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ASYMPTOTIC ANALYSIS OF A MICROPOLAR FLUID FLOW IN
THIN DOMAIN WITH A FREE AND ROUGH BOUNDARY

MAHDI BOUKROUCHE AND LAETITIA PAOLI *

Abstract. Motivated by lubrication problems, we consider a micropolar fluid flow in a 2D
domain with a rough and free boundary. We assume that the thickness and the roughness are both
of order 0 < ¢ << 1. We prove the existence and uniqueness of a solution of this problem for
any value of € and we establish some a priori estimates. Then we use the two-scale convergence
technique to derive the limit problem when e tends to zero. Moreover we show that the limit velocity
and micro-rotation fields are uniquely determined via auxiliary well-posed problems and the limit
pressure is given as the unique solution of a Reynolds equation.

Key words. Lubrication, micropolar fluid, free and rough boundary, asymptotic analysis, two-
scale convergence, Reynolds equation.
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1. Introduction. The theory of micropolar fluids, was introduced and formu-
lated by A.C. Eringen in [13]. It aims to describe fluids containing suspensions of
rigid particles in a viscous medium. Such fluids exhibit micro-rotational effects and
micro-rotational inertia. Therefore they can support couple stress and distributed
body couples. They form a class of fluids with nonsymmetric stress tensor for which
the classical Navier-Stokes theory is inadequate since it does not take into account the
effects of the micro-rotation. Experimental studies have showned that the micropolar
model better represents the behavior of numerous fluids such as polymeric fluids, lig-
uid crystals, paints, animal blood, colloidal fluids, ferro-liquids, etc., especially when
the characteristic dimension of the flow becomes small (see for instance [26]). Exten-
sive reviews of the theory and its applications can be found in [2, 3] or in the books
[14] and [22] and also in more recent articles (see for example [4, 9, 19, 20]).

Motivated by lubrication theory where the domain of flow is usually very thin
and the roughness of the boundary strongly affects the flow ([10]), we consider the
motion of the micropolar fluid described by the equilibrium of momentum, mass and
moment of momentum. More precisely, the velocity field of the fluid v® = (u§, u§),
the pressure p® and the angular velocity of the micro-rotations of the particles w®
satisfy the system

(1.1) ui — (v + vp)Au® + (u® - V)u® + Vp© = 2u, rot w® + f°,
(1.2) divu® =0,
(1.3) wi — aAw® + (uf - V) w® + 4r,w® = 2u, rotu® + ¢°,

in the space-time domain (0,7) x Q° with
F={2=(21,2) €R? 0<z <L, 0<z<eh®(z1)}, h°(z1)=h(z, ?)

where h is a given smooth function, f¢ and ¢° are given external forces and mo-
ments, v is the usual Newtonian viscosity, v,- and « are the micro-rotation viscosities,
which are assumed to be positive constants ([13]).
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2 Asymptotic analysis of a micropolar fluid flow

The choice of the domain 2° comes from one of the important fields of the theory
of lubrication given by the study of self-lubricating bearings. These bearings are
widely used in mechanical and electromechanical industry, to lubricate the main axis
of rotation of a device, in order to prevent its endomagement.

Such bearings consist in an inner cylinder and a outer cylinder, and along a
circumferencial section, one can see two non-concentric discs. The radii of the two
cylinders are much smaller than their lengh and the gap between the two cylinders,
which is fullfilled with a lubricant, is much smaller than their radii ([11]). By assuming
that the external fields and the flow do not depend on the coordinate along the
longitudinal axis of the bearing, one can represent the fluid domain by Q° which is a
2D view of a cross section after a radial cut of the two circumferences. The boundary
of Qf is 900 =T UI:‘EL uTs,

where T'g = {z € 09° : z5 = 0} is the bottom, I'{ = {z € 90 : 20 = eh®(21)} is
the upper strongly oscillating part, and I'7 is the lateral part of the boundary. The
surface of the inner cylinder, which corresponds to I'g, is in contact with the rotating
axis of the device while the surface of the outer cylinder, which corresponds to I'{,
remains still.

Hence the boundary and initial conditions are given as follows

£

(1.4) w®, wu®, p° are L-periodic with respect to z;

(1.5) u® = Uper = (Uo,O), w® = Wy on (O,T) x Iy
g

(1.6) W =0, u-n=0, %“ =0 on (0,T)xTI%
n

(1.7) u®(0,2) = ug(z), w(0,2) =wi(z) for ze€Q°

where 7 and n are respectively the tangent and normal unit vectors to the bound-
ary of the domain Q. Let us observe that (1.5) represents non-homogeneous Dirichlet
conditions along I'g, which means adherence of the fluid to the boundary of the ro-
tating inner cylinder, so Uy and Wy are two given functions of the time variable only.
The second condition in (1.6) is the nonpenetration boundary condition, while the
last one is non-standard, and it means that the tangential component of the flux on

5 is equal zero ([12]).

The choice of the particular scaling, with a roughness in inverse proportion to
the thickness of the domain, is quite classical in lubrication theory. In [8] and in [10]
a Stokes flow is considered with adhering boundary conditions and Tresca boundary
conditions at the fluid solid interface respectively. For other related works see also
[6, 7] or [5] for instance.

We prove the existence and uniqueness of a weak solution (u®,w®, p®) in adequate
functional framework. Then we will establish some a priori estimates for the velocity,
micro-rotation and pressure fields, independently of €, and finally we will derive and
study the limit problem when ¢ tends to zero.

The paper is organized as follows. In Section 2 we give the variational formulation.
Then, using an idea of J.L. Lions (][21]), we consider the divergence free condition (1.2)
as a constraint, which can be penalized, and we prove in Theorem 2.2 the existence
and uniqueness of a weak solution (u®,w®,p®) for any value of . Let us emphasize
that our proof ensures that the pressure (unique up to an additional function of time)
belong to H~1(0,T, L3(£2)). This result is more suitable for the next parts of our
study, than W=1°°(0, T, L3(€2¥)) obtained by J. Simon [27] (see also Theorem 2.1 in
16]).
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In Section 3, we establish some a priori estimates for the velocity and micro-
rotation fields in Proposition 3.2 and for the pressure in Proposition 3.3. In Section
4, since we deal with an evolution problem, we extend first the classical two-scale
convergence results ([1, 25]) to a time-dependent setting and we use this technique
to prove some convergence properties for the velocity in Proposition 4.3, the micro-
rotation in Proposition 4.4, and the pressure in Proposition 4.5.

Then, in Section 5 we derive the limit problem when e tends to zero in Theorem
5.1. We notice that the trilinear and rotational terms, as well as the time derivative
do not contribute when we pass to the limit. However the time variable remains in
the limit problem as a parameter. We note also that the limit problem can be eas-
ily decoupled: we obtain a variational equality involving only the limit velocity and
the limit pressure and another variational equality involving the limit micro-rotation.
However, the micropolar nature of the fluid still appears in the limit problem for the
velocity and pressure since we keep the viscosity v + v,.. Moreover we show in Propo-
sition 5.2 that the limit velocity and micro-rotation fields are uniquely determined via
auxiliary well-posed problems. In Proposition 5.3, we prove that the limit pressure is
given as the unique solution of a Reynolds equation. Finally in Section 6 we propose
a generalization to the case where both the upper and the lower boundary of the fluid
domain are oscillating.

2. Existence and uniqueness results. We assume that
(2.1) — €N, h:(z1,m)— h(z1,m) is L-periodic in z; and 1-periodic in 7,
€

so h is L-periodic in z;. We assume also that

oh
(2.2) h e C*=([0, L] x R), . is 1-periodic in 7,
m

and there exist h,, and hjy; such that

2.3 0<hm= min h(z,m), and hy = h(z1,m1).
@) 0= iy ) = )

LEMMA 2.1. Let the functions U, W be in D(—o0, hy,), and Uy, Wy be in
HY(0,T), withU(0) = 1, W(0) = 1. We set

US(t, z2) = U (22)Up(t) = L{(%)Uo(t), WE(t, z2) = W (z2)Wp(t) = W(?)Wo(t).

Then we have for all (t,z1) € (0,T) x (0, L)

(2.4) US(t,0) = Up(t), Us(t,eh®(z1)) = 0, g—gj(t,aha(zl)) =0,
(2.5) We(t,0) = Wolt), WE(t,eh®(z1)) = 0.

Proof. Indeed, U¢(t,0) = U(0)Uo(t) = Uo(t), U(t,eh®(21)) = U(h(z1, Z))Us(t) =
0 and
oue

G (1,217 (1) = U)o (t) = 2U (hr, )V (0) =0,
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thus (2.4) follows. The proof is valid also for (2.5). O
We can now set

(2.6) u(t, 21, 22) = U (t, z2)e1 + v°(t, 21, 22)

(2.7) w(t, 21, 22) = WE(t, 22) + Z°(t, 21, 22)

with U® and W*¢ satisfying (2.4) (2.5). Moreover

ovs . .
ous o 0 -if =1,
L= L4 —(U(22)e1) =4 9i . o
82]- 82]- 82]- gz; + %(',22)61 if j=2

and from (2.4) %—[Z(t,zg) = %—lz]:(t,zsha(zl)) =0 for (t,22) € (0,T) xI'5 so

ou; O .
(2.8) 6_zj = 72, for 7=1,2 on (0,7)xTj.
Recall also that
ous  Ouj ow®  Ow®
tu® =2 - — t w® = — :
rotu 621 622 ’ rotw (822 ’ 621 )
Then the problem (1.1)-(1.7) becomes
€ € € € Eava € aU& & €
: - - : 2 1 =2v,
(2.9) v; — (v +vp) AV + (v° - Vv +U8 + (v°) 5 e1 + Vp® =2y,rot Z
Z1 z9
0?U¢ owe oue
+(l/ + VT)Wel + 2VT8—,2261 — Wel + fE in (O,T) X QE’
2
(2.10) dive®* =0 inQ°, te(0,7),
ZE €
Z; — aAZF 4+ (v -V)Z° + 4, Z° + U‘Eg + (U‘S)Qaai = 2v,r0t v°
Z1 z9
0?We oue owe .
(2.11) +a 522 —2u, 7% — AW gt i (0,7) x QF,
(2.12) v®, Z% and p° L-periodic in 21,
(2.13) Z5=0, v*=0 on (0,T)x I,
ov®
(2.14) Z°=0, v*n=0,  —Z=.7=0 on (0,7)xT},
(2.15) v5(0,2) = v5(2) = ug(z) —U(0,z2)e;  in Q°,
(2.16) Z°(0,2) = Z§5(2) = wi(2) — We(0, 22) in Q°,

where we have denoted by (v®)s the second component of v=.
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To define the weak formulation of the above problem (2.9)- (2.16), we recall that
I'5 is defined by the equation zo = £h®(z1), thus the unit outward normal vector to
I'{ is given by

1
n = — hs’zl,l
1+(E(ha),(zl))Q( e(h?)'(21),1)

and v - n = 0 becomes —&(h®)'(z1)v1 +v2 = 0 on I';. We consider now the following
functional framework

Ve ={veC®QF)?: vis L-periodic in 2z, v, =0, —e(h®) (z1)v1 +v2 = 0 on I'f}
o = {Z €C>®(QF): Z is L-periodic in 21, Z =0 on ['ZUT5}
Ve = closure of V¢ in H'(Q°) x H'(QF), Vi ={veVe®:divv=0, in Q}
He® = closure of V¢ in L*(QF) x L*(Q°), H® = closure of H'" in H'(QF),

H%® = closure of H'" in L3(QF), LX) ={qe L*(Q): / q(z)dz = 0}.

€

We endowed these functional spaces with the inner products and norms defined by

[3,0] = (v,9) + (Z,%) in H® x H*® with the norm [7] = [T),T)]%

[[5,0]] = (Vv, V) + (VZ, V) in VE x HY® with the norm [[0]] = [[5, )]

)

for any pairs of functions v = (v, Z) and © = (¢,v). The weak formulation of the
problem (2.9)- (2.16) is given by
Problem (P¢) Find

o = (v%,2%) € (€0, T); H) N L2(0,T5 Vg, ) ) < (C([0, T HOS) 1 L2(0, T3 ') )

and p* € H=1(0,T; L3(92)), such that

[a;: (1), 0°] + a(v°(t), ©%) + B(v°(t),0°(t), %) + R(v°(¢t),0°) =

(217) = (P°(t), dive®) + (F(T°(t),©°) VO = (¢°,¢°) € VS x H',

with the initial condition

(2.18) 7°(2,0) = v5(2) = (v5(2) , Z5(2)),
where

(F(°(1)), ©%) = —a(&(t), ©°) — B(&(1),°(t), ©F) — B(0°(t),&%(t), ©°)
Bl
ot

(2.19) —R(E(1),0°) — [~ (1), 0] + [[*(1), ©°], & = (Uer,W"),
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and for all o = (v, Z), 4 = (u,w), and © = (p,¢) in VE x HLS,

[f5.0] = (f5,9) + (9, ¥),
a(v,0) = (v+ 1) (Vo,Vo) + a(VZ, Vi),
R(0,0) = —2v,.(rot Z, p) — 2vp(rot v, ) + 4v,.(Z, ),

2 2
ou; 0
B(T),ﬁ,@):b(v,u,cp)+b1(v,w,1/)): Z /Q Vg a:JQO]dZ+Z/9 vzajwd'z
: ¢ i=1 78 v

ij=1

THEOREM 2.2. Let T > 0, U® and W¢ be given as in Lemma 2.1, f¢ in
(L2((0,T) x Q9))2, g% in L*((0,T) x Q) and (v§, Z5) in H x H*". Then prob-
lem (P?) admits a unique solution (v, 7%, p%).

