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First, let u g be the unique solution of an elliptic variational inequality with source term g. We establish, in the general case, the error estimate between u 3 (µ) = µu g1 + (1µ)u g2 and u 4 (µ) = u µg1+(1-µ)g2 for µ ∈ [0, 1]. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy g for each positive heat transfer coefficient h given on a part of the boundary of the domain. For a given cost functional and using some monotony property between u 3 (µ) and u 4 (µ) given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter h goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot's conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi -D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.

Introduction

Let V a Hilbert space, V ′ its topological dual, K be a closed, convex and non empty set in V , g in V ′ and a bilinear form a : V × V → R, which is symmetric, continuous and coercive form that is there exists a constant m > 0 such that m v 2 ≤ a(v, v) for all v in V . It is well known [START_REF] Stampacchia | Formes bilinéaires coercitives sur les ensembles convexes[END_REF][START_REF] Lions | Variational inequalities[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF] that for each g ∈ V ′ there exists a unique solution u ∈ K, such that a(u , vu) ≥ g , vu ∀v ∈ K,

where •, • denotes the duality pairing between V and V ′ . So we can consider g → u = u g as a function from V ′ to K. Let u i = u g i be the corresponding solution of (1.1) with g = g i for i = 1, 2. We define for µ ∈ [0, 1]

u 3 (µ) = µu 1 + (1 -µ)u 2 , g 3 (µ) = µg 1 + (1 -µ)g 2 ,
and u 4 (µ) = u g 3 (µ) .

(1.2)

In [START_REF] Boukrouche | On a convex combination of solutions to elliptic variational inequalities[END_REF], we established the necessary and sufficient condition to obtain that the convex combination u 3 (µ) is the unique solution of the elliptic variational inequality (1.1) with source term g 3 (µ), namely

u 4 (µ) = u 3 (µ) ∀µ ∈ [0, 1] if and only if α = β = 0, (1.3) 
with

α = α(g 1 ) := a(u 1 , u 2 -u 1 ) -g 1 , u 2 -u 1 , (1.4 
)

β = β(g 2 ) := a(u 2 , u 1 -u 2 ) -g 2 , u 1 -u 2 . (1.5) 
In Section 2, we establish the error estimate between u 3 (µ) and u 4 (µ) in the case where α and β defined by (1.4) and (1.5) are not equal to zero. We obtain also some other information concerning u 3 (µ) and u 4 (µ) which will be used in Section 4. We can not obtain, for an arbitrary convex K, a needed monotony property of u 3 (µ) and u 4 (µ) that u 4 (µ) ≤ u 3 (µ) ∀µ ∈ [0, 1] [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] but we can obtain this inequality for the complementary free boundary problems given in Section 3.

In Section 3, we consider a family of free boundary problems with mixed boundary conditions associated to particular cases of the elliptic variational inequality (1.1). We study some dependence properties of the solutions to this family of elliptic variational inequalities, on the internal energy g (see more details in the complementary problem (3.1) or the variational inequalities (3.5) or (3.6)) and also on the heat transfer coefficient h which is characterized in the Newton law or the Robin boundary condition (3.3) (see also the variational inequality (3.6)). Note that mixed boundary conditions play an important role in various applications [START_REF] Haller-Dintelmann | Holder continuity and optimal control for nonsmooth elliptic problems[END_REF][START_REF] Tabacman | Sufficient and/or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem[END_REF].

In Section 4, first for a given constant M > 0 we consider g as a control variable for the cost functional (4.1), then we formulate the distributed optimal control problem associated to the variational inequality (3.5). We also formulate the family of distributed optimal control problems associated to the variational inequality of (3.6), which depend on a positive parameter h. With the above dependence properties obtained in Section 3, the inequality obtained in Section 2 and by using the monotony property [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] between u 3 (µ) and u 4 (µ), we obtain a new proof of the strict convexity of the cost functional which is not given in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] and then the existence and the uniqueness of the optimal control g op holds. We obtain similar results for the optimal control g op h . We remark here that the strict convexity of the cost functional is automatically true (then the uniqueness of the optimal control problems holds) when the equivalence (1.3) is verified.

Then, we prove that the optimal control g op h and its corresponding state u g op h h are strongly convergent to g op and u gop respectively, when h → +∞, in adequate functional spaces. This asymptotic behavior can be considered very important in the optimal control for heat transfer problems because the Dirichlet boundary condition, given in (3.2) is not a relevant physical condition to impose on the boundary; the true relevant physical condition is given by the Newton law or the Robin boundary condition (3.3) [START_REF] Carslaw | Conduction of heat in solids[END_REF]. Therefore, the goal of this paper is to approximate a Dirichlet optimal control problem, governed by an elliptic variational inequality, by a Neumann optimal control problems, governed by elliptic variational inequalities, for a large positive coefficient h. Moreover, from a numerical analysis point of view it maybe preferable to consider approximating Neumann problems in all space V (see the variational inequality (3.6)), with parameter h, rather than a Dirichlet problem in a restriction of the space V (see the variational inequality (3.5)).

We note here that we do not need to consider the adjoint state for problems (3.5) and (3.6) as in [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF][START_REF] Menaldi | A distributed parabolic control with mixed boundary conditions[END_REF] in order to prove the convergence when h → +∞. This is a very important advantage of our proof with respect to the previous one given for variational equalities in [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF]. This fact was possible because we do not need to use the cornerstone Mignot's conical differentiability of the cost functional [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF].

