MAHDI BOUKROUCHE Laetitia Paoli 
email: laetitia.paoli@univ-st-etienne.fr
  
ASYMPTOTIC ANALYSIS OF A MICROPOLAR FLUID FLOW IN THIN DOMAIN WITH A FREE AND ROUGH BOUNDARY

Keywords: Lubrication, micropolar fluid, free and rough boundary, asymptotic analysis, twoscale convergence, Reynolds equation AMS subject classifications. 35Q35, 76A05, 76D08, 76M50

Motivated by lubrication problems, we consider a micropolar fluid flow in a 2D domain with a rough and free boundary. We assume that the thickness and the roughness are both of order 0 < ε << 1. We prove the existence and uniqueness of a solution of this problem for any value of ε and we establish some a priori estimates. Then we use the two-scale convergence technique to derive the limit problem when ε tends to zero. Moreover we show that the limit velocity and micro-rotation fields are uniquely determined via auxiliary well-posed problems and the limit pressure is given as the unique solution of a Reynolds equation.

1. Introduction. The theory of micropolar fluids, was introduced and formulated by A.C. Eringen in [START_REF] Eringen | Theory of micropolar fluids[END_REF]. It aims to describe fluids containing suspensions of rigid particles in a viscous medium. Such fluids exhibit micro-rotational effects and micro-rotational inertia. Therefore they can support couple stress and distributed body couples. They form a class of fluids with nonsymmetric stress tensor for which the classical Navier-Stokes theory is inadequate since it does not take into account the effects of the micro-rotation. Experimental studies have showned that the micropolar model better represents the behavior of numerous fluids such as polymeric fluids, liquid crystals, paints, animal blood, colloidal fluids, ferro-liquids, etc., especially when the characteristic dimension of the flow becomes small (see for instance [START_REF] Popel | A continuum model of blood flow[END_REF]). Extensive reviews of the theory and its applications can be found in [START_REF] Ariman | Microcontinuum fluid mechanics -A review[END_REF][START_REF] Ariman | Applications of microcontinuum fluid mechanics[END_REF] or in the books [START_REF] Eringen | Microcontinuum field theories. I. Foundations and solids[END_REF] and [START_REF] Lukaszewicz | Micropolar fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology[END_REF] and also in more recent articles (see for example [START_REF] Bakr | Effects of chemical reaction on MHD free convection and mass transfer flow of a micropolar fluid with oscillatory plate velocity and constant heat source in a rotating frame of reference[END_REF][START_REF] Boukrouche | Attractor dimension estimate for plane shear flow of micropolar fluid with free boundary Math[END_REF][START_REF] Ilyani | A micropolar fluid model of blood flow through a tapered artery with a stenosis[END_REF][START_REF] Jinbo | On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space[END_REF]).

Motivated by lubrication theory where the domain of flow is usually very thin and the roughness of the boundary strongly affects the flow ( [START_REF] Boukrouche | Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid-solid interface law[END_REF]), we consider the motion of the micropolar fluid described by the equilibrium of momentum, mass and moment of momentum. More precisely, the velocity field of the fluid u ε = (u ε 1 , u ε 2 ), the pressure p ε and the angular velocity of the micro-rotations of the particles ω ε satisfy the system

u ε t -(ν + ν r )∆u ε + (u ε • ∇)u ε + ∇p ε = 2ν r rot ω ε + f ε , (1.1) divu ε = 0, (1.2) ω ε t -α∆ω ε + (u ε • ∇) ω ε + 4ν r ω ε = 2ν r rot u ε + g ε , (1.3)
in the space-time domain (0, T ) × Ω ε with

Ω ε = {z = (z 1 , z 2 ) ∈ R 2 , 0 < z 1 < L, 0 < z 2 < εh ε (z 1 )}, h ε (z 1 ) = h(z 1 , z 1 ε )
where h is a given smooth function, f ε and g ε are given external forces and moments, ν is the usual Newtonian viscosity, ν r and α are the micro-rotation viscosities, which are assumed to be positive constants ( [START_REF] Eringen | Theory of micropolar fluids[END_REF]).

The choice of the domain Ω ε comes from one of the important fields of the theory of lubrication given by the study of self-lubricating bearings. These bearings are widely used in mechanical and electromechanical industry, to lubricate the main axis of rotation of a device, in order to prevent its endomagement.

