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Elliptic curves over a supersimple field with exactly one extension of degree 2 have s-generic rational points.

Introduction

Shelah's simple theories [START_REF] Shelah | Simple unstable theories[END_REF] were shown to be a good setting to adapt some of the ideas of geometric model theory after the results of Kim and Pillay [START_REF] Kim | Simple theories[END_REF]. In doing so, new ideas and methods need to be developed, because of the weakness of simplicity (or rather, strength of stability) when carrying over some of the arguments.

Typical examples of simple unstable structures are, among others, the Random graph, pseudo-finite fields [START_REF] Chatzidakis | Definable sets over finite fields[END_REF] (i.e. infinite models of the theory of all finite fields, or equivalently, perfect P AC fields with absolute Galois group) and more generally [START_REF] Hrushovski | Pseudo-finite fields and related structures[END_REF], perfect P AC fields with bounded absolute Galois group (i.e. only finitely many open subgroups of index n for every n). All the above examples are supersimple of SU -rank 1. Unfortunately, an algebraic characterization of supersimple fields is far from being obtained as in the superstable case [START_REF] Cherlin | Superstable fields and groups[END_REF][START_REF] Macintyre | On ω 1 -categorical theories of fields[END_REF]. It has been conjectured in 1995 by A. Pillay that all supersimple fields lie in the above category. In [START_REF] Pillay | Corps et chirurgie[END_REF] it was shown that supersimple fields are perfect and have bounded absolute Galois group. Therefore, only the P AC condition is left to be proved (or disproved for those who have little faith in the universum behaving as it should). Recall that a perfect field K is P AC (it stands for Pseudo Algebraically Closed) if every absolutely irreducible variety defined over K has a K-rational point, or equivalently, if every absolutely irreducible plane curve over K has such a point. Special families of curves have been already considered: [START_REF] Pillay | Supersimple fields and division rings[END_REF] dealt with the genus 0 case successfully and showed that all genus 0 curves are birationally isomorphic to P 1 . In [START_REF] Martin-Pizarro | Elliptic and Hyperelliptic curves over supersimple fields[END_REF][START_REF] Martin-Pizarro | Elliptic and Hyperelliptic curves over supersimple fields in characteristic 2[END_REF] some families of elliptic and hyperelliptic curves were treated, in particular those whose rational isomorphism class was generic in the appropriate moduli space. In this note, we will prove the following: Main Theorem. Let K be a supersimple field with exactly one extension of degree 2 (up to isomorphism). Any elliptic curve E defined over K has an s-generic K-rational point, i.e. a point P in E(K) such that SU (P/F ) = SU (K), where F is some small set of parameters over which E is defined.

The relevance of the above theorem is that it holds for all elliptic curves and not only for those with generic modulus. On the other hand, it is restrictive in the sense that we require K to have a unique extension of degree 2. It is still open to generalize this result to a an arbitrary number of extension of degree 2. Moreover, it is still not clear how to transfer the techniques here exhibited for curves of larger genus, since we strongly use the group law in an elliptic curve.
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Equations and group law

Throughout this section, we fix a perfect field K and some algebraic closure K. The material for this section has been obtained from [START_REF] Husemöller | Elliptic Curves[END_REF][START_REF] Silverman | The Arithmetic of Elliptic Curves[END_REF].

An elliptic curve over K is a pair (E, O) consisting of a projective nonsingular curve E of genus 1 defined over K and a distinguished K-rational point O.

By Riemann-Roch, there exist x and y in K(E) such that x has a pole of degree 2 at O and y a pole of degree 3 at O, and they satisfy the following relation:

y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6
for some a i in K. Such an equation is a Weierstrass equation for the elliptic curve (E, O), where we identify O with the projective point [0, 1, 0]. Depending on the characteristic of K further reductions of the equation may be done.

An elliptic curve E over K admits a commutative group structure, uniquely determined from the choice of the point O. Let P and Q be points in E(K) and the line connecting them (if P equals Q then is the tangent line to E at P ). By Bezout's Theorem, intersects E in 3 points (counted with multiplicities). Let R be the third point of ∩ E and be the line determined by R and O. We define P + Q to be the third point in ∩ E. This operation so defined makes E into an abelian variety defined over K such that O is the identity element.