Different problems with distributed optimal control governed by partial differential equations can be found in the following books [START_REF] Barbu | Optimal control of variational inequalities[END_REF][START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF][START_REF] Neittaanmäki | Optimization of elliptic systems. Theory and applications[END_REF][START_REF] Tröltzsch | Optimal control of partial differential equations: Theory, methods and applications[END_REF]. Moreover, we describe briefly some works on optimal control governed by elliptic variational inequalities, see for example: [START_REF] Hadi | Optimal control of the obstacle problem: optimality conditions[END_REF][START_REF] Mignot | Optimal control in some variational inequalities[END_REF] on optimality conditions for the penalized problem, [START_REF] Bergounioux | Use of augmented Lagrangian methods for the optimal control of obstacle problems[END_REF] on augmented Lagrangian algorithms, [START_REF] Bergounioux | Augmented Lagrangian Techniques for elliptic state constrained optimal Control of problems[END_REF][START_REF] Bergounioux | Optimal control of obstacle problems: existence of Lagrange multipliers[END_REF][START_REF] Ito | Optimal control of elliptic variational inequalities[END_REF][START_REF] Kim | Uzawa algorithms for coupled Stokes equations from the optimal control problem[END_REF] on Lagrange multipliers, [START_REF] Ye | Optimal control of the obstacle problem in a quasilinear elliptic variational inequality[END_REF] on quasilinear elliptic variational inequalities, [START_REF] Hintermüller | An active-set equality constrained Newton solver with feasibility restoration for inverse coefficient problems in elliptic variational inequalities[END_REF] on estimation of a parameter involved in a variational inequality model, [START_REF] Capatina | Optimal Control of a Signorini contact problem[END_REF] on optimal control problems of variational inequalities for Signorini problem, [START_REF] Patrone | On the optimal control of variational inequalities[END_REF] on optimal control for variational inequalities governed by a pseudomonotone operator, [START_REF] Haslinger | Optimal control of variational inequalities. Approximation Theory and Numerical Realization[END_REF] when optimal control problem for a variational inequality is approximated by a family of finite-dimensional problems, [START_REF] Hintermüller | Inverse coefficient problems for variational inequalities: Optimality and numerical realization[END_REF] on the identification of a distributed parameter, and [START_REF] Meyer | Optimal control pf PDEs with regularized pointwise state constraints[END_REF] on regularization techniques with state constraints. In conclusion, many practical applications ranging from physical and engineering sciences to mathematical finance are modeled properly by elliptic and parabolic variational inequalities (see [START_REF] Hintermüller | An active-set equality constrained Newton solver with feasibility restoration for inverse coefficient problems in elliptic variational inequalities[END_REF][START_REF] Hintermüller | Mathematical programs with complementary constraints in fucntion space: C-and strong stationarity and a path-following algoritm[END_REF][START_REF] Ito | Lagrange multiplier approach to variational problems and applications[END_REF] and their references within them).

Some general results

In [START_REF] Boukrouche | On a convex combination of solutions to elliptic variational inequalities[END_REF] we proved the equivalence (1.3). In order to study optimal control problems in Section 4 it is useful for us, to obtain the error estimate between u 3 (µ) and u 4 (µ) when the equivalence (1.3) is not satisfied. Theorem 2.1. Let u 1 and u 2 be the two solutions of the variational inequality (1.1) with respectively as source term g 1 and g 2 , then we have the following estimate

m u 4 (µ) -u 3 (µ) 2 V + µI 14 (µ) + (1 -µ)I 24 (µ) ≤ µ(1 -µ)(α + β), ∀µ ∈ [0, 1]
where α and β are defined by (1.4) and (1.5) respectively and

I 14 (µ) = a(u 1 , u 4 (µ) -u 1 ) -g 1 , u 4 (µ) -u 1 ≥ 0 I 24 (µ) = a(u 2 , u 4 (µ) -u 2 ) -g 2 , u 4 (µ) -u 2 ≥ 0.
Proof. As u 4 (µ) is the unique solution of the variational inequality

a(u 4 (µ) , v -u 4 (µ)) -g 3 (µ), v -u 4 (µ) ≥ 0, ∀v ∈ K and u 3 (µ) ∈ K so taking v = u 3 (µ) in this variational inequality, we have m u 4 (µ) -u 3 (µ) 2 V ≤ a(u 3 (µ) , u 3 (µ) -u 4 (µ)) -g 3 (µ) , u 3 (µ) -u 4 (µ) .
Using that u 3 (µ) = µ(u 1u 2 ) + u 2 and g 3 (µ) = µ(g 1g 2 ) + g 2 we obtain

m u 4 (µ) -u 3 (µ) 2 V ≤ [a(u 2 , u 2 -u 4 (µ)) -g 2 , u 2 -u 4 (µ) ] +µ [a(u 2 , u 1 -u 2 ) -g 2 , u 1 -u 2 ] +µ 2 [a(u 1 -u 2 , u 1 -u 2 ) -g 1 -g 2 , u 1 -u 2 ] +µ [a(u 1 -u 2 , u 2 -u 4 (µ)) -g 1 -g 2 , u 2 -u 4 (µ) ] ≤ -I 24 (µ) + µβ -µ 2 β -µ 2 α + µI 24 (µ) +µ [a(u 1 , u 2 -u 4 (µ)) -g 1 , u 2 -u 4 (µ) ] , so m u 4 (µ) -u 3 (µ) 2 V ≤ µ(1 -µ)(α + β) -[µI 14 (µ) + (1 -µ)I 24 (µ)] ,
which is the required result.

