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Hyper invariant subspaces for some compact perturbations of

multiplication operators

Hubert Klaja
∗

Abstract

In this paper, a sufficient condition for the existence of hyper invariant subspace of
compact perturbations of multiplication operators on some Banach spaces is presented.
An interpretation of this result for compact perturbations of normal and diagonal
operators on Hilbert space is also discussed. An improvement of a result of [FX12] for
compact perturbations of diagonal operators is also obtained.
Keywords: invariant subspace problem; hyper invariant subspace problem; compact
perturbations of normal operators; compact perturbations of diagonal operators.
MSC 2010 : 47A15, 47A10, 47B15, 47B38.

1 Introduction

Let X be a separable complex Banach space. The invariant subspace problem is the
question whether every bounded linear operator T ∈ B(X) has a non trivial invariant
subspace; in other words does there exist a closed subspace M of X such that M 6= {0},
M 6= X and T (M) ⊂ M? The hyper invariant subspace problem is the question whether
every bounded linear operator T ∈ B(X) such that T 6= λI has a non trivial hyper invariant
subspace, i.e. whether there exists a closed subspace M of X such that M 6= {0}, M 6= X
and for every bounded operator S ∈ B(X) such that ST = T S, we have S(M) ⊂ M? Enflo
[Enf87] and Read [Rea86] proved that the invariant subspace problem fails on some Banach
spaces. On the other hand, Argyros and Haydon [AH11] constructed a Banach space where
every bounded linear operator has a non trivial hyper invariant subspace. However the
invariant and hyper invariant subspace problem are still open in reflexive Banach spaces,
and in particular in Hilbert spaces. For normal operators in Hilbert spaces, the spectral
theorem ensures the existence of an hyper invariant subspace. Lomonosov [CP11, Theorem
6.1.2] proved that every compact operator on a Banach space has a non trivial invariant
subspace. But if N is a normal operator on a Hilbert space H, and K is compact operator
on H, we don’t know in general if N +K has a non trivial hyper invariant subspace or not.
We refer th reader to the book [CP11] for more information about the Invariant Subspace
Problem.

In 2007 Foias, Jung, Ko and Pearcy [FJKP07] proved the following theorem.

Theorem 1.1 ([FJKP07]). Let (en)n∈N be an orthonormal basis in a separable complex
Hilbert space H. Let D =

∑
n∈N λnen ⊗ en be a bounded diagonal operator on H. Let
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u, v ∈ H be two vectors. If

∑

n∈N

|〈u, en〉|
2
3 < ∞,

∑

n∈N

|〈v, en〉|
2
3 < ∞,

then the rank one perturbation D + u ⊗ v of the diagonal operator D has a non trivial
hyper invariant subspace.

In 2012 Fang and Xia [FX12] improved this result. Their approach allowed to consider
finite rank perturbations of a diagonal operator. They also improved the summability
condition of Foias, Jung, Ko and Pearcy. Here is their result.

Theorem 1.2 ([FX12]). Let (en)n∈N be an orthonormal basis in a separable complex
Hilbert space H. Let D =

∑
n∈N λnen ⊗ en be a bounded diagonal operator on H. Let

u1, . . . , ur, v1, . . . , vr ∈ H be vectors. If

r∑

k=1

∑

n∈N

|〈uk, en〉| < ∞,
r∑

k=1

∑

n∈N

|〈vk, en〉| < ∞,

then the finite rank perturbation D + u ⊗ v of the diagonal operator D has a non trivial
hyper invariant subspace.

The goal of this paper is to improve Fang and Xia’s approach in order to deal with
some compact perturbations of multiplication operators on separable Lp spaces. The
well-known spectral theorem for normal operator tells us that every normal operator is a
multiplication operator on some L2 space. As a diagonal operator is a particular case of
a normal operator, this can be seen as a generalization of the previous result.

1.1 Notations

In this paper, we will denote by H a separable complex Hilbert space, and by X a separable
complex Banach space. We will denote by m the Lebesgue measure on the complex
plane. We will denote the set of all bounded operators (respectively the set of all compact
operators) acting on X by B(X) (respectively K(X)). Let T ∈ B(X) be a bounded
operator. We will denote the commutator of T by

{T }′ = {S ∈ B(X), ST = T S}.

We will also denote respectively the spectrum, the point spectrum and the essential spec-
trum of an operator T by σ(T ), σp(T ) and σe(T ). Let (Ω, µ) be a borelian σ-finite measured
space. Let p, q ∈]1, ∞[ be two positive numbers such that 1

p
+ 1

q
= 1. If f ∈ L∞(Ω, µ) is a

bounded complex valued function, we will denote by Mf : Lp(Ω, µ) → Lp(Ω, µ) the linear
operator defined by Mf (g)(ξ) = f(ξ)g(ξ).

