
HAL Id: hal-00863364
https://hal.science/hal-00863364

Submitted on 20 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MUSIKA: A multichannel multi-sink data gathering
algorithm in wireless sensor networks

Ridha Soua, Erwan Livolant, Pascale Minet

To cite this version:
Ridha Soua, Erwan Livolant, Pascale Minet. MUSIKA: A multichannel multi-sink data gath-
ering algorithm in wireless sensor networks. IWCMC 2013 - 9th International Wireless Com-
munications and Mobile Computing Conference, Jul 2013, Sardinia, Italy. pp.1370 - 1375,
�10.1109/IWCMC.2013.6583756�. �hal-00863364�

https://hal.science/hal-00863364
https://hal.archives-ouvertes.fr

MUSIKA: a Multichannel Multi-Sink Data
Gathering Algorithm in Wireless Sensor Networks

Ridha Soua, Erwan Livolant, Pascale Minet
Inria Rocquencourt, 78153 Le Chesnay cedex, France

Email: firstname.name@inria.fr

Abstract—A typical task in wireless sensor networks (WSNs)
is to collect data from sensor nodes towards one or many sinks
in a multi-hop convergecast structure. In this paper, we focus
on the data gathering problem with differentiated traffic, each
addressed to a specific sink in multichannel WSNs. In order to
find a collision-free optimized multichannel time slot assignment
that minimizes the data gathering cycle, we propose a centralized
traffic-aware algorithm called MUSIKA. We formulate the prob-
lem as a linear program and compute the optimal time needed
for a raw data convergecast in an illustrative example. More
generally, we run simulations on various network topologies to
evaluate the performance of MUSIKA in terms of cycle length,
maximum buffer size and slot reuse ratio for different use cases:
redundant functional processing chains, different application
functionalities per sink.

Index Terms—multichannel wireless sensor networks, multi-
sink, convergecast, time slot assignment, optimized schedule

I. CONTEXT

Tiny and inexpensive sensor nodes with wireless communi-
cation capability, small battery and limited processing power
are deployed for monitoring homes, nuclear power plants,
aircrafts, etc. This control process imposes the need to gather
data from sensors and deliver them to central entities, usually
called sinks. Such a communication scheme is also called
convergecast.

Under heavy traffic conditions, contention-based protocols
suffer from collisions and non deterministic delays. In contrast,
the contention-free deterministic scheduling is energy efficient
by avoiding collisions and allowing low power sensors to turn
off their radio in time slots not assigned to them. Moreover,
minimizing the number of slots in the contention-free cycle
improves the network performances by minimizing the maxi-
mum packet delay, increasing throughput and finally reducing
the activity period of nodes.

In single channel WSNs, the data rate of contention-free
scheduling is significantly limited by co-channel interferences,
particularly in dense deployments. Furthermore, multichannel
paradigm [1] [2] allows parallel transmissions and thus ensures
a higher throughput. Therefore, we tackle in this paper the
problem of time slot assignment for convergecast in multi-
channel WSNs.

Besides, the use of multiple sinks ensures:

1) A more reliable data gathering. This property is expected
especially for critical information (path diversity), since

in many deployments the channel used by the WSN may
encounter perturbations or noise.

2) Energy efficiency by decreasing both the load and the
energy consumption of nodes close to the sink. Indeed,
these nodes must forward a higher traffic toward the
sink, which is a severe threat to network lifetime. The
existence of several sinks enables a better load balancing
between nodes.

3) Sinks running different functionalities of the application
considered. This allows a higher flexibility in the map-
ping of application functionnalities on wireless nodes.
Indeed, this mapping may depend on several factors
such as node location, desired redundancy degree and
may take into account heterogeneous application re-
quirements with regard to expected functionalities.

In this paper, unlike studies that focus only on the time
slot assignment problem, i.e. how to send data collected by
multiple sources to a common sink and if possible in a
minimum of time, we focus on a multi-sink multichannel
context with a dedicated traffic per sink.