Proof. Following the techniques proposed by J.L.Lions in [21], we construct a
sequence of approximate solutions by relaxing the divergence free condition for the
velocity field. More precisely we consider the following penalized problems (P§), with
0> 0:

Problem (P§) Find

55 = (05, 25) € (0TI HY) N L2(0,T3v9) ) x (C((0,T); HOS) 0 L2(0, T3 H'))

such that
[aag
ot
1 e
(2.20) +g(divv§ , divp®) = (F(75),0°) — R(75,0°%) VO© = (¢°,9°) € VF x HY,

1
, 0% + a(v5, ©%) + B(v5,75,0°) + 3 {(v5div s, ¢°) 4+ (Z5div s, %)}

with the initial condition
(2.21) 05(0) = v_g.

The first term on the right of the second line of (2.20) is the penalty term and the
term

1
S Awidives , ) + (Zidiveg, 4°))

is added in order to vanish with B(%§, 05, ©°) when ©° = 5.

Hence the proof of Theorem 2.2 is divided in two parts. First we prove the
existence of a solution of (Py), for any § > 0, by using a Galerkin method. Then we
pass to the limit as § tends to zero by applying compactness arguments and we prove
that the limit solves problem (P*¢).

Since V¢ and H'® are closed subspaces of (H'(92°))? and H'(QF), they admit
Hilbertian bases, denoted as (®;);>1 and (1;);>1 respectively, which are orthonormal
in (H'(Q))? and H'(Qf) and are also orthogonal bases of (L?(Q¢))? and L?(Q¢). For
all m > 1 we define v§,,, and Z§,, as the L2-orthogonal projection of v§ and Z§ on
the finite dimentional subspaces (®1,...,®,,) and (11,..., 1) respectively and we
let ©5,, = (V5 Z5m)- Then we consider @5, = (v5,,, Z5,,), with

(222)  V5u(t2) = D 05 (0)P(@),  Z5,(tw) = Z Zsmj ()5 (x)

j=1
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such that

ovs 1
(2,00 + (T30 01) + B(Ti T, 00) + 5 (5 liv v, , 21)

1 1
+§(lemdlv ’Ugm ) 1/11) + g(le’Ugm ) le(I)l) = (.F('ng), 91) - R(’ng’ 91)
(2.24) v5,,(0) = T5,,-

By taking ¢; = 0 in (2.23) we deduce

e .
(_gétm (D1) + (V4 ) (V050 V) - b(050, Vs 1) + 5 (U5 dives,  B5)

1
(2.25) + g(divvgm , divd;) = (F1(v5,,), Pi) + 2vp-(rot Z5,,, P;) 1<i<m
(2.26)  v5,,(0) = VG,

)

and by taking ®; = 0 in (2.23) we deduce

0Z¢ 1 - <

( aim7w1> + a(vzgma V’l/h) + bl(vgmv Z§m7w1> + §(Z§mdlvv§m 71/)1> = (‘FQ(UJm>a wl)

(2.27) +2u, (rot v5,,, Vi) — 4v(Z5,, , Vi) 1<i<m,

(2.28) Z5(0) = Zgpm,

where

(‘Fl(vgm)v (I)1> = 7(1/ + VT)(VUEGD v(p%) - b(UEel ) ’Ugmv (I)i) - b(vgma U§€1 ; q)l>
owe oUe .
(2.29) +2VT(6—2:261’ ;) —( 5 L ;) + (f°, i),
and
(F2(V5)s i) = —a(VWE, V) — bi(Uer, Z°, i) — b1 (v, , W&, i)

oUue owe

(2.30) —2wp (s i) — A (WE b)) — (= ¥i) + (9%, ).
(92’2 8t

Taking (2.22) into account, we deduce from (2.25)-(2.30) a system of (nonlin-
ear) differential equations for the unknown scalar functions (v5,,;, Z5,,;)1<i<m, Which
possesses an unique maximal solution in (H'(0,7},))™ with T, € (0,T].

In order to prove that this solution is defined on the whole time interval [0, 77,
we will establish some a priori estimates for v§,, and Z5, , independently of m. More
precisely, we multiply the two sides of (2.25) by v5,,;(t) and the two sides of (2.27) by
Z5,,:(t), then we sum for i from 1 to m, to get, with || - || = || - || z2(q<), the following
equations

19 1 . Lo
557 U05ml®) + (v + ) I VU5l + b(050 V505 V5in) + 5 (V5 diveG, » v5,0) + 5 1 dives,, |*

2
(2.31) = (F1(V5): V5m) + 20 (v0t Z5, V5,),

| =

0 1 )
57 1 Z50l?) + V250 |1* + b1(05ns Z5ins Z5m) + 5 (Z5ndiV 05 s Z510) = (F2(05in), Ziim)
(2.32) +2u, (rot v5,,, Z5,,) — i (Z5,, s Zsm)-
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By integration by parts and using the boundary conditions (2.12)-(2.14), we obtain
that

(Ui Vi) + 01 (U Zis Zi) 5 (0Gn iV 0in) + 5 (Dl iy ) =0,
and

b(U ey, v5,,, V5,) +b01(U%e1, Z5,,, Z5,,) = 0.
Thus by the addition of (2.31) and (2.32) we obtain

10 L.
(2.33) S (105 l” + 1Z5,]1%) + (v + v V05 |1° + allV 25,0 1° + Slldives, |*

—_
—
i

with

= = 20 (108 2, 050) + 200 (10 U5y Z) — 0| Z 1P — (v + 1) (VUZer, V5,)
—a(VW*e,VZ5,.) — b(vs,,, User, v5,,) — b1 (v5,,,, W¢, Z§,,) + 2vp(rot W* | 05, )

oue owe
20, (rot Uter, Zip) = 4n(W* . Z5) = (5, i) = (T3 s Zim)

+(f% v5m) + (97 Z5m)-
Using Young’s inequality we have

o 42
2vp|(rot Z5,,,, U5 )| < 2vp[rot Z5,,, [[[[v5,, || < ZIIVZEWH2 + 105,117,

1%
20p|(£0t 05y, Z5,) | 200t 05, |1 25,1l < vt v, 1 + 4w ]| 25,1

1%
< S IV5al* + 4v )1 25,17,

I IR 1,0U° ,

(VU%e1, Vo§m) < GIV@5I° + 5517
oW

(VW=,VZ5,,) < HVZam||2+|| b

oue
O(5m > U1 Vi) < [(W5m)2ll 5~ llooll(05m)1 [l < I\a—ZQIImIIUEWHQ,

1, ,0We
b1 (V5 s W&, Z5m) < (1052 H|| ||00||Z6m|| < gl e (051 + 1Z5m117) ,
2u, (rot W* v, ) + 2u,(rot Uey , Z5,,) — 4v, (W=, Z5,,)

oW U o
= +21/T <a—z2, (vém)1> — 21/7« (a Z(Sm) — 4VT(W ’Z(sm)

owe oue
||2 g 12+ duy [WE 2.

< wrlloll® + 20 125,117 + vrll =
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So we have
_ v R « . 1 (9W .
=< (5 + IVl + SIV 2l + (24 a0+ 517 D) 125,12
w2 AUS(t 1, OWe(t .
+<2+w+ =1 B4 ”noo) leinll?
e ey o) 202, ||‘°W€( 12+ 0 200
029 vr 029 vr 029
AU=()||*  [[ow=(t)

+ IF=@I + llg=®)11*.

(2.34)  H4v,|We@)|* + H

4

ot ot
From (2.33)-(2.34), we get

10

k =E Lo € =€
S5 S50 + 5 Idivog, 1> < ABFE. + B,

(2.35) 5

= ([05,]%) +
where k = min{v, a} and A and B belong to L'(0,T') such that A(t) > 2 and B(t) >0

almost everywhere on [0, T]. Moreover A and B depend neither on m nor on 4.
For any ¢ € (0,7,,) we can integrate the inequality (2.35) over [0, ¢]: we obtain

G5O+ [ (55 + 5 [ v ()]s < 55
(2.36) +2/ A(t)[v5,, (s)]*ds + 2B,
0

with B = fo t)dt. So by Gronwall’s inequality, we deduce first that

T
05, () < ([)% + 2B)e** with A = /
0
Thus v5,,, is defined on the whole interval [0,7] and

(2.37) sup [v5,,(t)]* < C.
t€[0,T)

Then from (2.36) and (2.37), we deduce

(2.38) 5/ (|div v§,, (t)||*dt < C, / [05,, (D)]]dt < C,

where here and in what follows C’s denotes various constants which depend neither
on m nor on 4.

We need now to look at the time derivative of v§,, and Z§,_ . Let ©° = (¢, ¢°) €
(H} ()% x H}(92°) € VE x H'. There exists a sequence (g7, k5 )i>1 in R? such that

— 3 1,
05 = (¢5,¥y,) — (¥°,9¥°)  strongly in V€ x H>¢

with

P P
0o = @i, Yi=) ki Vp>1.
=1 =1



10 Asymptotic analysis of a micropolar fluid flow

Let p > m. Reminding that (®;);>1 and (¢;);>1 are orthogonal bases of (L?(Q¢))?
and L?(QF) respectively, we get

av;n e - € S e 8v;n e
ot » Pp :Z(vém]> ]7<)0p Zvém] ]a¢m>: ot yPm |

J=1 j=1
and
YA i n YA
( ‘””awf) —Z<Z§mj>’<t><¢j,w;>=Z<Z§mj>’<t><¢j,w;>=( Jm,w)
=1 j=1

Since B%Etm € L%(0,T;V* x H'¥), we can pass to the limit as p tends to +oc i.e

Wsm e\ _ (O%m e Z5m e\ _ [ %m -

Then, by using Green’s formula and (2.25)

8’Ugm € € 5 € 1 e 1. &
o P )T ((V + vp)Avs,, — (V5,, - V)Us,, — ivémdw Vsm
1
(2.39) +F1(v5,,) + 2vprot Z5,, + SV(div Vsm)s <pfn),
and from (2.27)

A 1
(8a<;m,1/)8) — (QAZEm — (V5,, - V)Z5,0, — §Z§mdiv Vs, + Fo(v5,,) + 2vrot s, ,

(2.40) 40, 25, wfn)

and from (2.29)

0?U¢ ovs oue owe oue
Falthn) = (4 e~ U R — Wil e+ B ger — ren + £
and from (2.30)
52W8 0Zs owe oue owe
£ . £ m £ o € _ 3
Fo(vs,,) = 322 -U s (v5m)2—822 + 21/T—822 v, W o +g°.

As v§,, is bounded in L?*(0,T;(H'(92¢)?)) independently of m and §, then Av§,
and V(divv§,,) are also bounded in L*(0,T;(H~*(9))?) independently of m and
§. Similarly, since Z§,, is bounded in L?(0,7; H'(2?)) independently of m and 4,
then rot Z§, is also bounded in L?(0,T%; (L?*(2¢))?) independently of m and §. By
assumption, f€ € (L%((0,T) x Q°)%, ¢° € L*((0,T) x Q°), and from Lemma 2.1, U¢
and W€ belong to H*(0,T") x D((—00, h.,)). Thus we infer that F(v5,,) and Fa(v§,,)
are bounded in L?(0,7T;(L?(Q¢))?) and L?(0,T; L?(Q2¢), independently of m and 4.
Moreover let ¢ € (H(Q¢))?, we have

(W5 - VU5 » ) < (105 Ml L3 (29) VUGl L2009 o]l Lo () -
Using now the classical inequality

1/2
lullzaary < Tul¥gn ullig., Vu € L9©Q9),
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and the continuous injection of H!(Q¢) in L%(QF), there exists a constant C' such that

1/2 3/2
(05 V)05 > ) < (CloGml o) IV 0513550 ) Nl .
So we get
1/2 3/2
W5 - V)05mll a2 09y < Cllvimll e IV 05m Tt

then

T T
4/3 2/3
| 1 00 eyt < O [ i 95

2/3
< 04/3|\U§m||L/oo(0,T;L2(QE))vagmH%Z((O»T)XQE)'

With the same arguments, we deduce similar result for v§, divv§,., (v5,, - V)Z5,, and
Zg, divug, . Finally, recalling that (®;);>1 and (¢;);>1 are H'-orthonormal, we get
lemllcri@enz < lella@eyz: IWnlln e < 19°lnr@e) Ym 2> 1.