Such bearings consist in an inner cylinder and a outer cylinder, and along a circumferencial section, one can see two non-concentric discs. The radii of the two cylinders are much smaller than their lengh and the gap between the two cylinders, which is fullfilled with a lubricant, is much smaller than their radii ( [START_REF] Bayada | Modélization de la jonction d'un écoulement tridimensionnel[END_REF]). By assuming that the external fields and the flow do not depend on the coordinate along the longitudinal axis of the bearing, one can represent the fluid domain by Ω ε which is a 2D view of a cross section after a radial cut of the two circumferences. The boundary of Ω ε is ∂Ω ε = Γ0 ∪ Γε L ∪ Γε 1 , where Γ 0 = {z ∈ ∂Ω ε : z 2 = 0} is the bottom, Γ ε 1 = {z ∈ ∂Ω ε : z 2 = εh ε (z 1 )} is the upper strongly oscillating part, and Γ ε L is the lateral part of the boundary. The surface of the inner cylinder, which corresponds to Γ 0 , is in contact with the rotating axis of the device while the surface of the outer cylinder, which corresponds to Γ ε 1 , remains still.

Hence the boundary and initial conditions are given as follows ω ε , u ε , p ε are L-periodic with respect to z 1 (1.4) u ε = U 0 e 1 = (U 0 , 0), ω ε = W 0 on (0, T ) × Γ 0 (1.5)

ω ε = 0, u ε • n = 0, ∂u ε ∂n • τ = 0 on (0, T ) × Γ ε 1 (1.6) u ε (0, z) = u ε 0 (z), ω ε (0, z) = ω ε 0 (z) for z ∈ Ω ε (1.7)
where τ and n are respectively the tangent and normal unit vectors to the boundary of the domain Ω ε . Let us observe that (1.5) represents non-homogeneous Dirichlet conditions along Γ 0 , which means adherence of the fluid to the boundary of the rotating inner cylinder, so U 0 and W 0 are two given functions of the time variable only. The second condition in (1.6) is the nonpenetration boundary condition, while the last one is non-standard, and it means that the tangential component of the flux on Γ ε 1 is equal zero ( [START_REF] Duvaut | Les Inéquations en Mécanique et en Physique[END_REF]).

The choice of the particular scaling, with a roughness in inverse proportion to the thickness of the domain, is quite classical in lubrication theory. In [START_REF] Benhaboucha | Asymptotic behaviour of pressure and stresses in a thin flow with a rough boundary[END_REF] and in [START_REF] Boukrouche | Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid-solid interface law[END_REF] a Stokes flow is considered with adhering boundary conditions and Tresca boundary conditions at the fluid solid interface respectively. For other related works see also [START_REF] Buscaglia | Existence and uniqueness for several non-linear elliptic problems arising in lubrication theory[END_REF][START_REF] Buscaglia | On nano-scale hydrodynamics lubrication models[END_REF] or [START_REF] Bayada | Homogenized elliptic equations and variational inequallities with oscillating parameters. Application to the study of thin flow behavior with rough surfaces[END_REF] for instance.

We prove the existence and uniqueness of a weak solution (u ε , ω ε , p ε ) in adequate functional framework. Then we will establish some a priori estimates for the velocity, micro-rotation and pressure fields, independently of ε, and finally we will derive and study the limit problem when ε tends to zero.

The paper is organized as follows. In Section 2 we give the variational formulation. Then, using an idea of J.L. Lions ([21]), we consider the divergence free condition (1.2) as a constraint, which can be penalized, and we prove in Theorem 2.2 the existence and uniqueness of a weak solution (u ε , ω ε , p ε ) for any value of ε. Let us emphasize that our proof ensures that the pressure (unique up to an additional function of time) belong to H -1 (0, T, L 2 0 (Ω ε )). This result is more suitable for the next parts of our study, than W -1,∞ (0, T, L 2 0 (Ω ε )) obtained by J. Simon [START_REF] Simon | On the existence of the pressure for solutions of the variational Navier-Stokes equations[END_REF] (see also Theorem 2.1 in [START_REF] Galdi | An Introduction to the Navier-Stokes Initial-Boundary Value Problem[END_REF]).

In Section 3, we establish some a priori estimates for the velocity and microrotation fields in Proposition 3.2 and for the pressure in Proposition 3.3. In Section 4, since we deal with an evolution problem, we extend first the classical two-scale convergence results ( [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]) to a time-dependent setting and we use this technique to prove some convergence properties for the velocity in Proposition 4.3, the microrotation in Proposition 4.4, and the pressure in Proposition 4.5.