Mainly in this paper, we formalize the multichannel multi-
sink convergecast problem in WSNs. We then propose our
algorithm MUSIKA. Finally, performances in terms of cycle
length, delivery delay and buffer size of the MUSIKA algo-
rithm are evaluated by simulation in Section VI.

II. MOTIVATION

One limitation of many proposed time slot assignments
for convergecast is that they do not involve multichannel
paradigm. The throughput requirements of many applications
of WSNs is difficult to meet with a single wireless channel.

In multichannel WSNs, we distinguish two issues: channel
assignment and node scheduling for transmissions and recep-
tions. About the former issue, readers can refer to [1] for
further details. Concerning the latter issue, since contention-
free scheduling techniques prevent major sources of ineffi-
ciency (idle listening, overhearing, and collisions), we limit
the scope of studied works on multichannel contention-free
based scheduling protocols.

Tree-based Multi-Channel Protocol (TMCP) [2] supports
data collection traffic by partitioning the network into mul-
tiple subtrees and then assigns different channels to different
subtrees. Hence, inter-tree interference is minimized without
the need for time synchronization.

978-1-4673-2480-9/13/$31.00 ©2013 IEEE 1370

Zhang et al. study the joint link scheduling and channel
assignment for convergecast in WirelessHart based networks
[3]. They present an optimal joint time and channels schedul-
ing algorithm with time complexity O(N2), where N is the
number of sensor nodes.

In [4], PIP, a joint TDMA-FDMA based bulk transfer
protocol was proposed. Nevertheless, PIP presents scalability
limitation because the sink can only be involved in two
connections simultaneously.

Incel et all [5], consider the case where all interfering links
are removed with necessary number of channels. They propose
JFTSS a Joint Frequency Time Slot Scheduling algorithm that
provides the smallest number of slots for any network topology
where the routing tree has an equal number of nodes on each
branch.

In [6], authors focus on time slot assignment in a multi-
sink single hop UWB WSNs which is formulated as a linear
programming problem. They also implement a heuristic to
improve both throughput and fairness. They show that it is
deemed scalable with multiple sinks. A drawback of this work
is that it is limited to single hop networks.

None of the above related works about time slot assignment
for convergecast deals with multi-hop multichannel multi-sink
WSNs. That is why, this paper proposes on the one hand
a linear programming formalization of the problem and on
the other hand a deterministic contention-free based algorithm
called MUSIKA for convergecast in multichannel multi-sink
WSNs.

III. PROBLEM FORMALIZATION

In this section, we present a formalization of the multi-sink
slot assignment problem according to the assumptions listed
below. We are looking for a multichannel slot assignment of
minimum length ensuring that there are no two conflicting
nodes transmitting simultaneously on the same channel.

A. Assumptions

◦ A1. Available channels: For the sake of simplicity, we
assume that at each node, MaxChannel > 1 channels are
available. We assume that network connectivity is ensured on
any of these channels and any node has the same neighbors
on all channels.
◦ A2. Single radio interface: All nodes have a single radio

interface that can be tuned on the selected channel.
◦ A3. Differentiated traffic: Each traffic generated by a

source node is tagged with its destination sink and must be
transmitted to this sink. With each traffic is associated its
importance degree from the application point of view. A traffic
class groups all traffic with the same importance degree and
the same sink as final destination. Each node maintains a
FIFO queue per traffic class. In this paper, we consider the
general case where two sinks may have traffic with the same
importance degree or different importance degrees.
◦ A4. Raw data convergecast: Each node transmits its own

data to its parent in the data gathering tree rooted at the sink

corresponding to this traffic. It forwards the data received from
its children, without aggregation.

