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How do we map the rapid input of spoken language onto phonological and lexical
representations over time? Attempts at psychologically-tractable computational models
of spoken word recognition tend either to ignore time or to transform the temporal
input into a spatial representation. TRACE, a connectionist model with broad and deep
coverage of speech perception and spoken word recognition phenomena, takes the
latter approach, using exclusively time-specific units at every level of representation.
TRACE reduplicates featural, phonemic, and lexical inputs at every time step in a large
memory trace, with rich interconnections (excitatory forward and backward connections
between levels and inhibitory links within levels). As the length of the memory trace is
increased, or as the phoneme and lexical inventory of the model is increased to a realistic
size, this reduplication of time- (temporal position) specific units leads to a dramatic
proliferation of units and connections, begging the question of whether a more efficient
approach is possible. Our starting point is the observation that models of visual object
recognition—including visual word recognition—have grappled with the problem of spatial
invariance, and arrived at solutions other than a fully-reduplicative strategy like that of
TRACE. This inspires a new model of spoken word recognition that combines time-specific
phoneme representations similar to those in TRACE with higher-level representations
based on string kernels: temporally independent (time invariant) diphone and lexical
units. This reduces the number of necessary units and connections by several orders
of magnitude relative to TRACE. Critically, we compare the new model to TRACE on a set
of key phenomena, demonstrating that the new model inherits much of the behavior of
TRACE and that the drastic computational savings do not come at the cost of explanatory
power.
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1. INTRODUCTION
There is a computational model of spoken word recognition
whose explanatory power goes far beyond that of all known alter-
natives, accounting for a wide variety of data from long-used
button-press tasks like lexical decision (McClelland and Elman,
1986) as well as fine-grained timecourse data from the visual
world paradigm (Allopenna et al., 1998; Dahan et al., 2001a,b;
see Strauss et al., 2007, for a review). This is particularly surpris-
ing given that we are not talking about a recent model. Indeed,
the model we are talking about—the TRACE model (McClelland
and Elman, 1986)—was developed nearly 30 years ago, but suc-
cessfully simulates a broad range of fine-grained phenomena
observed using experimental techniques that only began to be
used to study spoken word recognition more than a decade after
the model was introduced.

TRACE is an interactive activation (IA) connectionist model.
The essence of IA is to construe word recognition as a hierarchical
competition process taking place over time, where excitatory con-
nections between levels and inhibitory connections within levels
result in a self-organizing resonance process where the system
fluxes between dominance by one unit or another (as a func-
tion of bottom–up and top–down support) over time at each

level. The levels in TRACE begin with a pseudo-spectral repre-
sentation of acoustic-phonetic features. These feed forward to a
phoneme level, which in turn feeds forward to a word level. The
model is interactive in that higher levels send feedback to lower
levels (though in standard parameter settings, only feedback from
words to phonemes is non-zero). Figure 1 provides a conceptual
schematic of these basic layers and connectivities, although the
implementational details are much more complex.

The details are more complex because of the way the model
tackles the extremely difficult problem of recognizing series of
phonemes or words that unfold over time, at a sub-phonemic
grain. The solution implemented in TRACE is to take the concep-
tual network of Figure 1 and reduplicate every feature, phoneme,
and word at successive timesteps. Time steps are meant to approx-
imate 10 ms, and feature units are duplicated at every slice, while
phonemes and words are duplicated every third slice. Thus, the
phoneme layer can be visualized as a matrix with one row per
phoneme and one column per time slice (i.e., a phonemes × slices
matrix). However, units also have temporal extent—features for
a given phoneme input extend over 11 time slices, ramping on
and off in intensity. The same scheme is used at the lexical level,
which can be visualized as a words × time slices matrix. Word
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FIGURE 1 | One time-slice of the TRACE model of spoken word

recognition.

lengths are not the simple product of constituent phoneme dura-
tions because phoneme centers are spaced six slices apart. This
also gives TRACE a coarse analog to coarticulation; the features
for successive phonemes overlap in time (but this is a weak ana-
log, since feature patterns simply overlap and sometimes sum; but
real coarticulation actually changes the realization of nearby and
sometimes distant articulatory gestures). Each feature unit has
forward connections to all phoneme units containing that feature
that are aligned with it in time. Each phoneme unit has a forward
connection to and a feedback connection from each word unit
that “expects” that phoneme at that temporal location (so a /d/
unit at slice s has connections to /d/-initial words aligned near [at
or just before or after] slice s, /d/-final words whose offsets are
aligned at or adjacent to s, etc.). This more complex structure is
shown in Figure 2.

The input to the model is transient; activation is applied to fea-
ture units “left-to-right” in time, as an analog of real speech input.
Features that are activated then send activation forward. In IA
networks, activation persists even after the removal of bottom–up
input, as activation decays gradually rather than instantaneously.
So as time progresses beyond the moment aligned with slice s,
units aligned at slice s can continue to be active. A unit’s activa-
tion at a time step, t, is a weighted sum of its bottom–up input, its
top–down input, and its own activation at time t-1, minus a decay
constant. The crucial point in understanding TRACE is that time
is represented in two different ways. First, stimulus time unfolds
step-by-step, with bottom–up inputs for that step applied only in
that step. Second, time-specific units at each level are aligned with
a specific time step, t, but their activation can continue to wax and
wane after the bottom–up stimulus has been applied at time t.
This is because the model will only receive external input at time t,

FIGURE 2 | The detailed structure of the TRACE model of spoken word

recognition (adapted from McClelland and Elman, 1986).

but activation will continue to flow among units aligned with
time t as a function of bottom–up, top–down, and lateral connec-
tions within the model. This is what inspires the name “TRACE”:
activation of a unit at time t is a constantly updating memory
of what happened at time t modulated by lateral and top–down
input.

In the original TRACE paper, McClelland and Elman pre-
sented results demonstrating how TRACE accounts for about 15
(depending on how one counts) crucial phenomena in human
speech perception and spoken word recognition (see also Strauss
et al., 2007 for a review). McClelland (1991) demonstrated how
the addition of stochastic noise allowed TRACE to account prop-
erly for joint effects of context and stimulus (in response to
a critique by Massaro, 1989). More recently, TRACE has been
successfully applied to the fine-grained time-course of effects
of phonological competition (Allopenna et al., 1998), word fre-
quency (Dahan et al., 2001a), and subcateogorical (subphone-
mic) mismatches (Dahan et al., 2001b), using the visual world
paradigm (Tanenhaus et al., 1995). In this paradigm, eye move-
ments are tracked as participants follow spoken instructions to
interact with real or computer-displayed arrays of objects (see
Cooper, 1974, for an earlier, passive-task variant of the paradigm,
the potential of which was not recognized at the time). While par-
ticipants make only a few saccades per trial, by averaging over
many trials, one can estimate the fine-grained time course of
lexical activation and competition over time.

While some models have simulated aspects of visual world
results (e.g., ShortlistB, Norris and McQueen, 2008), none has
simulated the full set TRACE simulates, nor with comparable
precision (although this assertion is based largely on absence of
evidence—most models have not been applied to the full range of
phenomena TRACE has; see Magnuson et al., 2012, for a review).
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While TRACE is not a learning model, its ability to account for
such a variety of findings in a framework that allows one to
test highly specific hypotheses about the general organization of
spoken word recognition (for instance TRACE’s assumption of
localist and separated levels of representations makes it easier
to consider the impact of perturbing specific levels of organiza-
tion, i.e., sublexical or lexical). However, while TRACE does an
excellent job at fitting many phenomena, its translation of time
to space via its time-specific reduplications of featural, phone-
mic and lexical units is notably inefficient (indeed, McClelland
and Elman, 1986 noted it themselves; p. 77). In fact, as we shall
describe in detail below, extending TRACE to a realistic phoneme
inventory (40 instead of 14) and a realistic lexicon size (20,000
instead of 212 words) would require approximately 4 million
units and 80 billion connections. To us, this begs a simple ques-
tion: is it possible to create a model that preserves the many
useful aspects of TRACE’s behavior and simplicity while avoiding
the apparent inefficiency of reduplication of time-specific units
at every level of the model? As we explain next, we take our
inspiration from solutions proposed for achieving spatial invari-
ance in visual word recognition in order to tackle the problem of
temporal invariance in spoken word recognition.

1.1. TIME AND TRACE: MAN BITES GOD
Visual words have several advantages over spoken words as objects
of perception. All their elements appear simultaneously, and they
(normally) persist in time, allowing the perceiver to take as much
time as she needs, even reinspecting a word when needed. In
a series of words, spaces indicate word boundaries, making the
idea of one-at-a-time word processing (rather than letter-by-
letter sequential processing) possible. In speech, the components
of words cannot occur simultaneously (with the exception of
single-vowel words like “a”). Instead, the phonological forms of
words must be recovered from the acoustic outcomes of a series
of rapidly performed and overlapping (coarticulated) gymnastic
feats of vocal articulators. A spoken word’s parts are transient, and
cannot be reinspected except if they are held in quickly decaying
echoic memory. In a series of words, articulation and the signal
are continuous; there are no robust cues to word boundaries,
meaning the perceiver must somehow simultaneously segment
and recognize spoken words on the fly. Any processing model of
spoken word recognition will need some way to code the tempo-
ral order of phonemes and words in the speech stream. There are
four fundamental problems the model will have to grapple with.

First, there is the “temporal order problem,” which we might
call the “dog or god” problem. If, for example, a model simply
sent activation to word representations whenever any of their
constituent phonemes were encountered without any concern
for order, the sequences /dag/, /gad/, /agd/ (etc.) would equally
and simultaneously activate representations of both dog and god.
TRACE solves this by having temporal order built into lexical
level units: a unit for dog is a template detector for the ordered
pattern /d/-/a/-/g/, whereas a god unit is a template detector for
/g/-/a/-/d/.

Second, there is the “multi-token independence problem,” or
what we might call the “do/dude” or “dog eats dog” problem: the
need to encode multiple instances of the same phoneme (as in

words like dude, dad, bib, gig, dread, or Mississippi) or word (as
in dog eats dog). That is, a model must be able to treat the two
instances of /d/ in dude and the two instances of dog in dog eats
dog as independent events. For example, if we tried having a sim-
ple model with just one unit representing /d/, the second /d/ in
dude would just give us more evidence for /d/ (that is, more evi-
dence for do), not evidence of a new event. The same would be
true for dog eats dog; a single dog unit would just get more acti-
vated by the second instance without some way of treating the
two tokens as independent events. TRACE achieves multi-token
independence by brute force: it has literally independent detectors
aligned at different time slices. If the first /d/ is centered at slice 6,
the /a/ (both /a/ and /ae/ are represented by /a/ in TRACE) will be
centered at slice 12 and the final /d/ will be centered at slice 18.
The two /d/ events will activate completely different /d/ phoneme
units. Thus, TRACE achieves multi-token independence (the abil-
ity to “recognize” two temporally distant tokens of the same type
as independent) by having time-specific detectors.