The result of Theorem 2.1 will be used in Section 4 (see Lemma 4.1). Moreover, from Theorem 2.1 we deduce the result obtained in [START_REF] Boukrouche | On a convex combination of solutions to elliptic variational inequalities[END_REF] and more information concerning u 3 (µ) and u 4 (µ) in the following corollary.

Corollary 2.1.

α(g 1 ) = β(g 2 ) = 0 =⇒    (i) u 3 (µ) = u 4 (µ) ∀µ ∈ [0, 1] (ii) I 14 (µ) = I 24 (µ) = 0 ∀µ ∈ [0, 1].
Remark 2.1. We can not obtain a monotony property between u 3 (µ) and u 4 (µ) for a general variational inequality (1.1), precisely for any convex set K. But we can obtain it when we consider the particular obstacle problems (see Section 3).

Dependence properties of solution of obstacle problem

Let Ω an open bounded set in R n with its boundary ∂Ω = Γ 1 ∪ Γ 2 . We suppose that Γ 1 ∩ Γ 2 = ∅, and mes(Γ 1 ) > 0. We consider the following complementarity problem:

u ≥ 0, u(-∆u -g) = 0, -∆u -g ≥ 0 a.e. in Ω (3.1) u = b on Γ 1 , - ∂u ∂n = q on Γ 2 (3.2)
and for a parameter h > 0, we consider the complementarity problem (3.1) with the mixed boundary conditions :

- ∂u ∂n = h(u -b) on Γ 1 - ∂u ∂n = q on Γ 2 (3.3)
where h is the heat transfer coefficient on Γ 1 , g is the internal energy, b is the temperature on Γ 1 , q is the heat flux on Γ 2 .

It is well known that the regularity of the mixed problem is problematic in the neighborhood of some part of the boundary, see for example the book [START_REF] Grisvard | Elliptic problems in non-smooth domains[END_REF]. A regularity for elliptic problems with mixed boundary conditions is given in [START_REF] Bacuta | Using finite element tools in proving shift theorems for elliptic boundary value problems[END_REF][START_REF] Lanzani | The mixed problem in L p for some two-dimensional Lipschitz domains[END_REF]. Moreover, sufficient hypothesis on the data in order to have the H2 regularity for elliptic variational inequalities are ( [START_REF] Rodrigues | Obstacle problems in mathematical physics[END_REF], page 139):

∂Ω ∈ C 1,1 , g ∈ H = L 2 (Ω), q ∈ H 3/2 (Γ 2 ) (3.4)
which are assumed from now on. We define the spaces

V = H 1 (Ω), V 0 = {v ∈ V : v | Γ 1 = 0} and the convex sets given by K = {v ∈ V : v| Γ 1 = b, v ≥ 0 in Ω}, K + = {v ∈ V : v ≥ 0 in Ω}. It is classical that, for a given positive b ∈ H 1 a(u, v -u) ≥ (g, v -u) - Γ 2 q(v -u)ds, ∀v ∈ K (3.5) and find u ∈ K + such that a h (u , v -u) ≥ (g , v -u) - Γ 2 q(v -u)ds + h Γ 1 b(v -u)ds ∀v ∈ K + (3.6)
respectively, where

a(u, v) = Ω ∇u∇vdx, (g, v) = Ω gvdx, a h (u, v) = a(u, v) + h Γ 1 uvds.
It is evident that [START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF] ∃λ

> 0 such that λ v 2 V ≤ a(v , v) ∀v ∈ V 0 .
Moreover [START_REF] Tabacman | Sufficient and/or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem[END_REF][START_REF] Tarzia | Una familia de .problemas que converge hacia el caso estacionario del problema de Stefan a dos fases[END_REF] 

∃λ 1 > 0 such that λ h v 2 V ≤ a h (v, v) ∀v ∈ V, with λ h = λ 1 min{1 , h}
that is a h is a bilinear continuous, symmetric and coercive form on V , as a.

Remark 3.1. Note that we can easily obtain the same results of this paper for more general problem than (3.1)-(3.2) and (3.1), (3.3) governed by elliptic variational inequalities under the assumption that the form a must be bilinear, continuous and coercive.

Remark 3.2. The variational inequalities (3.5) and (3.6) are the particular cases of (1.1) for the particular convex sets K and K + and

< g , v >= (g, v) - Γ 2 qvds, (3.7) 
< g , v >= (g, v) -

Γ 2 qvds + h Γ 1 bvds (3.8)
respectively. Moreover for g ≥ 0 in Ω, q ≤ 0 on Γ 2 and b ≥ 0 on Γ 1 , then by the weak maximum principle, the unique solution of (3.5) is in K and the unique solution of (3.6) is in K + for each h > 0.

For all h > 0 and all g ∈ H, we associate u = u g h the unique solution of (3.6) and u = u g the unique solution of (3.5). Lemma 3.1. a) Let u gn , u g two solutions of (3.5) with g n and g in H then we have

g n ⇀ g in H (weak) as n → +∞ then u gn → u g in V (strong). (3.9)
Moreover, we have

g 1 ≥ g 2 in Ω then u g 1 ≥ u g 2 in Ω, (3.10) 
u min(g 1 ,g 2 ) ≤ u 4 (µ) ≤ u max(g 1 ,g 2 ) , ∀µ ∈ [0, 1]. (3.11)
b) Let u gnh , u gh two solutions of (3.6) with g n and g in H and h > 0 then we have

g n ⇀ g in H (weak) as n → +∞ then u gnh → u gh in V (strong). (3.12) Proof. a) Let g n ⇀ g in H as n → +∞, u gn and u g in K such that a(u gn , v -u gn ) ≥ (g n , v -u gn ) - Γ 2 q(v -u gn )ds ∀v ∈ K. (3.13) 
Set z n = u gn -B where B ∈ K such that B| Γ 1 = b, and taking v = B in (3.13) we obtain the following inequalities

