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Abstract: We consider a family of optimal control problems where the control variable is given by a boundary
condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove the
strong convergence of the optimal controls and state systems associated to this family to a similar optimal control problem.
This work solves the open problem left by the authors in IFIP TC7 CSMO2011.
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1 Introduction
The motivation of this paper is to prove the strong con-

vergence of the optimal controls (borders) and state systems
associated to a family of second kind parabolic variational
inequalities. With this paper, we solve the open question,
left in [11] and we generalize our work [10], to study the
Control border.

To illustrate the problem considered, we consider in the
following, just as examples, two free boundary problems
which leads to second kind parabolic variational inequali-
ties.

We assume that the boundary of a multidimensional reg-
ular domain Ω is given by ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 with
meas(Γ1) > 0 and meas(Γ3) > 0. We consider a fam-
ily of optimal control problems where the control variable
is given by a boundary condition of Neumann type whose
state system is governed by a free boundary problem with
Tresca conditions on a portion Γ2 of the boundary, with a
flux f on Γ3 as the control variable, given by:

Problem 1.1

u̇−∆u = g in Ω× (0, T ),
∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

< q ⇒ u = 0, on Γ2 × (0, T ),

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

= q ⇒ ∃k > 0 : u = −k
∂u

∂n
, on Γ2 × (0, T ),

u = b on Γ1 × (0, T ),

−
∂u

∂n
= f on Γ3 × (0, T ),

with the initial condition

u(0) = ub on Ω,

and the compatibility condition on Γ1 × (0, T )

ub = b on Γ1 × (0, T )

where q > 0 is the Tresca friction coefficient on Γ2

( [1], [2], [3]). We define the spaces F = L2((0, T )× Γ3),
V = H1(Ω), V0 = {v ∈ V : v|Γ1

= 0}, H = L2(Ω),

H = L2(0, T ;H), V = L2(0, T ;V ) and the closed convex

set Kb = {v ∈ V : v|Γ1
= b}. Let given

g ∈ H, b ∈ L2(0, T,H1/2(Γ1)), f ∈ F

q ∈ L2((0, T )× Γ2), q > 0, ub ∈ Kb. (1.1)

The variational formulation of Problem 1.1 leads to the
following parabolic variational problem:

Problem 1.2 Let given g, b, q, ub and f as in (1.1). Find
u = uf ∈ C(0, T,H)∩L2(0, T ;Kb) with u̇ ∈ H, such that
u(0) = ub, and for t ∈ (0, T )

< u̇, v − u > +a(u, u− v) + Φ(v)− Φ(u) ≥ (g, v − u)

−

∫

Γ3

f(v − u)ds, ∀v ∈ Kb.

where (·, ·) is the scalar product in H , a and Φ are defined
by

a(u, v) =

∫

Ω

∇u∇vdx, and Φ(v) =

∫

Γ2

q|v|ds. (1.2)

The functional Φ comes from the Tresca condition on
Γ2 [1], [2]. We consider also the following problem where
we change, in Problem 1.1, only the Dirichlet condition on
Γ1 × (0, T ) by the Newton law or a Robin boundary condi-
tion i.e.

Problem 1.3

u̇−∆u = g in Ω× (0, T ),
∣

∣

∣
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∂u

∂n

∣

∣

∣

∣

< q ⇒ u = 0, on Γ2 × (0, T ),
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∣
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∂u

∂n
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= q ⇒ ∃k > 0 : u = −k
∂u

∂n
, on Γ2 × (0, T ),

−
∂u

∂n
= h(u− b) on Γ1 × (0, T ),

−
∂u

∂n
= f on Γ3 × (0, T ),

with the initial condition

u(0) = ub on Ω,

and the condition of compatibility on Γ1 × (0, T )

ub = b on Γ1 × (0, T ).



The variational formulation of the problem (1.3) leads to
the following parabolic variational problem

Problem 1.4 Let given g, b, q, ub and f as in (1.1). For
all h > 0, find u = uhf in C(0, T,H)∩V with u̇ in H, such
that u(0) = ub, and for t ∈ (0, T )

< u̇, v − u > +ah(u, u− v) + Φ(v)− Φ(u) ≥ (g, v − u)

−

∫

Γ3

f(v − u)ds+ h

∫

Γ1

b(v − u)ds, ∀v ∈ V,

where ah is defined by

ah(u, v) = a(u, v) + h

∫

Γ1

uvds.