Fact 2.1. Given an elliptic curve E defined by an equation as above and P = (x, y) in E, then the additive inverse is -P = (x, -ya 1 xa 3 ).

Likewise, for distinct points P and Q in E which are not inverses of each other, we have that:

x(P +Q) = y(Q) -y(P ) x(Q) -x(P ) 2 +a 1 y(Q) -y(P ) x(Q) -x(P ) -a 2 -x(P )-x(Q).

Results

In this section we shall prove the main theorem. So let K be a supersimple field of any characteristic definable inside some sufficiently saturated structure. We suppose that K has (up to isomorphism) a unique quadratic extension L = K(δ). Since K is perfect [START_REF] Pillay | Corps et chirurgie[END_REF], we may choose δ such that

δ 2 = d ∈ K × \ (K × ) 2 (in characteristic different from two), or δ 2 + δ = d ∈ K + \ {k 2 + k : k ∈ K} (in characteristic two).
Let σ be a generator of the Galois group of L over K, and N the generalized norm map

N : E(L) → E(K), P → P + P σ .
We first treat the case where the characteristic is different from 2 and 3. By [START_REF] Martin-Pizarro | Elliptic and Hyperelliptic curves over supersimple fields[END_REF], after a K-rational change of variables, a Weierstrass equation for E over K takes the form

y 2 = x 3 + ax + b
for some non-zero a and b in K with discriminant Δ = -16(4a 3 + 27b 2 ) = 0.

Let us consider the restriction of scalars of E (viewed as defined over L) over K. A pair (x 1 +δx 2 , y 1 +δy 2 ) is in E(L) if and only if it satisfies the following equations:

y 2 1 + dy 2 2 = x 3 1 + 3dx 1 x 2 2 + ax 1 + b 2y 1 y 2 = x 2 (3x 2 1 + dx 2 2 + a)
. By [START_REF] Pillay | Supersimple fields and division rings[END_REF] there are x 1 and x 2 in K with x 1 generic over {a, b} such that 3x 2 1 + dx 2 2 + a = 0. By our assumptions on the number of quadratic extensions of K, the quantity x 3 1 + 3dx 1 x 2 2 + ax 1 + b is either a square or it lies in d • (K × ) 2 . In either case there exists some y in K and in {1, δ} such that

( y) 2 = x 3 1 + 3dx 1 x 2 2 + ax 1 + b 0 = 3x 2
1 + dx 2 2 + a. Then P = (x 1 + δx 2 , y) ∈ E(L) and SU (P/{a, b}) = SU (K). Substituting the second into the first equation, we obtain

( y) 2 = -8x 3 1 -2ax 1 + b = (-2x 1 ) 3 + a(-2x 1 ) + b, so if = 1 the point (-2x 1 , y) is s-generic in E(K).
If = δ, we compute the x-coordinate of N (P ) = P + P σ ∈ E(K) :

x(N (P )) = y(P σ )y(P )

x(P σ ) -x(P ) 2 -x(P ) -x(P σ ) = ( -2δy -2δx 2 ) 2 -2x 1 = -8x 3 1 -2ax 1 + b -3x 2 1 -a -2x 1 = 2x 3 1 -b 3x 2 1 + a ,
and N (P ) is s-generic in E(K), since x 1 and x(N (P )) are interalgebraic over {a, b}.

If the characteristic is three, the equation for E can be reduced to the form y 2 = x 3 + ax 2 + b with non-zero a and b in K. By restriction of scalars of E, we obtain this time

y 2 1 + dy 2 2 = x 3 1 + adx 2 2 + ax 2 1 + b 2y 1 y 2 = x 2 (dx 2 2 + 2ax 1 )
. Choose x 2 in K generic over {a, b}, and define x 1 = a -1 dx 2 2 . Since the characteristic is three, dx 2 2 + 2ax 1 = 0 ; as there is a unique extension of degree two,

x 3 1 + adx 2 2 + ax 2 1 + b = x 3 1 + ax 2 1 + a 2 x 1 + b = (x 1 -a) 3 + a(x 1 -a) 2 + b is either a square or in d • (K × ) 2 .
Hence there is ∈ {1, δ} and y ∈ K such that the point P = (x 1 + δx 2 , y) is in E(L). If = 0, then (x 1a, y) is an s-generic point in E(K). If = δ, we calculate the image P + P σ of P under the norm map :

x(P + P σ ) = y(P σ )y(P )

x(P σ ) -x(P ) 2 -a -x(P ) -x(P σ ) = ( -2δy -2δx 2 ) 2 -a -2x 1 = dy 2 dx 2 2 -a -2x 1 = x 3 1 + ax 2 1 + a 2 x 1 + b ax 1 -a -2x 1 = x 3 1 -ax 2 1 + b ax 1
, so P + P σ is s generic in E(K), as x(P + P σ ) and x 1 are interalgebraic over {a, b}.