Third is the “man bites dog” problem, which is the tempo-
ral order problem extended to multi-word sequences. The model
must have some way to code the ordering of words; knowing that
the words dog, man, and bites have occurred is insufficient; the
model must be able to tell man bites dog from dog bites man.
Putting these first three problems together, we might call them
the “man bites god” problem—without order, lexical ambiguities
will lead to later phrasal ambiguities. TRACE’s reduplicated units
allow it to handle all three.

Finally, there is the “segmentation problem.” Even if we ignore
the primary segmentation problem in real speech (the fact that
phonemes overlap due to coarticulation) and make the common
simplifying assumption that the input to spoken word recogni-
tion is a series of already-recognized phonemes, we need a way
to segment words. It may seem that this problem should be log-
ically prior to the “man bites dog” problem, but many theories
and models of spoken word recognition propose that segmenta-
tion emerges from mechanisms that map phonemes to words. For
example, in the Cohort model (Marslen-Wilson and Tyler, 1980),
speech input in the form of phoneme sequences is mapped onto
lexical representations (ordered phonological forms) phoneme-
by-phoneme. When a sequence cannot continue to be mapped
onto a single word, a word boundary is postulated (e.g., given the
dog, a boundary would be postulated at /d/ because it could not be
appended to the previous sequence and still form a word). TRACE
was inspired largely by the Cohort model, but rather than explic-
itly seeking and representing word boundaries, segmentation is
emergent: lateral inhibition among temporally-overlapping word
units forces the model to settle on a series of transient, temporary
“winners”—word units that dominate at different time slices in
the “trace.”

Solving several problems at once is compelling, but the com-
putational cost is high. Specifically, because TRACE relies on
reduplication at every time slice of features, phonemes, and
words, the number of units in the model will grow linearly as a
function of the number of time slices, features, phonemes, and
words. But because units in TRACE have inhibitory links to all
overlapping units at the same level, the number of connections
grows quadratically as units at any level increase. Scaling up the
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14 phonemes in the original TRACE model to the approximately
40 phonemes in the English inventory would not in itself lead to
an explosive increase in units or connections (see Appendix A).
Moving from the original TRACE lexicon of just 212 words to
a realistically-sized lexicon of 20,000 words, however, would. In
fact, the original TRACE model, with 14 phonemes and 212
words would require 15,000 units and 45 million connections.
Increasing the phoneme inventory would change the number of
units to approximately 17,000 and the number of connections to
45.4 million. Increasing the lexicon to 20,000 words would result
in 1.3 million units and 400 billion connections. How might we
construct a more efficient model?

1.2. VISUAL AND SPOKEN WORD RECOGNITION
There are several reasons to believe that visual and spoken word
recognition could share more mechanisms than is usually appre-
ciated. To be sure, very salient differences exist between the visual
and auditory modalities. One signal has a temporal dimension,
the other is spatially extended. The former travels sequentially
(over time) through the cochlear nerve, the latter in parallel
through the optic nerve. In addition, just as in spoken word recog-
nition, researchers in the field of visual word recognition have to
ponder an invariance problem. Although a unique fixation near
the center of a word is usually enough for an adult to recog-
nize it (Starr and Rayner, 2001), ultimately this fixation has only
stochastic precision and will rarely bring the same stimulus twice
at exactly the same place on the retina, resulting in dissimilar
retinal patterns. A credible model of the visual word recognition
system should find a way to overcome this disparity in a word’s
many location exemplars, and to summon a unique lexical mean-
ing and a unique phonology independently of wherever the visual
stimulus actually fell on the retina.

1.3. STRING KERNELS
In the machine learning literature, one computational technique
that has been very successful at comparing sequences of symbols
independently of their position goes under the name of string
kernels (Hofmann et al., 2008). Symbols could be amino-acids,
nucleotides, or letters in a webpage: in every case the gist of string
kernels is to represent strings (such as “TIME”) as points in a
high-dimensional space of symbol combinations (for instance as
a vector where each component stands for a combination of two
symbols, and only the components for “TI,” “TM,” “TE,” “IM,”
“IE,” “ME” would be non-zero). It is known that this space is
propitious to linear pattern separations and yet can capture the
(domain-dependent) similarities between them. String kernels
have also been very successful due to their computability: it is not
always necessary to explicitly represent the structures in the space
of symbol combinations in order to compute their similarity (the
so-called “kernel trick,” which we will not use here).

It has been argued that string kernels provide a very good fit to
several robust masked priming effects in visual word recognition,
such as for instance letter transposition effects (the phenomenon
that a letter transposition like trasnpose better primes the original
word than a stimulus with letter replacements, such as tracm-
pose), and are thus likely involved at least in the early stages of
visual word encoding (Hannagan and Grainger, 2012). To our

knowledge, however, there have been no published investigations
of string kernels in the domain of spoken word recognition. While
the notion of an open biphone may at first blush sound implausi-
ble, keep in mind that the open bigram string kernel approach
affords spatial invariance for visual word recognition. Might it
also provide a basis for temporal invariance for spoken words?

2. TISK, THE TIME INVARIANT STRING KERNEL MODEL OF
SPOKEN WORD RECOGNITION: MATERIALS AND
METHODS

2.1. GENERAL ARCHITECTURE AND DYNAMICS
Our extension of the string kernel approach to spoken words is
illustrated in Figure 3. It uses the same lexicon and basic acti-
vation dynamics as the TRACE model, but avoids a massive
reduplication of units, as it replaces most time-specific units from
TRACE with time-invariant units. It is comprised of four levels:
inputs, phonemes, nphones (single phones and diphones) and
words. Inputs consist of a bank of time-specific input units as
in TRACE, through which a wave of transient activation travels.
However, this input layer is deliberately very simplified compared
to its TRACE analog. The input is like the Dandurand et al. (2010)
input layer, though in our case, it is a time slice × phoneme
matrix rather than a spatial slot × letter matrix. Thus, for this
initial assay with the model, we are deferring an implementa-
tion like TRACE’s pseudo-spectral featural level and the details
it affords (such as TRACE’s rough analog to coarticulation, where
feature patterns are extended over time and overlap). With our
localist phoneme inputs, at any time there is always at most one
input unit active—inputs do not overlap in time, and do not code
for phonetic similarity (that is, the inputs are orthogonal local-
ist nodes). Note that the use of time-specific nodes at this level is
a matter of computational convenience without theoretical com-
mitment or consequence; these nodes provide a computationally

FIGURE 3 | The TISK model—a time-invariant architecture for spoken

word recognition.
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expedient way to pass sequences of phonemic inputs to the model,
and could conceivably be replaced by a single bank of input nodes
(but this would require other additions to the model to allow
inputs to be “scheduled” over time). As in the TRACE model, one
can construe these input nodes as roughly analogous to echoic
memory or a phonological buffer. As we shall see, these simpli-
fications do not prevent the model from behaving remarkably
similarly to TRACE.

For our initial simulations, the model is restricted to ten slices
(the minimum number needed for single-word recognition given
the original TRACE lexicon), each with 14 time-specific phoneme
units (one for each of the 14 TRACE phonemes). The input
phoneme units feed up to an nphone level with one unit for
every phoneme and for every ordered pairing of phonemes. The
nphone units are time-invariant; there is only one /d/ unit at that
level and only one /da/ diphone unit. Finally, nphone units feed
forward to time-invariant (one-per-word) lexical units.

A critical step in the model is the transition between the time-
specific phoneme input level and the time-invariant nphone level.
This is achieved via entirely feedforward connections, the weights
of which are set following certain symmetries that we will describe
shortly. The nphone level implements a string kernel and consists
of 196 + 14 units, one for each possible diphone and phoneme
given the TRACE inventory of 14 phonemes. Units at this level can
compete with one another via lateral inhibition, and send activa-
tion forward to the time invariant word level through excitatory
connections, whose weights were normalized by the number of
nphones of the destination word. The word level consists of
212 units (the original TRACE lexicon), with lateral inhibitory
connections only between those words that share at least one
phoneme at the level below. For this preliminary investigation,
feedback connections from words to nphones were not included.

Units in the model are leaky integrators: at each cycle t, the
activation Ai of unit i will depend on the net input it receives
and on its previous activation, scaled down by a decay term, as
described in Equation (1):

Ai(t) =

⎧⎪⎪⎨
⎪⎪⎩

Ai(t − 1) ∗ (1 − Decay)
+ Neti(t) ∗ (1 − Ai(t − 1)), if Neti > 0

Ai(t − 1) ∗ (1 − Decay)
+ Neti(t) ∗ Ai(t − 1), if Neti ≤ 0

(1)

where the net input of unit i at time t is given by:

Neti =
k∑

j = 1

wijAj(t) (2)

Python code for the model is available upon request to the first
author, and a list of parameters is provided below as supplemental
data. In the next section, we describe in detail the connections
between time-specific phonemes and time-invariant nphones.

2.2. FROM TIME-SPECIFIC TO TIME-INVARIANT UNITS: A SYMMETRY
NETWORK FOR PHONOLOGICAL STRING KERNELS

We now describe the transition phase between time-specific
phonemes and time-invariant nphones in the TISK model. It

is clear that unconstrained (that is, unordered) “open diphone”
connectivity would be problematic for spoken words; for exam-
ple, if dog and god activated exactly the same diphones (/da/,
/dg/, /ag/, /ga/, /gd/, /ad/), the system would be unable to tell the
two words apart. The challenge is to activate the correct diphone
/da/, but not /ad/, upon presentation of a sequence of phonemes
like [/d/t , /a/t + 1], that is, phoneme /d/ at time t and phoneme
/a/ subsequently. Thus, the goal is to preserve activation of non-
adjacent phonemes as in an open diphone scheme (for reasons
explained below) with the constraint that only observed diphone
sequences are activated—that is, dog should still activate a /dg/
diphone (as well as /da/ and /ag/) because those phonemes have
been encountered in that sequence, but not /gd/, while god should
activate /gd/ but not /dg/. This would provide a basis for dif-
ferentiating words based on sequential ordering without using
time-specific units “all the way up” through the hierarchy of the
model.

