
HAL Id: hal-00863359
https://hal.science/hal-00863359

Submitted on 20 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delay Optimized Time Slot Assignment for Data
Gathering Applications in Wireless Sensor Networks

Ichrak Amdouni, Ridha Soua, Erwan Livolant, Pascale Minet

To cite this version:
Ichrak Amdouni, Ridha Soua, Erwan Livolant, Pascale Minet. Delay Optimized Time Slot Assignment
for Data Gathering Applications in Wireless Sensor Networks. ICWCUCA 2012 - International Con-
ference on Wireless Communications in Unusual and Confined Areas, Aug 2012, Clermont Ferrand,
France. pp.1 - 6, �10.1109/ICWCUCA.2012.6402475�. �hal-00863359�

https://hal.science/hal-00863359
https://hal.archives-ouvertes.fr

Delay Optimized Time Slot Assignment for Data
Gathering Applications in Wireless Sensor Networks

Ichrak Amdouni, Ridha Soua, Erwan Livolant, Pascale Minet

INRIA Rocquencourt, 78153 Le Chesnay cedex, France

Email: firstname.name@inria.fr

Abstract—Wireless sensor networks, WSNs, are an efficient
way to deal with low-rate communications in confined environ-
ments such as mines or nuclear power plants because of their sim-
plicity of deployment and low cost. In these application domains,
WSNs are used to gather data from sensor nodes towards a sink
in a multi-hop convergecast structure. In this paper, we focus on a
traffic-aware time slot assignment minimizing the schedule length
for tree topologies and for two special deployments (i.e. linear
and multi-linear) representative of unusual environments. We
formalize the problem as a linear program and provide results on
the optimal number of slots. We then propose a delay optimized
algorithm with two heuristics that minimize on the one hand the
energy consumption and on the other hand the storage capacity
as secondary criteria.

I. CONTEXT AND MOTIVATIONS

The spectacular progress in miniaturization of radio and

sensor technologies contributes to the development of wireless

sensor networks, in short WSNs. WSNs are made of wireless

sensor nodes, each of them being equipped with sensing

devices, a processing unit and a radio module. Sensor nodes

are generally deployed to monitor the physical conditions

of their environment. Therefore, WSNs have been frequently

put into use for data gathering applications, where sensed

data are routed over a tree. Such a communication scheme

is also called convergecast. We can cite many examples of

automated data convergecast applications like environment

monitoring, building automation, military field monitoring,

industrial process control, precision agriculture, ehealth, to

name a few. In these applications we speak about raw-data

convergecast if every packet is forwarded individually. In such

a case, intermediate nodes in a data gathering tree simply apply

the store and forward strategy, without processing the received

packets.

Most of these applications share the requirement of deter-

ministic delay bounds and a guarantee on packet delivery.

Medium access protocols that are contention-based protocols

are clearly inadequate as they suffer from collision and non

deterministic delays especially under heavy traffic conditions.

Time Division Multiple Access, TDMA, is a contention-

free protocol where nodes share the same channel and time

is divided into time slots. Each node transmits data in its

allocated slots. Slots are usually organized in a frame which

is repeated periodically. Hence, it is obvious that the TDMA

protocol is well adapted for collision-free packet transmission

with QoS support. Furthermore, the TDMA deterministic

scheduling is energy efficient. It avoids collisions that waste

energy, does not need idle listening and allows low power

devices to turn off their radio in time slots not allocated

to them. In this work, we are interested in TDMA based

scheduling for raw-data convergecast, assuming that each time

slot contains only one message. We observe that nodes close

to the sink have a higher traffic demand. Hence granting an

equal number of slots to each node is not adequate. That is

why we investigate the problem of convergecast scheduling

that ensures to any node a channel access that is proportional

to its traffic demand. Our objective is to find a time optimal

traffic-aware slot assignment. Indeed, minimizing the number

of slots in the TDMA cycle contributes to improve the network

performances. First, the maximum packet delay being equal to

one TDMA cycle, dividing the TDMA cycle duration helps

to meet the time constraints of packets. This property is

crucial for applications with strong time constraints. Second,

the throughput measured at the sink is the number of slots

granted to the children of the sink to send their packets divided

by the TDMA cycle duration in slots and multiplied by the

network capacity. Decreasing the TDMA cycle by a factor

multiplies the throughput by the same factor. Third, given

a data gathering period consisting of activity and inactivity

periods, minimizing the schedule length reduces the activity

period of nodes and allows them to save more energy.