So from (2.39) and (2.40) we see that there exists a constant C' such that

€ €

) o0z
(2.41) | aim I Lasso,rsm-1(0:))2) < C, | 8‘;mHL4/:*»(0,T;H—1(Qe)) <C.

From the estimates (2.37)-(2.38) we infer that there exists a subsequence (denoted
also by) 75, such that

(2.42) @5, =05 in L*(0,T;V®) x L*(0,T; H*¥)  weakly for m — +oo,

(2.43) 5, — 05 in L>=(0,T; H?) x L>=(0,T; H*¥) weak star for m — +o0,

and from (2.41), by Aubin’s compactness theorem A.11 in [15], there are two sub-
sequences (denoted also by) v§,,, Z5,, satisfying for m — +oco the following strong
convergence

(2.44) 25, — v§ in L2(0,T; (LY(Q%))?), Z5,, — Z5 in L*(0,T; L*(QF)).

In order to pass to the limit as m — +o00, we remind that for any ©° = (¢°, %) €
Ve x HY¢ there exists a sequence (g5, kS);>1 in R? such that

05, = (¢5,,¢5,) — (¢°,9°)  strongly in V& x H®

with
m

P = iqf% U =Y ki Ym>1
i=1

i=1

We multiply first the two sides of (2.25) by ¢f then we sum for i = 1 to m, and we
multiply the two sides of (2.27) by k¢ then we sum also for ¢ = 1 to m, we obtain

ovs 1
(T, 05) + (7 4 1) (V050 Vi5) + b0, Vs 50) + 5 (U dlivein s 05)
1
(2.45) 5 (dive,  divgl,) = (Fi(05,), 0) + 20 (K00 Z5,05,),

(2.46) U5m(0) = Vg,
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and
8Z§m € € e 5 € e 1 € i, E €
( ot ’wm) + a(vzém’ V’l/Jm) + b1 (Uém’ Zém’ wm) + §(Zt5mdlv Usm ’wm)
(2'47) = (‘FQ(Ugm)’wfn) + QVT(rOt 'Ugm’wfn) - 4VT(Z§m ) ’L/an),
(2.48) Z5(0) = 75, .

Let 6 € D(0,T), we multiply (2.45) and (2.47) by 6(t) and we integrate over [0,7].
We get

T T
[ 50,0508 Wt + [ (005,05 + BT 05,050} ()
0 0
1t e
w5 | i g0+ 5 [ (i i ch) + (Zidiv g, 05}

T
(2.49) - / ((F(W5), 05) — R0, 05,)) 6(t)dt.

Using the convergences (2.42)-(2.43), we can now pass easily to the limit in all terms
of (2.49) except for the nonlinear terms

T T T
| B 5 0500000t = [ 6050t 50000t + [ a0, 255 000
0 0 0
and
T
| v i 5+ (Zidiv i, w5} o0t
0
We have first
T T T
| ¥t = = [ b i 0500~ [ (i o 1000
0 0 0
T
(2.50) +/ / (05, - V5m) (U5, - m)0(t)dodL.
o Jogs
Using the boundary conditions (2.12)-(2.14), we obtain that the last integral is equal

to zero, then for the first and the second integrals we use the strong convergence
(2.44). So we get

T T
/ b(V5,s Vspms Pi )0 (L) dE — / b(vs, v, ©%)0(t)dt for m — +oc.
0 0
Similarly
T T T
| 805 Zi w0000 = — [ 005050 2,000~ [ (v, 25,0000
0 0 0

T
(2.51) +/O /ags (W5, - Z5,) (U5, - m)0(t)dodt.

Using the boundary conditions (2.12)-(2.14), we obtain that the last integral is equal
to zero, then for the first and the second integrals we use the strong convergence
(2.44). So we get

T T
/ b(V5,s Z5ms Vi) 0(t)dt — / b(vs,¥°, Z5)0(t)dt for m — +oo.
0 0
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We can now pass to the limit (m — 4o00) in all terms of (2.49) to get
T T 1
/ (v5,0%)0' (t)dt = / {a(vg, ©°) + B(v5,75,0°) + g(divvfg , divwg)} O(t)dt
0 0

T
1 1
+ [ {Jusaive o)+ J @ g 09 - (7(65).09) - R(55,09) b o0
0
(2.52) VO© = (¢°,9°) € VS x H',
that is 05 satisfy (2.20) in D’(0,T") (distribution sense). Moreover as the two items

between the brackets {}, in the right hand side of (2.52), are in L*/3(0,T'), we deduce
that (2.20) holds for almost every ¢t € (0,7).

In the following we set

1
pg = *gdiV’Ug,

then, rewrite (2.20) as follows
[86§

ot
(2.53) —(p5, divy®) = (F(5),0°) — R(T5,0°) VO = (¢5,4°) € Ve x HY .

1
, %] + a(v5, ©%) + B(v5,75,0%) + 5 {(vsdiv s, %) 4+ (Z5divos , ¥°)}

The aim now is to pass to the limit for § — 0 in (2.53). Reminding that the different
constants C' in (2.37)-(2.38) and (2.41) are independent of §, the same estimates hold
for o5 i.e.

(2.54) sup [05(1)]? < C,
te[0,7]

T T
(2.55) / | div g || 2dt < 5, / (o5 (0)Pdt < C,

0 0
and

ovs 0Z¢

(2.56) H_;||L4/3(O,T;H*1(QE)2) <, Ha—t&”L““(O,T;H*l(QE)) <C.

Hence, there exists v° such that, possibly extracting a subsequence still denoted by
v

(2.57) o5 —0°  in L*(0,T;V¢) x L*(0,T; H*¥)  weakly for § — 0,
(2.58)  ©f —©° in L*°(0,T; H®) x L*(0,T; H*¢) weak star for § — 0,

(2.59) dives — 0 in L*(0,T; L*(Q°)) strongly for § — 0,
and

(2.60) o5 — ©° strongly in L?(0,T; (L*(Q°)?)) x L*(0,T; L*(QF)).
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So from (2.57) and (2.59) we deduce
(2.61) divo® =0 inQ°, a.e. in (0,7).

We check now that p§ remains in a bounded subset of H~!(0,7;L3(2°)). Re-
minding that p§ = —$divv§, we have p§ € L*(0,T;L3(€2)). Now let us consider
w € HY0,T; LE(9F)), then (see [21] page 13-15) there exists ¢ € HE(0,T; HE(92¢)?)
such that

div o(t) = w(t), and ¢(t) = Pw(t),

P is a linear continuous operator from L3(Q°) to HJ(Q°)2.

The choice of © = (p(t),0) in (2.53), gives

T T ago T
/(pf;,w)dt:/ (—(vg,E)Jr( +VT)(VU§,W)) dt+/ b(vS, 5, )t
0 0 0

1 T T T
(2.62) +§/0 (vsdivvg <p)dt—2uT/0 (rotZE,tp)dt—/O (F1(vs), @)dt,
with
oUe 0
(File5),0) =~ w) (G~ 5o0) = bUer, 05, 9) = b(v§, Uen, )
owe U=
2. 2 (—— — (— € .
(2.63) +2v( 922 vo1) = () + (5, 9)

Since w € H(0,T; LE(QF)) C L>(0,T; L3(9F)), with continuous injection, it follows
that ¢ in L>°(0, 75 H{(Q%)?), and 22 € L2(0,T; H{(97)?), then also by the continuous
injection of H(Q°) in L*(Q¢) we have

T
|/0 b(vs, vs, @)dt] < (|05l 20,752 @)2) 105 220,311 (20)2) 1Pl Loe 0,75 L3 (029))2)

< C?\W5lIZ 200711 002y P 11 0,11 (202 -

Similarly for the first term in the second line of (2.62). Therefore using (2.54)-(2.55)
we get

T
| [ 05 )il < Clellnwiranaos) Vi € HYO. T HYO)P)
0

As P : w(t) = ¢(t) is a linear continuous operator from LZ(Q°) to H(QF)?, there
exists another constant C, independent of §, such that

T
(2.64) |/ (5, w)dt| < Cllwllgao,ri2(0e)) Yw € H'(0,T; L*(9°)).
0
Let us take now w € HJ(0,T; L?(QF)) arbitrary, we can apply (2.64) to

5 1
vmer meas(§2F) /Ewdz

which is in H (0, T; L3(97)). But 5 € L(0,T; L3(27)), so

T T
/ (5, ©)dt = / (5, w)dt
0 0
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and (2.64) remains valid for all w € H}(0,T; L*(92°). Thus p§ remains in a bounded
subset of H=1(0,7T; L3(92)). It follows that there exists p° € H~1(0,7’; L3(2F)) such
that

(2.65) ps —p°  in H1(0,T; L*(9F)) weak.

In order to pass to the limit as § — 0, let § € D(0,T), multiply (2.53) by 6(¢)
and integrate over [0,T]. We get

T T T
- [ w5009 @t + [ (o5 09) + B, 55,0 o)t~ [ (95, dive)p(e)
0 0 0

1 T T
45 [ 5dives o)+ (Zdiveg, w9} oo = [ {(F(65),67) — R(5, 09} Ole)ds
0 0
(2.66) VO = (¢, 4°) e VE x HY,

Using (2.57), (2.59), (2.60) and (2.65), then taking into account (2.50)-(2.51) for v§
and Z§ instead of v5,, and Z5, for the nonlinear terms, we can now pass to the limit
in all the terms of (2.66) to get

/(va,(%a)@’(t)dt:/ {a(5%,0°) + B(5, 7%, 0°) — (p° , dive®)} 0(t)dt
0 0

- /T {(F(©%),0°%) — R(v°,0%)} 0(t)dt VO = (¢°,9°) € VE x HYY,
0

that is (9%, p°) satisfy (2.17) in D’(0,7) (distribution sense). Moreover we can see
also that (2.17) is satisfied for almost every ¢t € (0,T).

Finally, by considering test-functions ©¢ € Vy;, x H¢, we can prove the unique-
ness of (v°, Z¢) and its continuity in time as in Theorem 2.2 [23]. Thus the proof of
the existence and uniqueness of a solution of Problem (P¢) is complete. O

3. A priori uniform estimates of v and p°. The aim in this section is to
establish uniform estimates with respect to € for v and p®, which will allow us to
derive in the next sections the limit problem as ¢ tends to zero by using the two-scale

convergence technique. More precisely we consider first the following scaling
(3.1) 1 =2, and mzp= Q,
€

which transforms the domain ¢ into the domain

Qo ={o=(nm) €R®: 0<m<L 0<a<h(a)=h(e, =)},

then we introduce a second scaling
Z2 22
he(z1)  ehs(x1)
which transforms the domain . into Q = {y = (y1,y2) € To x (0,1)}. With the chain
rule, we get easily the following relations
< Yo 3h€> 0
he(y1) Oy ) Oy2

9 1 9 9 9oy 0 op .
2
) aha) Y1
3.3 — (1,2 % =b.-V.
3:3) ( he(y1) Oy _)

(3-2) Y1 = 21, and gy =

0z eh*(y) Ay’ Dz Oy dm  Jys 0m




16 Asymptotic analysis of a micropolar fluid flow

Now we define the functional setting in Q: let I'y = {(y1,72) € Q: w2 =1} and

V ={veC®Q)?: vis L-periodic in 1, U, = 0, —&(h®) (y1)v1 +v2 =0 on Ty}
V = closure of V in H'(Q) x H*(Q)
H'={ZeC™@Q): Z is L-periodicin y1, Z=0 on [oUT;}
H = closure of V in L*(Q) x L*(Q), H' = closure of H! in H'(1),

H° = closure of H' in L?(9).

In order to avoid new notations, we have still denoted by v¢, Z¢ and p° the un-
known velocity, micro-rotation and pressure fields as functions of the rescaled variables
(y1,2) instead of (21, 22). Similarly, we still denote the data by f° and £° considered
now as functions of (y1,y2).

Let © = (p,9) € V x H! and let ©F = (¢,%°) € VE x H'¢ be given by

Z2

©*(21,22) = (Zlv ahfi(Qzl)) ;o Y(z1,22) = <21, m) V(z1, 22) € Q°.

