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Let u g the unique solution of a parabolic variational inequality of second kind, with a given g. Using a regularization method, we prove, for all g 1 and g 2 , a monotony property between µu g1 + (1µ)u g2 and u µg1+(1-µ)g2 for µ ∈ [0, 1]. This allowed us to prove the existence and uniqueness results to a family of optimal control problems over g for each heat transfer coefficient h > 0, associated to the Newton law, and of another optimal control problem associated to a Dirichlet boundary condition. We prove also , when h → +∞, the strong convergence of the optimal controls and states associated to this family of optimal control problems with the Newton law to that of the optimal control problem associated to a Dirichlet boundary condition.

Introduction

Let consider the following problem governed by the parabolic variational inequality u(t) , vu(t) + a(u(t) , vu(t)) + Φ(v) -Φ(u(t)) ≥< g(t) , vu(t) > ∀v ∈ K, (1.1) a.e. t ∈]0, T [, with the initial condition

u(0) = u b , (1.2) 
where, a is a symmetric continuous and coercive bilinear form on the Hilbert space V × V , Φ is a proper and convex function from V into R and is lower semi-continuous for the weak topology on V , < •, • > denotes the duality brackets between V ′ and V , K is a closed convex non-empty subset of V , u b is an initial value in another Hilbert space H with V being densely and continuously imbedded in H, and g is a given function in the space L 2 (0, T, V ′ ). It is well known [START_REF] Brézis | Equations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF][START_REF] Brézis | Problèmes unilatéraux[END_REF][START_REF] Chipot | Elements of Nonlinear Analysis[END_REF][START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF] that, there exists a unique solution u ∈ C(0, T, H) ∩ L 2 (0, T, V ) with u = ∂u ∂t ∈ L 2 (0, T, H)

to (1.1)-(1.2). So we can consider g → u g as a function from L 2 (0, T, H) to C(0, T, H) ∩ L 2 (0, T, V ). Then we can consider [START_REF] Kesavan | Low-cost control problems on perforated and nonperforated domains[END_REF][START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF][START_REF] Neittaanmaki | Optimization of elliptic systems. Theory and Applicatioins[END_REF] the cost functional J defined by

J(g) = 1 2 u g 2 L 2 (0,T,H) + M 2 g 2 L 2 (0,T,H) , (1.3) 
where M is a positive constant, and u g is the unique solution to (1.1)-(1.2), corresponding to the control g. One of our main purposes is to prove the existence and uniqueness of the optimal control problem Find g op ∈ L 2 (0, T, H) such that J(g op ) = min g∈L 2 (0,T,H) J(g). (1.4) This can be reached if we prove the strictly convexity of the cost functional J, which follows (see Theorem 3.1) from the following monotony property : for any two control g 1 and g 2 in L 2 (0, T, H),

u 4 (µ) ≤ u 3 (µ) ∀µ ∈ [0, 1], (1.5) 
where

u 3 (µ) = µu 1 + (1 -µ)u 2 , u 4 (µ) = u g 3 (µ) , with g 3 (µ) = µg 1 + (1 -µ)g 2 . (1.6) 
In Section 2, we establish first in Theorem 2.2, the error estimate between u 3 (µ) and u 4 (µ). This result generalizes our previous result obtained in [START_REF] Boukrouche | On a convex combination of solutions to elliptic variational inequalities[END_REF] for the elliptic variational inequalities. We deduce in Corollary 2.3 a condition on the data to get u 3 (µ) = u 4 (µ) for all µ ∈ [0, 1].

Then we assume, that the convex K is a subset of V = H 1 (Ω) and consider the parabolic variational problems (P ) and (P h ). So, using a regularization method, we prove in Theorem 2.5 this monotony property (1.5), for the solutions of the two problems (P ) and (P h ). This result with a new proof and simplified, generalizes that obtained by [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] for elliptic variational inequalities. In Subsection 2.1 we also obtain some properties of dependency solutions based on the data g and on a positive parameter h for the parabolic variational inequalities (1.1) and (2.1), see Propositions 2.6, 2.7 and 2.8. In Section 3, we consider the family of distributed optimal control problems (P h ) h>0 , Find g op h ∈ L 2 (0, T, H) such that J(g op h ) = min g∈L 2 (0,T,H)

J h (g), (1.7) 
with the cost functional

J h (g) = 1 2 u g h 2 L 2 (0,T,H) + M 2 g 2 L 2 (0,T,H) , (1.8) 
where u g h is the unique solution of (2.1)-(1.2), corresponding to the control g for each h > 0, and the distributed optimal control problems Find g op ∈ L 2 (0, T, H) such that J(g op ) = min

g∈L 2 (0,T,H) J(g), (1.9) 
with the cost functional (1.3) where u g is the unique solution to (1.1)-(1.2), corresponding to the control g. Using Theorem 2.5 with its crucial property of monotony (1.5), we prove the strict convexity of the cost functional (1.3) and also of the cost functional (1.8), associated to the problems (1.9) and (1.7) respectively. Then, the existence and uniqueness of solutions to the optimal controls problems (1.9) and (1.7) follows from [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF]. In general see for example [START_REF] Carslaw | Conduction of heat in solids[END_REF] the relevant physical condition, to impose on the boundary, is Newton's law, or Robin's law, and not Dirichlet's. Therefore, the objective of this work is to approximate the optimal control problem (1.9), where the state is the solution to parabolic variational problem (1.1)-(1.2) associated with the Dirichlet condition (2.2), by a family indexed by a factor h of optimal control problems (2.1)-(1.2), where states are the solutions to parabolic variational problems, associated with the boundary condition of Newton (2.3). Moreover, from a numerical analysis point of view it maybe preferable to consider approximating Neumann problems in all space V (see (2.1)-(1.2)), with parameter h, rather than the Dirichlet problem in a subset of the space V (see (1.1)-(1.2)). So the asymptotic behavior can be considered very important in the optimal control.

In the last subsection 3.1, which is also the goal of our paper, we prove that the optimal control g op h (unique solution of the optimization problem (1.7)) and its corresponding state u g op h h (the unique solution of the parabolic variational problem (2.1)-(1.2)) for each h > 1, are strongly convergent to g op (the unique solution of the optimization problem (1.9)), and u gop (the unique solution of the parabolic variational problem (1.1)

