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We consider a family of optimal control problems where the control variable is given by a boundary condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove the strong convergence of the optimal controls and state systems associated to this family to a similar optimal control problem. This work solves the open problem left by the authors in IFIP TC7 CSMO2011.

Introduction

The motivation of this paper is to prove the strong convergence of the optimal controls (borders) and state systems associated to a family of second kind parabolic variational inequalities. With this paper, we solve the open question, left in [START_REF] Boukrouche | On existence, uniqueness, and convergence, of optimal control problems governed by parabolic variational inequalities[END_REF] and we generalize our work [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF], to study the Control border.

To illustrate the problem considered, we consider in the following, just as examples, two free boundary problems which leads to second kind parabolic variational inequalities.

We assume that the boundary of a multidimensional regular domain Ω is given by ∂Ω = Γ 1 ∪ Γ 2 ∪ Γ 3 with meas(Γ 1 ) > 0 and meas(Γ 3 ) > 0. We consider a family of optimal control problems where the control variable is given by a boundary condition of Neumann type whose state system is governed by a free boundary problem with Tresca conditions on a portion Γ 2 of the boundary, with a flux f on Γ 3 as the control variable, given by: Problem 1.1 u -∆u = g in Ω × (0, T ), ∂u ∂n < q ⇒ u = 0, on Γ 2 × (0, T ),

∂u ∂n = q ⇒ ∃k > 0 : u = -k ∂u ∂n , on Γ 2 × (0, T ), u = b on Γ 1 × (0, T ), - ∂u ∂n = f on Γ 3 × (0, T ),
with the initial condition u(0) = u b on Ω, and the compatibility condition on Γ 1 × (0, T ) u b = b on Γ 1 × (0, T ) where q > 0 is the Tresca friction coefficient on Γ 2 ( [1], [START_REF] Boukrouche | On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions[END_REF], [START_REF] Duvaut | Les inéquations en Mécanique et en Physique[END_REF]). We define the spaces F = L 2 ((0, T ) × Γ 3 ), V = H 1 (Ω), V 0 = {v ∈ V : v |Γ 1 = 0}, H = L 2 (Ω), H = L 2 (0, T ; H), V = L 2 (0, T ; V ) and the closed convex

set K b = {v ∈ V : v |Γ 1 = b}. Let given g ∈ H, b ∈ L 2 (0, T, H 1/2 (Γ 1 )), f ∈ F q ∈ L 2 ((0, T ) × Γ 2 ), q > 0, u b ∈ K b . (1.
1) The variational formulation of Problem 1.1 leads to the following parabolic variational problem: Problem 1.2 Let given g, b, q, u b and f as in (1.1). Find

u = u f ∈ C(0, T, H) ∩ L 2 (0, T ; K b ) with u ∈ H, such that u(0) = u b , and for t ∈ (0, T ) < u, v -u > +a(u, u -v) + Φ(v) -Φ(u) ≥ (g, v -u) - Γ3 f (v -u)ds, ∀v ∈ K b .
where (•, •) is the scalar product in H, a and Φ are defined by

a(u, v) = Ω ∇u∇vdx, and Φ(v) = Γ2 q|v|ds. (1.2)
The functional Φ comes from the Tresca condition on Γ 2 [START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF], [START_REF] Boukrouche | On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions[END_REF]. We consider also the following problem where we change, in Problem 1.1, only the Dirichlet condition on Γ 1 × (0, T ) by the Newton law or a Robin boundary condition i.e.

Problem 1.3 u -∆u = g in Ω × (0, T ), ∂u ∂n < q ⇒ u = 0, on Γ 2 × (0, T ), ∂u ∂n = q ⇒ ∃k > 0 : u = -k ∂u ∂n , on Γ 2 × (0, T ), - ∂u ∂n = h(u -b) on Γ 1 × (0, T ), - ∂u ∂n = f on Γ 3 × (0, T ),
with the initial condition u(0) = u b on Ω, and the condition of compatibility on Γ 1 × (0, T )

u b = b on Γ 1 × (0, T ).
The variational formulation of the problem (1.3) leads to the following parabolic variational problem Problem 1.4 Let given g, b, q, u b and f as in (1.1). For all h > 0, find u = u hf in C(0, T, H) ∩ V with u in H, such that u(0) = u b , and for t ∈ (0, T )