Using (3.3) we obtain that

—c ) t) 05 (t 0Z°(t &pa
a(v°(t), 07) = (v + vr) Z /E 8zj 0z d ta Z/ 821 821

1_71

+a / ((bg VZH0) (b V) +

_(wtw) s eb. - Vot (8))(eb. - Vo, ] '
- /Q;(( be -V ()(ebe Vi) + Ga g

B +2 [ (e 2O Vo) + iy

B(0°(t), 0°(t), ©%) = b(v=(t),v*(t), ¢°) + bu(v° (1), Z°(1), ¥°)

2 e (t 2 97
— /( 5 Z v (t) gjz(i)cp;derZ /( Evf(t) ngt)q/ﬁdz

7,j=1 =1

V5 ove
va(t) (ebe - VU5 (1)) @5 + 2(:) a]y(;) cpj) hedy

= ; vs(t) 02°() 1\ .
(Z vi(t)(ebe - VZE(6)) + e o w) hedy

(3.5) = B(v
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R0,07) = -, [ (Pl 0200 ) (250000 ey,

Qe 0z #1 Dz 2 021 0z

rav, [z Owds =, [ (25 D1 o092 0)en) 1oy
. he Oy

5 1 6’1}1( ) 5 £ 5
_QVT/Q ((Eba -Vus(t)) — W O )’L/Jh dy+4urs/QZ (t) hedy
(3.6) = R(v°(t), ©).
Using Lemma 2.1 we have U®(t, z2) = U(22)Uo(t) = U(y2h*(y1))Uo(1), so

b Ui n)) = (0 = 22 55 ) o) =W o o) (e — 225
(3.7) =0,

and similarly for We(t, z2) = W(2 )Wy (t) = W(y2h* (y1))Wo(t), so

(3.8) be - VW (y2h? (y1)) = 0.

Then

a(é5,0%) = (v+vy) VU (z2,t)e1Vp©dz + « VW8(ZQ, )Viyedz
QE

oU® 0¢5 8W581/)8
v+, /EZ 0z; azzd o /EZ 07 azz

dip1
h)he—=—— | eh®dy
Z/f( Y2 ) ay )E

=W+ ur)Uo(t)/

((bs -VU) (b - V1) +
Q

1
(ehe)?

+aW(t) /Q <(bE-VW)(bE~V1/;)+ W’(yghs)hsg—i) ehfdy

b
(eh®)?
(V + VT)

o T
3:9) = 0000 [ wah) Gy + W) [ W ah®) 5 dy =
Q Y2 € Q

L €
- 8y2 ga(f 0).

We have also

B(¢&°,7°,0%) = b(Uer, v°,¢%) + b1 (Uer, Z°, )

2
ovs 0z¢
= / > U pidz + / Us——1*dz
Qe = 821 Qe 821

(310) = Us(t) / Uyl (Dsbs V05 )is + (ebe - vzw) Wedy = B(E,1°,0),

B(v°, €%, 0%) = —B(v°, 0%, £°) = —b(v", ¢, Uael)—bl( 5, W)
2

— 580 €
772/95 l@szd 72/55 Z@zl

1=1

-0
= ~0alt) [ i) (v5(ebe - Ve + 1 65”1) O
Q

(3.11) “wale) [ Win) (viCeh. Tone + 55" ) dy = B 0)

)
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R(&F,07)

1 0
—2v,. Wy (t e h®) — (b - VW) h=d
v Wo( )/Q (501 che ayQW(yQ ) —( W) 2> eh-ay

1 0
—QVTUO(t)/ (— e a—U(y2h8)> wshady—l—éluTWO(t)/ W(y2h® ) eh®dy
Q € Y2 Q

= —2v,Wo(t) | W' (y2h®)p1h®dy + QVTUo(t)/ U' (y2h®)iphedy
Q Q
(3.12) +41/TW0(t)/ W(y2h®)peh®dy = 7@({5,@),
Q
and

(3.13) (p°(t),div ¢°) = /

0=

pe(t)div p°dz = /

5 p°(t) ((sbs Vi) + i—) hedy.

LEMMA 3.1. Using (3.1)-(3.2), the variational identity (2.17) written in Q° leads
to the following one in §:
dge

5/ dv (t)OThedy + la(aeu),@s)+B(a€(t>,@f(t>,®€)+7€(a€(t),@€) =—c | = (t)O°hdy
Q dt 19 Q dt

—ZA(E(1),0°) — BIE (1), 1°(1),0°) — B (1), (1), 0°) ~ R(E(1), 0°) + ¢ /Q Fe(ne°hedy

1 0¢5
(3.14) +/ p°(t) | (ebe - Vi) + — 9 hedy, VO = (¢°,¢°) € Ve x H"¢,
Q he Oy
where 4, B, and R, are defined by (3.4), (3.5), and (3.6) respectively.
Proof. Indeed, from (3.4)-(3.13), the variational identity (3.14) follows. O

We prove now the following uniform estimates, with respect to e:

PROPOSITION 3.2. Assume that €2f¢ and ety are bounded independently of € in
(L2((0,T) x Q) and in (L*(Q))? respectively and Uy € H'(0,T), Wy € H'(0,T).
There exists a constant C > 0 which does not depends on €, such that, for i = 1,2,
we have the following estimates:

(3.15) (b - V7)) L2((0,7)x ) < C, [(ebe - VZ9)|L2((0,1)x) < C
oy 0z¢
(3.16) ||ay2 20,y x0) < C, I 995 20,7y x0) < C,
s c 07 c
(3.17) H6y1 20,1y x0) < ’ [ o 20, 7)x0) < =
(3.18) 105 | L2 0,7y x ) < C, 2% 20,1y x2) < C.

Proof. Taking ©° = v°(t) in (3.14), and observing that B(v°(t),v°(t),v°(t)) =
B(&(t),v°(t), v°(t)) = 0, we obtain

d

e— [ (v°(t))*hedy + (Cal)) / (ebe - VU§(t))*hedy + ()] / (ebe - Vs (t))*hedy +
2dt Q 9 Q 9 O
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2 f <%5§;t))2hady+4we [ zwricay =, | ( g; ~ (e - VZE ) f(t)ha) dy
s [ <<ebg~w;<t>>zeu>h€ e )dy EE2Due) [ e i) Sy

Q
& / < 0Z°(1) / €\, € B ’ e\ 7e €
—EWO(t) QVV (y2h )a—dey + 2u, Wy (t) QVV (y2h®)v5 (t)hedy — 21, U (t) QU (y2h®) ZE ()R dy

e Walt) [ W2 Oy + Un(t) [ tah) (0D - Tui0IA + 0500 T ) dy

() [ (v5(0(ete - 2 ORI + 5075 W) )

~—

Uy (t) / Uyl )05 (OR°dy — W3 (1) / W(yah?) 2 (t)h°dy
(3.19) te / GO Z5(t)hdy + ¢ / (FE(EE () + FE (05 () hedy.

Now we estimate the right hand side of the above inequality (3.19).
Let A; for 1 < j <16, which must be some strictly positive constants, such that

OZ°(t 1 0Z5(t
32020, | [ 22D i )] < S 25 )+ enMa i O
VT
o, | [ (che -2 @) sy < Slebe V2Ol
Q 2
(3.21) +VT5)‘2h?\/I|‘U§(t)||2L2(Q)’
1Z
o, | [ (ebe usio) 2 ey < Sl Vos0) e
(3.22) +5)\3Vrh 125 ()1 72(q);
Ovi(t 1 Ov
323 2| [ B0 2] < 217 OO )+ oM 22O e
1 o5 (t) Uo(t)? ||U/HL2(Oh SharL
- U’ (y2h®)——=—>dy| <
c /QUO( )u (y2 ) ayQ ‘ 25)\5(V+VT)
As(v+ ) 1 Ovi(t)
(3.24) == 305 1220
a 0Z=(t) aWo(t)? ||W/HL2(Oh oL
— W' (t hedy
| [ watow i) 27 Dy < L
/\ o, 1 0z°
(3.25) = H ()HLZ(Q)
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vy Wo(t)? HWlHiz(o,hm)L
elthy

2u,.

Wo(t) /Q W’(yzha)vi(t)hfdy‘ <

(3.26) +ur Az vs (D)7 20

v Uo (O U 1720,y o L
EAg
(3.27) Jr1/7“>\8{':||Z6(t)>2||2L2(Q)7

2v,.

V(1) u,(thg)Zg(t)hedy‘g
Q

cUZ ()| U2 h2 N
() [ wi0)ebe - Tuitoutncay| < PO g

1
(3.28) +m|\(€be : VUT)HQN(Q)a

vy 1 1 0v
£ € 71
() [ 15055t < il S e

AoU, 2 h2
+5 10 O( 2”“”00 M||U§

(3.29) ONI720):

1
‘Wo(t)/ vi(t)(ebs-VZE)W(yzhE)hEdy‘ < oo llebe - V29 Ee )
Q 5)\11

A WEOIWILN
(3.30) 2Ol ey 2
0Z¢ 1 1 0z¢
Wo(t S(t h®)d
Walt) [ o505 Wn | < i G e
AW OIWILAS
(3.31) 0 5 M o5 ()72
2ueW, w ha L
dve Wo(t)/ W(yghE)ZE(t)hEdy‘ < o(®)?] ||L2(0h M
Q A13
(3.32) +2e 13, ]| 25 (1)1 720
3
£ |Usto) [ wtmnytmeds] < SO0
(3.33) OF U320,

e|Ws () QW(yzhE)Zs( )hedy| < h Ml 25017 q)

(3.34) +m|wé(t>|2”||W|‘%2(0,hm)'
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Finally

hat

o| [z 0| < 12 ey |27 e

By using Poincaré’s inequality and the boundary conditions (2.12)-(2.14), we get

||z a.e. in (0,7,
and
15 € € hIV[ 2 ¢
el g7 ()Z°(t)h7dy| < —H5 g
0
h? 8Z€
< %HEQQ HLZ(Q)H HL 2(Q)
iy o e )\14 1 0Z¢
(3.35) < m”f 92 ) + 2_5Hh5 HLZ(Q)
Similarly
h,4 2 A15 1 81}1
336) | [ FrOui©Rd) < SPEIH e + 52l G e
and
h4 )\16 1 0v§
1) el [ Bensondy] < 2125 e + 2l e e

So from (3.19) and (3.20)-(3.35) we get

£ Cc1 C2
——( ")) + — llebe - Vo (0)I720) + = (e be - VU5 (1)] 720
2 dt €
1 GZE(t 1 0v5(t) o 1 0v§(t)
| %200 —H B 1220 + | 2 WHL @
c co(t
(3.38) +§H<e b W(t)ﬂ%zm) e 20 g < sl @) + <0
where
(v +vr)h - W+ vp) gy — =
=(v+v — =(v+v —
C1 r)Itm 2>\9’ C2 r)Itm /\35
Uy )\6CY 1 )\14 )\5(V + 1/7«)2 Uy 1
A N — 2T
oo N2 oy, 2 AT 2 M 2M\o
A6 1 Vr

05:(1/+1/T)hm77, cg = ahy, — c7 = 4hy — Ag — 213,

201 Ao
cg(t) = max{A(t), B(t), h2,(1 4+ A3 + \s)}

with

AU UNZ. + A1 W2t 2
A(t) = hiy (1+m1+m7+ oUs (D ”°°+2 = 0()”W|°°)
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1 AoUZ(t 2 A 2(t 2
B = 2, <§+W+ WU UE 12W0<>|W||00>

2 2
and
co(t) _ Us O 122 0,1,y Pt L N v UG ONUNIT 2 0,5,y e L N aWgO)IW'l|32 0,5, e L
€ 2e)s eXg 2e)6
VTW(?(t)HW/H%Z(O,hm)L N 21/7«5W0( HWHLQ 0 hm)hML N |U’(t)|2||u||2
eArhyy s 2ha !0 L2(0,hm)
el hi, ( 1 1 1
+ W W 2 + —EQEt 22 +—€28t 22 +—€28t 22 )
= WSO 0 + B2 (5 I O ) + 5 I O ) + 5 10" (O ey
Each ¢; for i =1,---,6 must be strictly positive, which is possible for example with
4v, 1 vh,
1 2 Oéhm, 3 4 h/m’ 5 2(V+I/T)2’
hom 4 2 2
A6 = Ag = A3 = — Ag = Mo = — Mi=Nop = ——
6 = A8 13= 5 9 W+ o) 10 Vh 11 12 ah’
ahy, vho, v+ ve)hm
Ay = —— Ay = —— Mg = ———
14 8 ) 15 4 9 16 2

Note that A7 remains arbitrary and can be taken as Az = 1. So from (3.38) we get
e£d
2 dt
As Uy and W belong to H*(0,T), then cg is bounded in L*(0,7T) independently of &

and by Gronwall’s lemma we deduce that there exists a constant C' independent of
such that

([0°())) < 2er(OT° ()] + es(2).

(3.39) ()2 <C Vtelo,T].