-(1.2)) in L 2 ([0, T ] × Ω) and L 2 (0, T, H 1 (Ω)) respectively when h → +∞.
This paper generalizes the results obtained in [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF], for elliptic variational equalities, and in [START_REF] Menaldi | A distributed parabolic control with mixed boundary conditions[END_REF] for parabolic variational equalities, to the case of parabolic variational inequalities of second kind. Various problems with distributed optimal control, associated with elliptic variational inequalities are given see for example [START_REF] Hadi | Optimal control of the obstacle problem: optimality conditions[END_REF][START_REF] Barbu | Optimal control of variational inequalities[END_REF], [START_REF] Bergounioux | Optimal control of an obstacle problem[END_REF]- [START_REF] Bergounioux | Optimal control of obstacle problems: existence of Lagrange multipliers[END_REF], [START_REF] Capatina | Optimal Control of a Signorini contact problem[END_REF][START_REF] Ito | Optimal control of elliptic variational inequalities[END_REF], [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF]- [START_REF] Neittaanmaki | Optimization of elliptic systems[END_REF], [START_REF] Ye | Optimal control of the obstacle problem in a quasilinear elliptic variational inequality[END_REF] and for the parabolic case see for example [START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF][START_REF] Barbu | Optimal control of variational inequalities[END_REF][START_REF] Barbu | Optimal control for free boundary problems[END_REF], [START_REF] Bergounioux | Sensibility analysis for optimal control of problems governed by semilinear parabolic equations[END_REF]- [START_REF] Bonnans | Quelques methodes pour le controle optimal de problèmes comportant des contraintes sur l'état[END_REF], [START_REF] Neittaanmaki | A variational Inequality approach to Constrained Control problems for parabolic equations[END_REF][START_REF] Neittaanmaki | Optimal control of nonlinear parabolic systems. Theory, algorithms and applications[END_REF], [START_REF] Pironneau | Optimal shape design for elliptic systems[END_REF].

On the property of monotony

As we can not prove the property of monotony (1.5) for any convex set K. Let Ω a bounded open set in R N with smooth boundary ∂Ω = Γ 1 ∪ Γ 2 . We assume that Γ 1 ∩ Γ 2 = Ø, and meas(Γ 1 ) > 0. Let H = L 2 (Ω), V = H 1 (Ω). We can prove the property of monotony (1.5) for any convex subset of V . Let

K = {v ∈ V : v |Γ 1 = 0}, and K b = {v ∈ V : v |Γ 1 = b}.
So we consider the following variational problems with such convex subset. Problem (P ) Let given b ∈ L 2 (]0, T [×Γ 1 ), g ∈ L 2 (0, T, H) and q ∈ L 2 (]0, T [×Γ 2 ), q > 0. Find u in C([0, T ], H) ∩ L 2 (0, T, K b ) solution of the parabolic problem (1.1), where < •, • > is only the scalar product (•, •) in H, with the initial condition (1.2), and Φ(v) = Γ 2 q|v|ds.

Problem (P h ) Let given b ∈ L 2 (]0, T [×Γ 1 ), g ∈ L 2 (0, T, H) and q ∈ L 2 (]0, T [×Γ 2 ), q > 0. For all coefficient h > 0, find u ∈ C(0, T, H) ∩ L 2 (0, T, V ) solution of the parabolic variational inequality u(t) , v -u(t) + a h (u(t) , v -u(t)) + Φ(v) -Φ(u(t)) ≥ (g(t), v -u(t)) +h Γ 1 b(t)(v -u(t))ds ∀v ∈ V, (2.1) 
and the initial condition (1.2), where

a h (u, v) = a(u, v) + h Γ 1 uvds.
It is easy to see that the problem (P ) is with the Dirichlet condition

u = b on Γ 1 ×]0, T [, (2.2) 
and the problem (P h ) is with the following Newton-Robin's type condition

- ∂u ∂n = h(u -b) on Γ 1 ×]0, T [. (2.3)
where n is the exterior unit vector normal to the boundary. The integal on Γ 2 in the expression of Φ comes from the Tresca boundary condition (see [START_REF] Boukrouche | Ciuperca Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid-solid interface law[END_REF]- [START_REF] Boukrouche | Non-isothermal lubrication problem with Tresca fluidsolid interface law. Partie I[END_REF], [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF]) with q is the Tresca friction coefficient on Γ 2 . Note that only for the proof of Theorem 2.5 we have need to specify an expression of the functional Φ.

By assumption there exists λ > 0 such that λ v 2 V ≤ a(v , v) ∀v ∈ V . Moreover, it follows from [START_REF] Tabacman | Sufficient and/or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem[END_REF][START_REF] Tarzia | Una familia de problemas que converge hacia el caso estacionario del problema de Stefan a dos fases[END_REF] that there exists λ 1 > 0 such that

a h (v, v) ≥ λ h v 2 V ∀v ∈ V,
with λ h = λ 1 min{1 , h} so a h is a bilinear, continuous, symmetric and coercive form on V . So there exists an unique solution to each of the two problems (P ) and (P h ). We recall that u g is the unique solution of the parabolic variational problem (P ), corresponding to the control g ∈ L 2 (0, T, H), and also that u g h is the unique solution of the parabolic variational problem (P h ), corresponding to the control g ∈ L 2 (0, T, H).

Proposition 2.1. Assume that g ≥ 0 in Ω×]0, T [, b ≥ 0 on Γ 1 ×]0, T [, u b ≥ 0 in Ω.
Then as q > 0, we have u g ≥ 0. Assuming again that h > 0, then u g h ≥ 0 in Ω×]0, T [.

Proof. For u = u g h , it is enough to take v = u + in (2.1), to get u -(T ) 2 L 2 (Ω) + λ T 0 u -(t) 2 V dt + h T 0 Γ 1 (u -(t)) 2 dsdt+ ≤ - T 0 (g(t), u -(t))dt - T 0 Γ 2 q(|u(t)| -|u + (t)|)dsdt -h T 0 Γ 1 b(t)u -(t)dsdt + u -(0) 2 L 2 (Ω) (2.4) 
so the result follows.

Theorem 2.2. Let u 1 and u 2 be two solutions of the parabolic variational inequality (1.1) with the same initial condition, and corresponding to the two control g 1 and g 2 respectively.

We have the following estimate

1 2 u 4 (µ) -u 3 (µ) 2 L ∞ (0,T,H) + λ u 4 (µ) -u 3 (µ) 2 L 2 (0,T,V ) + µI 14 (µ)(T ) + (1 -µ)I 24 (µ)(T ) +µΦ(u 1 ) + (1 -µ)Φ(u 2 ) -Φ(u 3 (µ)) ≤ µ(1 -µ)(A(T, g 1 ) + B(T, g 2 )) ∀µ ∈ [0, 1],
where

I j4 (µ)(T ) = T 0 I j4 (µ)(t)dt for j = 1, 2, A(T, g 1 ) = T 0 α(t)dt, B(T, g 2 ) = T 0 β(t)dt, I j4 (µ) = uj , u 4 (µ) -u j + a(u j , u 4 (µ) -u j ) + Φ(u 4 (µ)) -Φ(u j ) -g j , u 4 (µ) -u j ≥ 0, α = u1 , u 2 -u 1 + a(u 1 , u 2 -u 1 ) + Φ(u 2 ) -Φ(u 1 ) -g 1 , u 2 -u 1 ≥ 0, (2.5) β = u2 , u 1 -u 2 + a(u 2 , u 1 -u 2 ) + Φ(u 1 ) -Φ(u 2 ) -g 2 , u 1 -u 2 ≥ 0. (2.6) Proof. As u 3 (µ)(t) ∈ K so with v = u 3 (µ)(t)
, in the variational inequality (1.1) where u = u 4 (µ) and g = g 3 (µ), we obtain