< u, v -u > +a h (u, u -v) + Φ(v) -Φ(u) ≥ (g, v -u) - Γ3 f (v -u)ds + h Γ1 b(v -u)ds, ∀v ∈ V,
where a h is defined by

a h (u, v) = a(u, v) + h Γ1 uvds.
Moreover from [4∼7] we have that:

∃λ 1 > 0 such that λ h v 2 V ≤ a h (v, v) ∀v ∈ V, with λ h = λ 1 min{1 , h}
that is, a h is also a bilinear, continuous, symmetric and coercive form V × V to R. The existence and uniqueness of the solution to each of the above Problem 1.2 and Problem 1.4, is well known see for example [START_REF] Brézis | Problèmes unilatéraux[END_REF], [START_REF] Chipot | Elements of nonlinear Analysis[END_REF], [START_REF] Duvaut | Les inéquations en Mécanique et en Physique[END_REF].

The main goal of this paper is to prove in Section 2 the existence and uniqueness of a family of optimal control problems 2.1 and 2.2 where the control variable is given by a boundary condition of Neumann type whose state system is governed by a free boundary problem with Tresca conditions on a portion Γ 2 of the boundary, with a flux f on Γ 3 as the control variable, using a regularization method to overcome the nondifferentiability of the functional Φ. Then in Section 3 we study the convergence when h → +∞ of the state systems and optimal controls associated to the problem 2.2 to the corresponding state system and optimal control associated to problem 2.1. In order to obtain this last result we obtain an auxiliary strong convergence by using the Aubin compactness arguments see Lemma 3.2. This paper completes our previous paper [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF] and solves the open problem left in [START_REF] Boukrouche | On existence, uniqueness, and convergence, of optimal control problems governed by parabolic variational inequalities[END_REF].

Remark here that our study still valid with the bilinear form a in more general cases, provided that a must be symmetric, coercive and continuous from V × V to R.

Boundary optimal control problems

Let M > 0 be a constant and we define the space

F -= {f ∈ F : f ≤ 0}.

We consider the following Neumannn boundary optimal control problems defined by [12∼15]

Problem 2.1 Find the optimal control

f op ∈ F -such that J(f op ) = min f ∈F- J(f ) (2.1)
where the cost functional J : F -→ R + is given by

J(f ) = 1 2 u f 2 H + M 2 f 2 F (M > 0) (2.2)
and u f is the unique solution of the Problem 1.2 for a given

f ∈ F -. Problem 2.2 Find the optimal control f op h ∈ F -such that J(f op h ) = min f ∈F- J h (f ) (2.3)
where the cost functional J h : F -→ R + is given by

J h (f ) = 1 2 u hf 2 H + M 2 f 2 F (M > 0, h > 0) (2.4
) and u hf is the unique solution of Problem 1.4 for a given f ∈ F -and h > 0.

Theorem 2.1 Under the assumptions g ≥ 0 in Ω × (0, T ), b ≥ 0 on Γ 1 × (0, T ) and u b ≥ 0 in Ω, we have the following properties: (a) The cost functional J is strictly convex on F -, (b) There exists a unique optimal control f op ∈ F -solution of the Neumann boundary optimal control Problem 2.1.

Proof We give some sketch of the proof, following [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF] we generalize for parabolic variational inequalities of the second kind, given in Problem 1.2, the estimates obtained for convex combination between u 4 (µ) = u µf1+(1-µ)f2 , and u 3 (µ) = µu f1 + (1µ)u f2 , for any two element f 1 and f 2 in F . The main difficulty, to prove this result comes from the fact that the functional Φ is not differentiable. To overcome this difficulty, we use the regularization method and consider for ε > 0 the following approach of Φ defined by

Φ ε (v) = Γ2 q ε 2 + |v| 2 ds, ∀v ∈ V, (2.5) 
which is Gateaux differentiable, with

Φ ′ ε (w) , v = Γ2 qwv ε 2 + |w| 2 ds ∀(w, v) ∈ V 2 .
We define u ε as the unique solution of the corresponding parabolic variational inequality for all ε > 0. We obtain that for all µ ∈ [0, 1] we have u ε 4 (µ) ≤ u ε 3 (µ) for all ε > 0. When ε → 0 we have that:

for i = 1, • • • , 4. u ε i → u i strongly in V ∩ L ∞ (0, T ; H). (2.6) As f ∈ F -, g ≥ 0 in Ω × (0, T ), b ≥ 0 in Γ 1 × (0, T ) and u b ≥ 0 in Ω,
we obtain by the weak maximum principle that for all µ ∈ [0, 1] we have 0 ≤ u 4 (µ), so following [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF] we get