Then, in Section 5 we derive the limit problem when ε tends to zero in Theorem 5.1. We notice that the trilinear and rotational terms, as well as the time derivative do not contribute when we pass to the limit. However the time variable remains in the limit problem as a parameter. We note also that the limit problem can be easily decoupled: we obtain a variational equality involving only the limit velocity and the limit pressure and another variational equality involving the limit micro-rotation. However, the micropolar nature of the fluid still appears in the limit problem for the velocity and pressure since we keep the viscosity ν + ν r . Moreover we show in Proposition 5.2 that the limit velocity and micro-rotation fields are uniquely determined via auxiliary well-posed problems. In Proposition 5.3, we prove that the limit pressure is given as the unique solution of a Reynolds equation. Finally in Section 6 we propose a generalization to the case where both the upper and the lower boundary of the fluid domain are oscillating.

2. Existence and uniqueness results. We assume that L ε ∈ N, h : (z 1 , η 1 ) → h(z 1 , η 1 ) is L-periodic in z 1 and 1-periodic in η 1 , (2.1) so h is L-periodic in z 1 . We assume also that

h ∈ C ∞ ([0, L] × R), ∂h ∂η 1 is 1-periodic in η 1 , (2.2) 
and there exist h m and h M such that 0 < h m = min [0,L]×[0,1] h(z 1 , η 1 ), and h M = max

[0,L]×[0,1] h(z 1 , η 1 ). (2.3)
Lemma 2.1. Let the functions U, W be in D(-∞, h m ), and U 0 , W 0 be in

H 1 (0, T ), with U(0) = 1, W(0) = 1. We set U ε (t, z 2 ) = U ε (z 2 )U 0 (t) = U( z 2 ε )U 0 (t), W ε (t, z 2 ) = W ε (z 2 )W 0 (t) = W( z 2 ε )W 0 (t).
Then we have for all (t, z 1 ) ∈ (0, T ) × (0, L)

U ε (t, 0) = U 0 (t), U ε (t, εh ε (z 1 )) = 0, ∂U ε ∂z 2 (t, εh ε (z 1 )) = 0, (2.4) W ε (t, 0) = W 0 (t), W ε (t, εh ε (z 1 )) = 0. (2.5) Proof. Indeed, U ε (t, 0) = U(0)U 0 (t) = U 0 (t), U ε (t, εh ε (z 1 )) = U(h(z 1 , z1 ε ))U 0 (t) = 0 and ∂U ε ∂z 2 (t, εh ε (z 1 )) = 1 ε U ′ (h ε (z 1 ))U 0 (t) = 1 ε U ′ (h(z 1 , z 1 ε ))U 0 (t) = 0, thus (2.4) follows.
The proof is valid also for (2.5).

We can now set

u ε (t, z 1 , z 2 ) = U ε (t, z 2 )e 1 + v ε (t, z 1 , z 2 ) (2.6) ω ε (t, z 1 , z 2 ) = W ε (t, z 2 ) + Z ε (t, z 1 , z 2 ) (2.7)
with U ε and W ε satisfying (2.4) (2.5). Moreover

∂u ε i ∂z j = ∂v ε i ∂z j + ∂ ∂z j (U ε (•, z 2 )e 1 ) = ∂v ε i ∂zj if j = 1,
∂v ε i ∂zj + ∂U ε ∂z2 (•, z 2 )e 1 if j = 2 and from (2.4) ∂U ε ∂z2 (t, z 2 ) = ∂U ε ∂z2 (t, εh ε (z 1 )) = 0 for (t, z 2 ) ∈ (0, T ) × Γ ε 1 so ∂u ε i ∂z j = ∂v ε i ∂z j for j = 1, 2 on (0, T ) × Γ ε 1 . (2.8) Recall also that rot u ε = ∂u ε 2 ∂z 1 - ∂u ε 1 ∂z 2 , rot ω ε = ∂ω ε ∂z 2 , - ∂ω ε ∂z 1 .
Then the problem (1.1)-(1.7) becomes

v ε t -(ν + ν r )∆v ε + (v ε • ∇)v ε + U ε ∂v ε ∂z 1 + (v ε ) 2 ∂U ε ∂z 2 e 1 + ∇p ε = 2ν r rot Z ε (2.9) +(ν + ν r ) ∂ 2 U ε ∂z 2 2 e 1 + 2ν r ∂W ε ∂z 2 e 1 - ∂U ε ∂t e 1 + f ε in (0, T ) × Ω ε , div v ε = 0 in Ω ε , t ∈ (0, T ), (2.10) Z ε t -α∆Z ε + (v ε • ∇)Z ε + 4ν r Z ε + U ε ∂Z ε ∂z 1 + (v ε ) 2 ∂W ε ∂z 2 = 2ν r rot v ε +α ∂ 2 W ε ∂z 2 2 -2ν r ∂U ε ∂z 2 -4ν r W ε - ∂W ε ∂t + g ε in (0, T ) × Ω ε , (2.11) v ε , Z ε and p ε L-periodic in z 1 , (2.12) Z ε = 0, v ε = 0 on (0, T ) × Γ 0 , (2.13) Z ε = 0, v ε • n = 0, ∂v ε ∂n • τ = 0 on (0, T ) × Γ ε 1 , (2.14) v ε (0, z) = v ε 0 (z) = u ε 0 (z) -U ε (0, z 2 )e 1 in Ω ε , (2.15) Z ε (0, z) = Z ε 0 (z) = ω ε 0 (z) -W ε (0, z 2 ) in Ω ε , (2.16)
where we have denoted by (v ε ) 2 the second component of v ε .