u4 (µ) , u 3 (µ) -u 4 (µ) + a(u 4 (µ) , u 3 (µ) -u 4 (µ)) + Φ(u 3 (µ)) -Φ(u 4 (µ)) ≥ g 3 (µ), u 3 (µ) -u 4 (µ) a.e. t ∈]0, T [, then u4 (µ) -u3 (µ) , u 4 (µ) -u 3 (µ) + a(u 4 (µ) -u 3 (µ) , u 4 (µ) -u 3 (µ)) ≤ u3 (µ) , u 3 (µ) -u 4 (µ) + a(u 3 (µ) , u 3 (µ) -u 4 (µ)) +Φ(u 3 (µ)) -Φ(u 4 (µ)(t)) -g 3 (µ), u 3 (µ) -u 4 (µ) a.e. t ∈]0, T [, thus 1 2 ∂ ∂t u 4 (µ) -u 3 (µ) 2 H + λ u 4 (µ) -u 3 (µ) 2 V ≤ u3 (µ) , u 3 (µ) -u 4 (µ) +a(u 3 (µ) , u 3 (µ) -u 4 (µ)) + Φ(u 3 (µ)) -Φ(u 4 (µ)) -g 3 (µ) , u 3 (µ) -u 4 (µ) , a.e. t ∈]0, T [, using that u 3 (µ) = µ(u 1 -u 2 ) + u 2 , g 3 (µ) = µ(g 1 -g 2 ) + g 2 we get 1 2 ∂ ∂t u 4 (µ) -u 3 (µ) 2 H + λ u 4 (µ) -u 3 (µ) 2 V + µΦ(u 1 ) + (1 -µ)Φ(u 2 ) -Φ(u 3 (µ) ≤ µ(1 -µ)(α + β) -µI 14 (µ) -(1 -µ)I 24 (µ) a.e. t ∈]0, T [,
so by integration between t = 0 and t = T , we deduce the required result.

Corollary 2.3. From Theorem 2.2 we get a.e. t ∈ [0, T ] A(T, g 1 ) = B(T, g 2 ) = 0 ⇒    u 3 (µ) = u 4 (µ) ∀µ ∈ [0, 1], I 14 (µ) = I 24 (µ) = 0 ∀µ ∈ [0, 1], Φ(u 3 (µ)) = µΦ(u 1 ) + (1 -µ)Φ(u 2 ) ∀µ ∈ [0, 1].
Lemma 2.4. Let u 1 and u 2 be two solutions of the parabolic variational inequality of second kind (1.1) with respectively as second member g 1 and g 2 , then we get

u 1 -u 2 2 L ∞ (0,T,H) + λ u 1 -u 2 2 L 2 (0,T,V ) ≤ 1 λ g 1 -g 2 2 L 2 (0,T,V ′ ) , (2.7) 
Where λ is the coerciveness constant of the biliear form a.

Proof. Taking v = u 2 in (1.1) where u = u 1 and g = g 1 ; then v = u 1 in (1.1) where u = u 2 and g = g 2 , so by addition (2.7) holds.

We generalize now in our case the result on a monotony property, obtained by [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] for the elliptic variational inequality. This theorem is the cornestone to prove the strict convexity of the cost functional J defined in Problem (1.9) and the cost functional J h defined in Problem (1.7). Remark first that with the duality bracks < •, • > defined by

< g(t), ϕ >= (g(t), ϕ) + h Γ 1 b(t)ϕds
(2.1) leads to (1.1). We prove the following theorem for Φ such that Φ(v) = Γ 2 q|v|ds. Theorem 2.5. For any two control g 1 and g 2 in L 2 (0, T, H), it holds that

u 4 (µ) ≤ u 3 (µ) in Ω × [0, T ], ∀µ ∈ [0, 1].
(2.8)

Here u 4 (µ) = u µg 1 +(1-µ)g 2 , u 3 (µ) = µu g 1 + (1 -µ)u g 2 , u 1 = u g 1 and u 2 = u g 2 are
the unique solutions of the variational problem P , with g = g 1 and g = g 2 respectively, and for the same q, and the same initial condition (1.2). Moreover, it holds also that

u h4 (µ) ≤ u h3 (µ) in Ω × [0, T ], ∀µ ∈ [0, 1].
(2.9)

Here u 4h (µ) = u µg 1h +(1-µ)g 2h , u 3h (µ) = µu g 1h + (1 -µ)u g 2h
, u 1h = u g 1h and u h2 = u g h2 are the unique solutions of the variational problem P h , with g = g 1 and g = g 2 respectively, and for the same q, h, b and the same initial condition (1.2).

Proof. The main difficulty, to prove this result comes from the fact that the functional Φ is not differentiable. To overcome this difficulty, we use the regularization method and consider for ε > 0 the following approach of Φ

Φ ε (v) = Γ 2 q ε 2 + |v| 2 ds, ∀v ∈ V, which is Gateaux differentiable, with Φ ′ ε (w) , v = Γ 2 qwv ε 2 + |w| 2 ds ∀(w, v) ∈ V 2 .
Let u ε be the unique solution of the variational inequality (2.10) where u ε = u ε 1 and g = g 1 , and we multiply the two sides of the obtained inequality by µ then we take v = u ε 2 + U + ε (µ) in (2.10) where u ε = u ε 2 and g = g 2 and we multiply the two sides of the obtained inequality by (1µ). By adding the three obtained inequalities we get a.e. t ∈]0, T [,

uε , v -u ε + a(u ε , v -u ε ) + Φ ′ ε (u ε ) , v -u ε ≥ g , v -u ε a.e. t ∈ [0, T ] ∀v ∈ K, and u ε (0) = u b . (2.10) Let us show first that for all µ ∈ [0, 1] u ε 4 (µ) ≤ u ε 3 (µ), then that u ε 3 (µ) → u 3 (µ) and u ε 4 (µ) → u 4 (µ) strongly in L 2 (0, T ; H) when ε → 0. Indeed for all µ ∈ [0, 1], let consider U ε (µ) = u ε 4 (µ) -u ε 3 (µ) thus u ε 4 (µ)(t) -U + ε (µ)(t) is in K. So we can take v = u ε 4 (µ)(t) -U + ε (µ)(t) in (2.10) where u ε = u ε 4 (µ) and g = g 3 (µ) = µ(g 1 -g 2 )+g 2 . We also can take v = u ε 1 (t)+U + ε (µ)(t) in
1 2 ∂ ∂t ( U + ε (µ) 2 H ) + λ U + ε (µ) 2 V ≤ µΦ ′ ε (u ε 1 ) + (1 -µ)Φ ′ ε (u ε 2 ) -Φ ′ ε (u ε 4 (µ)) , U + ε (µ) , hence as U + ε (µ)(0) = 0, by integration from t = 0 to t = T we obtain a.e. t ∈]0, T [ 1 2 U + ε (µ)(T ) 2 H + λ T 0 U + ε (µ)(t) 2 V dt ≤ ≤ T 0 µΦ ′ ε (u ε 1 (t)) + (1 -µ)Φ ′ ε (u ε 2 (t)) -Φ ′ ε (u ε 4 (µ)(t)) , U + ε (µ)(t) dt.
As