λ z n 2 V ≤ a(z n , z n ) ≤ -a(z n , B) + (g n , z n ) - Γ 2 qz n ds. (3.14)
As g n ⇀ g in H then g n H is bounded, then from (3.14) there exists a positive constant C which do not depend on n such that u gn V ≤ C. Thus ∃η ∈ V such that u gn ⇀ η weakly in V (strongly in H), (3.15) taking n → +∞ in (3.13), we get

a(η, v -η) ≥ (g, v -η) - Γ 2 q(v -η)ds, ∀v ∈ K. (3.16)
By the uniqueness of the solution of (3.5) we obtain that η = u g . Taking now v = u g in (3.13), and taking v = u gn in (3.5) with u = u g , then by addition we get

a(u gn -u g , u gn -u g ) ≤ (g n -g, u gn -u g ),
that is (3.9).

Taking in (3.5

) v = u 1 + (u 1 -u 2 ) -(which is in K) where u = u 1 and g = g 1 . Then taking in (3.5) v = u 2 -(u 1 -u 2 ) -(which also is in K) where u = u 2 and g = g 2 . By addition we get a((u 1 -u 2 ) -, (u 1 -u 2 ) -) ≤ (g 2 -g 1 , (u 1 -u 2 ) -) so if g 2 -g 1 ≤ 0 in Ω then (u 1 -u 2 ) -V = 0
, and as (u 1u 2 ) -= 0 on Γ 1 we have u 1u 2 ≥ 0 in Ω. This gives (3.10). Finally (3.11) follows from (3.10) because

min{g 1 , g 2 } ≤ µg 1 + (1 -µ)g 2 ≤ max{g 1 , g 2 }, ∀µ ∈ [0, 1].
b) It is similar to a) for all h > 0.

Let now g 1 , g 2 in H, and u g 1 h , u g 2 h two solutions of the variational inequality (3.6) with g = g 1 and g = g 2 respectively, and the same q and h. We define also

u 3h (µ) = µu g 1 h + (1 -µ)u g 2 h and u 4h (µ) = u (µg 1 +(1-µ)g 2 )h .
So we obtain as in (3.11) that

u min(g 1 ,g 2 )h ≤ u 4h (µ) ≤ u max(g 1 ,g 2 )h , ∀µ ∈ [0, 1]. (3.17) Remark 3.3. Taking v = u + in (3.6) we deduce that a h (u -, u -) ≤ -(g , u -) + Γ2 qu -ds -h Γ1 bu -ds
so for h > 0 sufficiently large we can have u gh ≥ 0 in Ω with g ≤ 0 in Ω, for given q ≥ 0 on Γ 2 and b ≥ 0 on Γ 1 .

Lemma 3.2. Let g 1 , g 2 in H and u g 1 h , u g 2 h two solutions of the variational inequality (3.6) with the same q and h. Suppose that b is a positive constant and q ≥ 0, then we have

g ≤ 0 in Ω =⇒ u g h ≤ b in Ω, and u g h ≤ b on Γ 1 , (3.18) 
g 2 ≤ g 1 ≤ 0 in Ω, and h 2 ≤ h 1 =⇒ u g 2 h 2 ≤ u g 1 h 1 in Ω, (3.19) g ≤ 0 in Ω =⇒ u g h ≤ u g in Ω, ∀h > 0. (3.20)
Moreover ∀g ∈ H, ∀q ∈ L 2 (Γ 2 ) and ∀b ∈ H 1 2 (Γ 1 ), we have

h 2 ≤ h 1 =⇒ u g h 2 -u g h 1 V ≤ γ 0 || λ 1 min(1, h 2 ) b -u g h 1 L 2 (Γ 1 ) (h 1 -h 2 ) (3.21)
where γ 0 is the trace embedding from V to L 2 (Γ 1 ) and γ 0 is its norm.

Proof. Taking in

(3.6) u = u g h and v = u g h -(u g h -b) + (which in K + ), we get -a h (u g h , (u g h -b) + ) ≥ -(g , (u g h -b) + ) + Γ 2 q(u g h -b) + ds -h Γ 1 b(u g h -b) + ds, then a h ((u g h -b) + , (u g h -b) + ) ≤ (g , (u g h -b) + ) - Γ 2 q(u g h -b) + ds ≤ 0, so (3.18) holds.
To check (3.19) we take first in (3.6

) v = u g 1 h 1 +(u g 2 h 2 -u g 1 h 1 ) + , which is in K + , where u = u g 1 h 1 is in K + with g = g 1 and h = h 1 , and taking in (3.6) v = u g 2 h 2 -(u g 2 h 2 -u g 1 h 1 ) + ,
which is also in K + , where u = u g 2 h 2 is in K + with g = g 2 and h = h 2 , then adding the two obtained inequalities we get

a h 2 ((u g 2 h 2 -u g 1 h 1 ) + , (u g 2 h 2 -u g 1 h 1 ) + ) ≤ (g 2 -g 1 , (u g 2 h 2 -u g 1 h 1 ) + )ds -(h 2 -h 1 ) Γ 1 (u g 1 h 1 -b)(u g 2 h 2 -u g 1 h 1 ) + ds
and from (3.18) we get (3.19).