This paper encompasses the following contributions:

◦ After a brief state of the art in Section II, we define in

Section III the Time Slot Assignment problem denoted TSA

in WSNs. We then provide a formulation of this problem as

an Integer Linear Programming (ILP) optimization problem.

◦ We determine in Section IV theoretical lower bounds for

TSA in linear, multi-linear and tree topologies.

◦ We then present TRASA, our TRaffic Aware Slot Assign-

ment algorithm. We describe in Section V the properties of the

algorithm. We prove that it is time optimal for linear networks.

Then, we evaluate its performance in Section VI.

II. RELATED WORK

We detail in this section only scheduling protocols that are

traffic aware: each node is assigned a number of slots equal

to its traffic demand.

Incel et al. present Local-TimeSlotAssignment algorithm for

raw data convergecast in [1]. Their key idea is to keep the

sink busy in receiving packets. Authors have proven that the

schedule length obtained when interfering links are eliminated

is lower bounded by max(2nk − 1, N − 1) where nk is the978-1-4673-1291-2/12/$31.00 (c) 2012 IEEE

maximum number of descendants of sink children and N

is the number of network nodes. Their algorithm provides

the minimal schedule length in this case. Their algorithm

does not support immediate acknowledgement (i.e. the receiver

acknowledges the received packet in the slot of the sender).

TreeMAC, [3], aims at achieving high throughput. The sink

assigns to each child a number of contiguous frames equal to

the number of its descendants such that any two children have

different frames. Each child repeats this process for its chil-

dren. Furthermore, each frame comprises three colored slots.

Each node computes its pseudo-level, equal to its distance to

the sink minus one modulo 3. Nodes with the same pseudo-

level have the same colored slot. Hence, the number of slots is

equal to 3(N−1), where N is the number of nodes. RoMAC,

proposed by Huang et al. [2] is an enhancement of TreeMac

using nodes identifiers to assign slots to nodes. Each source

node i sends its own data in the ith slot of the ith frame in

the TDMA cycle, whereas each intermediate node j forwards

the received data from node i in the jth slot of the ith frame.

Virtual identifiers can be allocated to nodes, the number of

virtual identifiers assigned to a node is proportional to the

traffic demand of this node.

SPR in [4] requires a small number of buffers which is

a key challenge in WSNs. In its basic form, SPR considers

the routing tree as an overlay of the paths from each leaf to

the sink. Each path is scheduled separately and each packet

generated by a source is pipelined to the sink.

In [5], authors introduced a novel level based scheduling

which minimizes the schedule length. First, a linear network

is built from the initial network. Each node in the latter corre-

sponds to a level in the original network. Second, the schedule

of the original network can be deduced by considering the

coloring of the linear network. Authors have proved that for

linear or tree networks when (1) each node has one packet to

transmit (2) and only nodes that hear each other interfere,

the maximum number of slots obtained by their algorithm

is 3N − 3 where N is the number of nodes. For a general

tree graph G = (V,E) and interference graph C = (V, I),
the maximum number of slots obtained by the level-based

scheduling is α(N − 1), where α is the number of colors

used in the linear network corresponding to G and C.

In [6], Gandham et al. have computed theoretical lower

bounds on the number of slots required in linear, multi-line and

tree network topologies. The algorithm they propose is close

to these bounds in case of linear and multi-line topologies.

Zhang et al. have proposed in [7] an algorithm that achieves

one slot more than the optimal in case of linear topologies.

III. THE TIME SLOT ASSIGNMENT PROBLEM

In this section, we define the Time Slot Assignment prob-

lem, denoted TSA.