< µΦ ′ ε (u ε 1 ) + (1 -µ)Φ ′ ε (u ε 2 ) -Φ ′ ε (u ε 4 (µ)) , U + ε (µ) >= = Γ ′ 2 qµu ε 1 U + ε (µ) ε 2 + |u ε 1 | 2 ds + Γ ′ 2 q(1 -µ)u ε 2 U + ε (µ) ε 2 + |u ε 2 | 2 ds - Γ ′ 2 qu ε 4 (µ)U + ε (µ) ε 2 + |u ε 4 | 2 ds where Γ ′ 2 = Γ 2 ∩ {u ε 4 (µ) > u ε 3 (µ)}. The function x → ψ(x) = x √ ε 2 + x 2 for x ∈ R is increasing (ψ ′ (x) = ε 2 (ε 2 + x 2 ) -3 2 > 0) so Γ ′ 2 qµu ε 1 U + ε (µ) ε 2 + u ε 1 2 R N ds + Γ ′ 2 q(1 -µ)u ε 2 U + ε (µ) ε 2 + |u ε 2 | 2 ds - Γ ′ 2 qu ε 4 (µ)U + ε (µ) ε 2 + |u ε 4 | 2 ds ≤ Γ ′ 2 qµu ε 1 U + ε (µ) ε 2 + |u ε 1 | 2 ds + Γ ′ 2 q(1 -µ)u ε 2 U + ε (µ) ε 2 + |u ε 2 | 2 ds - Γ ′ 2 qu ε 3 (µ)U + ε (µ) ε 2 + |u ε 3 | 2 ds.
Moreover the function ψ is concave on

R + \ {0} (ψ ′′ (x) = -3ε 2 x(ε 2 + x 2 ) -5 2 < 0) thus 1 2 U + (µ)(T ) 2 H + λ T 0 U + (µ)(t) 2 V dt ≤ 0. (2.11) As U + ε (µ) = 0 on {Γ 2 × [0, T ]} ∩ {u ε 4 (µ) ≤ u ε 3 (µ)} so u ε 4 (µ) ≤ u ε 3 (µ) ∀µ ∈ [0, 1].
(2.12)

Now we must prove that

u ε 3 (µ) → u 3 (µ) and u ε 4 (µ) → u 4 (µ) strongly in L 2 (0, T ; H) when ε → 0. Taking in (2.10) v = u b ∈ K with u ε = u ε i (i = 1, 2), we deduce that uε i , u ε i -u b + a(u ε i -u b , u ε i -u b ) + Φ ′ ε (u ε i ) , u ε i ≤ a(u b , u b -u ε i ) + Φ ′ ε (u ε i ) , u b -g i , u b -u ε i . As Φ ′ ε (u ε i ) , u ε i ≥ 0 and | Φ ′ ε (u ε i ) , u b | ≤ Γ 2 q|u b |ds
we deduce, using the Cauchy-Schwartz inequality, that u ε i L 2 (0,T ;V ) so also u ε 3 (µ) L 2 (0,T ;V ) are bounded independently from ε. By Theorem 2.2 we get

1 2 u ε 3 (µ) -u ε 4 (µ) L ∞ (0,T ;H) + λ u ε 3 (µ) -u ε 4 (µ) L 2 (0,T ;V ) ≤ µ(1 -µ)(A ε (T, g 1 ) + B ε (T, g 2 )) ≤ µ(1 -µ) 1 2 g 1 -g 2 2 L 2 (0,T ;H) + u ε 1 -u ε 2 2 L 2 (0,T ;H) ∀µ ∈ [0, 1],
thus u ε 4 (µ) L 2 (0,T ;V ) is also bounded independently from ε. So there exists l i ∈ V , for i = 1, • • • , 4, such that u ε i ⇀ l i in L 2 (0, T ; V ) weak, and in L ∞ (0, T ; H) weak star.

(2.13)

We check now that l i = u i . Indeed for i = 1, 2 or 4 and as Φ is convex functional we have,

uε i , v -u ε i + a(u ε i , v -u ε i ) + Φ ε (v) -Φ ε (u ε i ) ≥ uε i , v -u ε i + a(u ε i , v -u ε i ) + Φ ′ ε (u ε i ) , v -u ε i ≥ g i , v -u ε i , a.e. t ∈]0, T [ thus uε i , v -u ε i + a(u ε i , v -u ε i ) + Φ ε (v) -Φ ε (u ε i ) ≥ g i , v -u ε i , a.e. t ∈]0, T [. (2.14) Taking v = u ε i ± ϕ, in (2.14) we have uε i , ϕ = -a(u ε i , ϕ) + g i , ϕ , ∀ϕ ∈ L 2 (0, T, H 1 0 (Ω)). ( 2 

.15)

As H 1 0 (Ω) ⊂ V with continuous inclusion but not dense, so V ′ (the topological dual of the space V ) is not identifiable with a subset of H -1 (Ω). However, following [START_REF] Menaldi | A distributed parabolic control with mixed boundary conditions[END_REF] we can use the Hahn-Banach Theorem in order to extend any element in H -1 (Ω) to an element of V ′ preserving its norm. So from (2.13) and (2.15) we conclude that

u ε i ⇀ l i in L 2 (0, T, V ) weak, in L ∞ (0,
T, H) weak star, and uε i ⇀ li in L 2 (0, T, V ′ ) weak.

(2.16)

Then from (2.14), and following ( [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF][START_REF] Tarzia | Etude de l'inéquation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases, I, Boll[END_REF]) we can write

T 0 { uε i , v + a(u ε i , v) + Φ ε (v) -g i , v -u ε i } dt ≥ T 0 { uε i , u ε i + a(u ε i , u ε i ) + Φ ε (u ε i )} dt = 1 2 u ε i (T ) 2 H - 1 2 u b (T ) 2 H + T 0 {a(u ε i , u ε i ) + Φ ε (u ε i )} dt.
Using the property of Φ ε we have lim inf ε→0 Φ ε (u ε i ) ≥ Φ(l i ), and (2.16) we obtain

T 0 li , v + a(l i , v) + Φ(v) -g i , v -l i dt ≥ T 0 li , l i + a(l i , l i ) + Φ(l i ) dt. (2.17)
Let w ∈ K and any t 0 ∈]0, T [ then we consider the open interval

O j =]t 0 -1 j , t 0 + 1 j [⊂]0, T [ for j ∈ N ⋆ sufficiently large we take in (2.17) v = w if t ∈ O j , l i (t) if t ∈]0, T [\O j to get O j li , w -l i + a(l i , w -l i ) + Φ(w) -Φ(l i ) dt ≥ O j g i , w -l i dt. (2.18) 
We use now the Lebesgues Theorem to obtain, when j → +∞ li , w -

l i + a(l i , w -l i ) + Φ(w) -Φ(l i ) ≥ g i , w -l i , a.e. t ∈]0, T [. (2.19) 
So by the uniqueness of the solution of the parabolic variational inequality of second kind (1.1), we deduce that l i = u i .

