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FLUX WEAKENING STRATEGY OPTIMIZATION FOR FIVE-PHASE
PM MACHINE WITH CONCENTRATED WINDINGS
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E-mail: jinlin.gong@ec-lille.frbassel.aslan@yahoo.com

Abstract. The paper applies an Efficient Global Optimization method (EGO) to imghevefficiency,

in flux weakening region, o& given 5-phase Permanent Magnet (PM) machine. An optimal cdatrol
the four independent currents is thus defidddreover,a modification proposal ahe machine geometry
is added to the optimization process of the global diive effectiveness of the method allows solving
the challenge which consists in taking into account inside thieotatrategy the eddy-current losses in
magnets and iron. In fact, magnet lossesaamétical point to protect the machine from demagnetization
in flux-weakening regionBut these losses, which highly depend on magnetic state of ttemaamust
be calculated by Finite Element Method (FEM) to be accurate. Eiw lras the drawback to be time
consuming. It is why a direct optimization using FEM is critical. EGO methigthg sparingly FEM,
allows to finda feasible solution to this hard optimization problem of control arsilydeof multi-phase
drive.

Keywords: Efficient global optimization (EGQJive-phase, flux weakening, concentrated windings.

INTRODUCTION

Multiphase drives are usead different areas, such as electtiship propulsion [1]aerospace [2] and
hybrid-electric vehicles [3]. Compared to the traditional 3-phase driey present specific advantages:
tolerance to faults especially coming from power electronics devices; lowetimmlgarque splitting the
power across more inverter legs especially for very high pdvisgs or for 10-15 kW very low voltage (<60V)
drives in automotive sector. Moreover in comparison with three-phass dniypplementary degrees of freedom
that are favorabléo optimization appear concerning the current contrallfdthis papera five-phase machine,
designed for automotive applications [5], is considerBais machine presents fractional-slot concentrated
windings because of their high torque/volume ratio, high efficienaysanple winding structure [6]. However,
high rotor losses (in magnets and iron) are one of the undesieitigaeffects which can appear with such kind
of machine windings because of high level of space harmoniasenmpacis particularly significant at high
speed in the flux weakening zone [7]-[9]. These rotor losses rethacesfficiency of the machine and
furthermore they can cause magnet heating which increases the msigoét demagnetization, leading finally
towards full breakdown. Researches have been done in order to davetggimal flux weakening strategy
(choosing the optimal current vector) in 3-phase PM machines [10RfRh few one for multiphase machines
[13]-[16]. In these researches, copper losses are always the firgadotée minimized while iron and magnet
losses are often not considered. The reasothisfabsence is the lack of accurate analytical model for the
calculation of the eddy-current losses and the necessity to havieeaefament model to calculate them. As
consequence the corresponding optimizations are only reliable for keds@nd with classical integral slots
machines whose windings present low harmonic content. In [17]p&misation is done for three-phase
machine taking into account copper losses and iron losses usingditdre.

The present paper applies a control optimization procedure in order to maximieéitiency of low
voltage five-phase machine with concentrated windings considering inmagnet losses. Thapplied
optimization procedure protects the machine from full breakdown by gddionstraint on total rotor losses
level. Total losses in the machine are calculated using FEM H@}ever, despite of the evolution in the
computer performances, direct optimization with FEM is still complex timé-costly. Surrogate-assisted
optimization approach allows approximating the high fidelity model bydaatytical coarse model [19But
due to the inaccuracy of the surrogate model, the solution found enoagh accurate. The Efficient Global
Optimization (EGO) algorithm, one of surrogate-assisted algorithms, hasubegrsuccessfully in the field of
electromagnetic design optimization [20][21]. It uses the FEM in conjunctibim a progressively buiil
surrogate model whose accuracy increases with the search for optingal [&i By this way, EGO benefits
from both the rapidity of surrogate model and the accuracy of FEM.