0 ≤ u 4 (µ) ≤ u 3 (µ) in Ω×[0, T ], ∀µ ∈ [0, 1]. (2.7)
Then for all µ ∈]0, 1[, and for all f 1 , f 2 in F -, and by using

f 3 (µ) = µf 1 + (1 -µ)f 2 we obtain that: µJ(f 1 ) + (1 -µ)J(f 2 ) -J(f 3 (µ)) = 1 2 u 3 (µ) 2 H -u 4 (µ) 2 H + 1 2 µ(1 -µ) u f1 -u f2 2 H + M 2 µ(1 -µ) f 1 -f 2 2 F . (2.8)
Then J is strictly convex functional on F -and therefore there exists a unique optimal f op ∈ F -solution of the Neumann boundary optimal control Problem 2.1. Theorem 2.2 Under the assumptions g ≥ 0 in Ω × (0, T ), b ≥ 0 in Γ 1 × (0, T ) and u b ≥ 0 in Ω, we have the following properties: (a) The cost functional J h are strictly convex on F -, for all h > 0, (b) There exists a unique optimal control f hop ∈ F -solution of the Neumann boundary optimal control Problem 2.2, for all h > 0.

Proof We follow a similar method to the one developed in Theorem 2.1 for all h > 0.

Convergence when h → +∞

In this section we study the convergence of the Neumann optimal control Problem 2.2 to the optimal control Problem 2.1 when h → ∞. For a given f ∈ F we have first the following result which generalizes [START_REF] Tabacman | Sufficient and or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem[END_REF][START_REF] Tarzia | Una familia de problemas que converge hacia el caso estacionario del problema de Stefan a dos fases[END_REF][START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF][START_REF] Boukrouche | Convergence of distributed optimal controls for elliptic variational inequalities[END_REF].

Lemma 3.1 Let u hf be the unique solution of the problem 1.4 and u f the unique solution of the problem 1.2, then

u hf → u f ∈ V strongly as h → +∞, ∀f ∈ F .
Proof Following [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF], we take v = u f (t) in the variational inequality of the problem 1.4 where u = u hf , and recalling that u

f (t) = b on Γ 1 ×]0, T [, taking φ h (t) = u hf (t) -u f (t)
we obtain for h > 1, that u hf V is also bounded for all h > 1 and for all f ∈ F . Then there exists η ∈ V such that (when h → +∞)

u hf ⇀ η weakly in V and u hf → b strongly on L 2 ((0, T ) × Γ 1 ) so η(0) = u b .
Let ϕ be in L 2 (0, T, H 1 0 (Ω)) and taking in the variational inequality of the problem 1.4 where u = u hf , v = u hf (t) ± ϕ(t), we obtain as u hf V is bounded for all h > 1, we deduce that uhf L 2 (0,T,H -1 (Ω)) is also bounded for all h > 1. Then we conclude that u hf ⇀ η in V weak, and in L ∞ (0, T, H) weak star, and uhf ⇀ η in L 2 (0, T, H -1 (Ω)) weak.

(3.1)

From the variational inequality of the problem 1.4 and

taking v ∈ K so v = b on Γ 1 , we obtain a.e. t ∈]0, T [ uhf , v -u hf + a(u hf , v -u hf ) -h Γ1 |u hf -b| 2 ds ≥ Φ(u hf ) -Φ(v) + (g, v -u hf ) - Γ3 f (v -u hf )ds, for all v ∈ K, then as h > 0 we have a.e. t ∈]0, T [. uhf , v -u hf + a(u hf , v -u hf ) ≥ Φ(u hf ) -Φ(v) + (g, v -u hf ) - Γ3 f (v -u hf )ds, ∀v ∈ K. (3.2)
So using (3.1) and passing to the limit when h → +∞ we obtain