To define the weak formulation of the above problem (2.9)-(2.16), we recall that Γ ε 1 is defined by the equation z 2 = εh ε (z 1 ), thus the unit outward normal vector to Γ ε 1 is given by

n = 1 1 + (ε(h ε ) ′ (z 1 )) 2 (-ε(h ε ) ′ (z 1 ), 1) and v • n = 0 becomes -ε(h ε ) ′ (z 1 )v 1 + v 2 = 0 on Γ ε 1 .
We consider now the following functional framework

Ṽ ε = {v ∈ C ∞ (Ω ε ) 2 : v is L-periodic in z 1 , v |Γ 0 = 0, -ε(h ε ) ′ (z 1 )v 1 + v 2 = 0 on Γ ε 1 } H1 ε = {Z ∈ C ∞ (Ω ε ) : Z is L-periodic in z 1 , Z = 0 on Γ 0 ∪ Γ ε 1 } V ε = closure of Ṽ ε in H 1 (Ω ε ) × H 1 (Ω ε ), V ε div = {v ∈ V ε : div v = 0, in Ω ε } H ε = closure of Ṽ ε in L 2 (Ω ε ) × L 2 (Ω ε ), H 1, ε = closure of H1 ε in H 1 (Ω ε ), H 0, ε = closure of H1 ε in L 2 (Ω ε ), L 2 0 (Ω ε ) = {q ∈ L 2 (Ω ε ) : Ω ε q(z)dz = 0}.
We endowed these functional spaces with the inner products and norms defined by

[v, Θ] = (v, ϕ) + (Z, ψ) in H ε × H 0, ε with the norm [v] = [v, v] 1 2 [[v, Θ]] = (∇v, ∇ϕ) + (∇Z, ∇ψ) in V ε × H 1, ε with the norm [[v]] = [[v, v]] 1 2
for any pairs of functions v = (v, Z) and Θ = (ϕ, ψ). The weak formulation of the problem (2.9)-(2.16) is given by

Problem (P ε ) Find vε = (v ε , Z ε ) ∈ C([0, T ]; H ε ) ∩ L 2 (0, T ; V ε div ) × C([0, T ]; H 0, ε ) ∩ L 2 (0, T ; H 1, ε ) and p ε ∈ H -1 (0, T ; L 2 0 (Ω ε )), such that [ ∂v ε ∂t (t), Θ ε ] + a(v ε (t), Θ ε ) + B(v ε (t), vε (t), Θ ε ) + R(v ε (t), Θ ε ) = = (p ε (t) , divϕ ε ) + (F (v ε (t)), Θ ε ) ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1, ε , (2.17) with the initial condition vε (z, 0) = vε 0 (z) = (v ε 0 (z) , Z ε 0 (z)), (2.18) where (F (v ε (t)), Θ ε ) = -a( ξε (t), Θ ε ) -B( ξε (t), vε (t), Θ ε ) -B(v ε (t), ξε (t), Θ ε ) -R( ξε (t), Θ ε ) -[ ∂ ξε ∂t (t), Θ ε ] + [ f ε (t), Θ ε ], ξε = (U ε e 1 , W ε ), (2.19)
and for all v = (v, Z), ū = (u, w), and Θ = (ϕ, ψ) in

V ε × H 1, ε , f ε , Θ = (f ε , ϕ) + (g ε , ψ), a(v, Θ) = (ν + ν r )(∇v, ∇ϕ) + α(∇Z, ∇ψ), R(v, Θ) = -2ν r (rot Z, ϕ) -2ν r (rot v, ψ) + 4ν r (Z, ψ), B(v, ū, Θ) = b(v, u, ϕ) + b 1 (v, w, ψ) = 2 i,j=1 Ω ε v i ∂u j ∂z i ϕ j dz + 2 i=1 Ω ε v i ∂w ∂z i ψdz.
Theorem 2.2. Let T > 0, U ε and W ε be given as in Lemma 2.1,

f ε in (L 2 ((0, T ) × Ω ε )) 2 , g ε in L 2 ((0, T ) × Ω ε ) and (v ε 0 , Z ε 0 ) in H ε × H 0, ε . Then prob- lem (P ε ) admits a unique solution (v ε , Z ε , p ε ).
Proof. Following the techniques proposed by J.L.Lions in [START_REF] Lions | Some problems connected with Navier-Stokes equations[END_REF], we construct a sequence of approximate solutions by relaxing the divergence free condition for the velocity field. More precisely we consider the following penalized problems (P ε δ ), with δ > 0:

Problem (P ε δ ) Find vε δ = (v ε δ , Z ε δ ) ∈ C([0, T ]; H ε ) ∩ L 2 (0, T ; V ε ) × C([0, T ]; H 0, ε ) ∩ L 2 (0, T ; H 1, ε ) such that [ ∂v ε δ ∂t , Θ ε ] + a(v ε δ , Θ ε ) + B(v ε δ , vε δ , Θ ε ) + 1 2 {(v ε δ div v ε δ , ϕ ε ) + (Z ε δ div v ε δ , ψ ε )} + 1 δ (divv ε δ , divϕ ε ) = (F (v ε δ ), Θ ε ) -R(v ε δ , Θ ε ) ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1, ε , (2.20) with the initial condition vε δ (0) = vε 0 . (2.21)
The first term on the right of the second line of (2.20) is the penalty term and the term

1 2 {(v ε δ div v ε δ , ϕ ε ) + (Z ε δ div v ε δ , ψ ε )} is added in order to vanish with B(v ε δ , vε δ , Θ ε ) when Θ ε = vε δ .
Hence the proof of Theorem 2.2 is divided in two parts. First we prove the existence of a solution of (P ε δ ), for any δ > 0, by using a Galerkin method. Then we pass to the limit as δ tends to zero by applying compactness arguments and we prove that the limit solves problem (P ε ).

Since V ε and H 1, ε are closed subspaces of (H 1 (Ω ε )) 2 and H 1 (Ω ε ), they admit Hilbertian bases, denoted as (Φ j ) j≥1 and (ψ j ) j≥1 respectively, which are orthonormal in (H 1 (Ω ε )) 2 and H 1 (Ω ε ) and are also orthogonal bases of (L 2 (Ω ε )) 2 and L 2 (Ω ε ). For all m ≥ 1 we define v ε 0m and Z ε 0m as the L 2 -orthogonal projection of v ε 0 and Z ε 0 on the finite dimentional subspaces Φ 1 , . . . , Φ m and ψ 1 , . . . , ψ m respectively and we let vε

0m = (v ε 0m , Z ε 0m ). Then we consider vε δm = (v ε δm , Z ε δm ), with v ε δm (t, x) = m j=1 v ε δmj (t)Φ j (x), Z ε δm (t, x) = m j=1 Z ε δmj (t)ψ j (x) (2.22) such that ( ∂v ε δm ∂t , Θ i ) + a(v ε δm , Θ i ) + B(v ε δm , vε δm , Θ i ) + 1 2 (v ε δm div v ε δm , Φ i ) + 1 2 (Z δm div v ε δm , ψ i ) + 1 δ (divv ε δm , divΦ i ) = (F (v ε δm ), Θ i ) -R(v ε δm , Θ i ) ∀Θ i = (Φ i , ψ i ), 1 ≤ i ≤ m, (2.23) vε δm (0) = vε 0m . (2.24)
By taking ψ i = 0 in (2.23) we deduce

( ∂v ε δm ∂t , Φ i ) + (ν + ν r )(∇v ε δm , ∇Φ i ) + b(v ε δm , v ε δm , Φ i ) + 1 2 (v ε δm divv ε δm , Φ i ) + 1 δ (div v ε δm , divΦ i ) = (F 1 (v ε δm ), Φ i ) + 2ν r (rot Z ε δm , Φ i ) 1 ≤ i ≤ m, (2.25) v ε δm (0) = v ε 0m , (2.26)
and by taking Φ i = 0 in (2.23) we deduce