The work presented in this paper is structured in two main pattse first partflux weakening control
strategy optimizatiorof five-phasePM machine is introduced and solved using the EGO algorithnthe
second part, the effect of the geometry and the control strategy are combined in a common goal in order to
improve the performances of the drive.
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FLUX WEAKENING OPTIMIZATION STRATEGY

Two flux weakening optimizations problems are formulated. Thegigblem only takes into account
the fundamental current. The second problem takes into account both themieml and the Sharmonic
current according to the special characteristics of the five-phase magliirst set of 50 points are selected and
evaluated using FEM in order to build the initial surrogate models fordvotiiems A first optimization test is
performed directly on both surrogate models. According to thengatiion results for the two problems, two
optimization strategies are used: exploration surrogate model strategy (EGO) arnthtexplone (RS-
response surface methodolog¥he final optimization results of the two problems are compared. Thisaghpro
shows clearly the advantage for multiphase machines to use all the avdéigtdes of freedom.

Optimization problem with 2 design variables

a) Problem formulation

The global objective of a machine is to produce torque with good efficiena required speed range.
In case of five-phase PM machine the electromagnetic torque can be cotmputed

1) Tom = K(Eyl; cosg, +El 3c0sp5)/ Q

with E¢ the k-harmonic of electromotive forck: the k-harmonic of current; K: a constaq ;the speedp
phase between k-harmonic of respective electromotive force and current.

Usually, the value of f£electromotive force can be considered as negligible in comparisotwaind
consequently the associated value of currerg imposed to zero in order to minimize the Copper losses in the
stator.

The optimization problem considers in this case only with the furdétal currents{ll,(pl) as design
variables as it is presented in EdqB). The objective function is to minimize, for a characteristic functioning
point in the flux weakening zone, the total losses including rotorstatdr losses. There are four inequality
constraints and one equality constraint. The rotational speed of macHiredigo 16000rpm which is the
allowed maximal speed in flux-weakening zone. The motor powerddle more than 10 kW. In order to avoid
the demagnetization of the magnet, the rotor losses due to eddy cirrnergignets and iron should be less than
400W. The stator losses consisting in copper and iron losses sholdgsbthan 800W. The voltage per phase
should be less than 70 V, due to the limit of the DC voltage bysysup

(2) min (Total Losse}
I1,0,,13=0

S.t.  Speed=16000pm, Power>10KW , LOSSERor < 400N , LOSSES,10r < 800N , m@ﬂu phast)S v

with 1, €[0,230/(A), ¢, [-85-60] (Degred

and Speed maximum rotational speed, Powepower generated by the machine at maximum spesdes;,
—losses in rotor (iron + magnetspssesaio— losses in stator (iron + windinggWpasd — Needed phase voltage
Total Losses- LosseSaii+ LOSSe8or

The chosen range for the phaggis in adequacy to the fact the machine is working in flux-weakemiode.

b) Exploration surrogate model optimization (RS) - Efficient global optimiza&@BO)

Surrogate-assisted optimization approach allows to approximate high fisheldgl by fast analytical
coarse model in order to reduce the computation cost. But, due to the inpafisarogate model, the solution
found is not accurate enough. Moreover the problem of findingltielgoptimum is not always trivial in case
of multimodal models, especially when the multiple local optima are of similar.dEpénefore it is wise to
enhance the accuracy of the model using further function calls @nfilbdate points): new samples coming
from fine EMF model are added to the initial sampling plane.

The EGO algorithm is a surrogate-based optimization algorithm which usesKnigodels a
surrogates for the fine model, in order to guide the searcthéooptimal solution. At each iteration of the
algorithm, the improvement of solution is sought through an intenpi@ization loop, using the surrogate
model. This optimization consists in the maximization of an Infill Crite(i@) whose expression is based on
the Kriging model prediction and an estimate of the prediction error [23]cdigdered IC naturally balances
the exploration of the design space, improving thus the quality oKtlggng surrogate model and the
exploitation of promising regions of the design space in the séardmproving solutions. By this way, the
number of fine model (FEM) calls is drastically reduced, obtaining trugpgtimal trade-off solutions with an
affordable computational cost. The role of the surrogate model within thetlalgds to guide the search for
improving solution.