The issue of selectivity (here, between “anadromes”: diphones
with the same phonemes in different order) vs. invariance (here,
to position-in-time) has long been identified in the fields of visual
recognition and computer vision, and has recently received atten-
tion in a series of articles investigating invariant visual word
recognition (Dandurand et al., 2010, 2013; Hannagan et al.,
2011).

Directly relevant to this article, Dandurand et al. (2013)
trained a simple perceptron network (that is, an input layer
directly connected to an output layer, with weights trained using
the delta rule) to map location-specific strings of letters to
location-invariant words. To their surprise, not only did this sim-
plistic setup succeed in recognizing more than 5000 words, a
fair fraction of which were anagrams, it also produced strong
transposition effects. By introducing spatial variability—the “i”
in science could occur in many different absolute positions rather
than just one—tolerance for slight misordering in relative posi-
tion emerged. When Dandurand et al. (2013) investigated how
the network could possibly succeed on this task in the absence of
hidden unit representations, they observed that during the course
of learning, the “Delta learning rule” had found an elegant and
effective way to keep track of letter order by correlating connec-
tion strengths with the location of the unit. More precisely, the
connections coming from all “e” units and arriving at word live
had their weights increasing with the position, whereas the con-
nections from the same units to the word evil had their weights
decreasing with position. In this way, connection weights became
a proxy for the likelihood of a word given all letters at all positions.
This simple scheme enabled the network to distinguish between
anagrams like evil and live. We describe next how this solution
found by the delta rule can be adapted to map time-specific
phonemes to time-invariant diphones or single phonemes.

The network in Figure 4 has two symmetries: firstly, weights
are invariant to changes in input phoneme identity at any given
time. This is manifest in Figure 4 by the symmetry along the
medial vertical axis: for any t, at and bt can exchange their
weights. Secondly, weights are invariant to changes in input
phonemes identity across opposite times (in Figure 4), a cen-
tral symmetry with center midway through the banks of input
phonemes: for any t ≤ T, at and bT − t are identical, and so are
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FIGURE 4 | A symmetry network for time-invariant nphone recognition

that can distinguish anadromes. The units in the center of the diagram
(e.g., /a/1) represent time-specific input nodes for phonemes /a/ and /b/

at time steps 1–4. The /ba/ and /ab/ nodes represent time-invariant
diphone units.

bt and aT − t . Although the first symmetry concerns both exci-
tatory (arrows) and gating connections (crosses, which will be
shortly explained), the second symmetry concerns only excitatory
connections.

What is the point of these symmetries? Consider a network
where the weights have been set up as in Figure 4. Then at all
possible times t, presenting the input sequence [/a/t, /b/t + 1] by
clamping the appropriate units to 1 will always result in a con-
stant net input for /ab/, here a net input of 4, and it will always
result in a smaller constant net input to /ba/, here a net input
of 2. A common activation threshold for every diphone unit can
then be set anywhere between these two net inputs (for instance,
a threshold of 3), that will ensure that upon perceiving the
sequence [/a/t, /b/t + 1] the network will always recognize /ab/
and not /ba/. The same trick applies for the complementary
input sequence [/b/t, /a/t + 1], by setting the weights from these
phoneme units to the transposed diphone /ba/ in exactly the
opposite pattern. A subtlety, however, is that in order to prevent
sequences with repeated phonemes like [/b/1, /a/2, /b/3] from
activating large sets of irrelevant nphones like /br/ or /bi/, it
is necessary to introduce gating connections (cross-ended con-
nections in Figure 4), whereby upon being activated, unit /b/1

will disable the connection between all future /b/t > 1 and all
diphones /∗b/ (where “∗” stands for any phoneme but b).

The use of gating connections is costly, as the number of
connections needed is proportional to the square of the num-
ber of time slices, but less naïve gating mechanisms exist with
explicit gating units that would be functionally equivalent at
a much smaller cost (linear with increasing numbers of time
slices). More generally, other mappings between time-specific
phonemes and time-invariant n-phones are possible. However,
our approach is cast within the theory of symmetry networks
(Shawe-Taylor, 1993), which ensures that several mathematical
tools are available to carry out further analysis. The particular
symmetry network introduced here arguably also has a head-
start in learnability, given that it builds on a solution found by
the delta rule. Specifically, in a perceptron trained to recognize

visual words (Dandurand et al., 2013), the Delta rule found the
“central symmetry through time” visible in Figure 4. We do not
know if pressure to represent temporal sequences would allow
the model to discover the “axial” symmetry and necessity for
gating connections, but this is a question we reserve for future
research. We note that some studies have reported the emergence
of symmetry networks in more general settings than the delta rule
and word recognition, that is, under unsupervised learning algo-
rithms and generic visual inputs (Webber, 2000). Perhaps the best
argument for this architecture is that it is reliable, and allows for
the activation of the kind of “string kernels” recently described by
Hannagan and Grainger (2012), at a computational cost that can
be regarded as an upper-bound and yet is not prohibitive.

3. RESULTS
3.1. PERFORMANCE ON SINGLE WORD RECOGNITION
We begin with a comparison of TISK and TRACE in terms of the
recognition time of each word in the original 212-word TRACE
lexicon. If TISK performs like TRACE, there should be a robust
correlation between the recognition time for any particular word
in the two models. We operationalized spoken word recognition
in three different ways: an absolute activation threshold (Rabs), a
relative activation threshold (Rrel) and a time-dependent criterion
(Rtim). The first criterion states that a word is recognized if its acti-
vation reaches an absolute threshold, common to all words. In the
second criterion, recognition is granted whenever a word’s acti-
vation exceeds that of all other words by a threshold (0.05 in the
simulations). Finally the time-dependent criterion defines recog-
nition as a word’s activation exceeding that of all other words for
a certain number of cycles (10 cycles in the simulations).

Spoken word recognition accuracy for TRACE is consis-
tently greater than that for TISK in these simulations, although
both models obtain high performance under all criteria. TRACE
exhibits close to perfect recognition with the three criteria (Tabs =
97%, Trel = 99%, Ttim = 99%). TISK on the other hand oper-
ates less well under an absolute criterion, but recognition is
improved using a relative threshold, and it rises to TRACE-
like level with a time-dependent threshold (Tabs = 88%, Trel =
95%, Ttim = 98%). Also, mean recognition cycles are similar for
TRACE (Tabs = 38 cycles, Trel = 32 cycles, Ttim = 40 cycles) and
for TISK (Tabs = 45 cycles, Trel = 38 cycles, Ttim = 40 cycles). At
the level of individual items, performance is very similar for the
two models, as revealed by high correlations between recognition
times (for correctly recognized items) under all three recognition
definitions (r for each definition: Tabs = 0.68, Trel = 0.83, Ttim =
0.88). Figure 5 illustrates the correlation between response times
in the case of Ttim. In the rest of this article we will use the time-
dependent criterion Ttim, as the one with which models achieved
both the best performance and the most similar performance.

It is also instructive to consider the two words on which TISK
failed, /triti/ (treaty) and /stˆdid/ (studied). Indeed the model
confused these words with their respective embedded cohort
competitors /trit/ (treat) and /stˆdi/ (study). For the model these
are the most confusable pairs of words in the lexicon, because
in each case almost exactly the same set of nphones is activated
for the target and the cohort competitor, except for one or two
n-phones (the only additional diphone for treaty compared to
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treat is /ii/; studied activates two additional diphones compared
to study: /dd/ and /id/). It is certainly possible to fine-tune TISK so
as to overcome this issue. Note also that TISK recognizes correctly
the vast majority of words containing embeddings, including
word-onset embeddings.

But these particular failures are perhaps more valuable in that
they point to the type of learning algorithm that could be used in
the future, in TISK as in TRACE, to find the connection weights
in a more principled manner. Namely, they strongly suggest that
a learning algorithm should attribute more weight to these con-
nections that are the most diagnostic given the lexicon (e.g.,
connection /ii/ to /triti/).

3.2. TIME COURSE OF LEXICAL COMPETITORS
As previously observed, what is impressive about the TRACE
model is less its ability to recognize 212 English words than
the way it does so, which captures and explains very detailed
aspects of lexical competition in human spoken word recogni-
tion. Consider the so-called “Visual World Paradigm” (Tanenhaus
et al., 1995), in which subjects’ eye movements are tracked as
they follow verbal instructions to manipulate items in a visual
display. When the items include objects with similar sounding
names (e.g., so-called “cohort” items with the same word onset,
such as beaker and beetle, or rhymes, such as beaker and speaker)
as well as unrelated items to provide a baseline, eye movements
provide an estimate of activation of concepts in memory over
time. That is, the proportion of fixations to each item over time
maps directly onto phonetic similarity, with early rises in fixa-
tion proportions to targets and cohorts and later, lower fixation
proportions to rhymes (that are still fixated robustly more than
unrelated items; Allopenna et al., 1998). Allopenna et al. also con-
ducted TRACE simulations with items analogous to those they
used with human subjects, and found that TRACE accounted
for more than 80% of the variance in the over-time fixation
proportions.

FIGURE 5 | Response times in TISK (x-axis) and TRACE (y-axis) for all

212 words in the lexicon, when a time threshold is used for

recognition.

In order to assess how TISK compares to TRACE in this
respect, we subjected the model to simulations analogous to those
used by Allopenna et al. (1998). However, rather than limiting
the simulations to the small subset of the TRACE lexicon used
by Allopenna et al., we actually conducted one simulation for
every (correctly recognized) word in the TRACE lexicon with
both TRACE and TISK. We then calculated average target acti-
vations over time, as well as the over-time average activation of
all cohorts of any particular word (words overlapping in the first
two phonemes), any rhymes, and words that embed in the target
(e.g., for beaker, these would include bee and beak, whereas for
speaker, these would be speak, pea, peek). Rather than selecting a
single word to pair with each word as its unrelated baseline, we
simply took the mean of all words (including the target and other
competitors); because most words are not activated by any given
input, this hovers near resting activation levels (−0.2 for TRACE,
0 for TISK). The results are shown in Figure 6.

Readers familiar with the Allopenna et al. article will notice
some differences in our TRACE simulation results compared to
theirs. First, we have activations below zero, while they did not.
This is because Allopenna et al. followed the standard practice
of treating negative activations as zero. Second, our rhyme acti-
vations remain below zero, even though they are robustly higher
than those of the mean activation baseline. Having robustly pos-
itive rhyme activations in TRACE requires the use of a carrier
phrase like the one used by Allopenna et al. (or a transformation
to make all activations above resting level positive); without this,
because there is strong bottom–up priority in TRACE, cohorts
will be so strongly activated that rhyme activation will be diffi-
cult to detect. However, what really matters for our purposes is
the relative activations of each competitor type, which are clearly
consistent between the two models.