A. Assumptions

◦ A1. Data gathering applications and sink tree: In data

gathering applications, a node, called sink or gateway, is in

charge of collecting data sent by all other nodes. Hence, the

typical traffic pattern is many-to-one routing and leads to a

spanning tree T rooted at the sink node.

◦ A2. Application data: In each data gathering cycle, each

node except the sink has its own data to transmit to its parent

in addition to the data received from its children. Some nodes

(for example, the children of the sink), need more than one

slot to transmit their data.

◦ A3. Time slot: The time slot duration must allow the

transmission of at least one packet and its acknowledgement.

During the slot, the sender transmits its packet to its receiver.

This receiver, a 1-hop neighbor of the sender, acknowledges

the received packet in the same time slot.

◦ A4. Conflicting nodes: Two nodes are said conflicting if

and only if they cannot transmit in the same time slot. For any

given node u, the set of nodes conflicting with u is an input

for the time slot assignment problem.

◦ A5. No message loss and no node failure.

B. Problem statement

The time slot assignment problem, TSA, under the assump-

tions introduced in Section III-A, consists in assigning slots

to network nodes, such that no two conflicting nodes are

scheduled in the same slot while minimizing the schedule

length. Besides, this scheduling must ensure that each node

transmits towards the sink, both its own packets and the

packets generated in its subtree. To summarize, our aim is

to build a minimal valid scheduling.

Definition 1 (Valid scheduling): A scheduling is said valid

if and only if:

◦ any node is assigned a number of slots sufficient to

transmit all its traffic.

◦ any node is assigned a slot if and only if it has data to

transmit during this slot.

◦ any two conflicting nodes do not transmit in the same

time slot.

Definition 2 (Minimal scheduling): A valid scheduling is

said minimal if and only if no other valid scheduling has a

smaller number of time slots.

C. Formalization of the Time Slot Assignment problem

The network is modeled as a graph G = (V,E), V is the

set of vertices representing network nodes, and E is the set of

edges representing the communication links. Let V = Vs

⋃
Vg ,

where Vg and Vs representing respectively the set of sinks

(gateways) and the set of source nodes in the network, with

Vs

⋂
Vg = ∅. For any source s, let ps denote its demand which

corresponds to the number of packets that it has to transmit

in the TDMA cycle. For each node v ∈ V , we define I(v)
the set of nodes that interfere with v. Let E+(v) denotes the

set of links through which v can transmit. E−(v) is the set of

links through which v can receive data.

For any link e, we define ate the activity of e in the slot t,

in other words ate = 1 iff there is at least one transmission of

a packet on the link e in the time slot t. Furthermore, let ut be

the use of a slot t, ie ut = 1 iff there is an activity of at least

one link on the slot t. Finally, fs
e denotes the set of packets

generated by the source s using the link e in a TDMA cycle.

The objective is to obtain the minimum total number of

slots: min
∑

t≤Tmax
ut, t being in [1, Tmax] interval.

Tmax denotes the maximum length of TDMA cycle. This

objective is subject to:

ate ≤ ut , ∀e ∈ E, t ≤ Tmax (1)

ate + at
e′

≤ 1 , ∀v ∈ V, ∀e ∈ E+(v),
∀w ∈ I(v), ∀e′ ∈ E+(w),
t ≤ Tmax

(2)

∑

s∈Vs

fs
e ≤

∑

t≤Tmax

ate , ∀e ∈ E (3)

∑

e∈E+(s)

fs
e = ps , ∀s ∈ Vs (4)

∑

g∈Vg

∑

e∈E−(g)

fs
e = ps , ∀s ∈ Vs (5)

∑

s∈Vs

∑

e∈E+(i)

fs
e = pi +

∑

s∈Vs

∑

e∈E−(i)

fs
e , ∀i ∈ Vs (6)

∑
e∈E+(i) a

t
e ≤

∑
e∈E−(i)

∑
tp∈{1..t−1} a

tp
e

+pi −
∑

e∈E+(i)

∑
tp∈{1..t−1} a

tp
e

, ∀i ∈ Vs, t ≤ Tmax

(7)

Constraint 1 binds the use of a time slot to at least the

activity of one link in this slot. Constraint 2 ensures that

two conflicting nodes do not transmit in the same time slot.