For the sake of simplicity, we adopt also the following
assumptions:
◦ A5. Slot size: We assume that the slot size enables the
transmission of a single packet corresponding to the data
generated by a node. Moreover, each unicast transmission is
acknowledged in the time slot of the sender (i.e. immediate
acknowledgment).
◦ A6. Conflicting nodes: Two nodes are said conflicting if

and only if they cannot transmit in the same time slot on the
same channel. By definition, Conflict(u) is the set of nodes
conflicting with u. This set is an input of MUSIKA.
◦ A8. Topology links: We also assume that the only

topology links are those represented in the convergecast trees.
◦ A9. Ideal environment: In this paper, we assume there

is neither message loss, nor node failure.
The assumption A9 can be relaxed by considering packet
retransmission to recover from packet losses. In this case,
the amount of traffic should take into account these packets
retransmissions. These latter can be evaluated considering an
estimated packet loss rate.
Similarly assumption A5 can be relaxed considering that the
slot size allows the transmission of p > 1 packets. In such a
case, the traffic demand should be mapped into a slot demand.

B. Model

The network is modeled as a graph G = (V, E) where V is
the set of vertices representing the nodes of the network and
E is the set of edges representing the communication links
between nodes.

Let Vs be the set of sinks, with Vs ⊂ V . For each node v ∈
V and s ∈ Vs with v 6= s, we define pv,s the number of packets
that v generates at each cycle and has to transmit towards the
sink s. Moreover, for any node v ∈ V , let Conflict(v) be the
set of conflicting nodes that interfere with v when transmitting
on the same channel. Let E+(v) denote the set of links through
which a node v ∈ V can transmit. Let E−(v) be the set of links
through which a node v ∈ V can receive.

Let C be the set of channels usable for any transmission.
The contention-free cycle is composed of at most Tmax slots,
where Tmax denotes the maximum length of the cycle.

We define ae,v,s,c,t the activity of a link e ∈ E transferring
a packet originated from v ∈ V towards s ∈ Vs on the channel
c ∈ C in the slot t, ie ae,v,s,c,t = 1 if and only if there is a
transmission of a packet originated from v to s on the link e
on the channel c in the time slot t and ae,v,s,c,t = 0 otherwise.

Furthermore, let ut be the use of a slot t, in other words
ut = 1 means that there is at least one link activity on at least
one channel in the slot t and ut = 0 denotes an empty slot.
The objective is to minimize the number of slots t used in the
cycle:

min

Tmax∑
t=1

ut

This objective is subject to:

1371

ae,v,s,c,t ≤ ut

∀e ∈ E, ∀v ∈ V, ∀s ∈ Vs,
∀c ∈ C, t ≤ Tmax,

(1)

∑
o∈V

∑
s∈Vs

ae,o,s,c,t+
∑
o∈V

∑
s∈Vs

ae′,o,s,c,t ≤ 1

∀v ∈ V, ∀e ∈ E+(v),

∀w ∈ Conflict(v), ∀e′ ∈ E+(w),

∀c ∈ C, t ≤ Tmax

(2)

∑
e∈E+(v)

∑
c∈C

Tmax∑
t=1

ae,v,s,c,t = pv,s

∀s ∈ Vs, ∀v ∈ V \ {s}

(3)

∑
e∈E+(v)

∑
c∈C

Tmax∑
t=1

ae,w,s,c,t =
∑

e∈E−(v)

∑
c∈C

Tmax∑
t=1

ae,w,s,c,t

∀s ∈ Vs, ∀v ∈ V \ {s}, ∀w ∈ V \ {v}

(4)

∑
e∈E−(s)

∑
v∈V

∑
c∈C

Tmax∑
t=1

ae,v,s,c,t =
∑

w∈V\{s}

pw,s

∀s ∈ Vs

(5)

∑
e∈E+(v)

∑
c∈C

ae,v,s,c,t ≤ pv,s −
∑

e∈E+(v)

∑
c∈C

t∑
t′=1

ae,v,s,c,t′

∀s ∈ Vs, ∀v ∈ V \ {s}, t ≤ Tmax

(6)