( ∂Z ε δm ∂t , ψ i ) + α(∇Z ε δm , ∇ψ i ) + b 1 (v ε δm , Z ε δm , ψ i ) + 1 2 (Z ε δm div v ε δm , ψ i ) = (F 2 (v ε δm ), ψ i ) +2ν r (rot v ε δm , ψ i ) -4ν r (Z ε δm , ψ i ) 1 ≤ i ≤ m, (2.27) Z ε δ (0) = Z ε 0m , (2.28) where (F 1 (v ε δm ), Φ i ) = -(ν + ν r )(∇U ε e 1 , ∇Φ i ) -b(U ε e 1 , v ε δm , Φ i ) -b(v ε δm , U ε δ e 1 , Φ i ) +2ν r ( ∂W ε ∂z 2 e 1 , Φ i ) -( ∂U ε ∂t e 1 , Φ i ) + (f ε , Φ i ), (2.29) and (F 2 (v ε δm ), ψ i ) = -α(∇W ε , ∇ψ i ) -b 1 (U ε e 1 , Z ε , ψ i ) -b 1 (v ε δm , W ε , ψ i ) -2ν r ( ∂U ε ∂z 2 , ψ i ) -4ν r (W ε , ψ i ) -( ∂W ε ∂t , ψ i ) + (g ε , ψ i ). (2.30)
Taking (2.22) into account, we deduce from (2.25)-(2.30) a system of (nonlinear) differential equations for the unknown scalar functions (v ε δmi , Z ε δmi ) 1≤i≤m , which possesses an unique maximal solution in (H 1 (0, T m )) m with T m ∈ (0, T ].

In order to prove that this solution is defined on the whole time interval [0, T ], we will establish some a priori estimates for v ε δm and Z ε δm , independently of m. More precisely, we multiply the two sides of (2.25) by v ε δmi (t) and the two sides of (2.27) by Z ε δmi (t), then we sum for i from 1 to m, to get, with

• = • L 2 (Ω ε ) , the following equations 1 2 ∂ ∂t ( v ε δm 2 ) + (ν + ν r ) ∇v ε δm 2 + b(v ε δm , v ε δm , v ε δm ) + 1 2 (v ε δm divv ε δm , v ε δm ) + 1 δ divv ε δm 2 = (F 1 (v ε δm ), v ε δm ) + 2ν r (rot Z ε δm , v ε δm ), (2.31) 1 2 ∂ ∂t ( |Z ε δm 2 ) + α ∇Z ε δm 2 + b 1 (v ε δm , Z ε δm , Z ε δm ) + 1 2 (Z ε δm div v ε δm , Z ε δm ) = (F 2 (v ε δm ), Z ε δm ) +2ν r (rot v ε δm , Z ε δm ) -4ν r (Z ε δm , Z ε δm ). (2.32)
By integration by parts and using the boundary conditions (2.12)-(2.14), we obtain that

b(v ε δm , v ε δm , v ε δm ) + b 1 (v ε δm , Z ε δm , Z ε δm ) + 1 2 (v ε δm divv ε δm , v ε δm ) + 1 2 (Z ε δm div v ε δm , Z ε δm ) = 0, and b(U ε e 1 , v ε δm , v ε δm ) + b 1 (U ε e 1 , Z ε δm , Z ε δm ) = 0.
Thus by the addition of (2.31) and (2.32) we obtain

1 2 ∂ ∂t ( v ε δm 2 + |Z ε δm 2 ) + (ν + ν r ) ∇v ε δm 2 + α ∇Z ε δm 2 + 1 δ divv ε δm 2 = Ξ (2.33) with Ξ = 2ν r (rot Z ε δm , v ε δm ) + 2ν r (rot v ε δm , Z ε δm ) -4ν r Z ε δm 2 -(ν + ν r )(∇U ε e 1 , ∇v ε δm ) -α(∇W ε , ∇Z ε δm ) -b(v ε δm , U ε e 1 , v ε δm ) -b 1 (v ε δm , W ε , Z ε δm ) + 2ν r (rot W ε , v ε δm ) +2ν r (rot U ε e 1 , Z ε δm ) -4ν r (W ε , Z ε δm ) -( ∂U ε e 1 ∂t , v ε δm ) -( ∂W ε ∂t , Z ε δm ) +(f ε , v ε δm ) + (g ε , Z ε δm ).
Using Young's inequality we have