To finish the proof we check the strong convergence of u ε i to u i . Indeed for i = 1, 2 or 4 taking v = u i (t) in (1.1) where u = u ε i then v = u ε i (t) in (1.1) where u = u i , then by addition, and integration over the time interval [0, T ] we obtain

1 2 u i (T ) -u ε i (T ) 2 H + T 0 a(u i (t) -u ε i (t) , u i (t) -u ε i (t))dt ≤ T 0 Φ ε (u i (t)) -Φ(u i (t)) + Φ(u ε i (t)) -Φ ε (u ε i (t))dt (2.20) as Φ ε (v) -Φ(v) = Γ 2 q( ε 2 + |v| 2 -|v|)ds ≤ ε |Γ 2 | q L 2 (Γ 2 ) , so from (2.20) 1 2 u i -u ε i 2 L ∞ (0,T,H) + T 0 a(u i (t) -u ε i (t) , u i (t) -u ε i (t))dt ≤ 2T ε |Γ 2 | q L 2 (Γ 2 )
thus

u ε i → u i strongly in L 2 (0, T ; V ) ∩ L ∞ (0, T ; H) for i = 1, 2, 4 (2.21) 
then also

u ε 3 (µ) = µu ε 1 + (1 -µ)u ε 2 → u 3 strongly in L 2 (0, T ; V ) ∩ L ∞ (0, T ; H). (2.22)
from (2.12), (2.21) and (2.22) we get (2.8). As the proof is given for any two control g = g 1 and g = g 2 in L 2 (0, T, H), but for the same q, h, b and the same initial condition (1.2), so we get also (2.9).

Dependency of the solutions on the data

Note that this Subsection is not needed in the last Section. We just would like to establish three propositions which allow us to deduce some additional and interesting properties on the solutions of the variational problems P and P h .

Proposition 2.6. Let u gn , u g be two solutions of Problem P , with g = g n and g = g respectively. Assume that g n ⇀ g in L 2 (0, T, H) (weak), we get

u gn → u g in L 2 (0, T, V ) ∩ L ∞ (0, T, H) (strong) (2.23) ugn → ug in L 2 (0, T, V ′ ) (strong). (2.24) Moreover g 1 ≥ g 2 in Ω × [0, T ] then u g 1 ≥ u g 2 in Ω × [0, T ].
(2.25)

u min(g 1 ,g 2 ) ≤ u 4 (µ) ≤ u max(g 1 ,g 2 ) , ∀µ ∈ [0, 1]. ( 2 

.26)

Let u g 1 h , u g 2 h be two solutions of Problem P h , with g = g 1 and g = g 2 respectively for all h > 0, we get

g 1 ≥ g 2 in Ω × [0, T ] then u g 1 h ≥ u g 2 h in Ω × [0, T ]. (2.27) 
u min(g 1 ,g 2 )h ≤ u h4 (µ) ≤ u max(g 1 ,g 2 )h ∀µ ∈ [0, 1]. (2.28) 
Proof. Let g n ⇀ g in L 2 (0, T, H), u gn and u g be in L 2 (0, T, K) such that ugn , vu gn + a(u gn , vu gn ) + Φ(v) -Φ(u gn ) ≥ (g n , vu gn )

∀v ∈ K, a.e. t ∈]0, T [. (2.29) Remark also that V 2 = {v ∈ V : v | Γ 2 = 0} ⊂ V with continuous inclusion but not dense, so V ′ is not identifiable with a subset of V ′ 2 . However, following again [START_REF] Menaldi | A distributed parabolic control with mixed boundary conditions[END_REF] we can use the Hahn-Banach Theorem in order to extend any element in V ′ 2 to an element of V ′ preserving its norm. So with the same arguments as in (2.14)-(2.19), we conclude that there exists η such that (eventually for a subsequence) u gn ⇀ η in L 2 (0, T, V ) weak, in L ∞ (0, T, H) weak star, and ugn ⇀ η in L 2 (0, T, V ′ ) weak (2.30)

Using (2.30) and taking n → +∞ in (2.29), we get .31) by the uniqueness of the solution of (1.1) we obtain that η = u g . Taking now v = u g (t) in (2.29) and v = u gn (t) in (2.31), we get by addition and integration over [0, T ] we obtain

η, v -η + a(η, v -η) + Φ(v) -Φ(u η ) ≥ (g, v -η), ∀v ∈ K, a.e. t ∈]0, T [, ( 2 
1 2 u gn (T ) -u g (T ) 2 H + λ u gn -u g 2 L 2 (0,T,V ) ≤ T 0 (g n (t) -g(t) , u gn (t) -u g (t)
)dt, so from the above inequality and (2.30) we deduce (2.23). To prove (2.25) we take first

v = u 1 (t) + (u 1 (t) -u 2 (t)) -(which is in K) in (1.1) where u = u 1 and g = g 1 , then taking v = u 2 (t) -(u 1 (t) -u 2 (t)) -(which also is in K) in (1.1)
where u = u 2 and g = g 2 , we get

1 2 (u 1 (T ) -u 2 (T )) -2 H + λ (u 1 -u 2 ) -2 L 2 (0,T,V ) ≤ T 0 (g 2 (t) -g 1 (t) , (u 1 (t) -u 2 (t)) -)dt as Φ(u 1 ) -Φ(u 1 + (u 1 -u 2 ) -) + Φ(u 2 ) -Φ(u 2 -(u 1 -u 2 ) -) = 0. So if g 2 -g 1 ≤ 0 in Ω × [0, T ] then (u 1 -u 2 ) - L 2 (0,T,V ) = 0, and as (u 1 -u 2 ) -= 0 on Γ 1 ×]0, T [ we have by the Poincaré inequality that u 1 -u 2 ≥ 0 in Ω × [0, T ]. Then (2.26) follows from (2.25) because min{g 1 , g 2 } ≤ µg 1 + (1 -µ)g 2 ≤ max{g 1 , g 2 } ∀µ ∈ [0, T ]. Similarly taking v = u g 1 h (t) + (u g 1 h (t) -u g 2 h (t)) -(which is in V ) in (2.1) where u = u g 1 h and g = g 1 h, then taking v = u g 2 h (t) -(u g 1 h (t) -u g 2 h (t)) -(which also is in V ) in (2.1) where u = u g 2 h and g = g 2 h, we get 1 2 (u g 1 h (T ) -u g 2 h (T )) -2 H + λ (u g 1 h -u g 2 h ) -2 L 2 (0,T,V ) + h (u g 1 h -u g 2 h ) -2 L 2 (0,T,L 2 (Γ 1 )) ≤ T 0 (g 2 (t) -g 1 (t) , (u 1 (t) -u 2 (t)) -)dt
so we get also (2.27), then (2.28) follows.