∑
e∈E+(v)

∑
c∈C

ae,v,s,c,t ≤
∑

e∈E+(v)

∑
c∈C

t∑
t′=1

ae,w,s,c,t′

−
∑

e∈E−(v)

∑
c∈C

t∑
t′=1

ae,w,s,c,t′

∀s ∈ Vs, ∀v ∈ V \ {s}, ∀w ∈ V \ {v}, t ≤ Tmax

(7)

Constraint 1 binds the use of a time slot to at least the
activity of one link on any channel in this slot. Constraint 2
guarantees that two conflicting nodes v and w do not transmit
on the same channel in the same time slot.

Constraint 3 ensures that for each sink s, any non-sink node
v transmits during the cycle all the packets it has generated for
s. Constraint 4 expresses that for each sink s, any intermediate
node v forwards towards s all the received packets destinated
to s. Constraint 5 ensures that each sink s receives all the
packets generated in the WSN with final destination s.

Constraint 6 expresses the rule that a node v transmits a
packet towards a sink s at the slot t if and only if its buffer of
this traffic is not empty. Constraint 7 guarantees that any sink
s forwards the traffic addressed to another sink it receives.

IV. MUSIKA: MULTI-SINK SLOT ASSIGNMENT

In this section, we present MUSIKA, a centralized raw data
convergecast scheduling algorithm for multichannel multi-sink
WSNs. MUSIKA is based on our previous work [7]. However,
this latter did not take into account the existence of multiple
sinks and traffic differenciation. Therefore, we propose a novel
solution to address this new context.

A. Principles

MUSIKA proceeds slot by slot to build the multichannel
multi-sink schedule, applying the following rules:
R1. Only nodes having at least one packet to transmit compete

for the current time slot. They are ordered according to
their decreasing priority. Let N be this ordered set.

R2. The competing node in N with the highest priority is
selected first.

R3. A node is allowed to transmit in the current slot if and
only if:

1) this node and its parent in the data gathering tree
corresponding to the packet to transmit have an
available radio interface;

2) there exists a channel where this node does not
conflict with nodes already scheduled in this slot.

R4. A node allowed to transmit in the current slot will
transmit the first packet in the FIFO queue of the traffic
class with the highest importance degree. If several traffic
classes have the same importance degree, the first packet
of the longest queue in these traffic classes will be chosen.

R5. The next node to be selected is the next one in N . It
is allowed to transmit according to rule R3 and will
transmit its packet selected according to rule R4. And so
on until all nodes in N have been checked for a possible
transmission.

In the illustrative example given in Section V as well as
in the performance evaluation reported in Section VI, we
assign priorities to nodes as follows. The priority of a node is
computed taking into account:

1) the number of packets present in its queues, to avoid
buffer saturation;

2) the sum for each data gathering tree of the number of
packets its parent should receive in a cycle, to favor
nodes with a high load;

3) and the classes of packets to be transmitted by the node
in the current slot, to provide traffic differentiation if
required by the application.

Furthermore, in order to obtain a strong traffic differentia-
tion, we require that for any sink s the priority of any packet
in a class i is higher than the priority of any packet in a
class j with a strictly less importance degree (j < i). For
simplicity sake, we assume that classes are ordered according
to a non-decreasing importance degree. That is why, we define
prioClassi for any class i and priou for any node u as
follows:

prioClassi =
∏
j<i

(1 + sinkRcv
2
j)

where sinkRcvj is the total number of packets that should
be received by s for flows belonging to class j, where s is the
sink associated with class j. By convention, prioClass1=1.

priou =
∑
i

[prioClassi ∗
∑
f∈i

(remPcktf ∗ parentRcvf)]

where prioClassi is the priority of class i to which a flow f
present on node u belongs to, remPcktf means the number

1372

of packets of flow f the node u has in its buffer at the current
iteration and parentRcvf is the total number of packets of
flow f that the parent of node u has to receive in a cycle.
Notice that in priou two factors prioClassi and parentRcvf
are static during the cycle whereas the factor remPcktf
depends on the size of the buffer queue and hence depends on
the slot considered.
B. Algorithm

The channel selection strategy given in the algorithm below
is greedy but other strategies like Round Robin are also
possible to achieve a better load balance.