Let (sn)n∈N be a sequence of positive real numbers such that limn→∞ sn = 0. Let
(un)n∈N be a sequence in Lp(Ω, µ) and (vn)n∈N be a sequence in Lq(Ω, µ). For all u, x ∈

Lp(Ω, µ) and v ∈ Lq(Ω, µ), we define u ⊗ v(x) =
(∫

Ω x(ξ)v(ξ)dµ(ξ)
)

u. We will denote by

K : Lp(Ω, µ) → Lp(Ω, µ) the operator defined by K =
∑

n∈N snun ⊗ vn. In general this
operator need not to be compact (it may also be unbounded).
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1.2 Main Results

Here are the mains results of the paper. The first result is a generalization of Fang and Xia’s
approach in [FX12]. The generalization allow to consider some compact perturbations of
multiplication operators in Lp spaces. Remember that a diagonal operator is a particular
case of a multiplication operator on a L2(Ω, µ) space with µ being a purely atomic measure.

Theorem 1.3. Let (Ω, µ) be a borelian σ-finite measured space. Let f ∈ L∞(Ω, µ) be a
bounded complex valued function. Let (un)n∈N be a sequence in Lp(Ω, µ) and (vn)n∈N be a
sequence in Lq(Ω, µ). Denote by K the operator defined by K =

∑
n∈N snun ⊗ vn. Suppose

that K is compact and that there exists a Jordan curve Γ in C such that

1. There exist a, b ∈ σe(Mf ) such that a is in the connected component of C bounded
by Γ and b is in the unbounded component,

2. µ(f−1(Γ)) = 0,

3. For all n ∈ N, z ∈ Γ, we have that un ∈ Ran(Mf − z) and vn ∈ Ran(Mf − z)∗,

4. Denote by A(z) the (possibly unbounded) operator A(z) =
∑

n∈N sn

(
(Mf − z)−1un

)
⊗(

(M
f

− z)−1vn

)
. For all z ∈ Γ, we suppose that A(z) is a compact operator, and

A : Γ → K(X) is a continuous application.

Then the bounded operator T = Mf + K acting on Lp(Ω, µ) has a non trivial hyper
invariant subspace.

The second result is a generalization of Fang and Xia’s result (cf Theorem 1.2 ) in the
particular case of compact diagonal operator on Hilbert spaces. This is a consequence of
the previous Theorem.

Theorem 1.4. Let (ek)k∈N be an orthonormal basis of H. Let D =
∑

k∈N λkek ⊗ ek be
a bounded diagonal operator on a Hilbert space. Let K =

∑
n∈N snun ⊗ vn be a compact

operator. If there exist two sequences (an)n∈N, (bn)n∈N such that for all n ∈ N, anbn = sn

and

∑

n∈N

∑

k∈N

|an 〈un, ek〉| < ∞ (1)

∑

n∈N

∑

j∈N

|bn 〈ej , vn〉| < ∞, (2)

then T = D + K has a non-trivial hyperinvariant subspace.

Of course, Theorem 1.2 is contained in this one.

1.3 Preliminaries

Before we start the proof of the mains theorem, we will need some material. Our first
statement is a folklore result. A proof of it in the Hilbert space case using Lomonosov’s
Theorem can be found in [FX12, Proposition 4.1].
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Proposition 1.5. Let P ∈ B(X) be an idempotent such that dim(P (X)) = dim((I −
P )(X)) = ∞. Then for any compact operator L, the operator P + L has a non-trivial
hyper invariant subspace.

Proof. First, note that if σp(P + L) 6= ∅, then P + L has a non trivial hyper invariant
subspace. Suppose that σp(P + L) = ∅. By Weyl’s Theorem (see for instance [RR73,
Chapter 0, Theorem 0.10]), we have that σ(P + L) ⊂ σ(P ) ∪ σp(P + L) = σ(P ) = {0, 1}.
As {0, 1} = σe(P ) ⊂ σ(P + L), we get that σ(P + L) = {0, 1}. So by the Riesz-Dunford
functional calculus, we infer that P + L has a non trivial hyper invariant subspace.

The next statement is a well known fact from the theory of Bochner integral. The
reader can find a proof in [Hil48].

Proposition 1.6. Let (Ω, µ) be a measured space. If F : Ω → K(X) is a weakly measurable
map and ∫

Ω
‖F (z)‖ dµ(z) < ∞,

then

L =

∫

Ω
F (z)dµ(z)

is a compact operator.

We recall next a well known result concerning normal operators on complex Hilbert
spaces. Its states that every normal operator on an Hilbert space can be seen as a mul-
tiplication operator on some measured space. We refer the reader to [Arv02, Theorem
2.4.5], for a proof of this result.

Theorem 1.7. Let N ∈ B(H) be a normal operator on a complex Hilbert space H. Then
there exists a sigma-finite measured space (Ω, µ), a bounded function f ∈ L∞(Ω, µ) and a
unitary operator W : L2(Ω, µ) → H such that

Mf W = W N.

Lastly we mention a well known result for compact operators on a Hilbert space. The
reader can find a proof of this result in [GGK90, Chapter VI, Theorem 1.1].