3.3. LEXICAL FACTORS INFLUENCING RECOGNITION
Let’s return to item level recognition times. We can probe the
models more deeply by investigating how recognition times vary

FIGURE 6 | Comparison between TISK (left panel) and TRACE (right

panel) on the average time-course of activation for different

competitors of a target word. Cohort: initial phonemes shared with the
target. Rhymes (1 mismatch): all phonemes except the first shared with the
target. Embeddings: words that embed in the target. The average time
course for all words (Mean of all words) is presented as a baseline.
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FIGURE 7 | Continued

FIGURE 7 | An overview of how recognition cycles correlate with other

lexical variables in TRACE (left column) and in TISK (right column).

Length: target length. Embedded words: number of words that embed in
the target. Onset competitors (Cohorts): number of words that share two
initial phonemes with the target. Neighbors (DAS): count of
deletion/addition/subsitution neighbors of the target. Embeddings:
logarithm of the number of words the target embeds in. Rhymes: logarithm
of the number of words that overlap with the target with first phoneme
removed.

in each model with respect to the lexical dimensions that have
attracted the most attention in the spoken word recognition lit-
erature. Figure 7 presents the correlation between recognition
cycles and six standard lexical variables: the length of the tar-
get (Length), how many words it embeds in (Embeddings),
how many words embed in it (Embedded), how many dele-
tion/addition/subsitution neighbors it has (Neighbors), the num-
ber of words with which it shares 2 initial phonemes (Cohorts),
and the number of words that overlap with it when its first
phoneme is removed (Rhymes).

Figure 7 shows that among the six lexical dimensions con-
sidered, three are inhibitory dimensions (Length, Embedded
words and Cohorts) and three are clearly facilitatory dimensions
(Neighbors, Embeddings, and Rhymes). Crucially, precisely the
same relationships are seen for both models, with an agreement
that is not only qualitative but also quantitative.

Facilitatory variables are perhaps the most surprising, as
neighborhood has long been construed as an inhibitory variable
for spoken word recognition. Although the precise details are not
relevant for this initial presentation of TISK, further inspection
of these neighborhood effects reveals that there is an interaction
of neighborhood with word length; for longer words, neighbors
begin to have a facilitative effect. The crucial point is that one can
see that TRACE and TISK behave in remarkably similar ways—
and both make intriguing, even counter-intuitive, but testable
predictions.

3.4. COMPUTATIONAL RESOURCES
We will end this comparison with an assessment of the resources
needed in both models. Table 1 shows the number of connec-
tions and units in TRACE and TISK, as calculated in Appendix C.
The figures for TRACE are obtained by considering the num-
ber of units required per slice in the model (starting from the
phoneme level, for a fair comparison with TISK which doesn’t
use a featural level): 14 phonemes, and, in the basic TRACE lex-
icon, 212 words, for 226 units. Now assuming an average of 3
phonemes per word, and allowing for connections between units
at adjacent time slices, TRACE needs approximately 225,000 con-
nections per time slice. If we make the trace 200 time slices long
(which assuming 10 ms per slice would amount to 2 s, the dura-
tion of echoic memory), we need approximately 15,000 units
and 45 million connections. Increasing the lexicon to a more
realistic size of 20,000 words and the phoneme inventory to 40,
these figures reach approximately 1.3 million units and 400 billion
connections.

Next let us consider the situation in TISK. With a 2 s layer of
time-specific input units (again, corresponding to the approxi-
mate limit of echoic memory), 14 phonemes and 212 words as in
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Table 1 | Estimates of the number of units and connections required in TRACE and TISK for 212 or 20,000 words, 14 or 40 phonemes, an

average of four phonemes per word, and assuming 2 s of input stream.

212 words 14 phonemes 212 words 40 phonemes 20,000 words 40 phonemes

TRACE TISK TRACE TISK TRACE TISK

Units 15, 067 3222 16, 800 9852 1, 336, 000 29, 640

Connections 45, 049, 733 3, 737, 313 45, 401, 600 31,718,357 >4E + 11 348, 783, 175

TRACE, TISK requires 3.2 thousand units and 3.7 million con-
nections. This represents a 5-fold improvement over TRACE for
units, and a 15-fold improvement for connections. With 20,000
words and 40 phonemes, TISK would require approximately
29,000 units (TRACE requires 45 times more) and 350 million
connections (TRACE requires 1.1 thousand times more).

Figure 8 presents an overview of the number of connections
as a function of trace duration (number of time slices) and lexi-
con size in TISK and in TRACE. The most striking feature already
apparent in Table 1 is that TRACE shows an increase in connec-
tions which dwarfs the increase in TISK. But Figure 8 also shows
that in TRACE this increase is quadratic in lexicon size and steeply
linear in time slices, while connection cost in TISK looks linear in
both variables with very small slopes. While Appendix B demon-
strates that both functions are actually quadratic in the number
of words (due to lateral inhibition at the lexical level in both
models), there is still a qualitative difference in that the quadratic
explosion due to the word level is not multiplied by the num-
ber of time slices in TISK, like it is in TRACE—decoupling trace
duration and lexicon size was, after all, the whole point of this
modeling exercise.

What is the significance of this computational economy for
spoken word recognition? We would argue that it makes it eas-
ier to examine the behavior of the model at large scales. The
400 billion connections required in TRACE currently discour-
age any direct implementation with a realistic lexicon. However,
word recognition behavior in IA models like TRACE and TISK
is exquisitely sensitive to the nature of lexical competition. One
should therefore not be content with effects obtained using an
artificial sample of 200 words but should aim at running the
model on the most realistic lexicon possible.

Depending on the precise linking assumptions one is willing
to make between units and connections on the one hand, and
actual neurons and synapses on the other hand (see, for instance,
de Kamps and van der Velde, 2001 for a well-motivated attempt),
one may or may not find that for some large but still reason-
able lexicon size the connection cost in TRACE becomes larger
than the sum total of all available synapses in the brain, whereas
Figure 8 and Appendix B suggest that the cost in TISK would be
orders of magnitude smaller and may barely make a dent in the
synaptic budget.

But even leaving aside this possibility, the notion that wiring
cost should come into consideration when modeling cognitive
systems appears to be rather safe. Firing neurons and maintaining
operational synapses has a high metabolic cost, and the pressure
to perform such a ubiquitous task as spoken word recognition
would seem to demand an implementation that balances cost

FIGURE 8 | Number of connections (y-axis, “connection cost”) as a

function of time slices and lexical size in TISK (gray surface) and

TRACE (black surface).

and efficiency in the best possible way. Although the connec-
tions in TRACE or TISK are meant to be functional rather than
biological, metabolic costs at the biological level constrain con-
nectivity at the functional level: numerous functional networks
as derived from human brain imaging achieve economical trade-
offs between wiring cost and topological (connectivity) efficiency
(Bullmore and Sporns, 2012). Recent investigations with artificial
neural networks have also shown that minimizing the number of
connections can improve performance by favoring the emergence
of separate levels of representations (Clune et al., 2006).

4. DISCUSSION
4.1. SPOKEN AND VISUAL WORD RECOGNITION: A BRIDGE BETWEEN

ORTHOGRAPHY AND PHONOLOGY
In 1981, McClelland and Rumelhart presented an interactive-
activation model of visual word recognition that was to be a major
inspiration for the TRACE model of spoken word recognition
(McClelland and Elman, 1986) and an inspiration for future gen-
erations of reading researchers. Most important is that in Figure 1
of their article, McClelland and Rumelhart sketched an overall
architecture for visual and auditory word perception, describ-
ing interconnections between the two in the form of reciprocal
letter-phoneme connections. This architecture clearly predicts
that visual word recognition should be influenced on-line by
phonological knowledge and spoken word recognition should be
influenced by orthographic knowledge. Support for these predic-
tions has since been provided by a host of empirical investigations
(see Grainger and Ziegler, 2008 for a review). Strangely enough,
however, attempts to implement such a bi-modal architecture
have been few and far between. Research on visual word recogni-
tion has come the closest to achieving this, with the development
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of computational models that include phonological represen-
tations (Seidenberg and McClelland, 1989; Plaut et al., 1996;
Coltheart et al., 2001; Perry et al., 2007).

With respect to spoken word recognition, however, to our
knowledge no computational model includes orthographic repre-
sentations, and although our TISK model of spoken word recog-
nition is not an improvement in this respect, it was nevertheless
designed with the constraint of eventually including such repre-
sentations in mind. As such, TISK not only provides an answer to
McClelland and Elman’s question of how to avoid duplication in
TRACE, but also picks up on McClelland and Rumelhart’s chal-
lenge to develop a truly bimodal model of word recognition. One
model has been developed along the lines initially suggested by
McClelland and Elman (1986)—this is the bimodal interactive-
activation model (Grainger et al., 2003; Grainger and Holcomb,
2009), recently implemented by Diependaele et al. (2010). Future
extensions of this work require compatibility in the way sublex-
ical form information is represented for print and for speech.
The present work applying string kernels to spoken word recog-
nition, along with our prior work applying string kernels to
visual word recognition (Hannagan and Grainger, 2012), suggest
that this particular method of representing word-centered posi-
tional information provides a promising avenue to follow. Indeed,
string kernels provide a means to represent order information
independently of whether the underlying dimension is spatial or
temporal, hence achieving spatial invariance for visual words and
temporal invariance for spoken words.

4.2. TESTING FOR TEMPORAL INVARIANCE IN SPOKEN WORD
RECOGNITION

Researchers interested in the neural representations for visual
words are blessed with the Visual Word Form Area, a well-defined
region in the brain that sits at the top of the ventral visual stream,
and is demonstratively the locus of our ability to encode letter
order in words or in legal non-words (Cohen et al., 2000; Gaillard
et al., 2006) but is not selectively activated for spoken words. Until
recently, the common view was that by the mere virtue of its
situation in the brain, if not by its purported hierarchical archi-
tecture with increasingly large receptive fields, the VWFA was
bound to achieve complete location invariance for word stim-
uli. However, recent fMRI studies show that, and computational
modeling explains why, a significant degree of sensitivity to loca-
tion is present in the VWFA (Rauschecker et al., 2012). A trained,
functional model of location invariance for visual words explains
why this can be so (Hannagan and Grainger, in press). In this
model the conflicting requirements for location invariant and
selectivity conspire with limited resources, and force the model
to develop in a symmetry network with broken location symme-
try on its weights (Hannagan et al., 2011). This in turn produces
“semi-location invariant” distributed activity patterns, which are
more sensitive to location for more confusable words (Hannagan
and Grainger, in press). Thus brain studies have already been
highly informative and have helped constrain our thinking on
location invariance in visual words.