2ν r |(rot Z ε δm , v ε δm )| ≤ 2ν r rot Z ε δm v ε δm ≤ α 4 ∇Z ε δm 2 + 4ν 2 r α v ε δm 2 , 2ν r |(rot v ε δm , Z ε δm )|≤ 2ν r rot v ε δm Z ε δm ≤ ν r 4 rot v ε δm 2 + 4ν r Z ε δm 2 ≤ ν r 2 ∇v ε δm 2 + 4ν r Z ε δm 2 , (∇U ε e 1 , ∇v ε δm ) ≤ 1 2 ∇(v ε δm ) 2 + 1 2 ∂U ε ∂z 2 2 , (∇W ε , ∇Z ε δm ) ≤ 1 4 ∇Z ε δm 2 + ∂W ε ∂z 2 2 , b(v ε δm , U ε e 1 , v ε δm ) ≤ (v ε δm ) 2 ∂U ε ∂z 2 ∞ (v ε δm ) 1 ≤ ∂U ε ∂z 2 ∞ v ε δm 2 , b 1 (v ε δm , W ε , Z ε δm ) ≤ (v ε δm ) 2 ∂W ε ∂z 2 ∞ Z ε δm ≤ 1 2 ∂W ε ∂z 2 ∞ v ε δm 2 + Z ε δm 2 , 2ν r (rot W ε , v ε δm ) + 2ν r (rot U ε e 1 , Z ε δm ) -4ν r (W ε , Z ε δm ) = +2ν r ∂W ε ∂z 2 , (v ε δm ) 1 -2ν r ∂U ε ∂z 2 , Z ε δm -4ν r (W ε , Z ε δm ) ≤ ν r v ε δm 2 + 2ν r Z ε δm 2 + ν r ∂W ε ∂z 2 2 + ν r ∂U ε ∂z 2 2 + 4ν r W ε 2 . So we have Ξ ≤ ( ν 2 + ν r ) ∇v ε δm 2 + α 2 ∇Z ε δm 2 + 2 + 4ν r + 1 2 ∂W ε (t) ∂z 2 ∞ Z ε δm 2 + 2 + ν r + 4ν 2 r α + ∂U ε (t) ∂z 2 ∞ + 1 2 ∂W ε (t) ∂z 2 ∞ v ε δm 2 + (ν + ν r ) 2 ∂U ε (t) ∂z 2 2 + α ∂W ε (t) ∂z 2 2 + ν r ∂W ε (t) ∂z 2 2 + ν r ∂U ε (t) ∂z 2 2 +4ν r W ε (t) 2 + ∂U ε (t) ∂t 2 + ∂W ε (t) ∂t 2 + f ε (t) 2 + g ε (t) 2 . (2.34) From (2.33)-(2.34), we get 1 2 ∂ ∂t ([v ε δm ] 2 ) + k 2 [[v ε δm ]] 2 + 1 δ div v ε δm 2 ≤ A(t)[v ε δm ] 2 + B(t), (2.35)
where k = min{ν, α} and A and B belong to L 1 (0, T ) such that A(t) ≥ 2 and B(t) ≥ 0 almost everywhere on [0, T ]. Moreover A and B depend neither on m nor on δ.

For any t ∈ (0, T m ) we can integrate the inequality (2.35) over [0, t]: we obtain

[v ε δm (t)] 2 + k t 0 [[v ε δm (s)]] 2 ds + 2 δ t 0 div v ε δm (s) 2 ds ≤ [v ε 0 ] 2 +2 t 0 A(t)[ v ε δm (s)] 2 ds + 2B, (2.36) with B = T 0 B(t)dt. So by Grönwall's inequality, we deduce first that [v ε δm (t)] 2 ≤ ([v ε 0 ] 2 + 2B)e 2A with A = T 0 A(t)dt.
Thus vε δm is defined on the whole interval [0, T ] and

sup t∈[0,T ] [v ε δm (t)] 2 ≤ C. (2.37)
Then from (2.36) and (2.37), we deduce

1 δ T 0 div v ε δm (t) 2 dt ≤ C, T 0 [[v ε δm (t)]] 2 dt ≤ C, (2.38)
where here and in what follows C ′ s denotes various constants which depend neither on m nor on δ.

We need now to look at the time derivative of v ε δm and

Z ε δm . Let Θ ε = (ϕ ε , ψ ε ) ∈ (H 1 0 (Ω ε )) 2 × H 1 0 (Ω ε ) ⊂ V ε × H 1,ε . There exists a sequence (q ε i , k ε i ) i≥1 in R 2 such that Θ ε p = (ϕ ε p , ψ ε p ) → (ϕ ε , ψ ε ) strongly in V ε × H 1,ε with ϕ ε p = p i=1 q ε i Φ i , ψ ε p = p i=1 k ε i ψ i ∀p ≥ 1.
Let p ≥ m. Reminding that (Φ i ) i≥1 and (ψ i ) i≥1 are orthogonal bases of (L 2 (Ω ε )) 2 and L 2 (Ω ε ) respectively, we get

∂v ε δm ∂t , ϕ ε p = m j=1 (v ε δmj ) ′ (t)(Φ j , ϕ ε p ) = m j=1 (v ε δmj ) ′ (t)(Φ j , ϕ ε m ) = ∂v ε δm ∂t , ϕ ε m ,
and

∂Z ε δm ∂t , ψ ε p = m j=1 (Z ε δmj ) ′ (t)(Φ j , ψ ε p ) = m j=1 (Z ε δmj ) ′ (t)(Φ j , ψ ε m ) = ∂Z ε δm ∂t , ψ ε m .
Since