Constraint 3 ensures the correspondence between the activities

and the flows on links. Constraints 4, 5 and 6 express the

conservation of messages. The last constraint guarantees that

a packet is received or generated by a node before this node

transmits it.

Based on this model, an optimal time slot assignment can

be obtained by linear programming tools such as GLPK (GNU

Linear programming kit) [11]. The optimal results obtained by

the GLPK solver are presented in Section VI-A.

IV. THEORETICAL BOUNDS ON THE NUMBER OF SLOTS

In this section, we focus on theoretical lower bounds of

cycle length for three different topologies: linear, multi-linear

and tree. The two first ones are special topologies of the third

one and are representative of WSNs deployed in confined areas

such as the airplane fuselage (linear) or mines with several

galleries (multi-linear).

A. Additional assumptions

For simplicity reasons, we assume that in each time slot the

transmitter sends only a single packet. Nodes are randomly

deployed in the 2-dimensional plane. Two nodes u and v are

1-hop neighbors if and only if their distance is lower than or

equal to the transmission range R. For any integer h > 1, any

two nodes u and v are h-hop neighbors if and only if u is

(h− 1)-hop away from a 1-hop node of v.

In this paper, we consider that interferences are limited to 2
hops. Consequently, we assume that any two nodes u and v

within 2-hop neighborhood from each other do not transmit

in the same time slot. Indeed, let u and v two-hop neighbors

and w their 1-hop neighbor. If u and v transmit at the same

time, a collision will occur on w.

Based on this assumption, we can define the label of a node.

Definition 3 (Node label): For any network node u differ-

ent from the sink, we define label(u) = (distance(u,sink)-1)

modulo 3.
In line networks, the assigned labels (starting by the sink

child) are respectively 0,1,2,0,1,2,etc. It follows that only

nodes having the same label can be assigned the same slot.

B. Number of slots in linear networks

Theorem 1: In linear networks, a lower bound on the num-

ber of slots is Max(N − 1, 3N − 6), where N is the number

of nodes including the sink.
Proof: Consider a linear network with N ≥ 1 nodes,

where u0 is the sink node and any node ui is at a distance i <

N from the sink. It is clear that for N = 1, 2 or 3 the theorem

is true. Now let us assume N ≥ 4. Assuming each node needs

one slot to transmit its own data, the sink needs N − 1 slots

to receive data from all nodes. Besides, let u1, u2 and u3 the

three closest nodes to the sink. No two nodes among these

three nodes can transmit data simultaneously. Consequently,

the number of slots occupied by these nodes is the sum of the

number of packets they have to transmit, that is (N − 1) +
(N − 2) + (N − 3). Hence the theorem.

C. Number of slots in multi-line networks

Theorem 2: In multi-line networks, a lower bound on the

number of slots is Max(N − 1, 3nk − 3), where N is the

number of nodes including the sink, and nk is the maximum

number of nodes in a line starting with a child of the sink.
Proof: The sink requires N − 1 time slots to receive all

the packets generated in the network. Moreover, consider the

longest line and let nk be the number of nodes in this line

starting with a child of the sink. From theorem 1, at least

3(nk +1)− 6 = 3nk − 3 slots are required to transmit data to

the sink. Hence the theorem.

D. Number of slots in tree networks

Theorem 3: In tree networks, a lower bound on the number

of slots is Max(N−1, 2nk−1, 3nj−3), where N is the number

of nodes including the sink, nk is the maximum number of

nodes in a subtree rooted at a child of the sink and nj is the

maximum depth of nodes.
Proof: The sink requires N−1 time slots to receive all the

packets generated in the network. Moreover, let us consider uk

the child of the sink with the highest number of descendants.

Let nk − 1 be this number. At least nk slots are needed by

uk to transmit its packets and at least nk − 1 slots are needed

by uk to receive the packets from its children. Since all these

transmissions are sequential, at least 2nk−1 slots are needed.