Moreover from [4∼7] we have that: ∃λ1 > 0 such that

λh‖v‖
2
V ≤ ah(v, v) ∀v ∈ V, with λh = λ1 min{1 , h}

that is, ah is also a bilinear, continuous, symmetric and co-
ercive form V × V to R. The existence and uniqueness of
the solution to each of the above Problem 1.2 and Problem
1.4, is well known see for example [8], [9], [3].

The main goal of this paper is to prove in Section 2 the ex-
istence and uniqueness of a family of optimal control prob-
lems 2.1 and 2.2 where the control variable is given by a
boundary condition of Neumann type whose state system
is governed by a free boundary problem with Tresca condi-
tions on a portion Γ2 of the boundary, with a flux f on Γ3 as
the control variable, using a regularization method to over-
come the nondifferentiability of the functional Φ. Then in
Section 3 we study the convergence when h → +∞ of the
state systems and optimal controls associated to the prob-
lem 2.2 to the corresponding state system and optimal con-
trol associated to problem 2.1. In order to obtain this last
result we obtain an auxiliary strong convergence by using
the Aubin compactness arguments see Lemma 3.2. This pa-
per completes our previous paper [10] and solves the open
problem left in [11].

Remark here that our study still valid with the bilinear
form a in more general cases, provided that a must be sym-
metric, coercive and continuous from V × V to R.

2 Boundary optimal control problems
Let M > 0 be a constant and we define the space

F− = {f ∈ F : f ≤ 0}.

We consider the following Neumannn boundary optimal
control problems defined by [12∼15]

Problem 2.1 Find the optimal control fop ∈ F− such
that

J(fop) = min
f∈F−

J(f) (2.1)

where the cost functional J : F− → R
+ is given by

J(f) =
1

2
‖uf‖

2
H +

M

2
‖f‖2F (M > 0) (2.2)

and uf is the unique solution of the Problem 1.2 for a given
f ∈ F−.

Problem 2.2 Find the optimal control foph ∈ F− such
that

J(foph
) = min

f∈F−

Jh(f) (2.3)

where the cost functional Jh : F− → R
+ is given by

Jh(f) =
1

2
‖uhf‖

2
H +

M

2
‖f‖2F (M > 0, h > 0) (2.4)

and uhf is the unique solution of Problem 1.4 for a given
f ∈ F− and h > 0.

Theorem 2.1 Under the assumptions g ≥ 0 in Ω ×
(0, T ), b ≥ 0 on Γ1 × (0, T ) and ub ≥ 0 in Ω, we have
the following properties:
(a) The cost functional J is strictly convex on F−,
(b) There exists a unique optimal control fop ∈ F− solution
of the Neumann boundary optimal control Problem 2.1.

Proof We give some sketch of the proof, following [10]
we generalize for parabolic variational inequalities of the
second kind, given in Problem 1.2, the estimates obtained
for convex combination between u4(µ) = uµf1+(1−µ)f2 ,

and u3(µ) = µuf1 + (1 − µ)uf2 , for any two element f1
and f2 in F . The main difficulty, to prove this result comes
from the fact that the functional Φ is not differentiable. To
overcome this difficulty, we use the regularization method
and consider for ε > 0 the following approach of Φ defined
by

Φε(v) =

∫

Γ2

q
√

ε2 + |v|2ds, ∀v ∈ V, (2.5)

which is Gateaux differentiable, with

〈Φ′
ε(w) , v〉 =

∫

Γ2

qwv
√

ε2 + |w|2
ds ∀(w, v) ∈ V 2.

We define uε as the unique solution of the corresponding
parabolic variational inequality for all ε > 0. We obtain that
for all µ ∈ [0, 1] we have uε

4(µ) ≤ uε
3(µ) for all ε > 0.