The computational flow of the EGO algorithm can be describedsteypep as follow:
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Step 1).(Initialization of the sampling plane): Select the initial designs of the samplange using Latin
Hypercube strategy.

Step 2).(Fine model evaluation): Evaluate the designs of the sampling plane withehaodel

Step 3).(Kriging model construction): Build the Kriging models (see appendixy efach objective and
constraint functions

Step 4). (Improvement point searchirind the improvement point using the Infill Criterion (IC), expegsm
equation (3).

3) mxa>{E[| (x)].H Pexp(x)}

Subjectto ginexp(X) <0

Where E[I (x)]is the Expected Improvement (EI) which is the probability thaettienated response is
smaller than the current minimal objective functid®;,(x)is the cumulative distribution function;

JinexplS the inexpensive constraint in terms of evaluation time. DetailseoiCthan be found in [23]

Step 5).(Infill point fine model evaluation): Evaluate the infill point determinechatfgrecedent iteration using
the fine model (FEM).

Step 6).(Best objective value): If the objective infill is lower than the best obje&id constraint violation is
in acceptable tolerance, set this point as the new best point.

Step 7).(Sampled data addition): Add the infill point to the sampled data set.

Step 8).(Stop criterion verification): If the maximum iteration number is attained, theritigh ends.
Otherwise, return to the step 3) and repeat.

The expected improvemerkl] criterion was first used by Schonlau [22]. TEEcriterion quantifies
the amount of improvement expected to be attained by sampling at a ceitim pe mathematical formulation
of theEl criterion is given in (%

@) El = E[I(x)] = {(fmin - Mo (fmm ) +3¢ <fmm ) if$>0
0 ifs=0

whereg and ® represent the normal probability density function, respectively the normal cumulative
distribution function. Within the expression &l we can distinguish the two terms corresponding to the
exploitation of the surrogate models (first term), respectively the etor of the design space (second term).
When the value of the predicted erfos zero (i.e. point already sampled), teBebecomes null, meaning that
for this point there is no expectation of improvement. If theipted errors is different from zero, but small,
and the predicted value of the functipris very small, in compare to the current best known value of the
function f,,,;,, then the first term of the expression (5) becomes predominkotgh, the search is performed
locally, exploiting the good accuracy of the surrogate models prediQiterwise, if the predicted erréris
important, then the second term in (5) takes control, looking to explore afd¢he design space with high
surrogate model inaccuracy.

Thus, the optimization’s algorithm is applied not directly to the surrogate model but well to EI, which
makes it possible to have two complementary mechanisms (exploitation fagiolp allowing a more robust
convergence. The use of the surrogate model makes it possible to reidhte the evaluation number of the
fine model (here FEM to compute the losses).

c) Optimization results using EGO

An initial set of 25 designs was chosen using the full factorial deSigm set of designs were then
evaluated in parallel on the available computer cbsethe FEM. The Kriging models for each objective and
constraint functions are built individually using the initial points. Figrdsents the Response SurfaB&)(of
the total losses function for this optimization problem. The initial set afe2tgns is marked with the black dots.
The optimal solution of this model (green triangle in Fig. 1) waglsousing algorithm Sequential Quadratic
Programming (SQP)The optimal solution was then validated using the FEM. According to thertexpe
optimization result corresponds well the experiment. Another 25 points sdewiby the red dotted rectangle in
Fig. 1 around the optimal one are selected and evaluated by the FEM. Theigieny iodels for the objective
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and the constraints functions are then fitted with the 50 points. ptimab solution with the new models is
presented in Fig. 1 by the blue square.