To check (3.20), let

W = u g h -u g and choose in (3.6) v = u g h -W + which is in K + , so a(u g h , W + ) ≤ (g , W + ) - Γ 2 qW + ds. (3.22)
We choose, in (3.5), v = u g + W + , which is in K because from (3.18), then we have To finish the proof it remain to check (3.21). We choose v = u g h 2 in (3.6) where u = u g h 1 , and v = u g h 1 in (3.6) where u = u g h 2 , adding the two inequalities we get

W + = 0 on Γ 1 , so a(u g , W + ) ≥ (g , W + ) - Γ 2 qW + ds. ( 3 
λ 1 min{1, h 2 } u g h 1 -u g h 2 2 V ≤ (h 1 -h 2 ) b -u g h 1 L 2 (Γ 1 ) u g h 1 -u g h 2 L 2 (Γ 1 ) ≤ γ 0 (h 1 -h 2 ) b -u g h 1 L 2 (Γ 1 ) u g h 1 -u g h 2 V .
Thus (3.21) holds.

Remark 3.4. The Lemma 3.2 gives as a first additional information that, for all g ≤ 0 in Ω and all h > 0, the sequence (u g h ) is increasing and bounded exceptionally, so it is convergent in some space. We study, in the next sections, the optimal control problems associated to the variational inequalities (3.5) and (3.6) and the convergence when h → +∞ in Lemma 4.2 and Theorem 4.1 for all g, without restriction to g ≤ 0 in Ω.

Optimal control problems and convergence for h → +∞

We will first study in this section two kind of distributed optimal control problems, their existence, uniqueness results and the relation between them. In fact the existence and uniqueness, of the solution to the two variational inequalities (3.5) and (3.6) allow us to consider g → u g and g → u gh as a functions from H to V , for any h > 0.

Let a constant M > 0. We define the two cost functional J : H → R and J h : H → R such that [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] (see also [START_REF] Kesavan | Low-cost control problems on perforated and non-perforated domains[END_REF]- [START_REF] Kesavan | Optimal control on perforated domains[END_REF])

J(g) = 1 2 u g 2 H + M 2 g 2 H , (4.1) 
J h (g) = 1 2 u gh 2 H + M 2 g 2 H , (4.2) 
and we consider the family of distributed optimal control problems Find g op ∈ H such that J(g op ) = min g∈H J(g),

Find g op h ∈ H such that J(g op h ) = min g∈H J h (g). (4.4) Lemma 4.1. Let g, g 1 , g 2 in H and u g , u g 1 , u g 2 are the associated solutions of (3.5). We have

u 3 (µ) -u 4 (µ) 2 V + µ(1 -µ) u g 1 -u g 2 2 V + µ λ I 14 + (1 -µ) λ I 24 ≤ µ(1 -µ) λ 2 g 1 -g 2 2 H . (4.5) 
For u g h , u g 1h , u g 2h the associated solutions of (3.6), we also have

u 4h (µ) -u 3h (µ) 2 V + µ(1 -µ) u g 2h -u g 1h 2 V + µ λ h I 14h + (1 -µ) λ h I 24h ≤ µ(1 -µ) λ 2 h g 1 -g 2 H , (4.6) 
Proof. For i = 1, 2 we have

I i4 (µ) = a(u i , u 4 (µ) -u i ) -(g i , u 4 (µ) -u i ) + Γ 2 q(u 4 (µ) -u i )ds ≥ 0
and therefore by using Theorem 2.1 and (3.7) we obtain

λ u 3 (µ) -u 4 (µ) 2 V + µI 14 + (1 -µ)I 24 ≤ µ(1 -µ)(α + β) ∀µ ∈ [0, 1]. As α + β = a(u 1 , u 2 -u 1 ) -(g 1 , u 2 -u 1 ) + Γ 2 q(u 2 -u 1 )ds +a(u 2 , u 1 -u 2 ) -(g 2 , u 1 -u 2 ) + Γ 2 q(u 1 -u 2 )ds ≤ -a(u 2 -u 1 , u 2 -u 1 ) + (g 2 -g 1 , u 2 -u 1 ) ≤ -λ u 2 -u 1 2 V + g 2 -g 1 H u 2 -u 1 H ≤ -λ u 2 -u 1 2 V + 1 λ g 2 -g 1 2 H
thus (4.5) follows. (4.6) follows also from Theorem 2.1 and (3.8) as above.

By using Lemma 4.1 and the references [START_REF] Barbu | Optimal control of variational inequalities[END_REF], [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF], we can obtain firstly the existence (not the uniqueness) of optimal controls g op and g op h solution of Problem (4.3) and Problem (4.4) respectively. Then, the corresponding uniqueness of the optimal control problems can be obtained by using ( [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF], pages 166 and 177). Secondly, in order to avoid the use of the conical differentiability (see [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF]) and by completeness of the proof of the result we can do another proof of the uniqueness of the optimal control problems which is not given in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF]. For that, we can prove two important equalities (4.7) and (4.8) which allow us to get that J and J h are strictly convex applications on H, so there exist the unique solutions g op and g op h in H to the Problem (4.3) and Problem (4.4) respectively. This fact is also very important for us because it permits us to obtain the convergence in Theorem 4.1, our mean result, without using the adjoint state problem. Proposition 4.1. Let given g in H and h > 0, there exist unique solutions g op and g op h in H respectively for the Problems (4.3) and (4.4).

Proof. We remark first that using Lemma 4.1 and ( [START_REF] Barbu | Optimal control of variational inequalities[END_REF], [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF], [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF], [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF]) we can obtain the following classical results lim g H →+∞ J(g) = +∞, and lim

g H →+∞ J h (g) = +∞,
J and J h ∀h > 0, are lower semi-continuous on H weak, so we can deduce the existence, of at least, an optimal control g op solution of Problem (4.3) and respectively an optimal control g op h solution of Problem (4.4).