When ε → 0 we have that: for i = 1, · · · , 4.

uε
i → ui strongly in V ∩ L∞(0, T ;H). (2.6)

As f ∈ F−, g ≥ 0 in Ω× (0, T ), b ≥ 0 in Γ1 × (0, T ) and
ub ≥ 0 in Ω, we obtain by the weak maximum principle that
for all µ ∈ [0, 1] we have 0 ≤ u4(µ), so following [10] we
get

0 ≤ u4(µ) ≤ u3(µ) in Ω×[0, T ], ∀µ ∈ [0, 1]. (2.7)

Then for all µ ∈]0, 1[, and for all f1, f2 in F−, and by using
f3(µ) = µf1 + (1 − µ)f2 we obtain that:

µJ(f1) + (1− µ)J(f2)− J(f3(µ)) =
1

2

(

‖u3(µ)‖
2
H − ‖u4(µ)‖

2
H

)

+
1

2
µ(1− µ)‖uf1 − uf2‖

2
H

+
M

2
µ(1 − µ)‖f1 − f2‖

2
F . (2.8)

Then J is strictly convex functional on F− and therefore
there exists a unique optimal fop ∈ F− solution of the Neu-
mann boundary optimal control Problem 2.1. 2

Theorem 2.2 Under the assumptions g ≥ 0 in Ω ×
(0, T ), b ≥ 0 in Γ1 × (0, T ) and ub ≥ 0 in Ω, we have
the following properties:
(a) The cost functional Jh are strictly convex on F−, for all
h > 0,
(b) There exists a unique optimal control fhop

∈ F− solu-
tion of the Neumann boundary optimal control Problem 2.2,
for all h > 0.



Proof We follow a similar method to the one developed
in Theorem 2.1 for all h > 0. 2

3 Convergence when h → +∞
In this section we study the convergence of the Neumann

optimal control Problem 2.2 to the optimal control Problem
2.1 when h → ∞. For a given f ∈ F we have first the
following result which generalizes [6, 7, 10, 16].

Lemma 3.1 Let uhf be the unique solution of the prob-
lem 1.4 and uf the unique solution of the problem 1.2, then

uhf → uf ∈ V strongly as h → +∞, ∀f ∈ F .

Proof Following [10], we take v = uf (t) in the varia-
tional inequality of the problem 1.4 where u = uhf , and
recalling that uf (t) = b on Γ1×]0, T [, taking φh(t) =
uhf(t) − uf (t) we obtain for h > 1, that ‖uhf‖V is also
bounded for all h > 1 and for all f ∈ F . Then there exists
η ∈ V such that (when h → +∞)

uhf ⇀ η weakly in V

and

uhf → b strongly on L2((0, T )× Γ1)

so η(0) = ub.

Let ϕ be in L2(0, T,H1
0 (Ω)) and taking in the vari-

ational inequality of the problem 1.4 where u = uhf ,
v = uhf(t)± ϕ(t), we obtain as ‖uhf‖V is bounded for all
h > 1, we deduce that ‖u̇hf‖L2(0,T,H−1(Ω)) is also bounded
for all h > 1. Then we conclude that

uhf ⇀ η in V weak, and in L∞(0, T,H) weak star,

and u̇hf ⇀ η̇ in L2(0, T,H−1(Ω)) weak.

}

(3.1)

From the variational inequality of the problem 1.4 and
taking v ∈ K so v = b on Γ1, we obtain a.e. t ∈]0, T [

〈u̇hf , v − uhf 〉+ a(uhf , v − uhf)− h

∫

Γ1

|uhf − b|2ds ≥

Φ(uhf )− Φ(v) + (g, v − uhf )−

∫

Γ3

f(v − uhf)ds,

for all v ∈ K , then as h > 0 we have a.e. t ∈]0, T [.

〈u̇hf , v − uhf 〉+ a(uhf , v − uhf) ≥ Φ(uhf )− Φ(v) +

(g, v − uhf )−

∫

Γ3

f(v − uhf)ds, ∀v ∈ K. (3.2)

So using (3.1) and passing to the limit when h → +∞ we
obtain

〈η̇, v − η〉+ a(η, v − η) + Φ(v)− Φ(η) ≥ (g, v − η)

−

∫

Γ3

f(v − η)ds, ∀v ∈ K a.e. t ∈]0, T [,

and η(0) = ub. Using the uniqueness of the solution of
Problem 1.2 we get that η = uf .