Theorem 1.8. Let K ∈ K(H) be a compact operator on the Hilbert space H. Then there
exist two orthonormal families (un)n∈N, (vn)n∈N of vectors in H and a sequence (sn)n∈N

of positive real numbers such that limn→∞ sn = 0, and

K =
∑

n∈N

snun ⊗ vn.

2 Proof of Theorem 1.3

To prove Theorem 1.3, we will use the same approach as in [FX12]. The idea is to create,
for all z ∈ Γ, a "nice" right inversion formula for T − z. Then, using some unconventional
Riesz-Dunford functional calculus, we will prove that the commutator of T is included in
the commutator of a compact perturbation of an orthogonal projection. This last operator
will have a non trivial hyperinvariant subspace, and so T will as well. We start with some
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technical results for building the right inversion formula. In this section we will assume
that the assumption of Theorem 1.3 are always satisfied. In particular we need to assume
that K =

∑
n∈N snun ⊗ vn is a compact operator (as it is written, K need not to be a

compact operator in general).

Lemma 2.1. Denote by T = Mf + K the compact perturbation of the multiplication
operator Mf on the Banach space Lp(Ω, µ). Suppose that assumptions 3 and 4 of Theorem
1.3 are satisfied and σp(T ) = ∅. Then for every z ∈ Γ, I + A(z)(Mf − z) is invertible.

Proof. Suppose that for some z ∈ Γ, I + A(z)(Mf − z) is not invertible. As A(z) is
compact and Mf − z is a bounded operator, we have that A(z)(Mf − z) is compact.
So −1 ∈ σp(A(z)(Mf − z)). Hence there exists h ∈ Lp(Ω, µ) such that h 6= 0 and
A(z)(Mf − z)h = −h. We have that

−h = A(z)(Mf − z)h

=




∑

n∈N

sn

(
(Mf − z)−1un

)
⊗
(
(M

f
− z)−1vn

)


 (Mf − z)h

=




∑

n∈N

sn

(
(Mf − z)−1un

)
⊗ vn



h

Applying (Mf − z) on each side of the equality, we obtain

−(Mf − z)h =



∑

n∈N

snun ⊗ vn


h = Kh.

So we have that zh = (Mf + K)h = T h, thus z ∈ σp(T ) which is a contradiction with the
assumption that σp(T ) = ∅.

The following lemma is a straightforward corollary of Lemma 2.1.

Lemma 2.2. Suppose that assumption 3 and 4 of Theorem 1.3 are satisfied and σp(T ) = ∅.

Then for all z ∈ Γ, B(z) =
(
I + A(z)(Mf − z)

)−1
A(z) is a compact operator. Moreover

the application

B : Γ → K(X)

z 7→ B(z)

is continuous.

Our next lemma is

Lemma 2.3. Let Γ be a Jordan curve such that assumption 2 of Theorem 1.3 is satis-
fied. Let L ⊂ Lp(Ω, µ) be the linear manifold of all finite linear combination of indicator
functions of measurable sets Ai such that f(Ai) is at a strictly positive distance of Γ. Let
W = ∩z∈ΓRan(Mf − z). Then L and W are dense in Lp(Ω, µ).
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Proof. We have that w ∈ L if and only if there exist a1, . . . , ar ∈ C and A1, . . . , Ar

measurable subsets of Ω such that w =
∑r

i=1 ai1Ai
and infξ∈Ai,z∈Γ |f(ξ) − z| > 0 for each

i = 1, . . . , r.

In order to prove that the closure of L is Lp(Ω, µ), we just need to prove that all
indicator function of measurable sets are in the closure of L, because the linear manifold of
all finite linear combination of indicator function is dense in Lp(Ω, µ). Let B a measurable
subset of Ω and denote by Bε = {ξ ∈ B, dist(f(ξ), Γ) > ε}. We have that 1Bε goes to 1B

as ε goes to 0 (because µ(f−1(Γ)) = 0) and 1Bε ∈ L.

Then the closure of L is Lp(Ω, µ). As L ⊂ W , the closure of W is Lp(Ω, µ) as well.

Next comes the following analogue of Lemma 3.4 of [FX12].

Lemma 2.4. With the notations of Lemma 2.2, for all z ∈ Γ, denote by R(z) the (possibly
unbounded) operator defined by R(z) = (Mf − z)−1 − B(z). Then for every w ∈ W we
have that

(T − z)R(z)w = w.

In this lemma, R(z) can be an unbounded operator because (Mf − z)−1 can be un-
bounded if z ∈ σ(Mf ) ∩ Γ. According to Lemma 2.2, B(z) is a compact operator for each
z ∈ Γ.

Proof. Let w ∈ W and z ∈ Γ. Observe that

(Mf − z)A(z)(Mf − z) = (Mf − z)




∑

n∈N

sn

(
(Mf − z)−1un

)
⊗
(
(M

f
− z)−1vn

)


 (Mf − z)

=
∑

n∈N

snun ⊗ vn

= K.