If now we consider the longest line in the network. Let nj

be the depth of the deepest node. According to theorem 1, at

least 3nj − 3 slots are needed. Hence, the number of slots is

at least max(N − 1, 2nk − 1, 3nj − 3).

V. TRASA: TRAFFIC-AWARE TIME SLOT ASSIGNMENT

The main objective of TRASA algorithm is to achieve a

time minimal scheduling while ensuring a fair medium access

where any node is granted a number of slots proportional to

its packet demand.

A. Principles

TRASA is based on the following rules:

1) Any node has a priority and a set of conflicting nodes.

2) Nodes compete for the current time slot if and only if

they have data to transmit.

3) For any slot, the first scheduled node is the node having

the highest priority among all the nodes having data to

transmit.

4) Any node can be scheduled in any time slot if it does

not interfere with nodes already scheduled in this slot.

B. Algorithm presentation

In this section, we present a centralized version of TRASA

given by the Algorithm 1. The algorithm iterates over N the

set of nodes having data to transmit and sorted according to

their priority. In each iteration, the algorithm determines the

set of nodes scheduled in the current time slot starting at t,

and the number of slots allocated to each of them. The node u

with the highest priority is scheduled first (line 6). Further, any

other node in the sorted set N is given the same time slot if

and only if it does not conflict with nodes already scheduled in

this slot (see the while loop of line 13). TRASA ends when all

packets generated in the network are transmitted to the sink.

Two versions of TRASA are simulated. Indeed, at any itera-

tion, when a node is scheduled, it is allocated either:

◦ only one time slot: this version is denoted oneSlot;

◦ as many time slots as required by the node with the highest

priority: this version is denoted manySlots.

Intuitively, the manySlots version allows a node to transmit its

packets successively, avoiding switching delays between the

sleep and the awake states.

Concerning the definition of the priority, we evaluate

TRASA for two heuristics:

◦ prio=descNb: The priority of any node is given by its

number of descendants. Intuitively, a node with a high number

of descendants will have a high number of packets to transmit.

◦ prio=remPckt*parentDem: remPckt means the number of

packets the node has in its buffer at the current iteration.

parentDem is the total number of packets the parent of the

node has to forward in a cycle. The idea behind this heuristic

is to reduce the number of buffered packets by favoring nodes

having packets to transmit to a parent with a high number of

descendants.

C. Properties: bounds on the number of slots

In this section, we present the theoretical properties of

TRASA for the heuristic with prio = descNb, assuming that:

A6. Each source node generates exactly one packet per TDMA

cycle.

A7. For any node u, the only nodes conflicting with u are

its parent, its children, its grandparent, its brothers and its

grandchildren.

1) TRASA for linear networks:

Property 1: Applied to a linear network of N nodes,

TRASA schedules these nodes according to the following

sequence of labels: (010)-(210)*. That is: (1) All nodes with

Algorithm 1 TRASA algorithm.

1: Input: a spanning tree T , where each node u has du packets to
transmit and a set of conflicting nodes Conflict(u).

2: Output: The scheduling of nodes in the TDMA cycle
3: t = 1 /* current time slot */
4: while

∑
u
du do

5: N = List of nodes having data to transmit sorted according to
their priority

6: u = node with the highest priority in N
7: if ”oneSlot” then
8: nbSlot = 1
9: end if

10: if ”manySlots” then
11: nbSlot = du
12: end if
13: while N 6= ∅ do
14: u=node with the highest priority in N
15: nbAssignSlot = min(du, nbSlot)
16: assign slots t to t+ nbAssignSlot− 1 to node u
17: du -= nbAssignSlot
18: dparent(u) += nbAssignSlot
19: N = N \ ({u} ∪ Conflict(u))
20: end while
21: t+ = nbSlot
22: end while

label 0 are scheduled simultaneously, followed by all nodes

with label 1, etc. (2) the sequence (210) is repeated a number

of times equal to N div 3, where div is the integer division

operator.