To prove the strong convergence, we take v = uf(t) in
the variational inequality of the problem 1.4

〈u̇hf , uf − uhf〉+ ah(uhf , uf − uhf ) + Φ(uf)

−Φ(uhf) ≥ (g, uf − uhf) + h

∫

Γ1

b(uf − uhf )ds

−

∫

Γ3

f(uf − uhf)ds,

a.e. t ∈]0, T [, thus as uf = ub on Γ1×]0, T [, we put

φh = uhf − uf , so a.e. t ∈]0, T [ we have

〈φ̇h , φh〉+ a(φh, φh) + h

∫

Γ1

|φh|
2ds+Φ(uhf)− Φ(uf )

≤ 〈u̇f , φh〉+ a(uf , φh) + (g, φh)−

∫

Γ3

fφhds,

so
1

2
‖φh‖

2
L∞(0,T,H) + λh‖φh‖

2
V +Φ(uhf)− Φ(uf )

≤ −

∫ T

0

〈u̇f (t), φh(t)〉dt−

∫ T

0

a(uf (t), φh(t))dt

+

∫ T

0

(g(t), φh(t))dt −

∫ T

0

∫

Γ3

fφhdsdt.

Using the weak semi-continuity of Φ and the weak conver-
gence (3.1) the right side of the just above inequality tends
to zero when h → +∞, then we deduce the strong conver-
gence of φh = uhf − uf to 0 in V ∩ L∞(0, T,H), for all
f ∈ F− and the proof holds. 2

We prove now the following lemma by using the Aubin
compactness arguments. This Lemma 3.2 is very important
and necessary which allow us to conclude this paper. In-
deed this result is needed to pass to the limit exactly in the
last term of the inequality (3.12) in the proof of the main
Theorem 3.3.

Lemma 3.2 Let uhfoph
the state system defined by the

unique solution of Problem 1.4, where the flux f is replaced
by foph

. Then, for h → +∞, we have

uhfoph
→ uf in L2((0, T )× ∂Ω), (3.3)

where uf is the the state system defined by the unique solu-
tion of Problem 1.2 with the flux f on Γ3.

Proof Let consider the variational inequality of Prob-
lem 1.4 with u = uhfoph

and f = foph
i.e.

< u̇hfoph
, v − uhfoph

> +ah(uhfoph
, v − uhfoph

) + Φ(v)

−Φ(uhfoph
) ≥ (g, v − uhfoph

)−

∫

Γ3

foph
(v − uhfoph

)ds

+h

∫

Γ1

b(v − uhfoph
)ds, ∀v ∈ V, (3.4)

and let ϕ ∈ L2(0, T ;H1
0(Ω)), and set v = uhfoph

(t)±ϕ(t)
in (3.4), we get

< u̇hfoph
, ϕ >= (g, ϕ)− a(uhfoph

, ϕ).

By integration in times for t ∈ (0, T ), we get
∫ T

0

< u̇hfoph
, ϕ > dt =

∫ T

0

(g, ϕ)dt−

∫ T

0

a(uhfoph
, ϕ)dt

thus for A = (c‖g‖H + ‖uhfoph
‖
V
), we get

|

∫ T

0

< u̇hfoph
, ϕ > dt| ≤ A‖ϕ‖L2(0,T ;H1

0
(Ω))

where c comes from the Poincaré inequality, and as in
Lemma 3.1 we can obtain that uhfoph

is bounded in V , so
there exists a positive constant C such that

‖u̇hfoph
‖L2(0,T ;H−1(Ω)) ≤ C. (3.5)

Using now the Aubin compactness arguments, see for ex-

ample [17] with the three Banach spaces V , H
2

3 (Ω) and
H−1(Ω), then

uhfoph
→ uf L2(0, T ;H

2

3 (Ω)).



As the trace operator γ0 is continuous from H
2

3 (Ω) to
L2(∂Ω), then the result follows. 2

We give now, without need to use the notion of adjoint
states [14,18], the convergence result which generalizes the
result obtained in [19] for a parabolic variational equalities
(see also [18,20∼23]). Other optimal control problems gou-
verned by variational inequalities are given in [24∼26].

Theorem 3.3 Let uhfoph
∈ V , foph ∈ F− and ufop ∈

V , fop ∈ F− be respectively the state systems and the opti-
mal controls defined in the problems (1.4) and (1.2). Then

lim
h→+∞

‖uhfoph
− ufop‖V =

= lim
h→+∞

‖uhfoph
− ufop‖L∞(0,T,H),

= lim
h→+∞

‖uhfoph
− ufop‖L2((0,T )×Γ1) = 0, (3.6)

lim
h→+∞

‖foph
− fop‖F = 0. (3.7)

Proof We have first

Jh(foph
) =

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F ≤

≤
1

2
‖uhf‖

2
H +

M

2
‖f‖2F ,

for all f ∈ F−, then for f = 0 ∈ F− we obtain that

Jh(foph
) =

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F ≤
1

2
‖uh0‖

2
H (3.8)

where uh0 ∈ V is the solution of the following parabolic
variational inequality

〈u̇h0, v − uh0〉+ ah(uh0, v − uh0) + Φ(v) − Φ(uh0)

≥

∫

Ω

g(v − uh0)dx + h

∫

Γ1

b(v − uh0)ds, a.e. t ∈]0, T [

for all v ∈ V and uh0(0) = ub.