But attempts to proceed in the same way for the auditory
modality quickly run into at least two brick walls. The first is
that a clear homologue of the VWFA for spoken words has

remained elusive. This might be because the speech signal varies
in more dimensions than the visual signal corresponding to a
visual object; a VWFA homologue for speech might need to pro-
vide invariance not just in temporal alignment, but also across
variation in rate, speaker characteristics, etc. However, one study
points to the left superior temporal sulcus as a good candi-
date for an Auditory Word Form Area (AWFA) on the grounds
that this region only responded for auditory words and showed
repetition suppression when the same word was spoken twice
(Cohen et al., 2004), and there have been reports of invariance
for temporal alignment or speaker characteristics and/or multi-
dimensional sensitivity in the superior (Salvata et al., 2012) and
medial (Chandrasekaran et al., 2011) temporal gyri. The sec-
ond issue is that paradigms for testing temporal invariance are
less easily designed than those which test location invariance
in the visual case. Speculating from Rauschecker et al. (2012),
however, we can propose a task that tests for the presence of
time-specific word representations, in which subjects would be
presented with a sequence of meaningless sounds where one spo-
ken word would be embedded. By manipulating the position of
this word in the sequence, one could then test whether a “blind”
classifier could be trained to discriminate by their positions-in-
time the different fMRI activation patterns evoked in the superior
temporal sulcus. Because this decoding procedure can be applied
to signals recorded from several disconnected regions of interest,
this procedure would be agnostic to the existence of a well-
circumscribed AWFA. TRACE and TISK both predict that the
classifier should succeed with fMRI patterns evoked early on in
the processing stream, i.e., at the time-specific phoneme level,
but only TISK predicts that time-invariant representations should
be found downstream, for lexical representations. Although the
necessity for testing the existence of time-specific units is obvi-
ous in the light of the TISK model, we would argue that this has
long been an urgent experimental question to ask. TRACE has
been the most successful model of spoken word recognition for
almost three decades now, and therefore it might be worth taking
seriously the most striking hypothesis it makes of the existence
of time-specific units, an hypothesis which even TISK does not
succeed in completely avoiding at the phoneme level.

4.3. PREVIOUS MODELS AND ALTERNATIVE APPROACHES TO
TEMPORAL ORDER

We claimed previously that TRACE has the greatest breadth and
depth of any extant model of spoken word recognition. Of course,
there are models whose proponents argue that they have solved
key problems in spoken word recognition without using TRACE’s
inefficient time-specific reduplication strategy. We will review a
few key examples, and consider how they compare with TRACE
and TISK.

Norris (1994), Norris et al. (2000), and Norris and McQueen
(2008) introduced Shortlist, Merge, and Shortlist B, the first two
being IA network models and the latter a Bayesian model of
spoken word recognition. All three models share basic assump-
tions, and we refer to them collectively as “the Shortlist models.”
Contrary to TRACE, the Shortlist models are entirely feedfor-
ward. They also make a critical distinction between words and
tokens, the latter being time-specific entities that instantiate the
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former, time-invariant lexical templates. The reduplication of the
lexical level that afflicts TRACE is avoided in these models by
assuming that only a “short list” of tokens is created and wired
on-the-fly into a “lattice” of lexical hypotheses. These models
have a sizable lexicon (even a realistic 20,000 word lexicon in the
case of Shortlist B), and although they have not been applied to
the full range of phenomena that TRACE has, they have success-
fully simulated phenomena such as frequency and neighborhood
effects. Unfortunately, because no computational mechanism is
described that would explain how the on-the-fly generation and
wiring of tokens could be achieved, the account of spoken word
recognition provided by Shortlist is still essentially promissory.

Other approaches to temporal order use fundamentally differ-
ent solutions than TRACE’s reduplication of time-specific units.
Elman’s (1990) simple recurrent network (SRN) may be foremost
among these in the reader’s mind. The SRN adds a simple inno-
vation to a standard feedforward, backpropagation-trained two-
layer network: a set of context units that provide an exact copy
of the hidden units at time step t-1 as part of the input at time
t, with fully connected, trainable weights from context to hid-
den units. This feedback mechanism allows the network to learn
to retain (partial) information about its own state at preceding
time steps, and provides a powerful means for sequence learning.
However, while SRNs have been applied to speech perception and
spoken word recognition (most notably in the Distributed Cohort
Model: Gaskell and Marslen-Wilson, 1997, but for other examples
see Norris, 1990, and Magnuson et al., 2000, 2003), so far as we
are aware, no one has investigated whether SRNs can account for
the depth and breadth of phenomena that TRACE does (though
SRNs provide a possible developmental mechanism since they
are learning models, and the Distributed Cohort Model has been
applied to semantic phenomena beyond the scope of TRACE).

Another approach is the cARTWORD model of Grossberg and
Kazerounian (2011), where activity gradients specific to particular
sequences can differentiate orderings of the same elements (e.g.,
ABC vs. ACB, BAC, etc.). However, this mechanism cannot rep-
resent sequences with repeated elements (for example, it cannot
distinguish ABCB from ABC, as the second B would simply pro-
vide further support for B rather than a second B event), which
makes it incapable of representing nearly one third of English lem-
mas. Furthermore, it is premature to compare this approach to
models like TRACE, since it has been applied to a single phe-
nomenon (phoneme restoration) with just a few abstract input
nodes and just a few lexical items; thus, we simply do not know
whether it would scale to handle realistic acoustic-phonetic repre-
sentations and large lexicons, let alone the broad set of phenomena
TRACE accounts for (see Magnuson, submitted, for detailed argu-
ments and simulations showing that the supposed failures of
TRACE to account for phoneme restoration phenomena reported
by Grossberg and Kazerounian, 2011, were the result of flawed sim-
ulations, not a problem with TRACE). Note that a similar activity
gradient approach in visual word recognition (Davis, 2010) has
also been attempted, with similar limitations.

4.4. THE UTILITY OF INTERACTIVE ACTIVATION MODELS
Because spoken word recognition is a slowly acquired skill in
humans, any model of it should eventually strive to incorporate

some kind of learning algorithm that explains how the represen-
tations necessary to solve the task have matured. Unlike SRNs
though, models such as TRACE and TISK do not comply to this
requirement. On the other hand and until proven the contrary
TRACE vastly outperforms SRNs in explanatory power while hav-
ing the advantage of being more transparent. We would argue
that IA models and learning models like SRNs should be con-
strued as complementary approaches to spoken word recognition.
Imagine SRNs were demonstrated to account for similar depth
and breadth as TRACE. We would still be left with the puzzle of
how they do so. Unpacking the complex composites of coopera-
tive and competitive wiring patterns that would develop would be
no mean feat. This is where we find interactive activation models
like TRACE and TISK especially useful. The IA framework allows
one to construct models with levels of organization (the repre-
sentational levels) with inter- and intralevel interaction governed
by discrete parameters. This allows one to generate hypotheses
about which aspects of the model are crucial for understanding
some phenomenon (e.g., by investigating which model parame-
ters most strongly generate a key behavior), or about which level
of organization may be perturbed in a particular language dis-
order (Perry et al., 2010; Magnuson et al., 2011). One modeling
approach that is likely to be productive is to use simpler frame-
works like IA models to generate hypotheses about key model
components in some behavior or disorder, and then to seek ways
that such behaviors or disruptions might emerge in a more com-
plex model, such as an SRN or another type of attractor network
(cf. Magnuson et al., 2012). Similarly, TISK provides a testbed
for investigating whether a string kernel scheme is a robust basis
for spoken word recognition. For example, the success of string
kernel representations in TISK might suggest that we should
investigate whether the complex wiring SRNs learn approximates
string kernels.

4.5. RELATIONSHIP BETWEEN TRACE AND TISK
One might be surprised that TISK and TRACE display such sim-
ilar behavior despite the lack of feedback in the former and its
presence in the latter. Feedback in models of spoken word recog-
nition is a controversial topic (McClelland et al., 2006; McQueen
et al., 2006; Mirman et al., 2006a), which we do not address here;
our aim is to see whether a model with a radically simpler compu-
tational architecture compared to TRACE can (begin to) account
for a similar range of phenomena in spoken word recognition.
However, this resemblance despite feedback is less surprising
than it may seem. Indeed, it has been known for several years
that the feedback contribution to word recognition in TRACE is
limited given noise-free input (Frauenfelder and Peeters, 1998):
simulations show that feedback makes the model more efficient
and robust against noise (Magnuson et al., 2005). It also pro-
vides an implicit sensitivity to phonotactics—the more often a
phoneme or n-phone occurs in lexical items, the more feed-
back it potentially receives—and it is the mechanism by which
top–down lexical effects on phoneme decisions are explained in
TRACE. None of these effects were considered in this article,
which focused on core word recognition abilities and lexical com-
petition effects. We acknowledge that without feedback, TISK
will not be able to simulate many top–down phenomena readily
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simulated in TRACE. Future research with TISK will explore the
impact of feedback connections.

4.6. LIMITATIONS AND NEXT STEPS
The aim of this study was to improve on one particularly expen-
sive aspect of the TRACE model without drastically affecting its
lexical dynamics, or diminishing its explanatory power. We have
demonstrated that a radically different approach to sequence rep-
resentation, based on string kernels, provides a plausible basis for
modeling spoken word recognition. However, our current model
has several obvious limitations.

First, to apply TISK to the full range of phenomena to which
TRACE has been applied will require changes, for example, in
the input representations for TISK. As we mentioned above, we
used single-point inputs for TISK rather than the on- and off-
ramping, over-time inputs in TRACE that also give the model a
coarse analog to coarticulation. An input at least this grain will be
required to apply TISK to, for example, subcategorical mismatch
experiments that TRACE accounts for (Dahan et al., 2001b).

Second, TISK’s levels and representations are stipulated rather
than emergent. Our next step will be to examine whether codes
resembling string kernels emerge when intra-level weights are
learned rather than stipulated. What learning algorithm could
find the set of weight values under which TISK and TRACE have
been shown to achieve close to perfect recognition? Is there more
than one such set, and do they make different predictions from
the existing fine-tuned solutions? There are a few results that
suggest the way forward. For instance, there are demonstrations
that Hebbian learning applied at the lexical level in TRACE can
help explain short term phenomena in spoken word recognition
(Mirman et al., 2006b). If Hebbian learning is indeed active on
short scales, there are no reasons to doubt that it will be involved
on longer time-scales, slowly shaping the landscape of inhibition
between words, which forms the basis for much of the behaviors
explored in this article.