Proof: For space limitation we do not provide the proof.

This property results from the fact that nodes are scheduled

in the order of their number of descendants.

Theorem 4: TRASA ensures a time optimal scheduling

using Max(N −1, 3N −6) slots for any linear network of N

nodes.

Proof: Consider a linear network of N nodes, where

u1, u2, u3 are the three closest nodes to the sink u0. From

property 1, each time slot is occupied by one of these

nodes. Consequently, any other node ui can be scheduled

with one of these nodes depending on its label. It means

that the number of slots in the TDMA cycle is equal to

the number of slots required by u1, u2 and u3 which is

(N − 1) + (N − 2) + (N − 3) = 3N − 6. We have proved

in Theorem 1, that any valid scheduling requires at least

Max(N − 1, 3N − 6) slots. As a consequence, TRASA that

reaches this lower bound is optimal for linear networks.

2) TRASA for multi-line networks:

Property 2: For any multiline network, let ui be the child

of the sink with the highest number of descendants denoted

ni, TRASA requires at least Max(N − 1, 3ni − 3) slots if

there is no other child of the sink with the same number of

descendants ni, and Max(N − 1, 3ni − 2) otherwise.

Proof: Let ui be the child of the sink with the highest

number of descendants denoted ni. Let uj be the child of the

sink with the second highest number of descendants denoted

nj . Since nodes ui and uj are ’brothers’ and ui has a priority

higher than uj , ui will occupy the first slot in parallel with

any descendant of ui having label 0, and any descendant of

uj having label 1. The second slot will be assigned to any

descendant of ui having label 1 and any descendant of uj

with label 0, etc. It results that the TDMA cycle has the label

sequence (010)-(210)* for the descendants of ui and the label

sequence (102)-(012)* for the descendants of uj . Similarly

to property 1, the sequence (012) relative to uj is repeated

nj div 3 times. Consequently:

◦ If the two branches contain the same number of nodes, the

node uj will send its last packet after the node ui and hence,

one additional slot to 3nj − 3 is required.

◦ If ni > nj , all descendants of uj will be able to share slots

with those used by the descendants of ui.

Theorem 5: Applied to a multi-line network, the number of

slots n used by TRASA verifies: n ≥ Max(3nk − 3, N − 1),
where N is the total number of nodes including the sink, and

nk is the highest number of descendants of the sink children.

Proof: Assuming each node has only one packet to

transmit, and hence requires one time slot, at least N − 1
slots are needed by the sink to receive data from these nodes.

From theorem 4, if we consider the child of the sink with the

highest number of descendants nk, 3(nk + 1) − 6 slots are

needed to schedule nodes on this branch.

Notice here that since the children of the sink cannot share the

same slot, the cycle length is strictly higher than this bound

in some scenarios as explained in property 2.

VI. PERFORMANCE EVALUATION

A. Comparison with the optimal results

We used the GLPK solver to find the optimal time slot

assignment, taking as inputs: (1) the model file corresponding

to the problem formalization expressed in GLPK language,

and (2) the data file describing the network topology, the

packet demand of each node and the conflicting nodes of any

network node. We obtained optimal results for various multi-

line and tree topologies. For small problem sizes (few nodes,

each source generates a single packet) results are obtained

within an acceptable duration of time. Nevertheless, when the

WSN becomes large and even for moderate network sizes (e.g.

30 nodes) and simple topologies (e.g multiline networks), the

time required to compute the optimal solution is higher than

one day.

Figure 1 illustrates the number of slots and the maximum

size of buffers obtained by the model and TRASA with its

two heuristics prio=descNb and prio=remPckt*parentDem.

The caption of each subfigure follows the pattern

{Sa}{SbBb}{ScBc}, where Sa stands for the optimal

number of slots, Sb and Bb (Sc and Bc respectively)

are the number of slots and the maximum number

of buffers obtained by TRASA with prio = descNb

(prio = remPckt ∗ parentDem respectively). Notice that

the TRASA algorithm provides the optimal number of slots

in all these topologies.