5000 -,
4000 -
~» 3000 - A
b . . Initial designs
_ﬁ 2000 - A Optim. first problem with 25 points
g @ Optim. first problem with 50 points
— 1000 = ’:#gz;}fé::’%?:’ 3 Y Optim. result with EGO
e S
— ol
0l X
0

50
Phi(theta) 100 0 )

Figure 1. Kriging model and Optimization results

The model of the objective function presented in Fig.1 is completefdre the exploration surrogate
model strategys employed. The EGO algorithm is then used on the Kriging meidel50 initial points Instead
of direct optimization with the surrogate model, the EGO algorithm maximieeBxpected Improvement (EI)
in order to find the infill point which allows improving the model in thest incertitude zone. Once a point
found, it is then evaluated with the FEM and added to the set of sampleith datker to build new Kriging
models on the increased data set. The model accuracy increases prelgressivthe increase of the sample
data. The algorithm stops when the stop criterion is satisfied, reguthé final optimal solution which is
validated by the FEM. Considering the time consuming FEM model, a total efdg@tine model evaluation
is imposed. The final solution with EGO algorithm is marked by thestiad

With the set of 25 points, no solution was found with all the constradntsodification of voltage
constraint to 100 V instead of 70V was then chosen and allows fiadsoedution(l, ¢;) = (114.16, -80.3) that
verifies the constraints with acceptable tolerance (9886W for the posteadhof 10 000W). After adding 25
points around the initial optimal solution, a new optimization with these &fispis done with the voltage
constraintof 70 V. An optimal solution is found with the respected constrélinte,)=(144.3 -82.2)

The table 1 presentscomparison. For each optimal valuggl) found by Kriging model for a set of
25 or 50 points, the values of Power, Losses and Voltage are givenatidirst the Kriging model (square in
grey) and secondly the FEM model (underlined). Relative errors are toeided in order to compare result
obtained with Kriging model to those calculated with FEM, FEM results being takesference.

With the set of 25 points, it appears that the Kriging model leads to aroémare than 30% for the
power and rotor losses. With the set of 50 points which allows verifimmgoltage constraint of 70V, the error
is weak for all variables except of the power (50.9%).

With EGO, the solution (] ¢,)=(142.9 -75.9) is verifying all the constraints if a tolerance of 2.5V (less
than 5%) is accepted for the voltage.

Table 1. Optimal solution with the first optimization problem

I1 » Power Lossesor Lossesiator Upnase(V) Total losses
Q) ©) W w W phase W
0886 384.8 657.9 100 956.9
25 points 114.16 -80.3 7456 288.6 641.6 109.6 930.2
32,6% 33,3% 2,5% -8,8% 2,9%
9886 394.9 783.3 70 1174.3
50 points 144.30 -82.2 6551 376.3 798.7 71.1 1149.2
50,9% 4,9% -1,9% -1,5% 2,2%
Final solution
(with EGO) 142.90 -75.9 10020 379.7 798.7 725 11785




Analysis of results of optimization process shows that the voltagéraionss the most pregnant. As
consequence, it has been decided to explore the impact of injectingahindnic currents in order to attenuate
the pressure due to the DC bus voltage. In the following part, the optiminatitre second problem will be

presented. The same constraints and objective are presented; neverthelessg, filverel@sign variables instead
of two 2 ones.

Optimization problem with 4 design variables

a) Problem formulation

Five-phase structure adds a freedom degree to the control stramgcbfonous machine by allowing
injecting the &' harmonic of current. This property increases the number of inpunptess in flux weakening
strategy from two, in the case of 3-phase machine (fundamentahtcamglitude and phaébl,(pl)), to four in

the case of 5-phase machiflg, ¢;,15,¢;) [1]. The added parameters can have a remarkable effect on iron and

magnet losses in concentrated windings structure especially with thena#lwE iron nonlinearity. The
optimization problem with 4 design variables is presented in Eqn. (5)bdtheoptimization problems (1) and
(5) have the same objective and constraints.