η, v -η + a(η, v -η) + Φ(v) -Φ(η) ≥ (g, v -η) - Γ3 f (v -η)ds, ∀v ∈ K a.e. t ∈]0, T [, and 
η(0) = u b .
Using the uniqueness of the solution of Problem 1.2 we get that η = u f . To prove the strong convergence, we take v = u f (t) in the variational inequality of the problem

1.4 uhf , u f -u hf + a h (u hf , u f -u hf ) + Φ(u f ) -Φ(u hf ) ≥ (g, u f -u hf ) + h Γ1 b(u f -u hf )ds - Γ3 f (u f -u hf )ds, a.e. t ∈]0, T [, thus as u f = u b on Γ 1 ×]0, T [, we put φ h = u hf -u f , so a.e. t ∈]0, T [ we have φh , φ h + a(φ h , φ h ) + h Γ1 |φ h | 2 ds + Φ(u hf ) -Φ(u f ) ≤ uf , φ h + a(u f , φ h ) + (g, φ h ) - Γ3 f φ h ds, so 1 2 φ h 2 L ∞ (0,T,H) + λ h φ h 2 V + Φ(u hf ) -Φ(u f ) ≤ - T 0 uf (t), φ h (t) dt - T 0 a(u f (t), φ h (t))dt + T 0 (g(t), φ h (t))dt - T 0 Γ3 f φ h dsdt.
Using the weak semi-continuity of Φ and the weak convergence (3.1) the right side of the just above inequality tends to zero when h → +∞, then we deduce the strong convergence of φ h = u hfu f to 0 in V ∩ L ∞ (0, T, H), for all f ∈ F -and the proof holds.

We prove now the following lemma by using the Aubin compactness arguments. This Lemma 3.2 is very important and necessary which allow us to conclude this paper. Indeed this result is needed to pass to the limit exactly in the last term of the inequality (3.12) in the proof of the main Theorem 3.3.

Lemma 3.2 Let u hfop h the state system defined by the unique solution of Problem 1.4, where the flux f is replaced by f op h . Then, for h → +∞, we have

u hfop h → u f in L 2 ((0, T ) × ∂Ω), (3.3 
) where u f is the the state system defined by the unique solution of Problem 1.2 with the flux f on Γ 3 .

Proof Let consider the variational inequality of Problem 1.4 with u = u hfop h and f = f op h i.e.

< uhfop h , v -u hfop h > +a h (u hfop h , v -u hfop h ) + Φ(v) -Φ(u hfop h ) ≥ (g, v -u hfop h ) - Γ3 f op h (v -u hfop h )ds +h Γ1 b(v -u hfop h )ds, ∀v ∈ V, (3.4) and let ϕ ∈ L 2 (0, T ; H 1 0 (Ω)), and set v = u hfop h (t) ± ϕ(t) in (3.4), we get < uhfop h , ϕ >= (g, ϕ) -a(u hfop h , ϕ).
By integration in times for t ∈ (0, T ), we get

T 0 < uhfop h , ϕ > dt = T 0 (g, ϕ)dt - T 0 a(u hfop h , ϕ)dt thus for A = (c g H + u hfop h V ), we get | T 0 < uhfop h , ϕ > dt| ≤ A ϕ L 2 (0,T ;H 1
where c comes from the Poincaré inequality, and as in Lemma 3.1 we can obtain that u hfop h is bounded in V, so there exists a positive constant C such that uhfop h L 2 (0,T ;H -1 (Ω)) ≤ C.

(3.5) Using now the Aubin compactness arguments, see for example [START_REF] Foias | Navier-Stokes equations and turbulence[END_REF] with the three Banach spaces V , H 2 3 (Ω) and H -1 (Ω), then

u hfop h → u f L 2 (0, T ; H 2 3 (Ω)).
As the trace operator γ 0 is continuous from H 2 3 (Ω) to L 2 (∂Ω), then the result follows.

We give now, without need to use the notion of adjoint states [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF][START_REF] Gariboldi | Convergence of boundary optimal controls problems with restrictions in mixed elliptic Stefan-like problems[END_REF], the convergence result which generalizes the result obtained in [START_REF] Menaldi | A distributed parabolic control with mixed boundary conditions[END_REF] for a parabolic variational equalities (see also [18,20∼23]). Other optimal control problems gouverned by variational inequalities are given in [24∼26].