For all w ∈ W ⊂ Ran(Mf − z) it makes senses to write R(z)w. Replacing K by this
expression, we have that

(T − z)R(z)w = (Mf − z + K)
(
(Mf − z)−1 −

(
I + A(z)(Mf − z)

)−1
A(z)

)
w

= (Mf − z)
(

I + A(z)(Mf − z)
) (

(Mf − z)−1 −
(
I + A(z)(Mf − z)

)−1
A(z)

)
w

= (Mf − z)
(

(Mf − z)−1 + A(z) − A(z)
)

w

= w,

which proves Lemma 2.4.

Lemma 2.5. Let S ∈ {T }′ and w ∈ W . Then Sw ∈ W .

Proof. Let S ∈ {T }′, z ∈ Γ and w ∈ W . Using in the fourth equality the fact that
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K = (Mf − z)A(z)(Mf − z), we have that

Sw = S(T − z)R(z)w

= (T − z)SR(z)w

= (Mf − z)SR(z)w + KSR(z)w

= (Mf − z)SR(z)w + (Mf − z)A(z)(Mf − z)SR(z)w

= (Mf − z)
(
SR(z)w + A(z)(Mf − z)SR(z)w

)
.

So Sw ∈ Ran(Mf − z).

Proposition 2.6. Let Γ satisfy assumptions 1 and 2 of Theorem 1.3. Denote by Θ the
bounded component of the plane delimited by Γ and by m the Lebesgue measure on the
complex plane. Then for all w ∈ L we have

M1
f−1(Θ)

w =
1

2iπ

∫

Γ
(Mf − z)−1w dm(z).

Moreover, if there exist a, b ∈ σe(Mf ) such that a ∈ Θ and b /∈ Θ, then dim(Ran(M1
f−1(Θ)

)) =

dim(Ran(I − M1
f−1(Θ)

)) = ∞.

Note that M1
f−1(Θ)

is an idempotent (i.e. (M1
f−1(Θ)

)2 = M1
f−1(Θ)

).

Proof. Let w ∈ L. So there exist a1, . . . , ar ∈ C and A1, . . . , Ar measurable subsets of
Ω such that w =

∑r
i=1 ai1Ai

and infξ∈Ai,z∈Γ |f(ξ) − z| > 0 for each i = 1, . . . , r. As
µ(f−1(Γ)) = 0, we have for µ-almost every ξ ∈ Ω that f(ξ) /∈ Γ and

1

2iπ

∫

Γ
(Mf − z)−1w(ξ)dm(z) =

r∑

i=1

1

2iπ

∫

Γ

ai1Ai
(ξ)

f(ξ) − z
dm(z)

=
r∑

i=1

ai1Ai
(ξ)

1

2iπ

∫

Γ

1

f(ξ) − z
dm(z)

=
r∑

i=1

ai1Ai
(ξ)1Θ(f(ξ))

= M1
f−1(Θ)

w(ξ).

Now we will prove that a ∈ σe(Mf ) ∩ Θ implies that dim(Ran(M1
f−1(Θ)

)) = ∞. A
similar argument works for the other assertion. First note that for every compact operator
L ∈ K(Lp(Ω, µ)), we have a ∈ σ(Mf + L). In other words, Mf + L − aI does not have a
bounded inverse. Fix ε > 0 and denote by B the disk B = {w ∈ C, |a − w| < ε}. Denote
by f̃ = f − (f − a − ε)1f−1 (B). If |f(ξ) − a| ≥ ε, then f̃(ξ) − a = f(ξ) − a. Otherwise

f̃(ξ) − a = ε. Now f̃ is a bounded function and f̃ − a is bounded away from zero (i.e.

there exists a constant c > 0 such that for almost every ξ ∈ Ω,
∣∣∣f̃(ξ) − a

∣∣∣ ≥ c > 0). So
1

f̃−a
is a bounded function and

M 1

f̃−a

= (Mf̃ − a)−1 = (Mf − Mf−a−εM1
f−1(B)

− a)−1
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is a bounded operator. If M1
f−1(B)

were a compact operator then Mf̃ − a would not

be invertible. So M1
f−1(B)

is not a compact idempotent and dim(Ran(M1
f−1(B)

)) =

∞. If we choose ε small enough we have that Ran(M1
f−1(B)

) ⊂ Ran(M1
f−1(Θ)

), so

dim(Ran(M1
f−1(Θ)

)) = ∞.

Proof of Theorem 1.3. Suppose that σp(T ) = ∅. Recall that for all z ∈ Γ, B(z) =
(
I +

A(z)(Mf − z)
)−1

A(z) and R(z) = (Mf − z)−1 − B(z). Then by Lemma 2.2, B(z) is a
compact operator and the application B : Γ → K(X) is continuous. So ‖B(z)‖ is bounded
on the compact set Γ and we have

∫

Γ
‖B(z)‖ dm(z) < ∞.