Besides, for tree topologies, we have proved in theorem 3

that the lower bound on the number of slots is the maximum

of three terms. For each of them, we can find a topology such

that TRASA reaches this term. Hence, TRASA is optimal on

these topologies. For example, with a branch factor of 3 and

20 nodes, we get 2nk − 1= 2*11-1=21 slots, which is optimal

according to theorem 3. For 50 nodes and a branch factor

(a) {S10} {S10B2} {S10B2} (b) {S9} {S9B2} {S9B2}

(c)
{S13} {S13B3} {S13B3}

(d) {S13} {S13B3} {S13B2}

Fig. 1. Examples of tree and multi-line topologies

of 3, we get 49=N − 1 slots, which is optimal according to

theorem 3. For 10 nodes where a sink child is the head of

a line with 4 nodes and the other sink child has 3 children,

TRASA reaches the lower bound of 3nj −3= 3*5-3=12 slots,

that is the optimal.

B. Simulation results

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

s
lo

ts

Number of nodes

manySlots+prio=descNb
manySlots+prio=remPckt

oneSlot+prio=descNb
oneSlot+prio=remPckt*parentDem

Fig. 2. The number of slots.

We developed a Java based simulation tool and performed

simulations with the two versions and two heuristics of

TRASA. We compare the TRASA performance with a slot

assignment where the priority is given by the number of re-

maining packets, denoted remPckt (i.e the number of packets

present in the buffer of the node considered). We generate

random graphs deployed in a given area (100mx100m), where

the number of nodes ranges from 20 to 100. We build trees

where the maximum number of children is 3. Unlike the

previous section where the only existing links are those in

the tree, we assume that a link exists between two nodes if

and only if their distance is less than or equal to the radio

range (30m). Consequently, additional links to the tree links

are considered. In the following, each result is an average of

20 runs for small topologies, and 50 runs for large topologies.

We first evaluate the total number of slots for the two heuris-

tics of TRASA (see Figure 2). Both heuristics of TRASA

give the same number of slots, and outperform the heuris-

tic remPckt. This result justifies the heuristic remPckt ∗

 0

 2

 4

 6

 8

 10

 12

 14

 20 30 40 50 60 70 80 90 100

M
a

x
 B

u
ff

e
r

s
iz

e
 r

e
q

u
ir
e

d
 b

y
 n

o
d

e
s

Number of nodes

manySlots+prio=descNb
manySlots+prio=remPckt

oneSlot+prio=descNb
oneSlot+prio=remPckt*parentDem

(a)

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 d

e
la

y
 (

n
u

m
b

e
r

o
f

s
lo

ts
)

Number of nodes

manySlots+prio=descNb
manySlots+prio=remPckt

oneSlot+prio=descNb
oneSlot+prio=remPckt*parentDem

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 30 40 50 60 70 80 90 100A
v
e

ra
g

e
 n

b
 o

f
s
w

it
c
h

e
s
 f

ro
m

 s
le

e
p

 t
o

 a
w

a
k
e

Number of nodes

manySlots+prio=descNb
manySlots+prio=remPckt

oneSlot+prio=descNb
oneSlot+prio=remPckt*parentDem

(c)

Fig. 3. TRASA performance regarding (a) Maximum buffer size (b) Average delay (c) Number of radio switches.

parentDem that takes into account not only the number of

remaining packets but also the parent demand of any node.

Further, the slot number is not impacted by the number of

slots assigned to any node in each iteration: OneSlot and

manySlots versions of TRASA.