Algorithm 1 MUSIKA algorithm
1: Input: clmax traffic classes with their associated gathering trees,

each node u has one available radio interface iu, nchannel

channels, dfu packets of flow f to transmit and a set of conflicting
nodes Conflict(u).

2: Output: The multi-sink scheduling of nodes in the contention-
free cycle

3: /* Initialization phase */
4: ∀cl, prioClasscl ←

∏
cl′<cl(1 + sinkRcvcl′

2)

5: ∀u, priou ←
∑

i[prioClasscl ∗
∑

f∈cl(remPcktf ∗
parentRcvf)]

6: t← 0 // current time slot
7: /* Scheduling phase */
8: while

∑
f

∑
u dfu do // there are packets to transmit

9: ∀u, iu ← True // u has an available radio interface
10: ∀c = 1..nchannel, conflictc ← ∅ // initialize conflicting

nodes on channel c
11: ∀cl, Ncl ← list of nodes having data to transmit and sorted

according to their priorities in the class cl.
12: t← t+ 1
13: /* Assignment of slot t */
14: while ∪clNcl 6= ∅ do
15: Tx← False, nChannelReached← False
16: repeat
17: Select the node v with the highest priority in ∪clNcl

18: ∀cl, Ncl ← Ncl \ {v}
19: Select the flow f with the highest priority on node v
20: until iv and iparent(v) // this node and its parent for flow

f have an available interface
21: c← 1 // selected channel
22: repeat
23: if v /∈ conflictc then
24: Node v transmits in slot t on the channel c
25: dfv ← dfv − 1
26: dfparent(v) ← dfparent(v) + 1
27: iv ← False
28: iparent(v) ← False
29: conflictc ← conflictc ∪ Conflict(v)
30: Update priov and prioparent(v)

31: Tx← True
32: else
33: if c < nchannel then
34: c← c+ 1 // change of selected channel
35: else
36: nChannelReached← True
37: end if
38: end if
39: until Tx || nChannelReached
40: end while
41: end while

V. ILLUSTRATIVE EXAMPLE

The problem of optimal multichannel slot assignment is
solved with the GPLK (GNU Linear Programming Kit) [8]
solver based on the model presented in the section III. We
consider an illustrative multichannel network topology with
two sinks (see Figures 1(a) and 1(b)). There are exactly two
traffic types and one flow per traffic type, denoted f1 and
f2. The optimal time needed for a raw data convergecast is
computed considering a single traffic (f1 or f2) and then both
types of traffic f1 and f2 differentiated by their destination
sink. These traffic types can have different importance degrees
from the application point of view. For simplicity sake, we also
assume that each node generates one packet for each flow.

1

2 3 4

5 6 7

8 9 10

(a)

5

28 9 10

1

3 4

6 7

(b)
Fig. 1. The two tree topologies of the network.

We use GLPK to compute first the minimum number of
slots required by each flow taken separately. We obtain 9
slots for f1 and 11 slots for f2. For the minimum number
of slots required by the two flows, GLPK gives 20 slots
and the optimal schedule provided by GLPK is illustrated by
Figure 2. In the figures representing schedules, we adopt the
following convention: the transmission of a packet of flow
f1 is represented on a white background, whereas this of
flow f2 appears on a black background. The main number
within the cell indicates the origin of the packet, whereas the
index number indicates the channel used. Notice that only two
channels are needed. In Figure 2, we observe that despite the
parallelism of transmissions between the different flows, the
optimal cycle length for the two flows is equal to the sum of
the optimal cycle length for each flow taken separately.