The uniqueness of the solutions of Problems (4.3) and (4.4) can be also obtained by using ( [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF], pages 166 and 177). For completeness we will prove that the cost functional J and J h are strictly convex applications on H which are not given in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF]. Let u = u g i and u g i h be respectively the solution of the variational inequalities (3.5) and (3.6) with g = g i for i = 1, 2. We have

u 3 (µ) 2 H = µ 2 u g 1 2 H + (1 -µ) 2 u g 2 2 H + 2µ(1 -µ)(u g 1 , u g 2 )
then the following equalities hold

u 3 (µ) 2 H = µ u g 1 2 H + (1 -µ) u g 2 2 H -µ(1 -µ) u g 2 -u g 1 2 H , (4.7) 
u 3h (µ) 2 H = µ u g 1 h 2 H + (1 -µ) u g 2 h 2 H -µ(1 -µ) u g 2 h -u g 1 h 2 H . (4.8) 
Let now µ ∈ [0, 1] and g 1 , g 2 ∈ H so we have

µJ(g 1 ) + (1 -µ)J(g 2 ) -J(g 3 (µ)) = µ 2 u g 1 2 H + (1 -µ) 2 u g 2 2 H - 1 2 u 4 (µ) 2 H + M 2 µ g 1 2 H + (1 -µ) g 2 2 H -g 3 (µ) 2 H
and by using (4.7) for g 3 (µ) = µg 1 + (1µ)g 2 we obtain

µJ(g 1 ) + (1 -µ)J(g 2 ) -J(g 3 (µ)) = 1 2 {µ u g 1 2 H + (1 -µ) u g 2 2 H -u 4 (µ) 2 H } + M 2 µ(1 -µ) g 1 -g 2 2 H . (4.9)
Following [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] we obtain the cornerstone monotony property

u 4 (µ) ≤ u 3 (µ) in Ω, ∀µ ∈ [0, 1], (4.10) 
and as u 4 (µ) ∈ K so u 4 (µ) ≥ 0 in Ω for all µ ∈ [0, 1], we deduce

u 4 (µ) 2 H ≤ u 3 (µ) 2 H , ∀µ ∈ [0, 1].
By using (4.7) we have

µ u g 1 2 H + (1 -µ) u g 2 2 H -u 4 (µ) 2 H = u 3 (µ) 2 H -u 4 (µ) 2 H + µ(1 -µ) u g 1 -u g 2 2 H
which is positive for all µ ∈ [0, 1]. Finally we deduce from (4.9) that

µJ(g 1 ) + (1 -µ)J(g 2 ) -J(g 3 ) ≥ µ(1 -µ) 2 u g 1 -u g 2 2 V + M g 1 -g 2 2 H > 0 (4.11)
for all µ ∈]0, 1[ and for all g 1 , g 2 in H. So J is a strictly convex functional, thus the uniqueness of the optimal control for the Problem (4.3) holds.

The uniqueness of the optimal control of the Problem (4.4) follows using the analogous inequalities (4.9)-(4.11) for any h > 0, that is

µJ h (g 1 ) + (1 -µ)J h (g 2 ) -J h (g 3 (µ)) = 1 2 {µ u g 1 h 2 H + (1 -µ) u g 2 h 2 H -u 4h (µ) 2 H } + M 2 µ(1 -µ) g 1 -g 2 2 H (4.12) from u 4h (µ) ≤ u 3h (µ) in Ω, (4.13) 
so we get

u 4h (µ) 2 H ≤ u 3h (µ) 2 H , (4.14) 
and obtain

µJ h (g 1 ) + (1 -µ)J h (g 2 ) -J h (g 3 ) ≥ µ(1 -µ) 2 u g 1h -u g 2h 2 V + M g 1 -g 2 2
H > 0 for all µ ∈]0, 1[, for all h > 0 and for all g 1 , g 2 in H. So J h is also a strictly convex functional, thus the uniqueness of the optimal control for the Problem (4.4) holds.

Remark 4.1. The Proposition 4.1 is automatically true (and then it is not necessary in order to study the convergence given in Theorem 4.1) when the equivalence (1.3) is verified for all g 1 , g 2 in H. Now we study the convergence of the state u gop h h , and the optimal control g op h , when the heat transfer coefficient h on Γ 1 , goes to infinity. For a given fixed g ∈ H, we have the following property which generalizes the one obtained for variational equality in [START_REF] Tarzia | Una familia de .problemas que converge hacia el caso estacionario del problema de Stefan a dos fases[END_REF][START_REF] Tabacman | Sufficient and/or necessary condition for the heat transfer coefficient on Γ 1 and the heat flux on Γ 2 to obtain a steady-state two-phase Stefan problem[END_REF]. After that, we can study the limit h → +∞ for the general optimal control problems. Lemma 4.2. Let u g h the unique solution of the variational inequality (3.6) and u g the unique solution of the variational inequality (3.5), then

u g h → u g in V strongly as h → +∞ ∀g ∈ H.
Proof. We take v = u g in (3.6) where u = u g h , recalling that u g = b on Γ 1 and h > 1, we obtain

a 1 (u g h -u g , u g h -u g ) + (h -1) Γ 1 (u g h -u g ) 2 ds ≤ (g, u g h -u g ) - Γ 2 q(u g h -u g )ds + Γ 1 b(u g h -u g )ds -a 1 (u g , u g h -u g ) ≤ (g, u g h -u g ) - Γ 2 q(u g h -u g )ds -a(u g , u g h -u g ). (4.15) 
From what we deduce that u g hu g V and (h -1) u g hu g L 2 (Γ 1 ) are bounded for all h > 1. So there exists η ∈ V such that u g h ⇀ η weakly in V and η ∈ K. From (3.6) we have also