Moreover, by Lemma 2.4, we have for all w ∈ W that (T −z)R(z)w = w. From Proposition
1.6, we have that

L =
−1

2iπ

∫

Γ
B(z)dm(z)

is a compact operator. From Proposition 2.6, we know that there exists an idempotent P
(P = M1

f−1(Θ)
) such that for all w ∈ L,

Pw =
1

2iπ

∫

Γ
(Mf − z)−1wdm(z),

and such that dim(P (X)) = dim((I − P )(X)) = ∞.
Let S ∈ {T }′. Then for all w ∈ W we have that (T − z)SR(z)w = S(T − z)R(z)w =

Sw = (T − z)R(z)Sw (because Sw ∈ W by Lemma 2.5). As σp(T ) = ∅, T − z is injective
so SR(z)w = R(z)Sw. Then for all w ∈ L (remember that L ⊂ W ) we have

S(P + L)w =
1

2iπ

∫

Γ
SR(z)w dm(z) =

1

2iπ

∫

Γ
R(z)Sw dm(z) = (P + L)Sw.

As the closure of L is Lp(Ω, µ), we get that S ∈ {P + L}′. So {T }′ ⊂ {P + L}′. As P + L
has a non trivial hyper invariant subspace by Proposition 1.5, T also has one.

Let N ∈ B(H) be a normal operator on a Hilbert space. Let (Ω, µ) be a measured space,
f ∈ L∞(Ω, µ) and W : L2(Ω, µ) → H be a unitary operator satisfying the consequences of
Theorem 1.7. Let K ∈ K(H) be a compact operator. Then W KW ∗ is a compact operator
on L2(Ω, µ), so by Theorem 1.8 there exist a sequence (sn)n∈N of positive real numbers
such that limn→∞ sn = 0 and two orthonormal families (un)n∈N, (vn)n∈N of vectors in
H such that W KW ∗ =

∑
n∈N snun ⊗ vn. With these notations, one can state a direct

corollary of Theorem 1.3 for compact perturbations of normal operators on Hilbert spaces.

Corollary 2.7. Let N ∈ B(H) be a bounded normal operator and K ∈ K(H) be a compact
operator. With the notations as above, suppose that there exists a Jordan curve Γ such
that

1. There exist a, b ∈ σe(N) such that a is in the connected component of C bounded by
Γ and b is in the unbounded component,

2. µ(f−1(Γ)) = 0,

8



3. For all n ∈ N, z ∈ Γ, we have that un ∈ Ran(Mf − z) and vn ∈ Ran(Mf − z)∗,

4. Denote by A(z) the (possibly unbounded) operator A(z) =
∑

n∈N sn

(
(Mf − z)−1un

)
⊗(

(M
f

− z)−1vn

)
. For all z ∈ Γ, we suppose that A(z) is a compact operator, and

A : Γ → K(H) is a continuous application.

Then the operator T = N + K has a non trivial hyper invariant subspace.

We next give some simple applications of this corollary

Example 2.8. Let (Ω, µ) be a borelian σ-finite measured space. More precisely, we set
Ω = {ξ ∈ C, |ξ| ≤ 1} and we set µ = m be the Lebesgue measure on the complex plane.
Denote by A = {ξ ∈ C, 1

3 ≤ |ξ| ≤ 2
3}. Let f ∈ L∞(Ω, µ) be the bounded function defined

by f(ξ) = ξ. Let g, h ∈ L2(Ω, µ), and denote by u = (1 − 1A)g and v = (1 − 1A)h.
Let Γ = {z ∈ C, |z| = 1

2}. Then σe(Mf ) = Ω, µ(f−1(Γ)) = 0 and for all z ∈ Γ,
u

f−z
, v

f−z
∈ L2(Ω, µ). Moreover the application

A :Γ → K(H)

z 7→
u

f − z
⊗

v

f − z

is continuous. By Corollary 2.7, Mf + u ⊗ v has a non trivial hyper invariant subspace.

Example 2.9. Let (Ω, µ) be a borelian σ-finite measured space. More precisely, we set
Ω = {ξ ∈ C, |ξ| ≤ 2} and we set µ = m be the Lebesgue measure on the complex
plane. Let f ∈ L∞(Ω, µ) be the bounded function defined by f(ξ) = ξ. Let gn, hn ∈
L2(Ω, µ) such that ‖gn‖ ≤ 1 and ‖hn‖ ≤ 1, and denote by un(ξ) = (1 − |ξ|)gn(ξ) and
vn(ξ) = (1 − |ξ|)hn(ξ). Let (sn)n∈N be a sequence of positive real numbers such that∑

n∈N sn < ∞. Let Γ = {z ∈ C, |z| = 1}. Then for all z ∈ Γ we have

∫

Ω

|un(ξ)|2

|ξ − z|2
dµ(ξ) ≤

∫

Ω

|1 − |ξ||2 |gn(ξ)|2

||ξ| − |z||2
dµ(ξ) =

∫

Ω

|1 − |ξ||2 |gn(ξ)|2

||ξ| − 1|2
dµ(ξ)

=

∫

Ω
|gn(ξ)|2 dµ(ξ) < ∞.