The following propositions 2.7 and 2.8 are to give, with some assumptions, a first information that the sequence (u g h ) h>0 is increasing and bounded, therefore it is convergent in some sense. Remark from (2.4) that u g h ≥ 0 although g < 0, provided to take the parameter h sufficiently large. Proposition 2.7. Assume that h > 0 and is sufficiently large, b is a positive constant, q ≥ 0 on Γ 2 × [0, T ], then we have

g ≤ 0 in Ω × [0, T ] =⇒ 0 ≤ u g h ≤ b in Ω ∪ Γ 1 × [0, T ],
(2.32)

Proof. Taking in (2.1) u = u g h (t) and v = u g h (t) -(u g h (t) -b) + , we get ug h , (u g h -b) + + a h (u g h , (u g h -b) + ) -Φ(u g h -(u g h -b) + ) + Φ(u g h ) ≤ (g , (u g h -b) + ) + h Γ 1 b(u g h -b) + ds, a.e. t ∈]0, T [ as b is constant we have a(b , (u g h (t) -b) + ) = 0 so a.e. t ∈]0, T [ 1 2 ∂ ∂t (u g h (t) -b) + 2 H + a((u g h -b) + , (u g h -b) + ) + h Γ 1 u g h (u g h -b) + ds ≤ (g , (u g h -b) + ) + h Γ 1 b(u g h -b) + ds + Φ(u g h -(u g h -b) + ) -Φ(u g h ), as u g h (0) = b and Φ(u g h -(u g h -b) + ) -Φ(u g h ) = Γ 2 q(|u g h -(u g h -b) + | -|u g h |)ds ≤ 0, so 1 2 (u g h (T ) -b) + 2 H + T 0 a h ((u g h (t) -b) + , (u g h (t) -b) + )dt ≤ ≤ T 0 (g(t) , (u g h (t) -b) + )dt ≤ 0, thus (2.32) holds.
Proposition 2.8. Assume that h > 0 and is sufficiently large. Let g, g 1 , g 2 in L 2 (0, T, H), q ∈ L 2 (0, T, L 2 (Γ 2 )) and b is a positive constant, we have

g 2 ≤ g 1 ≤ 0 in Ω × [0, T ] and h 2 ≤ h 1 =⇒ 0 ≤ u g 2 h 2 ≤ u g 1 h 1 in Ω × [0, T ], (2.33) 
g ≤ 0 in Ω × [0, T ] =⇒ 0 ≤ u g h ≤ u g in Ω × [0, T ], ∀h > 0.
(2.34)

h 2 ≤ h 1 =⇒ u g h 2 -u g h 1 L 2 (0,T,V ) ≤ γ 0 || λ 1 min(1, h 2 ) b -u g h 1 L 2 (0,T,L 2 (Γ 1 )) (h 1 -h 2 ) (2.35) Proof. To check (2.33) we take first v = u g 1 h 1 (t) + (u g 2 h 2 (t) -u g 1 h 1 (t)) + , for t ∈ [0, T ], in (2.1) where u = u g 1 h 1 , g = g 1 h 1 and h = h 1 , then taking v = u g 2 h 2 (t) -(u g 2 h 2 (t) -u g 1 h 1 (t)) + in (2.
1) where u = u g 2 h 2 , g = g 2 h 2 and h = h 2 , adding the two obtained inequalities, as

Φ(u g 1 h 1 + (u g 2 h 2 -u g 1 h 1 ) + ) -Φ(u g 1 h 1 ) + Φ(u g 2 h 2 -(u g 2 h 2 -u g 1 h 1 ) + )) -Φ(u g 2 h 2 ) = 0 we get - 1 2 ∂ ∂t (u g 2 h 2 -u g 1 h 1 ) + 2 H -a(u g 2 h 2 -u g 1 h 1 , (u g 2 h 2 -u g 1 h 1 ) + ) + Γ 1 (h 1 u g 1 h 1 -h 2 u g 2 h 2 )(u g 2 h 2 -u g 1 h 1 ) + ds ≥ (g 1 -g 2 , (u g 2 h 2 -u g 1 h 1 ) + ) +(h 1 -h 2 ) Γ 1 b(u g 2 h 2 -u g 1 h 1 ) + ds, a.e. t ∈]0, T [, so by integration on ]0, T [, we deduce 1 2 (u g 2 h 2 (T ) -u g 1 h 1 (T )) + 2 H + T 0 a h 2 ((u g 2 h 2 -u g 1 h 1 ) + , (u g 2 h 2 -u g 1 h 1 (t)) + )dt ≤ T 0 (g 2 -g 1 , (u g 2 h 2 (t) -u g 1 h 1 ) + )dt + (h 1 -h 2 ) T 0 Γ 1 (u g 1 h 1 -b)(u g 2 h 2 -u g 1 h 1 ) + dsdt,
and from (2.32) we get (2.33). To check (2.34), let W = u g h (t)u g (t), and choose, in (

, v = u g h (t) -W + (t), so a.e. t ∈]0, T [ ug h , W + + a h (u g h , W + ) ≤ +Φ(u g h -W + ) -Φ(u g h ) + (g , W + ) + h Γ 1 bW + ds, as u g = b on Γ 1 × [0, T ] we obtain a.e. t ∈]0, T [ ug h , W + + a(u g h , W + ) + h Γ 1 |W + | 2 ds ≤ (g , W + ) + Φ(u g h -W + ) -Φ(u g h ). (2.36) 2.1) 
Then we choose, in (1.1), v = u g (t) + W + (t), which is in K because from (2.32) we have

W + = 0 on Γ 1 × [0, T ], so ug , W + (t) + a(u g , W + ) ≥ (g , W + ) -Φ(u g + W + ) + Φ(u g ), a.e. t ∈]0, T [. (2.37) 
So from (2.36) and (2.37) we deduce that

1 2 W + (T ) 2 H + T 0 a(W + , W + )dt + h Γ 1 |W + | 2 ds ≤ Φ(u g h -W + ) -Φ(u g h ) + Φ(u g + W + ) -Φ(u g ) = 0.
Then (2.34) holds. To finish the proof we must check (2.35). We choose v = u g h 1 (t) in (2.1) where u = u g h 2 (t), then choosing v = u g h 2 (t) in (2.1) where u = u g h 1 (t), we get

-ug h 2 -ug h 1 , u g h 2 -u g h 1 -a(u g h 2 -u g h 1 , u g h 2 -u g h 1 ) -h 2 Γ 1 u g h 2 (u g h 2 -u g h 1 )ds + h 1 Γ 1 u g h 1 (u g h 2 -u g h 1 )ds ≥ -(h 2 -h 1 ) Γ 1 b(u g h 2 -u g h 1 )ds, a.e. t ∈]0, T [, then 1 2 u g h 2 (T ) -u g h 1 (T ) 2 H + T 0 a h 2 (u g h 2 -u g h 1 , u g h 2 -u g h 1 )dt ≤ (h 1 -h 2 ) T 0 Γ 1 (u g h 1 -b)(u g h 2 -u g h 1 )dsdt. So 1 2 u g h 2 -u g h 1 2 L ∞ (0,T,H) + λ 1 min{1, h 2 } u g h 2 -u g h 1 2 L 2 (0,T,V ) ≤ γ 0 (h 1 -h 2 ) b -u g h 1 L 2 (0,T,L 2 (Γ 1 )) u g h 2 -u g h 1 L 2 (0,T,V )
where γ 0 is the trace embedding from V to L 2 (Γ 1 ). Thus (2.35) holds.

