Handover Time where the bandwidth
limit is imposed to 2M Bps, emulating the use case of a RAN
(Radio Access Network). Once again, the network fail-over
time remains between 1.9s and 2.3s. The reason is that with
reduced rates, the platform is not overloaded. The impact of
the number of CPUs cannot be measured because, the time
between heartbeat exchanges are dominant. Nevertheless, the
No Failover case (colored in red), shows that the ClusterIP
module has better performance when 1CPU or 4CPUs are
being used. In terms of QoS, it should be considered only
to use 1CPU or 4CPUs , instead of 2CPUs or 3CPUs.

VII. CONCLUSIONS

Throughout this article, we measured the impact and
performance of using a modified ClusterIP module in order to
clusterize SGs over IPsec. The availability of the IPsec service
is improved thanks to the hot-standby clustering ensured
by ClusterIP. Also, strongSwan guarantees the continuity
of an IPsec session thanks to its HA plug-in allowing to
spread all the IPsec tunnels among its cluster members.
Results showed that an active SG spends 5% to 8% of CPU
more than a passif SG when clustering IPsec tunnels. We
also observed that there is an additional load when using
the HA-plugin of strongSwan among the cluster members.
Downloading a 500M B file takes 25% more time when using
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ClusterIP and the HA plug-in. As such, an administrator
willing to implement this solution should take into account
the performance costs of adding HA features to its VPN
service.

Furthermore, one main drawback of ClusterIP is its limita-
tion to be deployed within a same network segment. Further
investigation will consider transferring an IPsec/IKEv2 context
between two SGs owning different IP addresses. Finally, we
will also consider stress-tests by using a new load-tester plug-
in developed by strongSwan. Future work will concentrate on
using our own VPN tunnel management tool that allows IPsec
transfer between SGs with different IP addresses.
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