Now we integrate the inequality (3.38) over the time interval (0,s) for 0 < s <T', we
deduce

e? s
3[”5(5)]2 + 01/0 (e be - Voi(®)l|72(q) + (€ be - VU5 ()] F2(0) + (€ be - VZ5()[|72 (gt

1 0Z4(t 1 ov 1 ov
400 [ 1 T B + e e Iy + g i oyt

340) s [ 2Oyt < | SC7(t)[5€(t)]2dt+ | i+ S0,

where C7 = min{cy, ¢a, ¢}, Co = min{cs, ¢4, ¢5}, are two constants independent
of e. Observing that ¢; € L°°(0,T) and

1 ove(
/ /( s ) dydt > h2 H ||L 2((0,T)x Q)

we deduce (3.15) and (3.16) from (3.39). Moreover, from (3.3)

o yo Oh O . Oh® oh 1 0h C
41 b V=— — &= ——— th = <z
(3:41) v W | oY1 = |8y1 edm ~ ¢
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Thus we have

2 T 2
(t) yoe OhS 61)-8(15))
dydt = be - Vol (1)) + 222 i dydt
/ /(z( 3y1 ) Y /o /sz((g v he Oyr Oy Y

C | ovf
< 2||(ebe - Vo§)l|Z2((0,7yx ) + 2 I || HLZ((OT)xQ)

and a similar estimate holds for Z¢. Finally with (3.15) and (3.16) we deduce (3.17).
Next, using again the boundary conditions (2.12)-(2.14) and Poincaré’s inequality, we

get
105 122 02y < /

and we deduce (3.18) from (3.16). O
PROPOSITION 3.3. Assume that the proposition 3.2 holds. Then there exists a
constant C' > 0 which does not depends on €, such that we have

2d dt = H ||L2((o T)x )

(3.42) Ellp a-10,722(0)) < C-

Proof. Let ¢ € D(0,T) x D(R), then choose ©® = (0, ¢(t),0) as a test-function in
(3.14) and multiply the two sides by &: we obtain

/ dydt — / / hsd dt
Q 3y2 Q

1 0v§ Oy

2 T
Y+ he (ebe - Vo5) (ebe - Vo) + — 222 L8N g
(v ”>Z/ /( (cbe - Vu5) ebe - Vi) hgamm) )
. Bs
//(stl (ebe - Vv5)ph Jrsta
Q

=1

(3.43) +/ /U€(€b€~Vv§)gpsh€dydt—/ /EQfQEgphEdydt,
0o Ja o Ja

with Ue(t,y) = Uo(t)U(y2h®(y1)) for all (¢,y1,y2) € [0,T] x Q. Using (3.15)-(3.18),
we get

)dydt+2l/r/ / (ebe - VZ7)peh®dydt
Q

(3.44) | / / dydt|<—||w||H1(0THl<m> Vi € D(0,T) x D(Q).

Now let ¢ € D(0,T) x D(2) and choose © = (,%,0,0) as a test-function in (3.14),
then multiply the two sides by : we obtain

1 Oh° 0¢
- 2 dydt = — e 27 dydt
//Q <ay1 ay2< h86y¢’>> y 5/ /Q 1ot W
06 Ohc 1 18h€ ¢
1/+1/T/ /Q e(ebe - Vi) <8y1 o ha(bf 2 oy >

T 1 0vf o
+(V+Vr)/0 /Q (h?)2 Dys 8y2 / /Q (Evl Eb V’Ul)(b—i— he 2 )
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U, 7 T
B / / = / /

vV Vr —dydt — 2v, odydt eU.(ebs - Vi) odydt

( ) 0 Jo (ha 2 Oy2 Oy q he 0ys Yy o =(ebe 1)ody

T ohs 1 ohs 1 9¢ L)
2 a _r _ _
/0 Q (3311 oy h€¢ *By, he By, ) Uedydi / / he 23 Uedydt

(3.45) 72%/0 /hl %Z pdy dtf/ /<f‘f¢ 3U8¢>> e2dydt,

where W (t,y) = Wo(t)W(y2h(y1)) for all (¢,y1,y2) € [0,T] x 2.
Using the estimates (3.15)-(3.18) and (3.41), we infer that

1 oh® C
|/ / (3311 dy» ( *he Ay ¢)) dydt| < §||¢HH1(0,T;H1(Q)).

~¢ in (3.43), we get

By choosing now ¢ = y» hls

6.7!1
dp _ LOh06 Dp 10N (. 0
ot~ Phe oy 0t dys  hf O Y2 5y,

and

1 (o ¢ L (o°he  OhF 99
ot () (e ) o (S B ).

Hence

Q

0

%) C
lellze=.rsrs) < ZNelaomm @y, N5 20 mxe) < ZlIella omm @),

0

7 <
|| ay2 ||L2((0,7 )X&Z) =

Qm

C
zH(b”Hl(O,T;Hl(Q)); llebe - Vol 20,1y x0) < zH(b”Hl(O,T;Hl(Q))

and with (3.43)

1 Oh® C
|/ /Q E <y2 = oy ¢> dydt|§§||¢HH1(O,T;H1(Q))-

It follows that
T _o¢ c

(3.46) | / / P 5dydt] < S 6llm oy V6 € DO.T) x D).
0o JQ Y1 €

By density of D(0,T) x D(S2) into H(0,T; H}(2)) we get from (3.44)-(3.46)

C p
(3.47) H HH vo -1 @) < =5 5 —lla-107mm-10) < -

€ oy €
Finally we can deduce [28] that 2p® remains in a bounded subset of H~1(0, T’; L*(Q)).
g

4. Two-scale convergence properties. Since our unknown functions depend
on the time variable, we are not in the classical framework of two-scale convergence
as it has been introduced by G. Allaire in [1] or G. Nguetseng in [25]. Nevertheless
this technique can be easily adpated to a time-dependent framework (see for instance
[24, 18, 17, 29]). For the convenience of the reader we will provide a complete proof a
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the generalization of [1] that will be used later for the study of the sequences (v°).~0,

(Z%)e>0 and (p°)=>o0-
Let us recall the following usual notations: Y = [0,1]?, C°(Y) is the space of

infinitely differentiable functions in R? that are Y-periodic and

L3(Y)

L;(Y)=C¥(Y) ', H/(Y)=CF(Y)

H(Y)

REMARK 4.1. The space Lﬁ(Y) coincides with the space of functions of L?(Y)
extended by Y -periodicity to R?.

We extend the definition of the two-scale convergence as follows

DEFINITION 4.1. A sequence (w®)z0 of L*((0,T)xQ) (resp. in H='(0,T; L*(Q2)))
two-scale converges to w® € L?(0,T; L*(Q x Y)) (resp. w® € H=(0,T; L*(Q x Y)))
if and only if

T T
. € Yy
hg%/ /w (t,y)p (y—) 9(t)dydt=/ / w’ (t,y,m)e(y, n)0(t) dndydt
€ 0o Ja € 0 Jaxy

forall € D(0,T), for all p € D(Q;C&’O(Y)). In such a case we will denote w® — wP.
Then we obtain
THEOREM 4.2. Let (w¥)eso be a bounded sequence of L*((0,T) x Q) (resp. in
H=1(0,T; L*(Q)) ). There existsw® € L*(0,T; L*(2xY)) (resp. w® € H=(0,T; L*(Qx
Y))) such that, possibly extracting a subsequence still denoted (w®)e~q, we have

w® = w'.

Proof. The proof is similar to the proof of Theorem 1.2 in [1]. Let us assume
first that (w®)eso is a bounded sequence of L*((0,T) x Q). In our time-dependent
framework we consider test-functions ¢ € C([0,T];C(Q;C;(Y))). Furthermore, For
any ¢ € C([0,T];C(Q;C;(Y))) and for any fixed € > 0, the mapping (,y) — ¥°(t,y) =
) (t, Y, g) is mesurable on (0,7") x £ and satisfies

1/2
y
1%l 2 (0,7) %) (/ / f Y 2 dydt) < VTS lle o, rye@vc, (v)))-
o /
Hence we can define A € (C([O,T];C(Q;Cﬂ(Y)))) by

A= [ [ wrenpe (oY) dude v eC(0.T:CEC)).

Since (w®).>0 is a bounded sequence of L? ((0, T)x Q), we infer with Cauchy-Schwarz’s
inequality that there exists a real number C' > 0, independent of €, such that

|A()| < [lw¥]l 20,1y <) 1% | L2 0,7y x2) < Y|l L2((0,7) x2)

(4.1) < CVTIYlleqo,rye@e, )

_ o ’
for all ¢ € C([0,T; C(S% C4(Y))) and the sequence (A ).~ is bounded in (C([O,T];C(Q;Cﬁ(Y)))) .
Reminding that C ([0, T];C(;C4(Y))) is a separable Banach space, we infer that there
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_ ’
exists Ay € (C ([0, T];C (2 Cy (Y)))) such that, possibly extracting a subsequence still
denoted (Ag)eso,

(A:) = Ap weak * in (C([O,T];C(ﬁ; Cn(Y))))/
Ehg(l)/ / (t,y)v t Y, ) dydt = Ao() Vo € C([0,T];C(Q;C4(Y))).

Observing that, for all t € [0,7T7], ¥?(t,-,-) € L'(Q;C4(Y))), we can also use Lemma
5.2 of [1], which yields

lim A (1/1 (t,y, g))Q dy = /Qxy(z/}(t,y,n))andy vt € 10,T).

e—0

Then, using Lebesgue’s convergence theorem, we obtain

(4.2) &11_%/ / ty, dydt:/OT/Qxy(z/J(t,y,n))andydt.

With (4.1) and (4.2) we get
‘A0(7/’)‘ < ClYll 20,02 0xyy) VY € C([O,T];C(ﬁ; Cti(Y)))-

I
It follows that Ay can be extended to (L2 (0, T; L?(2 x Y))) and with Riesz’s repre-
sentation theorem we infer that there exists w® € L2(0,T; L*(Q x Y)) such that

T
Ao(®) = / /Q Wyt ) dndyde V€ (0.7 L@ x V)

which allows us to conclude for the first part of the theorem.
Let us assume now that (w®)e¢ is a bounded sequence of H~! (0, T; LQ(Q)) and
let
Co ([0, TT; C(%:.C4(Y))) = {0 € CH([0, T C(2 C4(Y))); 400, 9,m) = (T, y,m) =0 V(y,n) € Ax Y},

It is a closed subspace of C* ([0, T]; C(Q; C4(Y"))) for the usual norm of C* ([0, T7; C(€; C4(Y)))
and for any ¢ € C§ ([0, T];C(5C4(Y))), we have

9 1/2
19 1 e 0,1522() </ / ty,y dydt—i—/ / ( ty,— ) dydt)

S VTP ller o, 110 @uc, (v)))-

o /
Furthermore, we may now define A, € (C01 ([0, T);C(%; Cﬁ(Y)))) by

A = [ [ wrttpw (o) due o (0. Th @),
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Since (w)e>o is a bounded sequence of H~1(0,T; L*()), we infer that there exists
a real number C’ > 0, independent of &, such that

A=) < [l 10,2 1910722 (0)) < O W%l 0.1:220)) < C'VTIUGller o me@es vy

_ _ I
for all ¢ € C} ([0, 7];C(2;C4(Y))) and the sequence (Ac)z~g is bounded in (C& ([0, T];C(% Cu(Y)))) .

Since C'([0,T];C(Q;C4(Y))) is a separable Banach space, we can conclude in the same
way as previously. O

REMARK 4.2. We may observe that this proof shows that we can choose test-
functions in C([0,T]; C(Q; C4(Y))) (resp. inCG([0,T];C(;C4(Y)))) instead of D(0,T)x
D (Q; Cé’o (Y)) .

Then the convergence results for the velocity, the micro-rotation and the pressure
are given in the following three propositions.

PROPOSITION 4.3. (Two-scale limit of the velocity) Under the assump-
0

2
tions of Proposition 3.2, there exist v° € (L2 (0, T; L% Hﬁ1 (Y)))) such that gi €
Y2
2

2
(L2 (0, LX(Q x Y))) and v! € (L2 (0,75 L2(9 x (0,1); H(0, 1)/R))) such that,

possibly extracting a subsequence still denoted (v°)c>0, we have for i =1,2:

0 Ouf oo ovl
Ty

4.3 v; = v, : : L,
( ) 7 2 ay2 ayQ 67’]2
and

ovs ov?
4.4 e—4+ —» —L.
(@4 dy1  Om

Furthermore v° does not depend on ny, vV is divergence free in the following sense

oY oh oY 0_1)8

4.5 h(y1, — —yo— (y1, — + =0 in (0,7)x Q x (0,1),
(4.5) (11 771)8771 v (11 771)8y2 91 in (0,77) (0,1)

and

(4.6) v°=0 on (0,7)x Ty x (0,1),y = (0, L) x {0},

oh
(4.7) —v?%(yl,m) +v9 =0 on (0,7)x Ty x (0,1),Ty = (0,L) x {1}.
1

Proof. The first part of the result is a direct consequence of the previous theorem
and is obtained by using the same techniques as in Proposition 1.14 in [1].
g £
Indeed, from Proposition 3.2 we know that (v5)cs0, (8&) and (5 L )
02 ) .o 1) e~
are bounded in LQ((O,T) X Q) It follows that, possibly extracting a subsequence,
they two-scale converge to v, €2 and & respectively, i.e.