When the flows have the same priority, MUSIKA provides
the following schedule illustrated by Figure 3. We notice that
the number of slots is optimal, equal to 20 slots. We observe
also that the transmissions of flows f1 and f2 are interleaved.

When the flows have different priorities, MUSIKA gives
the schedule illustrated by Figure 4. We notice that flow f1
that belongs to the highest priority class completes in the slot
9, exactly as if it were alone in the WSN, unlike previously
where it completed in slot 20.

VI. PERFORMANCE EVALUATION

We use a simulation tool based on GNU Octave [9] to
evaluate the performances of MUSIKA in various topologies
of WSNs. The number of nodes vary from 10 to 100. All
nodes have a single radio interface. We assume that the only
links are those belonging to the tree. In these simulations,
Conflict(u) is the set of one-hop and two-hop neighbors of
u, for any node u. For each data gathering tree considered, the
number of children per node is less than or equal to 3. Each
result depicted on a figure is the average of 20 simulation runs.

1373

In the first series of experiments, we evaluate the average
number of slots needed to complete convergecast. We dis-
tinguish two cases: both traffics have the same priority and a
traffic has a higher priority than the other. Results are depicted
in Figure 5(a). It appears that the number of slots required
by MUSIKA in both cases (same and different priorities) is
less than the number of slots where traffic 1 and traffic 2 are
serialized: traffic 1 served before traffic 2. MUSIKA reduces
the number of slots by first optimizing the scheduling of the
first traffic and then applying spatial reuse to schedule the
second traffic. For example in the 100 nodes configuration, as
depicted in Figure 5(a), MUSIKA needs only 261 slots while
a serial schedule of the two flows needs 288 slots, providing
a gain of about 10%.

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

sl
o

ts

Number of nodes

Traffic1
Traffic2

Traffic1+Traffic2 serialized
MUSIKA(same prio)

MUSIKA(prio diff)

(a) Number of required slots

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

M
a

x
n

u
m

b
e

r
o

f
b

u
ff

e
r

Number of nodes

Buffer1 (Traffic1 alone)
Buffer2 (Traffic2 alone)

Buffer1(2 Traffics with same prio)
Buffer2(2 Traffics with same prio)

Buffer1(2 Traffics with prio diff)
Buffer2(2 Traffics with prio diff)

(b) Maximum buffer size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

S
lo

t
re

u
se

Number of nodes

Traffic1 alone
Traffic2 alone

MUSIKA(same prio)
MUSIKA (Diff prio)

(c) Slot reuse ratio

Fig. 5. MUSIKA performances.

In the second series of experiments, we also evaluate
the maximum number of buffers required in a node during
a contention-free cycle. Figure 5(b) shows that when both
traffics have the same priority, MUSIKA requires a number of

buffers close to the number of buffers required when only one
traffic is present. This can be explained by the basic priority
of nodes used in MUSIKA which favors nodes having longer
buffer queues to transmit.

In the third series of experiments, we consider the slot reuse
ratio defined by the fraction of slots where at least there is
two transmissions divided by the total number of slots. As
illustrated by Figure 5(c), MUSIKA achieves the higher slot
reuse ratio in the two cases of traffic priority. As shown in
Figure5(c), for 100 nodes the slot reuse ratio is equal to 0.88
(two traffics with the same priority) while this ratio is equal
to 0.68 when there is only one traffic. That can be explained
by the fact that MUSIKA takes benefit of the spatial reuse
concept when computing the schedules. Undoubtedly, the slot
reuse ratio significantly reduces the end-to-end latency without
a penalty in energy efficiency.