Taking v = ub ∈ Kb we get that ‖uh0−ub‖V is bounded
independently of h, then ‖uh0‖H is bounded independently
of h. So we deduce with (3.8) that ‖uhfoph

‖H and ‖foph
‖F

are also bounded independently of h. So there exist f̃ ∈ F−

and η in H such that

foph
⇀ f̃ in F− and uhfoph

⇀ η in H (weakly).(3.9)

Taking now v = ufop(t) ∈ Kb in Problem (1.4), for
t ∈]0, T [, with u = uhfoph

and f = foph
, we obtain

〈u̇hfoph
, ufop − uhfoph

〉+ a1(uhfoph
, ufop − uhfoph

)

+(h− 1)

∫

Γ1

uhfoph
(ufop − uhfoph

)ds+Φ(ufop)

−Φ(uhfoph
) ≥ (g, ufop − uhfoph

) + h

∫

Γ1

b(ufop − uhfoph
)ds

−

∫

Γ3

foph
(ufop − uhfoph

)ds, a.e. t ∈]0, T [.

As ufop = b on Γ1 × [0, T ], taking φh = ufop − uhfoph
we

obtain

1

2
‖φh‖

2
L∞(0,T ;H) + λ1‖φh‖

2
V + (h− 1)

∫ T

0

∫

Γ1

|φh(t)|
2dsdt

≤

∫ T

0

∫

Γ3

foph
φhdsdt−

∫ T

0

(g(t), φh(t))dt

+

∫ T

0

∫

Γ2

q|φh(t)|dsdt+

∫ T

0

〈u̇fop(t)φh(t)〉dt

+

∫ T

0

a(ufop(t), φh(t))dt.

As foph
is bounded in F−, from (3.5) u̇fop is bounded in

L2(0, T ;H−1(Ω)), and uhfoph
is also bounded in V , all

independently on h, so there exists a positive constant C
which does not depend on h such that

‖φh‖V = ‖uhfoph
− ufop‖V ≤ C, ‖φh‖L∞(0,T,H) ≤ C

and (h− 1)

∫ T

0

∫

Γ1

|uhfoph
− b|2dsdt ≤ C,

then η ∈ V and

uhfoph
⇀ η in V and in L∞(0, T,H) weak star (3.10)

uhfoph
→ b in L2((0, T )× Γ1) strong, (3.11)

so η(t) ∈ Kb for all t ∈ [0, T ].
Now taking v ∈ K in Problem (1.4) where u = uhfoph

and f = foph
so

〈u̇hfoph
, v − uhfoph

〉+ ah(uhfoph
, v − uhfoph

) + Φ(v)

−Φ(uhfoph
) ≥ (foph

, v − uhfoph
) + h

∫

Γ1

b(v − uhfoph
)ds

−

∫

Γ3

foph
(v − uhfoph

)ds, a.e. t ∈]0, T [

as v ∈ Kb so v = b on Γ1, thus we have

〈u̇hfoph
, uhfoph

− v〉+ a(uhfoph
, uhfoph

− v) +

h

∫

Γ1

|uhfoph
− b|2ds+Φ(uhfoph

)− Φ(v)− (g, v − uhfoph
)

≤

∫

Γ3

foph
(v − uhfoph

)ds a.e. t ∈]0, T [.