(4.8)lim /OT/Qvf(t,y)w (yg) o(t) dydt=/OTAXyU?(t,y,n)w(y,n)e(t) dndydt

e—0
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y, 0(t) dydt
Q 592 ) )

(4.9) :fgg%/ /Q (t,y) < (v, y)+igfg (v, g)) 0(t) dydt

:// & (t, y,n)e(y, n)0(t) dndydt
0 QOxY

iy [ ] gy 002 (0 2) o0
(410) = 7;13%/ /Q (t,y) ( % g ;‘Z (y g)) 0(t) dydt
n)0

/0 /QX & (t,y: )y, )6 (t) dndyd

e—0

and

) dydt

for all @ € D(0,T), ¢ € D(C5°(Y)). From (4.10) and (4.8) we obtain

[ w2 )

(4.11) / /Q><Y :;(y n)0(t) dndydt

:// &ty m)e(y, n)0(t) dndydt
0 95°9%

for all € D(0,T), ¢ € D( Cé’o(Y)) which implies that &} =

Y)). Thus (4.4) holds.
Similarly, by multiplying (4.9) by e and taking into account (4.8) we get

T T
hm/ /vft’ e “ddt:O:// V(¢ y, m) 5 (y, n)0(t) ddydt
=0Jy Jo ( y)am (y 5) (t) dy oy ( yn)am(y n)0(t) dndy

and thus v? does not depend on 72. Moreover, by choosing ¢ independent of 7 (i.e
» €D(Q)) in (4.11), we get

80

€ L*(0,T; L*(Q x
om

T a,UO T
/ / a—l(t, Y, m)p(y)0(t) dmdydt = 0 = / / (v(t,y, 1) — ) (t,9,0))p(y)0(t) dydt
0 Jax(o,1) 9N 0o JQ

and v) € L?(0,T; L*(%; Hul(Y)))
Next, by choosing ¢ € D(Q x (0, 1)) (i.e. ¢ does not depend on 1), we obtain

lim / [ing” 1) dydt = / [ oem) 5 nn)00) dndga
e—=0 Q Q><Y 0y
—/ / &t y. )y, m)0(t) dndydt.
0 Qxy

Hence

/ /Q><Y ( (tym) +& (t’yﬂ?)) ©(y1,y2,m)0(t) dndydt = 0.
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It follows that there exists v} € L?(0,T;L?(Q x (0,1); Hﬁl(O, 1)|r)) such that

s 0o O ov}
T 0= L i
A2 dy2 Oz
and the second part of (4.3) holds.
Now, let ¢°(2) = ¢ (Zl’gh:i(Qzl)’%) for all (z1,2z2) € Q°. Recalling that

div,v® = 0 in Q°, we get

T a’l}i afvg R
- /0 /QE <521 (t,2) + Dzo ®, Z)> @ (2)0(t) dzdt
! € 8808 £ 890
- /O /QE <v1 (t,2) o (2) +v5(t, 2) 3es (z)) 0(t) dzdt
(V70 T2) )+ 050 ) o 5 0)) )00 gt
eh®(y1) Oya
:_/T vi(t,y) Eh(yl 2)5_@(3/ g)—f—h(yl 2)5_90@ Q)
o Jo e ) oy \Te o) o V2
oh Y1 oh U1 a(p g
Y2 (anl (yla c ) + (9’)71 (yl; c )) ayg (y, 5)) 9(15) dydt
T . y
a 2 t a, y 9 t d dt
/O Q’UQ(vy)ayQ (y 5) () Y

We pass to the limit as € tends to zero:

0

T
690 oh %) )
0=— O(t,y, h(y1,m) == (g, m) — yo—— (y1,m) == (y, 0(t) dn dydt
/0 /QX(OJ) vty 771)( (1 771)8771 (y,m) . (11 m)ay2 (y,m) ) O(t) dnydy

T
0
—/ / W9ty ) o (g, )O(E) d dydt
0 Jax(0,1) Y2
T 0 0 0
ov oh ov ov
= h ’ 1t57 - a_ ) —1t,7 +—2t,, ) y 0(t) dn dydt
Lo (s G ) = o ) Gk o) + G2 ) oty )00t

which gives (4.5). But, taking into account the boundary conditions on v®, we may
reproduce the same computation with ¢ € C* (Q; Cye (0, 1)) such that ¢ is L-periodic
in y1, so with (4.5) it remains

T
oh
// <v?(t,y,m)—a (yl,mva(t,y,m)) o(y,m)0(t) dydy.dt
0 JI'1x(0,1) m

T
*/ / 05 (t,y, m)e(y, m)O(t) dmdyrdt = 0.
0 FUX(O,l)
We choose more precisely ¢©(y1,y2,m) = @(y2)@(y1,m) with ¢ € COO([O, 1]) and
@ € €2 ([0, L]; C22(0,1)). With (1) = 0 and $(0) = 1 we get first
v3 =0 on (0,T)x Ty x (0,1).

Next with ¢(1) =1 and ¢(0) = 0 we get

h
+0v9=0 on (0,7) %Iy x(0,1).

0
Y —
1 6771
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Finally, let ¢ € D(O,L;C&’O(O,l)) and ¢ (y1,y2) = @ (yl, i ) (1 — yo) for all

(y1,y2) € 2. Taking into account the boundary conditions for v§ (see (2.12)-(2.14))
we have

61}1 // Y1
o ()0(t) dydt = vi(t L) 0(¢) dydt.
//Qay2 Y Ui Y@ y1 )()y

By passing to the limit as € tends to zero we obtain

T 0

ov

/ / e L(t,y,m)e(yr,m) (1 — y2)0(t) dny dydt
Qx(0,1) 9Y2

T
:/ / 0} (, v, m)e(y1, m)0(t) di dydt.
Qx(0,1)

It follows that
T
/ / oY (g, m)e(yr, m)O(t) dmdydt = 0
T'ox(0,1)

which implies that v9 =0 on (0,7) x Ty x (0,1). O

Similarly we can define the two-scale limit of Z°.

PROPOSITION 4.4. (Two-scale limit of the micro-rotation field) Under the
assumptions of Proposition 3.2, there exist Z° € L? (O,T;LQ(Q;Hﬂl(Y))) such that

0z°
s € L*(0,T; L* (2 x Y)) and Z* € L*(0,T; L*(2 x (0,1); H{(0,1)z)) such that,
possibly extracting a subsequence still denoted (Z¢)z~0, we have

0z* VAR A

4.12 Z¢ — 79, - =+ ,
(4.12) 0y Oy2 ~ On2
and

VA YA
4.13 oL 94
(4.13) o0 o

Furthermore Z° does not depend on 12, and Z° =0 on (ToUTy) x (0,1) x (0,7T).
Proof. The first part of the proof is identical to the proof of the previous

proposition. Let us establish now the boundary conditions for the limit Z°. Let

0 € D0,T), ¢ € C (Q Cye (0, 1)) such that ¢ is L-periodic in y; and we define

< > for all (z1,22) € Q°. With the boundary conditions
(2.12)-(2.14) for ZE We get

oz, 8

/ /(E 6,22 (2)0(t) dzdt = / /seZ
GZE Y1

- ZE(t,y) =X t) dydt = v, 22 0(t) dydt

/o/g (y)ayz //8y2 6)()y

and taking ¢ — 07 we obtain

YA
/ / ( (t,y,m) + —(t,y,n)) o(y,m)0(t) dm dydt
axy ona

0
—// Zo(t,y,n1)ai(y,n1)9(t)dn1dydt-
0 JQx(0,1) Y2

(2)0(t) d=dt
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But the periodicity properties of Z' with respect to 75 imply that

/ / 5 s me(y, m)0(t) dmdydt = 0.
QxYy 772

Hence

r 07° r 0 O
—(t,y,m1)e(y, n)0(t) dpdydt = — Z7(t,y,m)=— (y,n1)0(t) d dydt.
o Jaxo,1) 9y2 o Jax(,1) 0y

By Green’s formula we infer that

T T
*/ / Z0(t,y,m)e(y, m)o(t) dmdydt+/ / Z°(t, y,m)e(y, m)O(t) dmdydt.
F()X 0,1 F1>< 0,1

Now we choose sa(yl,ymm) ¢(y2)(y1,m) with ¢ € €>([0,1]) and ¢ €
C*([0, L]; Cg°(0,1)), with (1) = 0, $(0) = 1 then $(1) = 1, $(0) = 0, we get

T T
0:/ / Z0(t,y,m)@(y1,m)0(t) dmdydt:/ / ZO(t,y,m)@(yr, m)0(t) dm dydt
FUX 0,1 F1><(O 1)

which allows us to conclude the proof of Proposition 4.4. O

Finally we can define the two-scale limit of p°.

PROPOSITION 4.5. (Two-scale limit of the pressure field) Under the assump-
tions of Proposition 3.3, there exists p° € Hﬁl(O,T;LQ(Q X Y)) such that, possibly
extracting a subsequence still denoted (p®)c>0, we have

€2ps _y pO.
Moreover p° depends only t and yi, p° € Hﬁl(O,T; Hﬂl((), 1)) and satisfies

L 1
/ P°(t, y1) </ h(yl,m)dm) dyr = 0 almost everywhere in (0,T).
0 0
Proof. The first part of the result is an immediate consequence of the estimate
(3.42) (see Proposition 3.3). From proposition 3.2 and (3.43) we know that there

exists a constant C' > 0, independent of €, such that for all ¢° € H} (0, T, H&(Q)) we
have

£

dydt
,y) dy 5t

<C <|<P ||L2(0 T;L2(Q)) T € )
L2(0,T;L2(R))

£

<|<P | Lo 0,m524()) + ll€be - Vol 20,1522 (0)) + H ) .
L2(0,T;L2(Q))

)

Now let ¢ € D(Q;CEO(Y)) and 0 € D(0,T). We define ¢°(t,y) = 0(t)p (y, %) for all
(t,y) € (0,T) x Q and we get

T ) 52p€(t,y) <g—i (t ) + 53790 (t 1, g)) o(t) dydt

(4.14) < O@E) + Cllflloogory, H

e llo@cy vy
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We multiply the two members of this inequality by ¢ and we pass to the limit as ¢
tends to zero. We obtain

/ / (t,y,n) 9o —(y,n)0(t) dndydt = 0.
Q><Y 7]

Hence p° does not depend on 1,. Now we consider ¢ € D(Q;CB’O(O, 1)) (i.e ¢ is
independent of 77) and we pass to the limit in (4.14) as & tends to zero. We get

0
/ / O(t, y, n)aw (y,m)O(t) dndydt = 0
Qx (0, 1) Y2

which implies that p° does not depend on 5.
Now we take © = (¢°,0,0) in (3.14) and we multiply by &: we get

a Yo Ohs a(pa / /
= hedydt = — had dt
/ / <0y1 he dyy Oy : ST
1 0v§ Op
. (ebe be — L7 ) dydt
+v+v / /Q< gbe - Voi)(e V@)Jrhaa 8y2> Y
ov§ 1 oU. 8@
evi(ebe - VUi )p®h® + evs )dydtJr v+, / / dydt
/ /Q< it ie 2 9yo o h® dyz Dy
*21/7«/ /6 @EdydtJr/ /Ug(sbg-va)cpsshsdydt
o Oya Q
/ /E’Ul (ebe - V© Uhgdydt—/ /51}2 QEVT/ / P dydt
0y
(4.15) / /( ) e?hedydt,
Q

where we recall that U.(t,y) = Up(t)U(y2h®(y1)) and W (t,y) = Wo(t)W(y2h®(y1))
for all (¢,y1,y2) € [0,T] x Q. With the results of Proposition 3.2, we infer that there
exists a constant C' > 0, independent of &, such that

“(t,y)(be - Vo) (t, y) R (y) dydt

£

)

<C <|(P€|L2(O7T;L2(Q)) + HEbE . VCPEHLZ(O,T;LZ(Q)) + H + ||50€||Loo(O,T;L4(Q))>

L2(0,T;L2%(Q))
0p*®

2
+Ce o

L2(0,T:L2(Q)) .