So un ∈ Ran(Mf − z). In the same way, we can prove that vn ∈ Ran(Mf − z)∗. For all
z ∈ Γ, we have that

‖A(z)‖ =

∥∥∥∥∥∥

∑

n∈N

sn

(
(Mf − z)−1un

)
⊗
(
(M

f
− z)−1vn

)
∥∥∥∥∥∥

≤
∑

n∈N

sn ‖gn‖ ‖hn‖

≤
∑

n∈N

sn < ∞.

So A(z) is a bounded operator. Denote by AN (z) =
∑N

n=1 sn

(
(Mf − z)−1un

)
⊗
(
(M

f
− z)−1vn

)
.

Then we have that

‖A(z) − AN (z)‖ =

∥∥∥∥∥∥

∞∑

n=N+1

sn

(
(Mf − z)−1un

)
⊗
(
(M

f
− z)−1vn

)
∥∥∥∥∥∥

≤
∞∑

n=N+1

sn.
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The last term is the tail of a convergent series, so it goes to 0 as N goes to infinity. So
A(z) is a limit of finite rank operators, hence it is a compact operator.

Let z1, z2 ∈ Γ. Then

‖A(z1) − A(z2)‖ ≤ ‖A(z1) − AN (z1)‖ + ‖AN (z1) − AN (z2)‖ + ‖AN (z2) − A(z2)‖ .

The quantities on the right hand side are small if N is big enough and z1 is close enough
of z2. So A : Γ → K(H) is a continuous application. Hence Mf +

∑
n∈N snun ⊗ vn has a

non trivial hyper invariant subspace.

Now we give a version of Corollary 2.7 for compact perturbations of diagonal operators.

Corollary 2.10. Let (en)n∈N be an orthonormal basis of the Hilbert space H. Let D =∑
n∈N λnen⊗en be a bounded diagonal operator on H. Let (sn)n∈N be a sequence of positive

real numbers such that limn→∞ sn = 0. Let (un)n∈N, (vn)n∈N be two orthonormal families
of vectors in H. We denote K =

∑
n∈N snun ⊗ vn. Suppose that there exists a Jordan

curve Γ such that

1. There exist two accumulation points a, b of eigenvalues of D such that a is in the
connected component of C bounded by Γ and b is in the unbounded component,

2. Γ ∩ σp(D) = ∅,

3. For all n ∈ N, z ∈ Γ, we have that un ∈ Ran(D − z) and vn ∈ Ran(D − z)∗,

4. Denote by A(z) the (possibly unbounded) operator A(z) =
∑

n∈N sn

(
(D − z)−1un

)
⊗(

(D∗ − z)−1vn

)
. For all z ∈ Γ, we suppose that A(z) is a compact operator, and

A : Γ → K(H) is a continuous application.

Then the operator T = D + K has a non trivial hyper invariant subspace.

Proof. Let Ω = N. Let µ =
∑

n∈N
1

2n δ{n}, with δ{n} being the Dirac measure at the point
{n}. Let f : N → C be defined by f(n) = λn. Then D is unitarily equivalent to Mf , the
multiplication by f on L2(Ω, µ). As a and b are accumulation points of eigenvalues of D,
we have that a, b ∈ σe(D) = σe(Mf ). As Γ ∩ σp(D) = ∅, we have that f−1(Γ) = ∅ so
µ(f−1(Γ)) = 0. By Corollary 2.7, D + K has a non trivial hyper invariant subspace.

3 Consequences for compact perturbations of diagonal op-

erators on a Hilbert space: proof of Theorem 1.4

The goal of the next section is to prove Theorem 1.4. We will need some material before
proving Theorem 1.4. First we will need a modified version of Lemma 2.1 of [FX12].

Lemma 3.1. Let (λk)k∈N be a bounded sequence of complex numbers, and let (αn,k)n,k∈N

be a sequence of complex numbers such that
∑

n∈N

∑

k∈N

|αn,k| < ∞.

Then for almost every x ∈ R we have that

∑

n∈N

∑

k∈N

|αn,k|2

|Re(λk) − x|2
< ∞.
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Proof. Suppose that
∑

n∈N

∑
k∈N |αn,k| < ∞. Then for every ε > 0 there exists δ > 0 such

that 2δ
∑

n∈N

∑
k∈N |αn,k| < ǫ. We denote by In,k the interval [Re(λk) − δαn,k, Re(λk) +

δαn,k], and we define the functions fn,k on R by

fn,k(x) =
|αn,k|2

|Re(λk) − x|2
1R\In,k

(x).

We have that

∫

R

fn,k(x)dx =

∫

R\In,k

|αn,k|2

|Re(λk) − x|2
dx = |αn,k|2

2

δ |αn,k|
=

2 |αn,k|

δ
.