Third, a problem shared by all models of word recognition is
that it is not clear how to scale from a model of word recogni-
tion to higher levels, e.g., to a model of sentence comprehension.
Because TISK’s word level is time-invariant, there is no obvi-
ous way to generate ngrams at the word level. However, TISK
and TRACE, like other models capable of activating a series
of words over time given unparsed input (i.e., word sequences
without word boundary markers) should be linkable to parsing
approaches like “supertagging” (Bangalore and Joshi, 1999; Kim
et al., 2002) or the self-organizing parser (SOPARSE) approach of
Tabor et al. (e.g., Tabor and Hutchins, 2004). Note that a common

intuition is that SRNs provide a natural way of handling sequen-
tial inputs from acoustics to phonemes to words. However, it is
not clear that this translates into a comprehensive model of the
entire speech chain. It is not apparent that you could have a single
recurrent network that takes in acoustics and somehow achieves
syntactic parsing (let alone message understanding) while pro-
ducing human-like behavior at phonetic, phonological, lexical
levels. These are non-trivial and unsolved problems, and despite
the intuitive appeal of recurrent networks, remain unanswered by
any extant model.

Finally, it is notable that we have not implemented feedback yet
in TISK. This renders TISK incapable of accounting for top–down
lexical effects on phoneme decisions. However, as Frauenfelder
and Peeters (1998) and Magnuson et al. (2005) have demon-
strated, feedback plays little role in recognition given clear inputs.
When noise is added to a model like TRACE, feedback preserves
speed and accuracy dramatically compared to a model without
feedback. While feedback also provides a mechanistic basis for
understanding top–down effects, it is also remarkable that at
least one effect attributed to feedback in TRACE (rhyme effects;
Allopenna et al., 1998) emerges in TISK without feedback. This
suggests that in fact examining which, if any (other), putatively
top–down effects emerge without feedback in TISK will be a use-
ful enterprize. Given, however, the remarkable fidelity to TRACE
that TISK demonstrates over a broad swath of phenomena, it
is clear that feedback need not be included in this first assay
with TISK.

5. CONCLUSION
Twenty-seven years after Elman and McClelland introduced the
TRACE model, we have endeavored to answer the question of how
to dispense with time-duplication, and have presented an alter-
native that preserves TRACE-like performance on spoken word
recognition while using orders of magnitude less computational
resources. Perhaps more importantly, the particular structures
and mechanisms that achieve time-invariance in TISK construct
new and intriguing bridges between visual and spoken word
recognition.

FUNDING
Thomas Hannagan and Jonathan Grainger were supported by
ERC research grant 230313.

ACKNOWLEDGMENTS
We thank Emily Myers, Lori Holt, and David Gow Jr., for stimu-
lating discussions.

REFERENCES
Allopenna, P. D., Magnuson, J. S., and

Tanenhaus, M. K. (1998). Tracking
the time course of spoken word
recognition: evidence for contin-
uous mapping models. J. Mem.
Lang. 38, 419–439. doi: 10.1006/
jmla.1997.2558

Bangalore, S., and Joshi, A. (1999).
Supertagging: an approach to
almost parsing. Comput. Linguisti.
25, 238–265.

Bowers, J. S., Damian, M. F. E.,
and Davis, C. J. (2006). A fun-
damental limitation of the con-
junctive codes learned in PDP
models of cognition: comments
on Botvinick and Plaut. Psychol.
Rev. 116, 986–997. doi: 10.1037/
a0017097

Bullmore, E., and Sporns, O. (2012).
The economy of brain network
organization Nat. Rev. Neurosci. 13,
336–349.

Chandrasekaran, B., Chan, A. H.
D., and Wong, P. C. M. (2011).
Neural processing of what and
who information during spoken
language processing. J. Cogn.
Neurosci. 23, 2690–2700. doi:
10.1162/jocn.2011.21631

Clune, J., Mouret, J. B., Lipson,
H. (2013). The evolutionary
origins of modularity. Proc.
R. Soc. B 280:20122863. doi:
10.1098/rspb.2012.2863

Cohen, L., Dehaene, S., Naccache, L.,
Lehericy, S., Dehaene-Lambertz, G.,
Henaff, M., et al. (2000). The visual
word-form area: spatial and tem-
poral characterization of an ini-
tial stage of reading in normal
subjects and posterior split-brain
patients. Brain 123, 291–307. doi:
10.1093/brain/123.2.291

Cohen, L., Jobert, A., Le Bihan,
D., and Dehaene, S. (2004).
Distinct unimodal and multimodal

Frontiers in Psychology | Language Sciences September 2013 | Volume 4 | Article 563 | 12

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


Hannagan et al. Spoken word recognition without a TRACE

regions for word processing
in the left temporal cortex.
Neuroimage 23, 1256–1270. doi:
10.1016/j.neuroimage.2004.07.052

Coltheart, M., Rastle, K., Perry,
C., Langdon, R., and Ziegler,
J. (2001). DRC: a dual route
cascaded model of visual word
recognition and reading aloud.
Psychol. Rev. 108, 204–256. doi:
10.1037/0033-295X.108.1.204

Cooper, R. M. (1974). The control
of eye fixation by the mean-
ing of spoken language. A new
methodology for the real-time
investigation of speech perception,
memory, and language processing.
Cogn. Psychol. 6, 84–107. doi:
10.1016/0010-0285(74)90005-X

Dahan, D., Magnuson, J. S., and
Tanenhaus, M. K. (2001a). Time
course of frequency effects in
spoken-word recognition: evi-
dence from eye movements.
Cogn. Psychol. 42, 317–367. doi:
10.1006/cogp.2001.0750

Dahan, D., Magnuson, J. S., Tanenhaus,
M. K., and Hogan, E. M. (2001b).
Tracking the time course of sub-
categorical mismatches: evidence
for lexical competition. Lang.
Cogn. Process. 16, 507–534. doi:
10.1080/01690960143000074

Dandurand, F., Grainger, J., and
Dufau, S. (2010). Learning location
invariant orthographic repre-
sentations for printed words.
Connect. Sci. 22, 25–42. doi:
10.1080/09540090903085768

Dandurand, F., Hannagan, T., and
Grainger, J. (2013). Computational
models of location-invariant ortho-
graphic processing. Connect. Sci. 25,
1–26. doi: 10.1080/09540091.2013.
801934

Davis, C. J. (2010). The spatial cod-
ing model of visual word identifica-
tion. Psychol. Rev. 117, 713–758. doi:
10.1037/a0019738

de Kamps, M., and van der Velde, F.
(2001). From artificial neural net-
works to spiking neuron popula-
tions and back again. Neural Netw.
14, 941–953. doi: 10.1016/S0893-
6080(01)00068-5

Diependaele, K., Ziegler, J., and
Grainger, J. (2010). Fast phonology
and the bi-modal interac-
tive activation model. Eur. J.
Cogn. Psychol. 22, 764–778. doi:
10.1080/09541440902834782

Elman, J. L. (1990). Finding structure
in time. Cogn. Sci. 14, 179–211. doi:
10.1207/s15516709cog1402_1

Frauenfelder, U. H., and Peeters,
G. (1998). “Simulating the time
course of spoken word recognition:
an analysis of lexical compe-
tition in TRACE,” in Localist

Connectionist Approaches to Human
Cognition, eds J. Grainger and A.
M. Jacobs (Mahwah, NJ: Erlbaum),
101–146.

Gaillard, R., Naccache, L., Pinel,
P., Clémenceau, S., Volle, E.,
Hasboun, D., et al. (2006). Direct
intracranial, FMRI, and lesion
evidence for the causal role of left
inferotemporal cortex in read-
ing. Neuron 50, 191–204. doi:
10.1016/j.neuron.2006.03.031

Gaskell, M. G., and Marslen-Wilson,
W. D. (1997). Integrating form and
meaning: a distributed model
of speech perception. Lang.
Cogn. Process. 12, 613–656. doi:
10.1080/016909697386646

Grainger, J., Diependaele, K., Spinelli,
E., Ferrand, L., and Farioli, F.
(2003). Masked repetition and
phonological priming within and
across modalities J. Exp. Psychol.
Learn. Mem. Cogn. 29, 1256–1269.
doi: 10.1037/0278-7393.29.6.1256

Grainger, J., and Holcomb, P. J.
(2009). Watching the word
go by: on the time-course
of component processes in
visual word recognition. Lang.
Linguist. Compass 3, 128–156. doi:
10.1111/j.1749-818X.2008.00121.x

Grainger, J., and Jacobs, A. M.
(1996) Orthographic process-
ing in visual word recognition:
a multiple readout model.
Psychol. Rev. 103, 518–565. doi:
10.1037/0033-295X.103.3.518

Grainger, J., and Ziegler, J. (2008).
“Cross-code consistency effects
in visual word recognition,” in
Single-Word Reading: Biological
and Behavioral Perspectives, eds
E. L. Grigorenko and A. Naples
(Mahwah, NJ: Lawrence Erlbaum
Associates), 129–157.

Grossberg, S., and Kazerounian, S.
(2011). Laminar cortical dynamics
of conscious speech perception: a
neural model of phonemic restora-
tion using subsequent context. J.
Acoust. Soc. Am. 130, 440. doi:
10.1121/1.3589258

Grossberg, S., and Myers, C. W. (2000).
The resonant dynamics of speech
perception: interword integration
and duration-dependent backward
effects. Psychol. Rev. 107, 735–767.
doi: 10.1037/0033-295X.107.4.735

Hannagan, T., Dandurand, F., and
Grainger, J. (2011). Broken sym-
metries in a location invariant
word recognition network.
Neural Comput. 23, 251–283.
doi: 10.1162/NECO_a_00064

Hannagan, T., and Grainger, J.
(2012). Protein analysis meets
visual word recognition: a case
for String kernels in the brain.

Cogn. Sci. 36, 575–606. doi:
10.1111/j.1551-6709.2012.01236.x

Hannagan, T., and Grainger, J.
(in press). The lazy Visual Word
Form Area: computational insights
into location-sensitivity. PLoS
Comput. Biol.