Finally, in characteristic two the Weierstrass equation for E over K takes the form

y 2 + xy = x 3 + ax 2 + b
with a and b in K and b nonzero [START_REF] Martin-Pizarro | Elliptic and Hyperelliptic curves over supersimple fields[END_REF].

Putting y = xz and dividing by x 2 , this equation can be rewritten as

z 2 + z = x 3 + ax 2 + b x 2 = x + a + b x 2 .
Recall that the inverse of an element x 1 + x 2 δ in L is

x 1 + x 2 + δx 2 x 2 1 + dx 2 2 + x 1 x 2 .
Again by restriction of scalars of E over K we obtain

z 2 1 + z 1 + dz 2 2 = x 1 + a + b (x 2 1 + (d + 1)x 2 2 ) (x 2 1 + dx 2 2 + x 1 x 2 ) 2 z 2 2 + z 2 = x 2 + b (x 2 1 + dx 2 2 + x 1 x 2 ) 2 x 2 2 .
Consider the equation

bx 2 = (x 2 1 + dx 2 2 + x 1 x 2 ) 2 = x 4 1 + d 2 x 4 2 + x 2 1 x 2 2 , or equivalently b x 3 2 = ( x 1 x 2 ) 4 + ( x 1 x 2 ) 2 + d 2 .
By [START_REF] Martin-Pizarro | Elliptic and Hyperelliptic curves over supersimple fields[END_REF][START_REF] Pillay | Supersimple fields and division rings[END_REF] there is a solution (x 1 , x 2 ) in K with x 2 generic over {a, b}, since the left-hand side is a coset of a multiplicative subgroup of bounded index, and the right-hand side represents a coset of an additive subgroup of bounded index (recall that K is perfect, so K 2 = K). By uniqueness of L there is in {0, 1} and z ∈ K such that the point

P = (x 1 + δx 2 , (x 1 + δx 2 )(z + δ)) is in E(L). Note that z 2 + z + d = x 1 + a + b (x 2 1 + (d + 1)x 2 2 ) (x 2 1 + dx 2 2 + x 1 x 2 ) 2 = x 1 + x 2 + a + x 2 1 + dx 2 2 x 2 = a + x 2 + x 2 1 + dx 2 2 + x 1 x 2 x 2 = a + x 2 + √ bx 2 x 2 = a + x 2 + b x 2 = a + b x 2 + b b/x 2 2
(the square root of b/x 2 exists since K is perfect; note that it is again generic over {a, b}). In particular, for = 0 the point ( b/x 2 , b/x 2 z) is s-generic in E(K).

If = 1, consider N (P ) = P + P σ ∈ E(K). Put λ : = y(P σ )y(P )

x(P σ )x(P ) = x(P σ )z(P σ )x(P )z(P )

x(P σ )x(P ) = (x 1 + (δ + 1)x 2 )(z + δ + 1) -(x 1 + δx 2 )(z + δ) (1 + x 2 ), which is interalgebraic with x 2 over {a, b}. Hence N (P ) is s-generic in E(K).

x 1 + (δ + 1)x 2 -x 1 -δx 2 = x 2 (z + δ + 1) + x 1 + δx 2 x 2 = x 1 x 2 + z + 1.

2 + z 2 + 1 + x 1 x 2 + 2 = ( b x 3 2 + 2 = b x 3 2

 222222 Thenx(P+ P σ ) = λ 2 + λ + a + x(P ) + x(P σ ) z + 1 + a + (x 1 + δx 2 ) + (x 1 + (δ + 1)x 2 ) z 2 + z) + a + x d) + (a + x 2 + b x 2 + d) + a + x
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