Theorem 3.3 Let u hfop h ∈ V, f op h ∈ F -and u fop ∈ V, f op ∈ F -be respectively the state systems and the optimal controls defined in the problems (1.4) and (1.2). Then lim

h→+∞ u hfop h -u fop V = = lim h→+∞ u hfop h -u fop L ∞ (0,T,H) , = lim h→+∞ u hfop h -u fop L 2 ((0,T )×Γ1) = 0, (3.6) 
lim h→+∞ f op h -f op F = 0. (3.7) 
Proof We have first

J h (f op h ) = 1 2 u hfop h 2 H + M 2 f op h 2 F ≤ ≤ 1 2 u hf 2 H + M 2 f 2 F , for all f ∈ F -, then for f = 0 ∈ F -we obtain that J h (f op h ) = 1 2 u hfop h 2 H + M 2 f op h 2 F ≤ 1 2 u h0 2 
H (3.8) where u h0 ∈ V is the solution of the following parabolic variational inequality uh0 , v -u h0 + a h (u h0 , v -u h0 ) + Φ(v) -Φ(u h0 ) ≥ Ω g(v -u h0 )dx + h Γ1 b(v -u h0 )ds, a.e. t ∈]0, T [ for all v ∈ V and u h0 (0) = u b . Taking v = u b ∈ K b we get that u h0 -u b V
is bounded independently of h, then u h0 H is bounded independently of h. So we deduce with (3.8) that u hfop h H and f op h F are also bounded independently of h. So there exist f ∈ F - and η in H such that f op h ⇀ f in F -and u hfop h ⇀ η in H (weakly).(3.9)

Taking now v = u fop (t) ∈ K b in Problem (1.4), for t ∈]0, T [, with u = u hfop h and f = f op h , we obtain uhfop h , u fop -u hfop h + a 1 (u hfop h , u fop -u hfop h ) +(h -1) Γ1 u hfop h (u fop -u hfop h )ds + Φ(u fop ) -Φ(u hfop h ) ≥ (g, u fop -u hfop h ) + h Γ1 b(u fop -u hfop h )ds - Γ3 f op h (u fop -u hfop h )ds, a.e. t ∈]0, T [. As u fop = b on Γ 1 × [0, T ], taking φ h = u fop -u hfop h we obtain 1 2 φ h 2 L ∞ (0,T ;H) + λ 1 φ h 2 V + (h -1) T 0 Γ1 |φ h (t)| 2 dsdt ≤ T 0 Γ3 f op h φ h dsdt - T 0 (g(t), φ h (t))dt + T 0 Γ2 q|φ h (t)|dsdt + T 0 ufop (t)φ h (t) dt + T 0 a(u fop (t), φ h (t))dt.
As f op h is bounded in F -, from (3.5) ufop is bounded in L 2 (0, T ; H -1 (Ω)), and u hfop h is also bounded in V, all independently on h, so there exists a positive constant C which does not depend on h such that

φ h V = u hfop h -u fop V ≤ C, φ h L ∞ (0,T,H) ≤ C and (h -1) T 0 Γ1 |u hfop h -b| 2 dsdt ≤ C,
then η ∈ V and u hfop h ⇀ η in V and in L ∞ (0, T, H) weak star (3.10)

u hfop h → b in L 2 ((0, T ) × Γ 1 ) strong, (3.11) so η(t) ∈ K b for all t ∈ [0, T ]. Now taking v ∈ K in Problem (1.4) where u = u hfop h and f = f op h so uhfop h , v -u hfop h + a h (u hfop h , v -u hfop h ) + Φ(v) -Φ(u hfop h ) ≥ (f op h , v -u hfop h ) + h Γ1 b(v -u hfop h )ds - Γ3 f op h (v -u hfop h )ds, a.e. t ∈]0, T [ as v ∈ K b so v = b on Γ 1 , thus we have uhfop h , u hfop h -v + a(u hfop h , u hfop h -v) + h Γ1 |u hfop h -b| 2 ds + Φ(u hfop h ) -Φ(v) -(g, v -u hfop h ) ≤ Γ3 f op h (v -u hfop h )ds a.e. t ∈]0, T [. Thus uhfop h , u hfop h -v + a(u hfop h , u hfop h -v) +Φ(u hfop h ) -Φ(v) ≤ -(g, v -u hfop h ) - Γ3 f op h (v -u hfop h )ds a.e. t ∈]0, T [. (3.12)
Using Lemma 3.2, (3.9) and (3.10), we deduce that [START_REF] Duvaut | Les inéquations en Mécanique et en Physique[END_REF][START_REF] Tarzia | Etude de l'inéquation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases, I. Boll[END_REF] We prove that f = f op . Indeed we have 