VII. CONCLUSION

In this paper, we aimed at deriving collision-free schedules
for raw data convergecast with minimum latency in multi-sink
multichannel WSNs. We identify two main reasons for the
existence of several sinks: on the one hand redundancy of sinks
improves robustness of data gathering and on the other hand,
different application functionalities may be distributed on the
sinks, explaining why they may have different importance
degrees. To achieve this objective, we formulate the problem as
a linear programming problem, aiming at deriving the smallest
cycle length. Then, we propose the MUSIKA algorithm to
obtain a collision-free schedule with the smallest frame length.
This algorithm provides traffic differentiation if required by the
application to reflect different importance degrees of traffic.
From the simulation results, we conclude that MUSIKA shows
its merit by taking advantage of spatial reuse to assign any slot
to non-conflicting transmitters in both traffics, thus reducing
the cycle length. Furthermore, the maximum number of buffers
needed on a node is optimized with MUSIKA.

REFERENCES

[1] R. Soua, P. Minet, A survey on multichannel assignment protocols in
wireless sensor networks, In Proc. IFIP Wireless Days, Niagara Falls,
Ontario, Canada, October, 2011.

[2] Y. Wu, J. Stankovic, T. He, S. Lin, Realistic and efficient multi-channel
communications in wireless sensor networks, In Proc. INFOCOM’08,
Phoenix, Arizona, April 2008.

[3] H. Zhang, P. Soldati, M. Johansson, Optimal Link scheduling znd channel
Assignment for convergecast in linear WirelessHART Networks, In Proc.
WiOPT’09, Seoul, Korea, June 2009.

[4] B. Raman, K. Chebrolu, S. Bijwe, V. Gabale, PIP: A Connection-
Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High
Throughput Bulk Transfer, In Proc. Sensys’10, Zurich, Switzerland,
November 2010.

[5] O. D. Incel, A. Gosh, B. Krishnamachari, K. Chintalapudi, Fast data
Collection in Tree-Based Wireless Sensor Networks, IEEE Transactions
on Mobile computing, vol. 1, pp. 86-99, 2012.

[6] H. Tan, M-C. Chan, P-Y. Kong, C-K. Tham, A Resource Allocation
Scheme for TH-UWB Networks with Multiple Sinks, In Proc. WCNC’08,
Las Vegas, Nevada, March 2008.

[7] R. Soua, P. Minet, E. Livolant, MODESA: an optimal multichannel slot
assignment for raw data convergecast in wireless sensor networks, In
Proc. IPCCC 2012, Austin, Texas, December 2012.

[8] http://www.gnu.org/software/glpk/
[9] http://www.gnu.org/software/octave/

1374

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 → 2 32 41 11 62 71
2 → 1 21 52 81 102 91
2 → 5 32 22 42 12 62 72
3 → 1 32 62 31 62 71 71
4 → 1 41 42
5 → 2 51 82 102 91
6 → 3 62 62
7 → 3 72 72
8 → 5 81 82
9 → 5 92 91

10 → 5 102 102

Fig. 2. The optimal multi-sink slot assignment obtained with the GLPK solver for the illustrative example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 → 2 11 31 61 71 41
2 → 1 21 51 81 91 101
2 → 5 21 11 32 61 71 41
3 → 1 32 62 31 61 71 72
4 → 1 41 42
5 → 2 51 81 91 101
6 → 3 61 61
7 → 3 71 71
8 → 5 81 82
9 → 5 91 92

10 → 5 102 102

Fig. 3. The multi-sink slot assignment obtained with MUSIKA for the illustrative example with flows f1 and f2 having the same priority.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 → 2 11 31 61 71 41
2 → 1 21 51 81 91 101
2 → 5 22 11 31 61 71 41
3 → 1 31 61 71 31 62 72
4 → 1 41 42
5 → 2 51 81 91 101
6 → 3 61 61
7 → 3 71 71
8 → 5 82 82
9 → 5 92 92

10 → 5 102 101

Fig. 4. The multi-sink slot assignment obtained with MUSIKA with flow f2 represented in black belongs to a class of less importance degree than flow f1
represented in white.

1375