Let us denote by F the function F (x) =
∑

n∈N

∑
k∈N fn,k(x). As the functions fn,k are

non negative functions, using Beppo-Levi Theorem we have that

∫

R

F (x)dx =
∑

k∈N

∑

n∈N

∫

R

fn,k(x)dx =
2

δ

∑

k∈N

∑

n∈N

|αn,k| < ∞.

So F belongs to L1, and for almost every x ∈ R, we have F (x) < ∞. Denote by Λ the set

Λ =




x ∈ R,
∑

k∈N

∑

n∈N

|αn,k|2

|Re(λk) − x|2
= ∞




 .

Obviously we have that

Λ ⊂




⋃

k,n∈N

In,k



 ∪ {x ∈ R, F (x) = ∞}.

Using the additivity of the Lebesgue measure we get that

m(Λ) ≤
∑

k∈N

∑

n∈N

m(In,k) + m({x ∈ R, F (x) = ∞})

= 2δ
∑

k∈N

∑

n∈N

|αn,k| + 0

≤ ε.

As ε was chosen arbitrarily, we eventually get that m(Λ) = 0.

Lemma 3.2. Suppose that conditions (1) and (2) of Theorem 1.4 are satisfied, then for
almost every x ∈ R, we have that

∑

k∈N

∑

n∈N

|an 〈un, ek〉|2

|Re(λk) − x|2
< ∞,

∑

n∈N

∑

j∈N

|bn 〈ej , vn〉|2

|Re(λk) − x|2
< ∞

Proof. This is a direct consequence of Lemma 3.1.
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In order to use Theorem 1.3, we need to define a Jordan curve Γ that will split
the eigenvalues of D in two parts. Then we will need to check whether A(z) has the
properties required on Γ. First we write A1(z) =

∑
n∈N an

(
(D − z)−1un

)
⊗ en and

A2(z) =
∑

n∈N bnen ⊗
(
(D∗ − z)−1vn

)
. Note that

A(z) =
∑

n∈N

sn

(
(D − z)−1un

)
⊗
(
(D∗ − z)−1vn

)

=



∑

n∈N

an

(
(D − z)−1un

)
⊗ en





∑

n∈N

bnen ⊗
(
(D∗ − z)−1vn

)



= A1(z)A2(z).

Now we will need some estimates on ‖A1(z)‖ and ‖A2(z)‖. After that we will be able to
draw the Jordan curve Γ that we need.

Lemma 3.3. Let z ∈ C \ {λk, k ∈ N}. We denote x = Re(z). Suppose that condition (1)
of Theorem 1.4 is satisfied. Then for almost every x ∈ R \ {Re(λk), k ∈ N}, A1(z) is a
bounded operator and we have

‖A1(z)‖2 ≤
∑

k∈N

∑

n∈N

|an 〈un, ek〉|2

|Re(λk) − x|2
.

Proof. Let z ∈ C \ {λk, k ∈ N}. Note that |Re(λk − z)| ≤ |λk − z|. So we have that

∑

k∈N

∑

n∈N

|an 〈un, ek〉|2

|λk − z|2
≤
∑

k∈N

∑

n∈N

|an 〈un, ek〉|2

|Re(λk) − x|2
.

Let h ∈ H. Using Cauchy-Schwartz inequality we get that

‖(A1(z))(h)‖2 =
∑

k∈N

∣∣∣∣∣∣

∑

n∈N

an 〈h, en〉 〈un, ek〉

λk − z

∣∣∣∣∣∣

2

≤
∑

k∈N

∥∥∥∥∥∥

∑

n∈N

an 〈un, ek〉

λk − z
en

∥∥∥∥∥∥

2 ∥∥∥∥∥∥

∑

n∈N

〈en, hn〉 en

∥∥∥∥∥∥

2

=
∑

k∈N

∑

n∈N

∣∣∣∣
an 〈un, ek〉

λk − z

∣∣∣∣
2

‖h‖2

Hence the inequality of Lemma 3.3 holds. We used the condition (1) in Cauchy Schwartz

inequality to ensure that
(

an〈un,ek〉
λk−z

)

n∈N
is a square summable sequence.

Similarly, one can prove the following lemma.

Lemma 3.4. Let z ∈ C \ {λk, k ∈ N}. We denote x = Re(z). Suppose that condition
(2) of Theorem 1.4 is satisfied. Then for almost every x ∈ R \ {Re(λk), k ∈ N}, A2(z) is
bounded and we have

‖A2(z)‖2 ≤
∑

n∈N

∑

j∈N

|bn 〈ej, vn〉|2

|Re(λk) − x|2
.
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Lemma 3.5. Suppose that conditions (1) and (2) of Theorem 1.4 are satisfied, then for
almost every x0 ∈ R \ {Re(λk), k ∈ N}, for every z ∈ s0 = {z = x0 + iy, y ∈ R}, we have
that A1(z) and A2(z) are compact operators. Moreover the maps A1 : s0 → K(H) and
A2 : s0 → K(H) are continuous.