a(u g h , v -u g h ) + h Γ 1 (u g h -b)(v -u g h )ds ≥ (g, v -u g h ) - Γ 2 q(v -u g h )ds ∀v ∈ K + , taking v ∈ K so v = b on Γ 1 , thus a(u g h , u g h ) ≤ a(u g h , v) -(g, v -u g h ) + Γ 2 q(v -u g h )ds ∀v ∈ K. (4.16) 
Thus we can pass to the limit in (4.16), for h → +∞, to obtain

a(η, v -η) ≥ (g, v -η) - Γ 2 q(v -η)ds ∀v ∈ K.
Using the uniqueness of the solution of (3.5) we get that η = u g .

To prove the strong convergence of u g h to u g , when h → +∞, it is sufficient to use the inequality (4.15) and the weak convergence of u g h to η = u g for all g ∈ H. This ends the proof.

We give now the main result of the paper which generalizes, for optimal control problems governed by elliptic variational inequalities, the convergence result obtained in [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF]. Moreover, this convergence is obtained without need of the adjoint states. We remark here the double dependence on the parameter h in the expression of state of the system u gop h h corresponding to the optimal control g op h .

Theorem 4.1. Let u gop h h , g op h and u gop , g op are the states and the optimal controls defined in the problems (4.4) and (4.3) respectively. Then, we obtain the following asymptotic behavior: Proof. We have first

lim h→+∞ u gop h h -u gop V = 0. ( 4 
J h (g op h ) = 1 2 u g op h h 2 H + M 2 g op h 2 H ≤ 1 2 u g h 2 H + M 2 g 2 H , ∀g ∈ H then for g = 0 ∈ H we obtain that J h (g op h ) = 1 2 u g op h h 2 H + M 2 g op h 2 H ≤ 1 2 u 0 h 2 H (4.19)
where u 0 h ∈ K + is solution of the following elliptic variational inequality Taking now v = u gop ∈ K ⊂ K + in (3.6) with u = u gop h h and g = g op h , we obtain

a h (u 0 h , v -u 0 h ) ≥ - Γ 2 q(v -u 0 h )ds + h Γ 1 b(v -u 0 h )ds ∀v ∈ K + . Taking v = B with B ∈ K + such that B = b on Γ 1 , we get a 1 (u 0 h , u 0 h ) + (h -1) Γ 1 (u 0 h -b) 2 ds ≤ a 1 (u 0 h , B) + Γ 2 q(B -u 0 h )ds + Γ 1 b(u 0 h -b)ds thus u 0 h V is bounded independently of h, then from u 0 h H ≤ u 0 h V ,
a 1 (u gop h h , u gop -u gop h h ) + (h -1) Γ 1 u gop h h (u gop -u gop h h )ds ≥ (g op h , u gop -u gop h h ) - Γ 2 q(u gop -u gop h h )ds + h Γ 1 b(u gop -u gop h h )ds as u gop = b on Γ 1 we obtain a 1 (u gop h h -u gop , u gop -u gop h h ) -(h -1) Γ 1 (u gop h h -b) 2 ds ≥ (g op h , u gop -u gop h h ) - Γ 2 q(u gop -u gop h h )ds + Γ 1 b(b -u gop h h )ds -a 1 (u gop , u gop -u gop h h ) so a 1 (u gop h h -u gop , u gop h h -u gop ) + (h -1) Γ 1 (u gop h h -b) 2 ds ≤ ≤ (g op h , u gop h h -u gop ) - Γ 2 q(u gop h h -u gop )ds -a(u gop , u gop h h -u gop )
thus there exists a constant C > 0 which does not depend on h such that (as h → +∞ we can take h > 1):

u gop h h -u gop V ≤ C and (h -1) Γ 1 |u gop h h -b| 2 ds ≤ C, then u gop h h ⇀ ξ in V weak (in H strong), (4.21) 
u gop h h → b in L 2 (Γ 1 ) strong, (4.22) 
and then ξ ∈ K. Now taking v ∈ K in (3.6) where u = u gop h h and g = g op h so

a h (u gop h h , v -u gop h h ) ≥ (g op h , v -u gop h h ) - Γ 2 q(v -u gop h h )ds + h Γ 1 b(v -u gop h h )ds as v ∈ K so v = b on Γ 1 , thus we obtain a(u gop h h , u gop h h ) + h Γ 1 (u gop h h -b) 2 ds ≤ a(u gop h h , v) -(g op h , v -u gop h h ) + Γ 2 q(v -u gop h h )ds. Thus a(u gop h h , u gop h h ) ≤ a(u gop h h , v) -(g op h , v -u gop h h ) + Γ 2
q(vu gop h h )ds, using (4.20) and (4.21) we deduce that

a(ξ, v -ξ) ≥ (f, v -ξ) - Γ 2 q(v -ξ)ds, ∀v ∈ K,
so by the uniqueness of the solution of the variational inequality (3.5) we obtain that

u f = ξ. (4.23) 
Now we prove that f = g op . Indeed we have

J(f ) = 1 2 ξ 2 H + M 2 f 2 H ≤ lim inf h→+∞ 1 2 u gop h h 2 H + M 2 g op h 2 H = lim inf h→+∞ J h (g op h ) ≤ lim inf h→+∞ J h (g) = lim inf h→+∞ 1 2 u g h 2 H + M 2 g 2 H using now the strong convergence u g h → u g as h → +∞, ∀ g ∈ H (see Lemma 4.
2), we obtain that