(5)  min (Total Losse}
l101,1 3,05

S.t.  Speed=16000pm, Power>10KW , LOSSESyor <400V , LOSSES510r < 800N , ma%U phast)S v
With 1, €[0,230|(A), ¢, <[-85-60] (Degred, I;<[025] (A), |ps|<[090] (Degred

b) Exploitation surrogate model optimization

As in the first optimization problem, a first set of 25 points is seleckbd Kriging model of the
objective function with the 25 initial designs (black points) is presented in g @e can see that the Kriging
model with four design variables is less complicated than the previous ongvaittesign variables. The first
optimal solution of this model (green triangle in Fig. i sought using algorithm Sequential Quadratic
Programming (SQP) with multi-start strategy. The solution validated by BEkharked with a red filled star
The both solutions (Kriging model and FEM) are very close, and the Krigiadel can be considered
sufficiently accurate. The exploitation surrogate model optimization strategyée lthosen for this problem. It

means that the infill points at the optimum predicted by the surrogate milide¢ wrogressively added to the
sampling plane

Total losses versus Current I1 et Phil

‘
3500 -, |
1
‘
3000 - |
<) ;
S 25004
S 7 i * Initial designs
mQ 2000 — Z / A  Optim. with 25 points
;
o Y Validation result with FEM
9 1500+ Z 24
i el
- e oy Ay o
1000-| i e
: Sa
e
| «,'"J'/',"I/,,ZI/ >
Y e

250

Phl(degree)

I1(A)
Figure 2. Kriging model with 25 samples and Optimization results with 4 desigables

The table 2 presents the improvement process of optimization by itefBtiercomparison between the
optimal solutions and the FEM evaluation result underlined at the optisnprasented respectively in the table
2. All the optimal solutions respect the constraints, but the FEM result®asatisfied until the one with 45
points. The first line presents the results with 25 points, and bettothue and the voltage constraints are not

respected. After adding 10 points to the sampling plane, only thageottonstraint (less than 70V) is not
respected.



Table 2. Optimal solution with the first optimization problem

Total

I 1 I3 P2 Power | LosSegor | LOSS€Sator | Uphase l0sSes

A @) G @) (W) (W) (W) ) W)

9886 202.0 643.6 70 845.6

25pts | 126.7 -784 15.02 30 9684 201.2 677.9 725 879.0

2,1% 0,4% 51% | -3,4% | -3,8%

9886 207.9 648.6 70 870.3

35pts | 1084 784 | 13.93 257 | 10941 | 2095 662.6 | 72.1 | 8722

-9,6% | -0,8% 21% | -29% | -0,2%

45pts 202 o 548 o 9953 213.3 666.4 69.93 879.6
: 129. -79.1 13.4 19.5

(final) 9953 213.3 666.5 69.91 | 879.8

The exploitation surrogate model optimization allows finding the feasible swoltgiothe 4 design
variables.

¢) Comparison and conclusion between the two problems.

The two optimization problems are compared in this part. The table 3 préseotsmparison between
the optimal solutionsBy injecting the % harmonic currents, the voltage constraint is respected while the
mechanical torque is kept. Furthermore, the total losses in the machine el@&%a3he comparisogan well
illustrate the advantages for 5-phase machines to inject third-harmonic caipone

Table 3. Comparison between thefirst two optimization problems

Torqu Total
Iy o I3 @3 o Power | LOSSeior | LOSSeSawr | Uphase | |osses
A ©) A ©) (Nm) (W) W) W) Y W)
1St
problem 142.9 -759 0 0 6.0 10020 379.7 798.7 725 1178.5
2nd
problem 129.2 -79.1 135 195 59 9953 213.3 666.5 69.9 879.8

Two optimization strategies are employed respectively for the two probkxpkration surrogate
model optimization and exploitation one. The choice of the most appropriatezegitbm strategy depends on
the model complexity. If the model to be approximated is smootmaindomplex, the exploitation strategy (RS)
canbe employed; otherwise the exploration one (EGO) should be used.