Simulation results show that OneSlot + remPckt ∗
parentDem ensures the smallest buffer size as illustrated in

Figure 3(a) which is explained by the pipeline effect favored

by this heuristic. The opposite of one might think, assigning

the highest priority to a node having the highest number

of remaining packets does not accelerate the buffer release,

as illustrated by the result of manySlots + remPckt. We

evaluate the average delay as the average number of slots

that one packet takes to reach the sink once it is transmitted

by its source. Figure 3(b) shows that TRASA achieves the

smallest delays for the heuristic manySlots + descNb. This

is explained by the fact that if the priority is given by the

number of descendants, nodes close to the sink have the

highest priority, and hence the probability that the sink receives

data in a time slot is high, which reduces the data gathering

delays. Based on the slot allocation, any node should be

awake in its slots and the slots of its children assuming tree

unicast communications, and can turn to the sleep state in the

remaining time. Maximizing the sleep duration of a node is

the key to allow it to save energy. Moreover, reducing the

radio state switches contributes also in energy saving as these

switches are energy consuming. Figure 3(c) shows that as

expected the manySlots version allows to reduce the number

of radio state switches since nodes are allowed to send their

packets in consecutive time slots.

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

Number of nodes

manySlots+prio=descNb
manySlots+prio=remPckt

oneSlot+prio=descNb
oneSlot+prio=remPckt*parentDem

Fig. 4. The number of iterations.

Similarly, the number of iterations is reduced with the

manySlots version as illustrated in Figure 4.

VII. CONCLUSION

In this paper, we focus on data gathering applications

which are the most frequent applications supported by WSNs.

Assuming a slotted medium access, we investigate the raw

convergecast problem looking for a minimal schedule length.

A smaller schedule length improves the end-to-end delays and

reduces the energy consumption. We focus more particularly

on specific topologies such as linear or multi-line which are

well adapted to confined environments and compute lower

bounds for the time slot assignment problem. These bounds

are compared with the optimal solution given by the GLPK

solver. We present the TRASA algorithm and prove that it is

optimal for linear topologies. Furthermore, applying TRASA

to particular different tree topologies, we show that the optimal

schedule length is reached. TRASA heuristics outperform

solutions only based on the number of remaining packets.

REFERENCES

[1] D.O. Incel, A. Ghosh, B. Krishnamachari, K. Chintalapudi, Fast data collection in

treebased wireless sensor networks. IEEE Transactions on Mobile Computing, vol.
1, pp. 86-99, Jan 2012.

[2] R. Huang, W.Z. Song, M. Xu, B. Shiraz, Localized QoS-Aware Media Access

Control in High-Fidelity Data Center Sensing Networks, The 1st International Green
Computing Conference, IGCC’10, Chicago, USA, August 2010.

[3] W. Z. Song, R. Huang, B. Shirazi, and R. LaHusen, TreeMAC: Localized TDMA

MAC Protocol for Real-time High-data-rate Sensor Networks, Journal of Pervasive
and Mobile Computing, Percom 09, vol. 5, pp. 750-765, Dec 2009.

[4] V. Turau, C. Weyer, C. Renner, Efficient Slot Assignment for the Many-to-One

Routing Pattern in Sensor Networks, First International Workshop on Sensor
Network Engineering (IWSNE’08), Santorini Island, Greece, June 2008.

[5] S.C. Ergen, P. Varaiya, TDMA scheduling algorithms for wireless sensor networks,
Wireless Networks, vol. 16, pp. 985-997, May 2010.

[6] S. Gandham, Y. Zhang, Q. Huang, Distributed time-optimal scheduling for con-

vergecast in wireless sensor networks, Computer Networks, vol. 52, pp 610-629,
2008.

[7] H. Zhang, F. Osterlind, P. Soldati, T. Voigt, M. Johansson, Time-optimal converge-

cast with separated packet copying: scheduling policies and performance, Technical
Report, KTH Electrical Engineering Royal Institute of Technology, Sweden, May
2009.

[8] G.-S. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo, Funneling-mac:

A localized, sink-oriented mac for boosting fidelity in sensor networks, 4th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO,
USA, November 2006.

[9] J. Mao, Z. Wu, X. Wu, A TDMA scheduling scheme for many-to-one communica-

tions in wireless sensor networks. Computer Communications. vol. 30, pp.863-872,
Feb 2007.

[10] H. Choi, J. Wang, E. Hughes, Scheduling for information gathering on sensor

network, Wireless Networks, vol. 15, pp. 127-170, Jan 2009.

[11] http://www.gnu.org/software/glpk/