Hofmann, T., Schökopf, B., and
Smola, A. J. (2008). Kernel
methods in machine learning.
Ann. Stat. 36, 1171–1220. doi:
10.1214/009053607000000677

Jones, M. N., and Mewhort, D. J.
K. (2007). Representing word
meaning and order information
in a composite holographic lexi-
con. Psychol. Rev. 114, 1–37. doi:
10.1037/0033-295X.114.1.1

Kim, A., Srinivas, B., and Trueswell,
J. C. (2002). “The convergence
of lexicalist perspectives in
psycholinguistics and compu-
tational linguistics,” in Sentence
Processing and the Lexicon: Formal,
Computational and Experimental
Perspectives, eds P. Merlo and S.
Stevenson (Philadelphia, PA: John
Benjamins Publishing), 109–135.

Magnuson, J. S., Kukona, A., Braze, B.,
Johns. C. L., Van Dyke, J., Tabor, W.,
et al. (2011). “Phonological insta-
bility in young adult poor readers:
time course measures and com-
putational modeling,” in Dyslexia
Across Languages: Orthography
and the Brain-Gene-Behavior Link,
eds P. McCardle, B. Miller, J. R.
Lee, and O. Tseng (Baltimore:
Paul Brookes Publishing),
184–201.

Magnuson, J. S., Mirman, D.,
and Harris, H. D. (2012).
“Computational models of
spoken word recognition,”
in The Cambridge Handbook
of Psycholinguistics, eds M.
Spivey, K. McRae, and M.
Joanisse (Cambridge: Cambridge
University Press), 76–103. doi:
10.1017/CBO9781139029377.008

Magnuson, J. S., Strauss, T. J., and
Harris, H. D. (2005). “Interaction
in spoken word recognition models:
feedback helps,” in Proceedings of the
27th Annual Meeting of the Cognitive
Science Society, eds B. G. Bara, L.
W. Barsalou, and M. Bucciarelli,
(Stresa), 1379–1394.

Magnuson, J. S., Tanenhaus, M. K.,
and Aslin, R. N. (2000). Simple
recurrent networks and competi-
tion effects in spoken word recog-
nition. Univ. Rochester Work. Pap.
Lang. Sci. 1, 56–71.

Magnuson, J. S., Tanenhaus, M.
K., Aslin, R. N., and Dahan,
D. (2003). The time course of
spoken word recognition and
learning: studies with artificial

lexicons. J. Exp. Psychol. Gen. 132,
202–227. doi: 10.1037/0096-3445.
132.2.202

Marslen-Wilson, W. D., and Tyler, L.
K. (1980). The temporal structure
of spoken language understanding.
Cognition 8, 1–71.

Massaro, D. W. (1989). Testing between
the TRACE model and the fuzzy
logical model of speech perception.
Cogn. Psychol. 21, 398–421. doi:
10.1016/0010-0285(89)90014-5

McClelland, J. L. (1991). Stochastic
interactive processes and the
effect of context on perception.
Cogn. Psychol. 23, 1–44. doi:
10.1016/0010-0285(91)90002-6

McClelland, J. L., and Elman, J. L.
(1986). The trace model of speech
perception. Cogn. Psychol. 18, 1–86.
doi: 10.1016/0010-0285(86)90015-0

McClelland, J. L., Mirman, D., and
Holt, L. L. (2006). Are there interac-
tive processes in speech perception?
Trends Cogn. Sci. 10, 363–369. doi:
10.1016/j.tics.2006.06.007

McClelland, J. L., and Rumelhart,
D. E. (1981). An interactive acti-
vation model of context effects
in letter perception: part 1.
an account of basic findings.
Psychol. Rev. 88, 375–407. doi:
10.1037/0033-295X.88.5.375

McQueen, J., Norris, D., and Cutler,
A. (2006). Are there really inter-
active processes in speech percep-
tion? Trends Cogn. Sci. 10, 533. doi:
10.1016/j.tics.2006.10.004

Mirman, D., McClelland, J. L., and
Holt, L. L. (2005). Computational
and behavioral investigations
of lexically induced delays
in phoneme recognition. J.
Mem. Lang. 52, 424–443. doi:
10.1016/j.jml.2005.01.006

Mirman, D., McClelland, J. L., and
Holt, L. L. (2006a). Theoretical
and empirical arguments sup-
port interactive processing.
Trends Cogn. Sci. 10, 534. doi:
10.1016/j.tics.2006.10.003

Mirman, D., McClelland, J. L., and
Holt, L. L. (2006b). Interactive
activation and Hebbian learn-
ing produce lexically guided
tuning of speech perception.
Psychon. Bull. Rev. 13, 958–965. doi:
10.3758/BF03213909

Norris, D. (1990). “A dynamic-net
model of human speech recogni-
tion,” in Cognitive Models of Speech
Processing: Psycholinguistic and
Computational Persepectives, ed G.
T. M. Altmann (Cambridge: MIT
press), 87–104.

Norris, D. (1994). Shortlist: a connec-
tionist model of continuous speech
recognition. Cognition 52, 189–234.
doi: 10.1016/0010-0277(94)90043-4

www.frontiersin.org September 2013 | Volume 4 | Article 563 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Hannagan et al. Spoken word recognition without a TRACE

Norris, D., and McQueen, J. M.
(2008). Shortlist B: a Bayesian
model of continuous speech
recognition. Psychol. Rev. 115,
357–395. doi: 10.1037/0033-295X.
115.2.357

Norris, D., McQueen, J. M., and
Cutler, A. (2000). Merging infor-
mation in speech recognition:
feedback is never necessary.
Behav. Brain Sci. 23, 299–325. doi:
10.1017/S0140525X00003241

Perry, C., Ziegler, J. C., and Zorzi, M.
(2007). Nested incremental model-
ing in the development of compu-
tational theories: the CDP+ model
of reading aloud. Psychol. Rev. 114,
273–315. doi: 10.1037/0033-295X.
114.2.273

Perry, C., Ziegler, J. C., and Zorzi,
M. (2010). Beyond single syl-
lables: large-scale modelling of
reading aloud with the connec-
tionist dual process (CDP++)
model. Cogn. Psychol. 61,
106–151. doi: 10.1016/j.cogpsych.
2010.04.001

Plaut, D. C., McClelland, J. L.,
Seidenberg, M. S., and Patterson, K.
(1996). Understanding normal and
impaired word reading: computa-
tional principles in quasi-regular

domains. Psychol. Rev. 103, 56–
115. doi: 10.1037/0033-295X.
103.1.56

Rauschecker, A. M., Bowen, R. F.,
Parvizi, J., and Wandell, B. A.
(2012). Position sensitivity in the
visual word form area. Proc. Natl.
Acad. Sci. U.S.A. 109, 9244–9245.
doi: 10.1073/pnas.1121304109

Rey, A., Dufau, S., Massol, S., and
Grainger, J. (2009). Testing
computational models of letter
perception with item-level ERPs.
Cogn. Neurospsychol. 26, 7–22. doi:
10.1080/09541440802176300

Salvata, C., Blumstein, S. E., and
Myers, E. B. (2012). Speaker
invariance for phonetic informa-
tion: an fMRI investigation. Lang.
Cogn. Process. 27, 210–230. doi:
10.1080/01690965.2011.594372

Seidenberg, M. S., and McClelland,
J. L. (1989). A distributed, devel-
opmental model of word recogni-
tion and naming. Psychol. Rev. 96,
523–568. doi: 10.1037/0033-295X.
96.4.523

Shawe-Taylor, J. (1993). Symmetries
and discriminability in feedforward
network architectures. IEEE Trans.
Neural Netw. 4, 816–826. doi:
10.1109/72.248459

Starr, M. S., and Rayner, K. (2001). Eye
movements during reading: some
current controversies. Trends Cogn.
Sci. 5, 156–163. doi: 10.1016/S1364-
6613(00)01619-3

Strauss, T. J., Harris, H. D., and
Magnuson, J. S. (2007). jTRACE: a
reimplementation and extension of
the TRACE model of speech percep-
tion and spoken word recognition.
Behav. Res. Methods 39, 19–30. doi:
10.3758/BF03192840

Tabor, W., and Hutchins, S. (2004).
Evidence for self-organized sentence
processing: digging in effects. J.
Exp. Psychol. Learn. Mem. Cogn.
30, 431–450. doi: 10.1037/0278-
7393.30.2.431

Tanenhaus, M. K., Spivey-Knowlton,
M. J., Eberhard, K. M., and Sedivy, J.
E. (1995). Integration of visual and
linguistic information in spoken
language comprehension. Science
268, 1632–1634. doi: 10.1126/
science.7777863

Webber, C. J. S. (2000). Self-
organization of symmetry
networks: transformation invari-
ance from the spontaneous
symmetry-breaking mechanism.
Neural Comput. 12, 565–596. doi:
10.1162/089976600300015718

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 30 April 2013; accepted:
08 August 2013; published online: 02
September 2013.
Citation: Hannagan T, Magnuson JS and
Grainger J (2013) Spoken word recogni-
tion without a TRACE. Front. Psychol.
4:563. doi: 10.3389/fpsyg.2013.00563
This article was submitted to Language
Sciences, a section of the journal
Frontiers in Psychology.
Copyright © 2013 Hannagan,
Magnuson and Grainger. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the orig-
inal author(s) or licensor are credited
and that the original publication in
this journal is cited, in accordance
with accepted academic practice. No
use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Psychology | Language Sciences September 2013 | Volume 4 | Article 563 | 14

http://dx.doi.org/10.3389/fpsyg.2013.00563
http://dx.doi.org/10.3389/fpsyg.2013.00563
http://dx.doi.org/10.3389/fpsyg.2013.00563
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


Hannagan et al. Spoken word recognition without a TRACE

APPENDIX
A. PARAMETERS OF THE MODEL

Name Value Description

Times 10 Number of time-specific slots (for input and
time specific phonemes)

Istep 10 Pace of input stream (a new input is
introduced every “istep” cycles)

Deadline 100 Deadline

DecayP 0.01 Decay rate for time-specific phonemes

DecayNP 0.01 Decay rate for time-invariant nphones

DecayW 0.05 Decay rate for time-invariant words

Gap max Authorized gap between phonemes in
time-invariant nphones

(e.g., if gap = 1, “/bark/” = “/ba/,” “/ar/,”
“/rk/”;

if gap = 2, “/bark/”= ‘/ba/,” “/br/,” “/ar/,”
“/ar/,” “/ak/,” “/rk/”).