η, v -η + a(η, v -η) + Φ(v) -Φ(η) ≥ (f, v -η) - Γ3 f (v -η))
J( f ) = 1 2 η 2 H + M 2 f 2 F ≤ lim inf h→+∞ 1 2 u hfop h 2 H + M 2 f op h 2 F = lim inf h→+∞ J h (f op h ) ≤ lim inf h→+∞ J h (f ) = lim inf h→+∞ 1 2 u hf 2 H + M 2 f 2 F so using now the strong convergence u hf → u f as h → +∞, ∀ f ∈ F -(see Lemma 3.1), we obtain that J( f ) ≤ lim inf h→+∞ J h (f op h ) ≤ 1 2 u f 2 H + M 2 f 2 F = J(f ), ∀f ∈ F -(3.
to η = u f in V ∩ L ∞ (0, T ; H) ∩ L 2 (0, T ; L 2 (Γ 1 )), indeed taking v = η in Problem (1.4) where u = u hfop h and f = f op h , as η(t) ∈ K for t ∈ [0, T ], so η = b on Γ 1 , we obtain 1 2 u hfop h -η 2 L ∞ (0,T ;H) + λ 1 u hfop h -η 2 V + T 0 {Φ(u hfop h ) -Φ(η)}dt + h u hfop h -η 2 L 2 ((0,T )×Γ1) ≤ T 0 (g, u hfop h (t) -η(t))dt - T 0 η, u hfop h -η dt + T 0 a(η(t), η(t) -u hfop h (t)) - Γ3 f op h (u hfop h -η))dsdt.
where h = h -1 Using (3.10) and the weak semi-continuity of Φ we deduce that lim 

h→+∞ u hfop h -η L ∞ (0,T ;H) = lim h→+∞ u hfop h -η V = u hfop h -η L 2 ((0,T )×Γ1) =
J(f op ) = 1 2 u fop 2 H + M 2 f op 2 F ≤≤ lim inf h→+∞ J h (f op h ) = lim inf

Conclusion

The main difference here with our work [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF] where the control variable was the function g, is that we consider here as a control variable the function f given by the Neumann boundary condition on Γ 3 . This change induce in the variational problems 1.2 and 1.4, and also in the proofs of Lemma 3.1 and Theorem 3.3, a new integral term on Γ 3 . The main difficulty here is in Section 3 and the question is exactly how to pass to the limit for h → +∞ in the last integral term on Γ 3 in (3.12). To overcome this main difficulty we have introduced the new Lemma 3.2, which is the key of our problem. The idea of Lemma 3.1 and Theorem 3.3 and their proofs are indeed similar to those of our work [START_REF] Boukrouche | Convergence of distributed optimal controls for second kind parabolic variational inequalities[END_REF] with the differences and difficulties mentioned just above.

  ds, ∀v ∈ K, a.e. t ∈]0, T [, so also by the uniqueness of the solution of Problem (1.2) we obtain that u f = η. (3.13)

  0, and with (3.13) and (3.15) we deduce (3.6). Then from (3.14) and (3.15) we can write

J 2 F = f op h 2 F + f op 2 F 2 F

 2222 h (f op ) = J(f op )(3.16) and using the strong convergence (3.6), we get limh→+∞ f op h F = f op F . (3.17)Finally asf op hf op -2(f op h , f op ) (3.18) and by the first part of (3.9) we have lim h→+∞ (f op h , f op ) = f op , so from (3.17

Corollary 3 . 4

 34 ) and(3.18) we get(3.7). This ends the proof. Let u hfop h in V, f op h in F -, u fop in V and f op in F -be respectively the state systems and the optimal controls defined in the problems (1.4) and (1.2). Thenlim h→+∞ |J h (f op h ) -J(f op )| = 0.Proof It follows from the definitions (2.1) and (2.2), and the convergences (3.6) and (3.7).

  [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] then by the uniqueness of the optimal control Problem (1.2) we get f = f op .(3.15) Now we prove the strong convergence of u hfop h

(Ω))
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