3 Optimal Control problems and convergence for h → +∞

In this section, b is not constant but a given function in L 2 (]0, T [×Γ 1 ). We prove first the existence and uniqueness of the solution for the optimal control problem associated to the parabolic variational inequalities of second kind (1.1), and for the optimal control problem associated also to (2.1), then in Subsection 3.1 we prove (see Lemma 3.2 and Theorem 3.3) the convergence of the state u gop h h and the optimal control g op h , when the coefficient h on Γ 1 , goes to infinity. The existence and uniqueness of the solution to the parabolic variational inequalities of second kind (1.1) and (2.1), with the initial condition (1.2), allow us to consider g → u g and g → u g h as functions from L 2 (0, T, H) to L 2 (0, T, V ), for all h > 0.

Using the monotony property (2.8) and (2.9), established in Theorem 2.5, we prove in the following that J and J h , defined by (1.3) and (1.8), are strictly convex applications on L 2 (0, T, H), so [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] there exists a unique solution g op in L 2 (0, T, H) of the Problem (1.9), and there exists also a unique solution g op h in L 2 (0, T, H) of Problem (1.7) for all h > 0.

Theorem 3.1. Assume the same hypotheses of Proposition 2.1. Then J and J h , defined by (1.3) and (1.8) respectively, are strictly convex applications on L 2 (0, T, H), so there exist unique solutions g op and g op h in L 2 (0, T, H) respectively of the Problems (1.9) and (1.7).

Proof. Let u = u g i and u g i h be respectively the solution of the variational inequalities (1.1) and (2.1) with g = g i for i = 1, 2. We have

u 3 (µ) 2 L 2 (0,T,H) = µ 2 u g 1 2 L 2 (0,T,H) + (1 -µ) 2 u g 2 2 
L 2 (0,T,H) + 2µ(1µ)(u g 1 , u g 2 ) then the following equalities hold

u 3 (µ) 2 L 2 (0,T,H) = µ u g 1 2 L 2 (0,T,H) + (1 -µ) u g 2 2 L 2 (0,T,H) -µ(1 -µ) u g 2 -u g 1 2 L 2 (0,T,H) , (3.1) 
Let ϕ ∈ L 2 (0, T, V 2 ) and taking in (2.1) where u = u g h , v = u g h (t) ± ϕ(t), we obtain ug h , ϕ = -a(u g h , ϕ) + (g, ϕ) a.e. t ∈]0, T [. As u g h L 2 (0,T,V ) is bounded for all h > 1, we deduce that ug h L 2 (0,T,V ′ 2 ) is also bounded for all h > 1. Following the proof of Lemma 2.3, we conclude that u g h ⇀ η in L 2 (0, T, V ) weak, and in L ∞ (0, T, H) weak star, and ugn ⇀ η in L 2 (0, T, V ′ ) weak.

(3.5)

From (2.1) and taking v ∈ K so v = b on Γ 1 , we obtain 

ug h , v -u g h + a(u g h , v -u g h ) -h Γ 1 |u g h -b| 2 ds ≥ Φ(u g h ) -Φ(v) + (g, v -u g h ) ∀v ∈ K, a.e. t ∈]0, T [, then ug h , v -u g h + a(u g h , v -u g h ) ≥ Φ(u g h ) -Φ(v) + (g, v -u g h ) ∀v ∈ K,
, v -η + a(η, v -η) + Φ(v) -Φ(η) ≥ (g, v -η) ∀v ∈ K, a.e. t ∈]0, T [. and η(0) = b.
Using the uniqueness of the solution of (1.1)-(1.2) we get that η = u g . To prove the strong convergence, we take v = u g (t) in (2.1)

ug h , u g -u g h + a h (u g h , u g -u g h ) + Φ(u g ) -Φ(u g h ) ≥ (g, u g -u g h ) +h Γ 1 b(u g -u g h )ds, a.e. t ∈]0, T [ thus as u g = b on Γ 1 ×]0, T [, we put u g h -u g = φ h , so a.e. t ∈]0, T [ φh , φ h + a(φ h , φ h ) + h Γ 1 |φ h | 2 ds + Φ(u g h ) -Φ(u g ) ≤ ug , φ h + a(u g , φ h ) + (g, φ h ), so 1 2 φ h 2 L ∞ (0,T,H) + λ h φ h 2 L 2 (0,T,V ) + Φ(u g h ) -Φ(u g ) ≤ - T 0 ug (t), φ h (t) dt - T 0 a(u g (t), φ h (t)dt + T 0 (g(t), φ h (t)dt,
using the weak semi-continuity of Φ and the weak convergence (2.30) the right side of the just above inequality tends to zero when h → +∞, then we deduce the strong convergence of φ h = u g hu g to 0 in L 2 (0, T, V ) ∩ L ∞ (0, T, H), for all g ∈ L 2 (0, T, H). This ends the proof.

We give now, without need to use the notion of adjoint states [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF], the convergence result which generalizes the result obtained in [START_REF] Menaldi | A distributed parabolic control with mixed boundary conditions[END_REF] for a parabolic variational equations (see also [START_REF] Arada | Asymptotic analysis of some control problems[END_REF][START_REF] Ben Belgacem | A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions[END_REF][START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF][START_REF] Gariboldi | Convergence of boundary optimal control problems with restrictions in mixed elliptic Stefan-like problems[END_REF]). Theorem 3.3. Let u gop h h , g op h and u gop , g op be respectively the states and the optimal control defined in the problems (1.9) and (1.7). Then

lim h→+∞ u g op h h -u gop L 2 (0,T,V ) = lim h→+∞ u g op h h -u gop L ∞ (0,T,H) , = lim h→+∞ u g op h h -u gop L 2 (0,T,L 2 (Γ 1 )) = 0, (3.7) lim h→+∞ g op h -g op L 2 (0,T,H) = 0. (3.8) 1 2 u 0 h 2 L 2 (0,T,H) (3.9) 
where u 0 h ∈ L 2 (0, T, V ) is the solution of the following parabolic variational inequality

u0 h , v -u 0 h + a h (u 0 h , v -u 0 h ) + Φ(v) -Φ(u 0 h ) ≥ h Γ 1 b(v -u 0 h )ds, a.e. t ∈]0, T [ for all v ∈ V and u 0 h (0) = u b . Taking v = u b ∈ K we get that u 0 h -u b L 2 (0,T,V ) is bounded independently of h, then u 0 h L 2 (0,T,H
) is bounded independently of h. So we deduce with (3.9) that u g op h h L 2 (0,T,H) and g op h L 2 (0,T,H) are also bounded independently of h. So there exists f and η in L 2 (0, T, H) such that g op h ⇀ f in L 2 (0, T, H) (weak) and u g op h h ⇀ η in L 2 (0, T, H) (weak). (3.10)