Thus

〈u̇hfoph
, uhfoph

− v〉+ a(uhfoph
, uhfoph

− v)

+Φ(uhfoph
)− Φ(v) ≤ −(g, v − uhfoph

)

−

∫

Γ3

foph
(v − uhfoph

)ds a.e. t ∈]0, T [. (3.12)

Using Lemma 3.2, (3.9) and (3.10), we deduce that [3,27]

〈η̇, v − η〉+ a(η, v − η) + Φ(v) − Φ(η) ≥ (f, v − η)

−

∫

Γ3

f̃(v − η))ds, ∀v ∈ K, a.e. t ∈]0, T [,

so also by the uniqueness of the solution of Problem (1.2)
we obtain that

uf̃ = η. (3.13)

We prove that f̃ = fop. Indeed we have

J(f̃) =
1

2
‖η‖2H +

M

2
‖f̃‖2F

≤ lim inf
h→+∞

{

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F

}

= lim inf
h→+∞

Jh(foph
)

≤ lim inf
h→+∞

Jh(f) = lim inf
h→+∞

{

1

2
‖uhf‖

2
H +

M

2
‖f‖2F

}

so using now the strong convergence uhf → uf as
h → +∞, ∀ f ∈ F− (see Lemma 3.1), we obtain that

J(f̃) ≤ lim inf
h→+∞

Jh(foph
)≤

1

2
‖uf‖

2
H +

M

2
‖f‖2F



= J(f), ∀f ∈ F− (3.14)

then by the uniqueness of the optimal control Problem
(1.2) we get

f̃ = fop. (3.15)

Now we prove the strong convergence of uhfoph
to η =

uf in V ∩ L∞(0, T ;H) ∩ L2(0, T ;L2(Γ1)), indeed taking
v = η in Problem (1.4) where u = uhfoph

and f = foph
, as

η(t) ∈ K for t ∈ [0, T ], so η = b on Γ1, we obtain

1

2
‖uhfoph

− η‖2L∞(0,T ;H) + λ1‖uhfoph
− η‖2V +

∫ T

0

{Φ(uhfoph
)− Φ(η)}dt+ h̃‖uhfoph

− η‖2L2((0,T )×Γ1)

≤

∫ T

0

(g, uhfoph
(t)− η(t))dt −

∫ T

0

〈η̇, uhfoph
− η〉dt+

∫ T

0

a(η(t), η(t) − uhfoph
(t))−

∫

Γ3

foph
(uhfoph

− η))dsdt.

where h̃ = h− 1
Using (3.10) and the weak semi-continuity of Φ we de-

duce that

lim
h→+∞

‖uhfoph
− η‖L∞(0,T ;H) = lim

h→+∞
‖uhfoph

− η‖V

= ‖uhfoph
− η‖L2((0,T )×Γ1) = 0,

and with (3.13) and (3.15) we deduce (3.6). Then from
(3.14) and (3.15) we can write

J(fop) =
1

2
‖ufop‖

2
H +

M

2
‖fop‖

2
F ≤≤ lim inf

h→+∞
Jh(foph

)

= lim inf
h→+∞

{

1

2
‖uhfoph

‖2H +
M

2
‖foph

‖2F

}

≤ lim
h→+∞

Jh(fop) = J(fop) (3.16)

and using the strong convergence (3.6), we get

lim
h→+∞

‖foph
‖F = ‖fop‖F . (3.17)

Finally as

‖foph
− fop‖

2
F = ‖foph

‖2F + ‖fop‖
2
F − 2(foph

, fop)

(3.18)

and by the first part of (3.9) we have

lim
h→+∞

(foph
, fop) = ‖fop‖

2
F ,

so from (3.17) and (3.18) we get (3.7). This ends the proof.
2

Corollary 3.4 Let uhfoph
in V , foph in F−, ufop in V

and fop in F− be respectively the state systems and the op-
timal controls defined in the problems (1.4) and (1.2). Then

lim
h→+∞

|Jh(foph
)− J(fop)| = 0.

Proof It follows from the definitions (2.1) and (2.2),
and the convergences (3.6) and (3.7). 2

4 Conclusion
The main difference here with our work [10] where the

control variable was the function g, is that we consider
here as a control variable the function f given by the Neu-
mann boundary condition on Γ3. This change induce in the

variational problems 1.2 and 1.4, and also in the proofs of
Lemma 3.1 and Theorem 3.3, a new integral term on Γ3.
The main difficulty here is in Section 3 and the question is
exactly how to pass to the limit for h → +∞ in the last inte-
gral term on Γ3 in (3.12). To overcome this main difficulty
we have introduced the new Lemma 3.2, which is the key
of our problem. The idea of Lemma 3.1 and Theorem 3.3
and their proofs are indeed similar to those of our work [10]
with the differences and difficulties mentioned just above.
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