PtoNPexc 0.1 Time-specific phoneme to time-invariant
nphone excitation

PtoNPthr 6 Time-invariant nphone activation threshold

NPtoNPinh 0 Lateral inhibition between nphones

NPtoWexc 0.05 Excitation from time-invariant nphone
(“/ba/”) to words (“/bark/”)

NPtoWscale Wordlength Scaling factor for NPtoW connections
(here, set to word length)

WtoNPexc 0 Excitation from words (“/bark/”) to
time-invariant nphone (“/ba/”)

1PtoWexc 0.01 Excitation from 1-phone (“/a/”) to words
(“/bark/”)

Wto1PExc 0 Excitation from words (“/bark/”) to 1-phone
(“/a/”)

WtoWinh −0.005 Lateral inhibition between words

B. SIZING TRACE
Recall that TRACE duplicates each feature, phoneme, and word
unit at multiple time slices. Features repeat every slice, while
phonemes and words repeat every three slices. Figure 2 illustrates
reduplication and temporal extent of each unit type. For com-
pleteness we will include the feature level in our sizing of TRACE,
although it will not be taken into account in our comparison with
TISK. In the following, S, F, P, and W will, respectively stand for
the number of time slices, features, phonemes and words in the
model.

B.1 Counting units
Because there is a bank of F features aligned with every slice, there
are SF feature units. For phonemes, given that we have P time-
specific units every three slices, for a total of P(S/3). For words,
we have W time-specific units every three slices, for a total of
W(S/3).

The total number of units as a function of S, F, P, and W
can therefore be written: SF + P(S/3) + W(S/3) = S(F + P/3 +
W/3) We see that the cost in units is linear in all of these variables,
and that for 201 time slices, 212 words, 14 phonemes, and 64

feature units the TRACE model requires 12,633 + 938 + 14,204 =
27,805 units.

B.2 Counting connections
We start by counting the feature-phoneme connections. There
are seven features per phoneme on average (vowels, frica-
tives and liquids don’t use the burst parameter, but some
phones take two values within a feature level). Let us count
how many phoneme units overlap with each slice. From
Figure 2, we can see that two copies of each phoneme over-
lap with each time slice. Therefore, there are seven (fea-
tures) ∗2 (copies) ∗P feature-phoneme connections per slice,
which results in 14 PS feature-phoneme connections in the
model.

Let us proceed to phoneme-word and word-phoneme connec-
tions. Words are four phonemes long on average, and there are
W(S/3) word units. But each of those units receives input not
just from the four phonemes that are maximally aligned with
it, but also the phonemes to the left and right of the maximally
aligned phonemes. Thus, the total number of phoneme-word
connections will be 3(S/3)Wp = SWp, where p is the number of
phonemes per word. There will be an equal number of feedback
connections from words to phonemes, for a total count of 4SW
Phoneme-phoneme connections.

Next we consider the phoneme–phoneme connections. Each
phoneme unit has an inhibitory link to each phoneme unit with
which it overlaps. We can see from Figure 2 that three copies of
each phoneme overlap any given slice. So for each phoneme unit
aligned at a given slice, it will have 3P − 1 outgoing inhibitory
links (we subtract 1 for the unit itself). We do not need to count
incoming connections; these are included when we multiply by
the number of phoneme units. This results in a total count of
PS(P − 1/3) word–word connections.

Just like phonemes, each word unit has an inhibitory link to
each word unit with which it overlaps. The number of copies
of any word that will overlap with a given slice will vary with
word length, as can be seen in Figure 2. We can also see from
Figure 2 that words span six slices per phoneme. Recall that
words are duplicated every three slices. For the 2- and 3-phoneme
long examples in Figure 2, we can determine that the number
of copies of each word of length p that overlap with a given
third slice (that is, an alignment slice, or a slice where one copy
of the word is actually aligned) would be 1 + 2(2p − 1) (the
first 1 is for the unit aligned at the slice), i.e., 4p − 1. So a
word unit at an alignment slice will have (4p − 1)W − 1 out-
going inhibitory connections. Therefore we arrive at a count of
W(S/3)((4p − 1)W − 1) word–word connections, which for an
average word length of four phonemes amounts to SW(5W −
1/3). All in all, we arrive at the following formula for the total
connection count in TRACE: Total = 14PS + 4SW + PS(P −
1/3) + SW(5W − 1/3) = S(14P + W + P(P− 1/3) + W(5W −
1/3)) = S(P(P + 41/3) + W(5W + 2/3)) = S[(P2 + 41/3P) +
(5W2 + 2/3W)].

cTRACE = 14PS + 4SW + PS(P − 1/3) + SW(5W − 1/3)

= S(14P + W + P(P − 1/3) + W(5W − 1/3))
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= S(P(P + 41/3) + W(5W + 2/3))

= S[(P2 + 41/3P) + (5W2 + 2/3W)] (3)

According to our calculations, the cost in connections is therefore
a quadratic function of P and W (due to lateral inhibition at the
phoneme and word levels), and a linear function of S (due to
limited overlap of units over time slices). In particular, with the
standard parameters of 212 words, 14 phonemes, a mean word
length of 4 phonemes, and 67 alignment units the TRACE model
requires 45,573,266 connections.

C. SIZING TISK
TISK has three levels: a time specific phoneme level, a time-
invariant string kernel level (tisk, after which the model is
named), and a time-invariant word level. TISK doesn’t have a fea-
ture level, and instead the output of such a level is emulated by
a wave of net inputs that arrives to the time-specific phoneme
level at a regular pace. A feedforward symmetry network oper-
ates the transition between the time-specific phoneme level and
the nphone level. There are positive feedforward and feedback
connections between the nphone and word levels, and lateral
inhibitory connections within them, although in practice only
the word level has non-zero inhibitory connections and they are
restricted to neighbors. The cuts in computational resources are
mostly due to the symmetry network, and to a lesser extent, to the
limited use of lateral inhibition.

C.1 TISK units
Because only one level is time-specific in TISK, the notion of
alignment doesn’t have course anymore. Therefore the number
of time-specific phonemes is simply given by the number of
phonemes multiplied by the number of time slices, or PS. With
14 phonemes and, 201 slices, this amounts to 2814 time-specific
phoneme units. The nphone level hosts time-invariant phonemes
and all possible diphones (even phonotactically illegal ones), and
therefore uses P + P2 units, which for P = 14 means 210 units.
Finally the word level counts W units, one for each word in the
lexicon, and W is set to 212 throughout most simulations. The
total number of units in the model is therefore PS + P + P2 +
W = P(P + S + 1) + W = 3236 units. W time-invariant word
units (212). P + P2 time-invariant n-phone units (P 1-phones
and P2 diphones; = 210). Total units at basic parameters: 1360.

C.2 TISK connections
We only count non-zero connections throughout. We start by
sizing connections in the symmetry network (Figure 3). A time-
specific phoneme unit sends a connection to an nphone unit
if and only if it is a constituent of this unit (for instance, A2

sends a connection to A, AB, BA, and AA, but not to B). There
are 2P − 1 diphones that start or end with a given phoneme,
and one time-invariant phoneme, so a given phoneme at time
t will send 2P − 1 + 1 = 2P connections, and multiplying this
by the number of time specific phonemes PS, we see that the
total number of connections is 2P2S. From this, however, we
must remove all zero connections: unit A1 (resp. AT) should not
give evidence for diphone units that end with A (resp. that start

with A), and therefore gradient coding assigns zero to these con-
nections. We see that these cases only occur at the first and last
time slices (implying that there are more than two time slices),
and that for a given phoneme, P − 1 connections are concerned,
resulting in 2P(P − 1) zero connections. There are therefore
2P2S − 2P(P − 1), or 2P(SP − P + 1), phoneme-to-nphone con-
nections in the symmetry network (with 14 phonemes and 201
time slices, this amounts to 78,428 connections).

We must now count the number of gating connections
in the symmetry network. To prevent spurious activations at
the nphone level, the symmetry network uses gating connec-
tions. These are hard-wired connections that originate from
time specific phonemes, and inhibit some connections between
time-specific phonemes and time-invariant nphones. Specifically,
a given phoneme at a given time slice will inhibit all con-
nections at later time slices that originate from the same
phoneme and arrive to a diphone that begins with that phoneme
(and does not repeat). Because there are P − 1 diphones that
start with a given phoneme and do not repeat, and there
are P phonemes at a given time slice, P(P − 1) connections
must be gated at any time slice after the one considered, or
for S > 2:

cgating = P(P − 1)(S − 1) + P(P − 1)(S − 2) + . . .

+ P(P − 1)(1)

= P(P − 1)

S − 1∑
s = 1

s

= P(P − 1)S(S − 1)

2
(4)

With 14 phonemes and 201 time slices, this amounts to 3,658,200
gating units. The total in the time specific part of the network
is therefore of 3,658,200 + 78,428 = 3,736,628 connections (Note
that the formulas obtained here were verified empirically by direct
inspection of the number of connections in the model for various
number of time slices, and were found to be exact in all cases).
We now proceed to count connections in the time invariant part
of the network, first noticing that because lateral inhibition at
the nphone level was set to zero, we only need to count the
connections between the nphone and the word level, as well as
the lateral connections within the word level. However, in TISK
these numbers will depend not only on the size of the lexicon
and the number of nphones, but critically also on the distribu-
tion of nphones in the particular lexicon being used, so that we
are reduced to statistical approximations. Empirically, we find
that an average word connects to 9.5 nphones in TISK, lead-
ing to an estimate of 9.5 W feedforward connections between the
nphone and word level. Similarly, simulations show that the num-
ber of lateral inhibitory connections at the word level in TISK is
0.8W(W − 1). Therefore the number of connections in the time-
invariant part of the model reaches 0.8W2 − 0.8W + 9.6W =
0.8W2 + 8.8W . With a lexicon of 212 words, this amounts to
37,800 connections.
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All in all, we arrive at the following expression for the number
of connections in TISK for S > 2:

cTISK = 2P2S − 2P(P − 1) + P(P − 1)S(S − 1)

2

+ W(0.8W + 8.8) (5)

which amounts to 3,774,428 connections using our usual
assumptions on S, P, and W . It can be seen when this expression
is developed that it is quadratic in S, P, and W . This would seem

to be a setback compared to the expression obtained for TRACE,
which is only quadratic in P and W but linear in S. However, S
is orders of magnitudes smaller than W , and what we obtain in
exchange of this quadratic dependence to S is to decouple the S
and W factors, reflecting the fact that in TISK the lexicon is not
duplicated for every time slice anymore. Consequently there is
a substantial gain in connections when switching from TRACE
(45,573,266) to TISK (3,774,105) connections, the latter having
ten times less connections, a gain of one order of magnitude
which improves with lexicon size to reach an asymptota at three
orders of magnitude.
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