OPTIMAL SHAPE DESIGN OF 5-PHASE HIGH SPEED MACHINE

The flux weakening control strategy is accomplished in the previouslpahis part, the shape design
optimization is presented.

a) Optimization problem formulation with 6 design variables

The objective of this part is to optimize design of the 5-phase pigddsmachine. Compared to the 4
design variables optimization problem, two dimension variables are added intoridde into account the
machine structure optimization: the rotor radius and the stator tooth width tidth + slot width =constant)
(see Fig. 3). Both added parameters have remarkable effects ondb#velunction. The increase of the rotor
radius decreaseke height of the stator slots causing more copper losses (smaller copiper) send vice versa.
The increase of the stator slot width (by decreasing the tooth widthnds the copper section leading to less
copper losses. Furthermore, the machine magnetic structure dependsonidieé two optimized dimensions
which gives these parameters an important influence on the machine dodje€eldy-current losses. The same
objective and constraints are considered compared to the two precedent prdlileroptimization problem is
presented in Eqn. (6):

(6) min
L1011 305, RW

S.t.  Speed=16000pm, Power>10KW , LOoSSE&or < 400N , LOSSES10r < 800N, ma%U phast)S v

(Total Losse}



With 1, €[0,230)(A), ¢, [-85-60](°), 15 [0, 25](A), |ps| €[090] (%), Re [3560)(mm), W & [313(mm)

Where R- the radius of rotor, W the stator tooth width.

b) Optimization design using EGO algorithm

As the number of design variables increases, it is difficult to have an accuratatumuoglel. There
are two approaches to enhance the accuracy of surrogate model: increasapiiveg gaoints and use the
appropriate sampling strategy. In our case, an initial set of 70 pointslLetin Hypercube strategy is selected
for the 6 design variable problem. The EGO algorithm is used in tod#tain a global optimum and have an
accurate surrogate model around the optimum. A total budget of 200 dithel Bvaluations is imposed during
the EGO optimization process.

The table 4 presents the comparison results between the 4 and 6 desida pasizlbms. The initial
dimension parameters are considered for problem with four variables.

Table 4. Optimal solution comparison

Total
I, o1 I3 @3 R W Power | Lossegyor | LOSSeSat Uphase Losses

Q) ) | @ || (mm| (mm) (W) W) or (W) M W)

4
variables | 129.2 | -79.1 | 135| 195 | 450 7.0 9953 2133 666.5 69.9 |879.8

6
variables | 159.4 | -76.2 | 5.2 | 71.4| 43.0 4.2 10640 163.5 675.8 63.8 [839.3

f ‘ Stator
|

.llagnrrs

B

Fig. 3 Studied machine structure with the two optimized dimension&/)R,

After adding two dimension parameters, the high speed machine ceovémmtably the performance
at the optimal solution. The critical rotor losses are reduced (23%) while all ts&adots are respected.
Moreover the final optimal solution can work with lower DC voltage huysply (-9%) and higher mechanical
power (+7%)

CONCLUSIONS

The optimization results prove the remarkable effect of using the freedgraedoffered by 5-phase
structure on iron and magnets losses. Whereas, by injecting reldtvel3® harmonic of current (:0% of
fundamental) total losses are notably redu@s¥4j. Moreover, due to this optimization procedure rotor losses
are decreased far below the imposed liMif%), which makes the machine well protected against magnet
demagnetization. An optimization with EGO algorithm is ongoing, whichaldw obtaining progressively the
optimal solution of the FEM with small evaluation budget. Combining Wwito geometric parameters, a more

complex optimization control problems formulated and resolved. The performances of the 5-phase machine

with concentrated windings are notably improved at high speed QL6o@t).
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APPENDI X
Basis of the Kriging method

Kriging method was first developed by D. Krige and was introduced in ffet@rmputer science and
engineering by Sacks et A{). In Kriging model, an unknown functioy can be expressed as in:(7

() y = B(x)+Z(x)
where B(X) is a regression or polynomial model, giving the glolealdtof the modeled function y, and Z(x),

which is a model of stochastic process, gives the local deviationstiegiabal trend. The Gaussian correlation
function is chosen in order to control the smoothness of the model.

The mean square error (MSE) is the expected value of difference betwetrnethresponse and the
estimated one. By minimizing the expected MSE, the expression for thednigidel is:

®) §(x) =B+ TR y—18)

wheref is a unit vector with length equal to the number of sampled pdiis the estimator for the
regression modell is a correlation vector between a new locatbto be estimated and the sample points

location, Y is the true response vector of the sampled points.