J(f ) ≤ lim inf h→+∞ J h (g op h ) ≤ 1 2 u g 2 H + M 2 g 2 H = J(g), ∀g ∈ H (4.24)
then by the uniqueness of the optimal control problem (4.3) we get

f = g op . (4.25) 
Now we prove the strong convergence of u gop h h to ξ in V , indeed taking v = ξ in (3.6) where u = u gop h h and g = g op h we get

a h (u gop h h , ξ -u gop h h ) ≥ (g op h , ξ -u gop h h ) - Γ 2 q(ξ -u gop h h )ds + h Γ 1 b(ξ -u gop h h )ds, as ξ ∈ K so ξ = b on Γ 1 , we obtain a 1 (u gop h h -ξ, u gop h h -ξ) + (h -1) Γ 1 (u gop h h -ξ) 2 ds ≤ (g op h , u gop h h -ξ) + Γ 2 q(ξ -u gop h h )ds + a(ξ, ξ -u gop h h ) thus λ 1 u gop h h -ξ 2 V ≤ (g op h , u gop h h -ξ) + Γ 2 q(ξ -u gop h h )ds + a(ξ, ξ -u gop h h ).
Using (4.21) we deduce that lim h→+∞ u gop h hξ V = 0, and with (4.23) we deduce (4.17). Moreover, as f ∈ H, then from (4.24) with g = f and (4.25) we can write (4.18). This ends the proof.

J(f ) = J(g op ) = 1 2 u gop 2 H + M 2 g op 2 H = lim h→+∞ J h (g op h ) = lim h→+∞ 1 2 u gop h h 2 H + M 2 g op h 2 
Remark 4.2. Much of the recent literature on optimal control problems governed by variational inequalities (often called mathematical programs with equilibrium constraints (MPEC)) is focused on the numerical realization of stationary points to these problems.

See for example recent works as e.g. [START_REF] Hintermüller | Mathematical programs with complementary constraints in fucntion space: C-and strong stationarity and a path-following algoritm[END_REF] and their references within it. The numerical analysis of the convergence of optimal control problems governed by elliptic variational equalities [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF] is given in [START_REF] Tarzia | Convergence of a family of distributed discrete elliptic optimal control problems with respect to a parameter[END_REF] but the numerical analysis of the corresponding convergence of optimal control problems governed by elliptic variational inequalities given by Theorem 4.

1 is an open problem.

Conclusions:

In this paper we have first established the error estimate between the convex combination u 3 (µ) = µu g 1 + (1µ)u g 2 of two solutions u g 1 and u g 2 for elliptic variational inequality corresponding to the data g 1 and g 2 respectively, and the solution u 4 (µ) = u g 3 (µ) of the same elliptic variational inequality corresponding to the convex combination g 3 (µ) = µg 1 + (1µ)g 2 of the two data. This result complements and generalizes the previous one given in [START_REF] Boukrouche | On a convex combination of solutions to elliptic variational inequalities[END_REF].

Using the existence and uniqueness of the solution to particular elliptic variational inequality, we consider a family of distributed optimal control problems on the internal energy g associated to the heat transfer coefficient h defined on a portion of the boundary of the domain. Using the monotony property [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] (see (4.10) and (4.13) ) we can obtain the strict convexity of the cost functional (4.1) and (4.2), and the existence and uniqueness of the distributed optimal control problems (4.3) and (4.4) for any h > 0 holds by a different way used in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] avoiding the conical differentiability of the cost functional. Then we prove that the optimal control g op h and its corresponding state of the system u g op h h are strongly convergent, when h → +∞, to g op and u gop which are respectively the optimal control and its corresponding state of the system, for a limit Dirichlet distributed optimal control problems. We obtain our results without using the notion of adjoint state (i.e. the Mignot's conical differentiability) of the optimal control problems which is a very important advantage with respect to the previous result given in [START_REF] Gariboldi | Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity[END_REF] for elliptic variational equalities. and it was partially supported by Grant FA9550-1061-0023. We would like to thank two anonymous referees for their constructive comments which improved the readability of the manuscript.

. 23 )

 23 So from(3.22) and (3.23) we deduce that a(W + , W + ) ≤ 0. Then (3.20) holds.

g

  op hg op H = 0. (4.18)

  we deduce that u 0 h H is bounded independently of h. So we deduce with (4.19) that u g op h h H and g op h H are also bounded independently of h. So there exists f and ξ in H such that

	g op h ⇀ f in H (weak)	and u g op h h ⇀ ξ in H (weak).	(4.20)

H

  (4.26) and using (4.17) the strong convergence u gop h h → ξ = u f = u gop in V , we get

			lim h→+∞	u gop h h H = u gop H ,	(4.27)
	thus from (4.26) and (4.27) we get				
			lim h→+∞	g op h H = g op H .	(4.28)
	Finally						
	lim h→+∞	g op h -g op	2 H = lim h→+∞	g op h	2 H + g op	2 H -2(g op h , g op ) .	(4.29)
	By the first part of (4.20) we obtain that		
			lim				

h→+∞ (g op h , g op ) = g op 2 H , so from (4.28) and (4.29) we get

(Γ 1 ), q ∈ L 2 (Γ 2 ), and g ∈ H, the two free boundary problems (3.1)-(3.2) and (3.1), (3.3) lead respectively to the following elliptic variational problems: Find u ∈ K such that
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