We multiply the two members of this inequality by £ and we obtain

( 9o (91,y2, y1) + %p (yl,y2, yl)) h (y1, %) 0(t) dydt

/OT/Qé‘Qpa(t,y)yz <€§—y}z (yuyl) + g: (y yl)) g—yi (yl,yz,%) 0(t) dydt

< O(e)
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By taking the limit as € tends to zero, we have

dp oh
ty,m) | 5— (w1, y2, m)h(y1,n y
/ /QX(O 1) 1) (3771( by (Y, m) - “om

Reminding that p° is independent of 3 and ¢ € D(Q;CB’O(O, 1)), we get

B
(yl,m)a(p (y1, yz,m)) 0(t) dnydydt = 0.
Y2

T
dp oh
0
p (t,y1,m (—y,n h(y1,y2,m y
//Qx(01) ( 1 1) 8771(1 1) (1 2 1) 2877

0 oh
/ / O(t, y1,m) (a—(p(yhyz,?’h)h(yh?h) + a—(ylﬂh)@(yhymm)) 0(t) dm dydt
Qx(0, 1) n

B)
(yl,m)a(p (y1, yz,m)) O(t) dm dydt
Y2

d(he
/ / PPt y1.m) é >(y1,y2,n1)dn1dydt—0
Qx(0, 1) m

Then for any ¢ € D(Q;CB’O(O, 1)), we may define ¢ = % € D(Q;Cé’o((), 1)) and we

obtain

T 0 a¢
/ / P (t,yl,nl)a—(y1,y2,771)dmdydt = 0.
Qx(0,1) m

Thus we can conclude that p° is independent of 7;.
Now let ¢ € C°(0, L) and 6 € D(0,T). We define ¢° by

ey Ply) o(Oh ¢ yi\ 10k v
(4.16) ©°(y) = h(y1, yl) <y261 + €ys <3y1 (yl, - ) + = 5(’)77 (yh 5) €

for all (y1,y2) € Q. We can check that ¢° € V and with Lemma 3.1, Proposition 3.2
and (3.43)-(4.15), we obtain

1 95
// (b VS + hsa—(ypz)hae(t)dydt

with a constant C' > 0 independent of €. Hence

/ / “(ty)ye (p( 1)0(t) dydt

We pass to the limit as € tends to zero:

< 0(e) + Clleb| L2((0,7)x (0,L))

< O(e) + Cllgb|| L2 (0,1 x (0,L))

O
O(t 0(t) dydt
Qp(,y1)y2ay (y1)0(t) dy

/ / (ty1)5 ( 1)0(t) dydt| < Cllebl12((0,7)x (0,1))
and we infer that p° € H~"(0,T; H/ (0, L)).

Finally, recalling that / p°(t, z) dz = 0 almost everywhere in (0,7"), we have

/ / “(t,y)h*(y)0(t) dydt =0 VO € D(0,T)
Q

and by passing to the limit as € tends to zero, we get

T
/ / P (tyr,m)h(yr, m)0(t) dmdydt =0 V9 € D(0,T)
Qx(0,1)

which allows us to conclude the proof of Proposition 4.5. O
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5. The limit problem. Now let us pass to the limit in equation (2.17). Tt is
convenient to introduce the following functional spaces:

V= {cp € (C(@¢2(0,1)))%; pis Loperiodic in y1, ¢ = 0 on Ty x (0, 1),

oh
—(pp]— =0 I 0,1
Sﬁlaersﬁz on I'y x (0, )}

~ ~ 3501 8h 3501 8@2 }
Viiw = eV, h—/— 4+ =—==0in Q2 x (0,1
! {90 om 3771 Oys  Oya 0,1)

= {1/1 € CW(Q;CQ’O(O, 1)); ¥ is L-periodic in y1, v =0 on (ToUT; x (0, 1)} ,

Vaiv = closure of de in L? (0, L,]-')
Hoﬁ = closure of H' in L? (0, L,]-')

with
F = {v € L*((0,1); H; (0,1)), g—; € L*((0,1) x (0, 1))} :

THEOREM 5.1. Assume that there exist [ € C([O,T];C(Q;Cﬁ((),1)))2 and g €
C([0,T];C (9 C4(0,1))) such that f and g are L-periodic in y; and

ety = f (t v, yl) . Sg(ty) =g (t,y, %) Y(t,y) € [0,T] x 9.

Then the functions v°, Z° and p° satisfy the following limit problem:
> 1 9v? By,

u—i—ur/ / ( b- Vv b- Vo, —
Qx (0, 1); ( o ) h Oyo Ay
102° oy
+a/ / ( (b-VZ%(b- V) + ———)Gdn dydt
won )¢ h s o) "
/ / — h<p1 0 dm dydt
Qx(0,1)
—(l/+1/r)/ / (h(B-VU)(Bng)Jrla—Uai) 0 dnydydt
Qx(0,1) h dys 0
—a/ / ( (b-VW)(b- Vo) + l—W 0 dny dydt
Qx(0,1) h 9y

+/ / ftph@dmdydt—i—/ / guho dn dydt
0 Jax(o,1) 0 Jax(,1)

for all ©® = (o, 1) € Vg X H&ﬁ and 6 € D(0,T), where b-V is the differential operator
defined by

) 0 dm dydt

9
0
_ Yo Ooh ) m
b-V=|(1,——F7"—"—— )
( h(y1,m) Om o Yo ™) )

0y
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and

Ut y1,y2,m)* o(OU (h(y1,m)y2) ,
W (t,y1,y2,m) = Wo(O)W (h(y1,m)y2)

fO’f’ all (t7y17y277717t) € [OaT] X Q X [05 1]
Proof. With the above assumptions for f¢ and g we can check immediately that

€2 £l 20,1y e < JWIU‘HC([OVT];C(M(M))), le? 9%l 2 0.7y x ) < \/ml\gﬂc([OﬁT];C(@Cu(O’l)))
and

e~ f ¢ >y
Let us recall that

9
€ 0
y2 Oh > Y
be - V=1[1———
( h#(y1) Oy (1) P
y2

Taking into account the convergence results of Proposition 4.3 and Proposition 4.4,
we get

ovs Yo oh Y1 oh ovs
ba : v g = L TR ) 9
che 07 = G~ (2 (1 2) + 22 (,2)) 2E)
oY ya  Oh <3v0 ov} > - o Y2 Oh Ov}
-t L (g m) + 2o (y,m) ) =BV i
an, ~(y,m) — hgn ) o ——(y1,m) 05 (y,m) s (y,n) .
fori=1,2 and
- Oh 071
b -VZE b.vz0 - L2 AIZ
h 6771 6772

Similarly, let ¢ € C*° (ﬁ; Cé’o((), 1)) and ¢°(y1,y2) = ¢ (yl, Yo, — ) for all (y1,y2) €
). We have

Gqﬁf Y2 (Gh Y1 1 0h Y1 ) Gqﬁf

be - Vo = - ) + =

¢ o (v) (2 \y (y1 ) o (y ) ayQ(y)
_00 Y 100y e (Oh o yiy 1O yiN) 06w
=20 (L) 4122 () h(yh%)(am(yl,e)+€an (m2)) 5 (1 2).
Now let § € D(0,T), © = (¢,1) € Vi, x H' and let ©F = (¢°, ¢°) with

c(s) = _m A 2 Oh( 2 _2 A

e (z) = (Zlashe(zl)a 5) + 7 (=1) Oy (21, 5 ) ¥1 (Zl’she(zl)’ B ) €2

z2

ha(zl)

and ¥°(z) = ¢ (zl,
from (3.4)

, 1) for all (z1,22) € Q°. We have ©° € V¢ x H"¢ and
€

T 1 0v? Op;
€ a ©%)0(t) dt — ( 1/+1/T// (va b-Vp;)+ —— l)@dddt
| ateo.e0)00 ) b Vi) + 5ot ) 6y
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102° o
+ hb VZO b \Y ———)9d dydt
a/ /(2>< ( v+ h Oya 0ya e

2
Oh Ovl\ - 1 ov} &pl)
+ vy > b-Vei)+ — 0 dndydt
S /0 /M ((yamanz)( ¥ 5 o0 0 e

i=1

on 071 1621 aw)
+ b-V)+ ————— | 8dndydt.
0‘/ /Qy(( Y2 G g )< L e

But these last two integral terms vanish since ¢, ¥ and h do not depend on 7, and
v! and Z' are ny-periodic. Hence we obtain

s/oTa(T)E(t),GE)@(t) dt — /OT&({)O(t),@)Q(t) dt

with 9° = (v, Z%) and

- 18vi8g0i
7,0) l/+l/r/ ( vaZ- b-V;)+ — >d dy
al > G-V + 3 5 G ) dm

. i 102 o0
ta h(b-VZ)(b- Vi +———>d dy
/Q><(O 1)< ( ) ) hoys 0y )

for all v = (v, Z) € Vg X Holua for all © = (p, 1) € Vg X Holu-
From (3.5) and the estimates (3.15)-(3.16)-(3.18) obtained at Proposition 3.2 we
get

g/T B(5° (), 5° (), ©°)0(t) dt = O() — 0

and similarly, from (3.6) and (3.15)-(3.16)-(3.18)

E/TR(UE(t),UE(t), ©%)0(t) dt = O(g) — 0.

Let us consider now the right hand side of equation (2.18). We recall that &5 =
(Ucey, We) with

US(t,2) = Ul (b (92)2) = U (91,9, 2
WE(t.2) = Wo(t)W (G )yo) = W (£, 2

and Uy, Wy belong to H'(0,T), U, W belong to D((—oo,hm,u)). Hence U and W
belong to C([0,T];C*(2;C}(0,1))) and with (3.9)-(3.10)-(3.11)-(3.12)

T
5/ a dt—)/ 0(t) dt
0

/TB (1), 0°)0(t) dt = O(c) = 0
0

)

!

5/ B(5°(8), & (1), ©°)0(t) dt = O(e) — 0

s/OTR 0°)0(t) dt = O() — 0
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with & = (Uey, W). }
Next, using (3.13) and reminding that ¢° € V=:

/ /5 (t, 2)div. o (2)0(t) dzdt = / /sp ( (ebe - Vi) + Eg—) h®6 dydt
/ /Qsp <5h yl,yl) ?;;11 <y g) +h(y1, )?;;11 (y g)

(o (0 2) iy (0) 5 (0 ) 45 (0)

(0 2) 22 02+ 0 2) o) o0t

| L (h (1:2) 522 (1 2) + 2 (0. 2) o () ) oyt

a(h
—>/ / “Dl)ed \dydt = / / —h(pledmdydt
Qx (0, 1) oy Qx(0,1) oy

Finally

52/0 jt[ O]9 Udt:*ez/o [0°,0°] (10 (1) dt = O(%) -0

2 aga 5 2
—€ ,O%| (1)0(t) dt = O(e%) — 0.
o L Ot
By multiplying equation (2.18) by €6(t), integrating over [0, 7] and passing to the
limit as € tends to zero we obtain

T
/ a ( (t), t)dt — / / —hg019 dm dydt
0 Qx(0,1) Oy

T —
= —/ a(é(t),)6(t) dt+/ / (feo + gap)h d dydt
0 0o Jax(,1)

for all © = (¢, ) € Vg x H' and 6 € D(0,T). By density of Vg, x H' into Vi, x H
we get the announced result. O

We may observe that the limit problem is totally decoupled with respect to the
velocity and micro-rotation fields. Furthermore the time variable appears as a pa-
rameter in the limit problem. More precisely, for all y; € [0, L], let a,, be the bilinear
symmetric form defined on F by

ayl(waw)Z/Y(h(yl,m)(b-Vw)(yz,m)(b-Vw)(ymm)+h L Ow (yz,m)g;i(yz,m)) dmdys

(y1,m) Oy

for all (w,) € F. The limit velocity, pressure and micro-rotation fields are solution
of the problems (P, ,0) and (Pyo) given respectively by

Find v° € L*(0, T Vi) and p° € H(0,T; H{ (0, L)) such that

L 1
/ po(t,yl) (/ h(yl,m)dm) dy; =0 a.e. t € [0,7] and
0 0
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o ([
V+VT/ Zayl vl i) dyr — /0 0_21(/0 h(yh-)wldm) dyy

L L
_(V+VT)/ Ay, (U(t),so1)dy1+/ (/ f(t,yh-,-)h(yh-)wdnldyz) dy1
0 0 Y
Vo € Vg, ae. t €[0,T]

and
Find Z° € L*(0,T; Hy ;) such that
L L - L
O[/ Ay, (ZO, 1/}) dyl = 705/ Qyy (W(t)a 1/}) dyl +/ (/ g(ta Y1, ) (y17 )1/} dnldyQ) dyl
0 0 0 Y
Vip € Hpy, ae. t €0,T).