Taking now v = u gop (t) ∈ K in (2.1), for t ∈]0, T [, with u = u gop h h and g = g op h , we obtain

ugop h h , u gop -u g op h h + a 1 (u gop h h , u gop -u g op h h ) +(h -1) Γ 1 u g op h h (u gop -u g op h h )ds + Φ(u gop ) -Φ(ug op h h ) ≥ (g op h , u gop -u gop h h ) + h Γ 1 b(u gop -u gop h h )ds, a.e. t ∈]0, T [ as u gop = b on Γ 1 × [0, T ], taking u gop -u gop h h = φ h we obtain φh , φ h + a 1 (φ h , φ h ) + (h -1) Γ 1 |φ h | 2 ds ≤ -(g op h , φ h ) + Γ 2 q|φ h |ds + ugop , φ h + a(u gop , φ h ), a.e. t ∈]0, T [ then 1 2 φ h 2 L ∞ (0,T,H) + λ 1 φ h 2 L 2 (0,T,V ) + (h -1) T 0 Γ 1 |φ h (t)| 2 dsdt ≤ - T 0 (g op h (t), φ h (t))dt + T 0 Γ 2 q|φ h (t)|dsdt + T 0 ugop (t), φ h (t) dt + T 0 a(u gop h h (t), φ h (t))dt.
There exists a constant C > which does not depend on h such that φ h L 2 (0,T,V ) = u gop h hu gop L 2 (0,T,V ) ≤ C, φ h L ∞ (0,T,H) ≤ C and (h -1) then by the uniqueness of the optimal control problem (1.9) we get f = g op .

(3.15)

Now we prove the strong convergence of u gop h h to η = u f in L 2 (0, T, V ) ∩ L ∞ (0, T, H) ∩ L 2 (0, T, L 2 (Γ 1 )), indeed taking v = η in (2.1) where u = u gop h h and g = g op h , as η(t) ∈ K for t ∈ [0, T ], so η = b on Γ 1 , we obtain we get ug op h h -η, u g op h hη + a 1 (u g op h hη, u g op h hη) + (h -1) so from (3.17) and (3.18) we get (3.8). This ends the proof.

Γ

  ) a.e. t ∈]0, T [. Using (3.10) and (3.11) and the same arguments as in (2.14)-(2.19), we deduce that η, vη + a(η, vη) + Φ(v) -Φ(η) ≥ (f, vη), ∀v ∈ K, a.e. t ∈]0, T [, so also by the uniqueness of the solution of (1.1) we obtain that u f = η.(3.13)

u gop 2 L 2 2 g op 2 L 2 2 u g op h h 2 L 2 2 g op h 2 L 2 g op h -g op 2 L 2 2 L 2 2 L 2 2 L 2

 2222222222222222222 t), η(t)u g op h h (t))dt.Using(3.11) and the weak semi-continuity of Φ we deduce thatlim h→+∞ u g op h hη L ∞ (0,T ;H) = lim h→+∞ u gop h hη L 2 (0,T,V ) = u g op h hη L 2 (0,T,L 2 (Γ 1 )) = 0,and with (3.13) and (3.15) we deduce (3.7). As f ∈ L 2 (0, T, H), then from (3.14) with g = f and (3.15) we can writeJ(f ) = J(g op ) = 1 2 (0,T,H) + M (0,T,H) ≤ lim inf h→+∞ J h (g op h ) = lim inf h→+∞ 1 (0,T,H) + M (0,T,H) ≤ lim h→+∞ J h (g op ) = J((g op ) (3.16)and using the strong convergence (3.7), we get lim h→+∞ g op h L 2 (0,T,H) = g op L 2 (0,T,H) . (0,T ;H) = g op h (0,T ;H) + g op (0,T ;H) -2(g op h , g op )(3.18) and by the first part of (3.10) we have lim h→+∞ (g op h , g op ) = g op (0,T,H) ,

  |u gop h h -b| 2 dsdt ≤ C, then η ∈ L 2 (0, T, V ) and u g op h h ⇀ η in L 2 (0, T, V ) weak and in L ∞ (0, T, H) weak star (3.11) u g op h h → b in L 2 (0, T, L 2 (Γ 1 )) strong,(3.12)so η(t) ∈ K for all t ∈ [0, T ]. Now taking v ∈ K in (2.1) where u = u gop h h and g = g op h soug op h h , vu g op h h + a h (u g op h h , vu g op h h ) + Φ(v) -Φ(u g op h h ) ≥ (g op h , vu gop h h )

	T	
	0	Γ 1
	+h	
		Γ 1

b(vu gop

h h )ds, a.e. t ∈]0, T [ as v ∈ K so v = b on Γ 1 , thus we have ug op h h , u g op h hv + a(u g op h h , u g op h hv) + h Γ 1 |u g op h h -b| 2 ds + Φ(u g op h h ) -Φ(v) ≤ -(g op h , vu g op h h ) a.e. t ∈]0, T [. Thus ug op h h , u g op h hv + a(u g op h h , u g op h hv) + Φ(u g op h h ) -Φ(v) ≤ -(g op h , vu g op h h

  1 |u g op h h -η| 2 ds +Φ(u g op h h ) -Φ(η) ≤ (g op h , u g op h hη) + η, u g op h hη + a(η, u g op h hη) thus 1 2 u g op h hη 2 L ∞ (0,T ;H) + λ 1 u g op h hη 2 {Φ(u g op h h ) -Φ(η)}dt + (h -1) u g op h hη 2L 2 (0,T,L 2 (Γ 1 ))

	L 2 (0,T,V )
	T
	+
	0

≤ T 0 (g op h (t), u g op h h (t)η(t))dt + T 0 η, u g op h hη dt
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Let now µ ∈ [0, 1] and g 1 , g 2 ∈ L 2 (0, T, H) so

for all µ ∈]0, 1[ and for all g 1 , g 2 in L 2 (0, T, H). From Proposition 2.1 we have u 4 (µ) ≥ 0 in Ω × [0, T ] for all µ ∈ [0, 1], so using the monotony property (2.8) (Theorem 2.5) and we deduce

Finally from (3.3) the cost functional J is strictly convex, thus [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] the uniqueness of the optimal control of the problem (1.9) holds. The uniqueness of the optimal control of the problem (1.7) follows using the analogous inequalities (3.3)-(3.4) for any h > 0.

Convergence when h → +∞

In this last subsection we study the convergence of the state u gop h h and the optimal control g op h , when the coefficient h on Γ 1 , goes to infinity. For a given g in L 2 (0, T, H) we have first the following estimate which generalizes [START_REF] Tabacman | Sufficient and/or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem[END_REF][START_REF] Tarzia | Una familia de problemas que converge hacia el caso estacionario del problema de Stefan a dos fases[END_REF]. Lemma 3.2. Let u g h be the unique solution of the parabolic variational inequality (2.1) and u g the unique solution of the parabolic variational inequality (1.1), then

Proof. We take v = u g (t) in (2.1) where u = u g h , and recalling that u

is bounded for all h > 1, then u g h L 2 (0,T,V ) ≤ φ h L 2 (0,T,V ) + u g L 2 (0,T,V ) is also bounded for all h > 1. So there exists η ∈ L 2 (0, T, V ) such that u g h ⇀ η weakly in L 2 (0, T, V ) and u g h → b strongly on Γ 1 when h → +∞ so η(0) = b.