Proof. First note that conditions (1) and (2) and Lemmas 3.3 and 3.4 give us that the
operators A1(z) and A2(z) are bounded for almost every x0. Let EN be the orthogonal
projection of H onto the subspace generated by e0, e1, . . . , eN . Then we have that

EN A1(z) =
∑

k≤N

∑

n∈N

an 〈un, ek〉

λk − z
ek ⊗ en.

Note that ENA1(z) has finite rank. So we get that

A1(z) − EN A1(z) =
∑

k>N

∑

n∈N

an 〈un, ek〉

λk − z
ek ⊗ en.

Using Lemma 3.3, we get that

‖A1(z) − EN A1(z)‖ ≤
∑

k>N

∑

n∈N

|an 〈un, ek〉|2

|Re(λk) − x|2
.

According to Lemma 3.2, the right term is the tail of a convergent series for almost every
x0 ∈ R, so it goes to zero as N goes to infinity. Therefore A1(z) is a uniform limit of finite
rank operators, so it is a compact operator.

Now take z1, z2 ∈ s0. Thanks to the triangular inequality we get that

‖A1(z1) − A1(z2)‖ ≤ ‖A1(z1) − EN A1(z1)‖

+ ‖EN A1(z1) − ENA1(z2)‖

+ ‖EN A1(z2) − A1(z2)‖ .

We can fix N ∈ N big enough, such that the norms ‖A1(z1) − ENA1(z1)‖ and
‖EN A1(z2) − A1(z2)‖ are small. Now a simple computation give that

ENA1(z1) − ENA1(z2) =

(
N∑

k=1

(
1

λk − z1
−

1

λk − z2

)
ek ⊗ ek

)

∑

n∈N

anun ⊗ en


 .

So we have that

‖EN A1(z1) − ENA1(z2)‖ ≤ max
k=1,...,N

∣∣∣∣
1

λk − z1
−

1

λk − z2

∣∣∣∣

∥∥∥∥∥∥

∑

n∈N

anun ⊗ en

∥∥∥∥∥∥
.

Note that ‖
∑

n∈N anun ⊗ en‖ does not depend on z1, z2. Remember that for every
k ∈ N, x0 6= Re(λk), so the function fk : R → C defined by f(y) = 1

λk−x0−iy
is

continuous. So maxk=1,...,N

∣∣∣ 1
λk−z1

− 1
λk−z2

∣∣∣ is small when z1 is close to z2. We deduce

that ‖ENA1(z1) − EN A1(z2)‖ is small when z1 is close to z2. It follows that the maps
A1 : s0 → K(H) is continuous. The same proof works for the map A2 : s0 → K(H).
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Note that if A1(z) and A2(z) satisfy condition 3 and 4 of Theorem 1.3, so does A(z) =
A1(z)A2(z).

Proof of Theorem 1.4. Denote ρ the spectral radius of D. If σe(D) = {λ}, then there
exists a compact operator Ke such that D = λI + Ke. So T = D + K = λI + Ke + K is a
compact perturbation of a scalar operator, and Lomonosov Theorem (see [CP11, Theorem
6.1.2]) gives the existence of a non trivial hyper invariant subspace.

Suppose that σe(D) contain a least two points a and b. Considering if necessary a
certain rotation eiθD of D we can assume that Re(a) < Re(b). By Lemma 3.5, for almost
every x0 ∈]Re(a), Re(b)[\{Re(λk), k ∈ N}, denote s0 = {x0 + iy, y ∈ [−ρ − 1, ρ + 1]}, we
have that A : s0 → K(H) is a well defined and continuous application. Denote

s1 = {x + i(ρ + 1), x ∈ [x0 − ρ − 1, x0]}

s2 = {x0 − ρ − 1 + iy, y ∈ [−ρ − 1, ρ + 1]}

s3 = {x − i(ρ + 1), x ∈ [x0 − ρ − 1, x0]}.

Note that (s1 ∪ s2 ∪ s3 ∪ (s0 \ σ(D))) ∩ σ(D) = ∅. So for all z ∈ s1 ∪ s2 ∪ s3 ∪ (s0 \ σ(D)),
(D − z)−1 is a bounded operator. So we have that

A(z) =
∑

n∈N

sn

(
(D − z)−1un

)
⊗
(
(D∗ − z)−1vn

)

= (D − z)−1



∑

n∈N

snun ⊗ vn


 (D − z)−1

= (D − z)−1K(D − z)−1

Obviously A : s1 ∪s2 ∪s3∪(s0 \σ(D)) → K(H) is well defined and continuous. Denote Γ =
s0 ∪ s1 ∪ s2 ∪ s3. As A : s0 → K(H) is continuous and s0 ∩ (s1 ∪ s2 ∪ s3 ∪ (s0 \ σ(D))) 6= ∅,
we have that A : Γ → K(H) is continuous. Finally we use Theorem 1.3 to conclude.
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