PROPOSITION 5.2.  Under the assumptions of theorem 5.1, the limit micro-
rotation field Z° is uniquely given by

Z°(t, y1, y2,m) = Wo(t)zy, (y2,m) + 27, (y2,m)  ace. in (0,T) x 2 x (0,1)

where z € H 0.4 and z} o € H 0 are the unique solutions of the following auxiliary
problems

ay, (2y,,9) = —ay, Wy, ), 9) Vo € Hy,

and

aay, (22,,.9) = /Y G hyr, Wodmdys Vi € HL,.

Proof. It is clear that, for all y; € [0, L], the mapping a,, is continuous on F.
Moreover

1 ow
Ay, (w,w) > mm”b vwHL2 (Y) T h 322 2
ma L2(Y)
and
2 2 ?
Y3 oh ow
et e () (22
H ||L (v) — Ham L2(y) h2(y1,m) 8771( 1L, ) Oys 14Y2

Yo oh ow dw
9 2 dnd
/h(yl,m)am(‘y m)ayzan T

1 y3 <ah )2 <8w)2
+(1-+ / -~ , — dmd YA > 0.
L2(Y) ( )‘> y h2(y1,m) \Om w1.m) Y2 ey

But, recalling that h € C([O, L] x [0, 1]), there exists C' > 0, independent of y;, such
that

dw

z(lA)\am

—(y1,m)| <C Y(yi,y2,m) €[0,L] xY

’ Y2 oh
h’(yla 771) 8771
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and, for all A € (0,1)

2

+ Ca (A

(5.1) ay, (w,w) > Cr(A H
! L2(Y) Y2

H om L2(y)

where C1(A) = hmin(1 — A) and Cy(\) = ((1 — 1) C?hpin + him)- Then we may
choose \ such that

02 hmax hmzn
5.2 A 1
( ) < < 1 + Cthaz hmin , )

which shows that a,, is coercive on H&’ﬁ, uniformly with respect to y;. Since g €
C([0,T);C(;C4(0,1))) the mapping g¢,, = g(t,y1,, ) belongs to L*(Y') for all (t,y;) €
[0,7T] x [0, L]. Then Lax-Milgram’s theorem implies that, for all (¢,y1) € [0, 7] x [0, L]
the problems

Find 2;1 € H&ﬁﬂ such that
ay, (2, 0) = —ay, (Wlyr,-),¥) ¥V € Hoy
and

Find Zt2,y1 € H&yﬁ such that
aay, (2, 1) = / Geanh(ys, o dmdy, Wb € HY,
Y

admit a unique solution. Furthermore, recalling that Wy € H(0,T) C C([O, T]) and
h e C'([0,L] x [0, 1]; R) With values in [nin, maz] € RY, we infer that the mapping

(t,y1) — Z,?yl = Woz,, + 27, is continuous on [0, 7] x [0, L] with values in Hg , and

is L-periodic in y;.
Thus the mapping Z° : (t,y1,y2,m) — 27 2 (Y2, 1) belongs to L2(0,T; H} ﬁ) and

solves the problem (Py,). Indeed, let ) € H'. Then t(y1,-,-) € H1 and we get

Ay, (Z?,ypw(yla ) )) = —Qdly, (V_V(t’yla ) ')a Q/J(Qh ) ))

+/ g(t,y1, - )h(yr, ) dmdyz Yy € [0, L].
Y

Both sides of this equality are continuous on [0, L], hence we may integrate with
respect to y; and

L L L
/0 Ay, (Zi?,ylv’l/)) dyl = /0 Ay, (Wa 1/}) dyl +/ </y 9t,y1 (yla )1/) d771dZJ2> dyl VZ/J € Hl'

0
It follows that

/OL Ay, (Z°t),v) dyr = — /OL Qy, (W(t),l/f) dy, + /OL (/Y g(O)h(y1, )Y dmdm) dy,
Vi € H', ae.t€[0,7]

and the density of H' into H&ﬁ allows us to conclude the existence part of the proof.
Then we observe that the uniqueness is a immediate consequence of the uniform
coercivity of a,, with respect to y;. O
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Now, for all y; € [0, L], let

‘7111 = {‘P € (COO([O’ 1];650(()’ 1)))25 ¢(0,-) =0on (0,1), —p1(1, ')g_;l(yl; )+ ¢2(1,-) =0 on (0, 1)}3

Vi div = {sa € Vs h(yl,.)g—ii *yngh( )gz; + g—zi =0in Y}
and
Vi, div = closure of \7yl,div in F2.
2
Let ay, (w,¢) = (v + 1/,«)2%1 (wi, @i) for all (w,p) € V2 4. With Poincaré’s
i=1

inequality we know that w — ||[Vw||2(y) defines a norm on V,, 4s, which is equivalent
to the H'-norm. Furthermore, with (5.1)-(5.2), we may infer that a,, is coercive on
Viyr,aiv for all y1 € [0, L], uniformly with respect to y;. It follows that we can define
wél € Vi, divs w;l € Vi, div and w?y . € Viyy,div as the unique solutions of

Ay, (wy,,¢) = — /Y h(y1, )1 dmdys Vo € Vy, div,

Gy, (U’;l ) 50) = *(V =+ Vr)ayl (u(yla ')a 501) Vo € Vi div

and
ay, (w,, @) = /Y fewh(y1, )1 dmdys Vo € Vi, aiv

with fy,, = f(t,y1,-,-) for all (¢t,y1) € [0,T] x [0, L].

Then we have

PROPOSITION 5.3. Under the assumptions of theorem 5.1, the limit velocity v°
s uniquely given by

0
VOt y1,y2,m) = G_Z;(t,yl)wil (y2,m) + Uo(t)wy, (y2,m) + wy,, (ya,m) ae. in (0,T) x Qx (0,1).

Furthermore, for almost every t € [0,T), the limit pressure p°(t,-) is the unique solu-
tion in Hnl(O, L)g of the following homogenized Reynolds equation

apo oY

L
oY .
dyy=— | U ) d dy, b € HN0, L
0 3y13y1a(wy“wyl) v /0 0()8y1 a0y, w3,) dy = / oy a(wy,,w},,)dyr Vi € H (0, L)

satisfying / </ M d771> dy; = 0.

Proof. The first part of the result is obtained by using the same kind of arguments
as in Proposition 5.2.
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Let 0 € D(0,7), ¢ € C°([0,L]) and ¢°(2) = ¢(z1) for all z = (21,22) € Q°.
Recalling that div,v® = 0 in Q° and using the boundary conditions (2.12)-(2.13)-
(2.14) we get

/ / (‘;2 gf(t,z)) V8 (2)0(t) d=dt
:f—/ [ vitt )5 eote) et - // (t,9)(be - VU°) ()hE ()01F) dydt
—/O /Qvi(t,y)a—yl(yl)h (yl%) 0(t) dydt.

By passing to the limit as € tends to zero we get

g 0 o
0= vy (t, Y, m)—a (y1)h(y1,m)O(t) dni dydt.
Qx(0,1) Y1

It follows that

L 0 I
op® 9 9
p” O (/ w;1,1h(91,-)d771dy2) dy1 +/ Uo(t)_w (/ wil,lh(yla')dmdyz) dy

Y 0 v

0 0y1 Oy oy

Loy 3
+/ — / wy 1 h(y1, ) dmdys | dy1 =0 ae. t €0,T].
o Oy \Jy "%

But

wy, 1 h(y1,-) dpdys = —ay, (w,, ,w,,),

w§171h(y17 ) dmdyz = —ay, (wél ) wf}l)?

w}, 1h(yr, ) dpdys = —ay, (), w)

and by density of C°([0, L]) in Hnl(O, L) we get

b op® o
o Oy1 dyr

51/1 1
/0 ayl (wylth yl) dyl V'l/} e H]i (0, L), a.e. t S [0, T]

L
0
(wyl,wyl) dy, = —/ Uo(t)aw a(wil,wyl) dy
0 U1

We can check that this Reynolds problem admits a unique solution in H;(O,L)UR.

—y2 +y5 Oh 2(ya — 1
Indeed, let @y, (y2,m1) = (M —(yl,m)%> for all (y2,m) € Y, for

h(yr,m) " Om
all y1 € [0, L]. Then we obtain ¢,, € V,, 4i» and

Ay, (W, py,) = —/ h(y1,m)Pyy 1 (Y2, m) dmdys = —
Y
Since a,, defines an inner product on Vj, 4i», we have

= ay1 (wy1 ) (pyl) S @ (wgl;l ) wl )1/26’1/1 (‘Pyl ) (10111 )1/2'
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But the mapping y1 + Gy, (py,, @y, ) is continuous on [0, L] and does not vanish since
vy, # 0. It follows that there exists a > 0 such that @y, (¢y,, ¢y, ) > « for all
y1 € [0, L] and a(w} ,w} ) > 5= for all y; € [0, L].

We may observe also that the mapping

t O 1 o b oyp 1,3 T .
P = —/ Uo(t)a—a(wy1 Jwy ) dyy — / a—a(wy1 ,wy,,, ) dyi is linear and continu-
0 Y1 o On1
is bilinear, symmetric, continuous and coercive on Hﬁ1 (0,L)|g. We can apply Lax-
Milgram’s theorem to conclude the proof of Proposition 5.3. O
As a consequence of the uniqueness of pO, we can state the next result:

THEOREM 5.4. The whole sequences (€2p%)e=0, (v5)es0 and (Z%).~o satisfy the
following convergence:

L
ous on Hﬁl (0, L) for every t € [0, T] and the mapping (p, 1)) — /
0

Epa s pO
& = 0

VARSSYAS

6. Concluding remarks. A possible generalization of this study consists in
considering a domain €2° where both the upper and lower boundary are oscillating.
More precisely, let us assume that

OF = {(21,22) eR? 0<z <L, —eB(z1)h(z1) < 22 < Ehs(zl)}

where 8 belongs to C*°([0, L]; RT) and is L-periodic in z; (with 8 = 0 we recognize
the case presented in the previous sections). Now we should denote by I'f the lower
boundary of Q¢ and we can choose the functions & and W (see Lemma 2.1) such that
U and W belong to C*(R,R) with U(c) = W(o) = 1 for all ¢ < 0 and Supp(U) C
(=00, hun), Supp(W) C (=00, hyy,). Then we define again

Us(t, ZQ) == UE(ZQ)UO(t) = M(Z—S)Uo(t), Wg(t, 22) == WE(ZQ)WO(t) = W(%)Wo(t)

and we get the same variational problem (P°¢). It follows that the existence and
uniqueness result given at Theorem 2.2 is still valid. Furthermore, we can use the
same scalings (see (3.1) and (3.2)) which transforms the domain Q¢ into

Q:{(yl,yg)GRQ; 0<y <L, —ﬂ(y1)<y2<1}

and by reproducing the same computations, we obtain the same a priori estimates as
in Proposition 3.2 and Proposition 3.3.

Finally we may apply once again the two-scale convergence technique to pass
to the limit as € tends to zero. We obtain the same convergence properties for the
velocity and the micro-rotaion field as in Proposition 4.3 and Proposition 4.4 with
Ty= {(yl, —ﬁ(yl)); 0<y < L}. For the convergence of the pressure, we follow the
same arguments as in Proposition 4.5 with a natural modification of the test-function
©° introduced at formula (4.16) which may be chosen now as

o (y) = % ((y2 +ﬁ(y1))el +€y2(y2 +6(y1)) (g—yhl (91, E) + 1 oh (y1, £)> ez)

h(yl,? € ga771 €
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for all (y1,y2) € £, which leads to

T L
0 ,1
/ / POt 1) (= (1 + B)%0) (un)8(t) dydt| < Cllobl|z2(0mx(0.0))-
o Jo Oy1 2

Then we may conclude by considering any ¢ € Cé’o (0, L) and letting ¢ = %

Hence the limit problem remains the same as in Theorem 5.1: Z° and v° can be
decomposed by using the same auxiliary problems and p° is the unique solution of the
same Reynolds equation, with obvious adaptations in the definition of a,, and a,,,
ie. for all y; € [0, L]:

)= [ [ (b)) ) G- V) m)

1 ow o
(Yo, m) (2, dn,d
o) 9 (2 771)ay2 (Y2 771)) mdys

v
for all (w, 1) € Fy, = {v € L*((—B(w), 1); H{ (0,1)); By © L*((=B(y1),1) % (0, 1))}
2
and a,, (w,p) = (v + VT)Zayl (wi, i) for all (w,p) € V2 4, where Vi, 4, is the
i=1
closure of \7yl7div in ]-'51 and

Vi div = {w € (€=([-By): 11;¢:°(0, 1)) o(=B(y1),-) = 0 on (0, 1),

oh
7801(17.)6 (y1,-)+502(1,') =0on (Oal)v
Y1

91 Oh, (Oor Op2 .
am 928771@1,) + =0in ( 6(91),1)x(0,1)},

h(yla ) ay2 ay2
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