∂v ε δm ∂t ∈ L 2 (0, T ; V ε × H 1,ε
), we can pass to the limit as p tends to +∞ i.e

∂v ε δm ∂t , ϕ ε = ∂v ε δm ∂t , ϕ ε m , ∂Z ε δm ∂t , ψ ε = ∂Z ε δm ∂t , ϕ ε m .
Then, by using Green's formula and (2.25)

∂v ε δm ∂t , ϕ ε = (ν + ν r )∆v ε δm -(v ε δm • ∇)v ε δm - 1 2 v ε δm div v ε δm +F 1 (v ε δm ) + 2ν r rot Z ε δm + 1 δ ∇(div v ε δm ), ϕ ε m , (2.39)
and from (2.27)

∂Z ε δm ∂t , ψ ε = α∆Z ε δm -(v ε δm • ∇)Z ε δm - 1 2 Z ε δm div v ε δm + F 2 (v ε δm ) + 2ν r rot v ε δm -4ν r Z ε δm , ψ ε m (2.40)
and from (2.29)

F 1 (v ε δm ) = (ν + ν r ) ∂ 2 U ε ∂z 2 2 e 1 -U ε ∂v ε δm ∂z 1 -(v ε δm ) 2 ∂U ε ∂z 2 e 1 + 2ν r ∂W ε ∂z 2 e 1 - ∂U ε ∂t e 1 + f ε ,
and from (2.30)

F 2 (v ε δm ) = α ∂ 2 W ε ∂z 2 2 -U ε ∂Z ε δm ∂z 1 -(v ε δm ) 2 ∂W ε ∂z 2 + 2ν r ∂U ε ∂z 2 -4ν r W ε - ∂W ε ∂t + g ε . As v ε δm is bounded in L 2 (0, T ; (H 1 (Ω ε ) 2
)) independently of m and δ, then ∆v ε δm and ∇(div v ε δm ) are also bounded in L 2 (0, T ; (H -1 (Ω ε )) 2 ) independently of m and δ. Similarly, since

Z ε δm is bounded in L 2 (0, T ; H 1 (Ω ε )) independently of m and δ, then rot Z ε δm is also bounded in L 2 (0, T ; (L 2 (Ω ε )) 2 ) independently of m and δ. By assumption, f ε ∈ (L 2 ((0, T ) × Ω ε ) 2 , g ε ∈ L 2 ((0, T ) × Ω ε ), and from Lemma 2.1, U ε and W ε belong to H 1 (0, T ) × D((-∞, h m )). Thus we infer that F 1 (v ε δm ) and F 2 (v ε δm ) are bounded in L 2 (0, T ; (L 2 (Ω ε )) 2 ) and L 2 (0, T ; L 2 (Ω ε ), independently of m and δ. Moreover let ϕ ∈ (H 1 (Ω ε )) 2 , we have |((v ε δm • ∇)v ε δm , ϕ)| ≤ v ε δm L 3 (Ω ε ) ∇v ε δm L 2 (Ω ε ) ϕ L 6 (Ω ε ) .
Using now the classical inequality

u L 3 (Ω ε ) ≤ u 1/2 L 2 (Ω ε ) u 1/2 L 6 (Ω ε ) ∀u ∈ L 6 (Ω ε ),
and the continuous injection of

H 1 (Ω ε ) in L 6 (Ω ε ), there exists a constant C such that |((v ε δm • ∇)v ε δm , ϕ)| ≤ C v ε δm 1/2 L 2 (Ω ε ) ∇v ε δm 3/2 L 2 (Ω ε ) ϕ H 1 (Ω ε ) .
So we get

(v ε δm • ∇)v ε δm (H 1 (Ω ε )) ′ ≤ C v ε δm 1/2 L 2 (Ω ε ) ∇v ε δm 3/2 L 2 (Ω ε ) then T 0 (v ε δm • ∇)v ε δm 4/3 (H 1 (Ω ε )) ′ dt ≤ C 4/3 T 0 v ε δm 2/3 L 2 (Ω ε ) ∇v ε δm 2 L 2 (Ω ε ) ≤ C 4/3 v ε δm 2/3 L ∞ (0,T ;L 2 (Ω ε )) ∇v ε δm 2 L 2 ((0,T )×Ω ε ) .
With the same arguments, we deduce similar result for

v ε δm div v ε δm , (v ε δm • ∇)Z ε δm and Z ε δm div v ε δm . Finally, recalling that (Φ i ) i≥1 and (ψ i ) i≥1 are H 1 -orthonormal, we get ϕ ε m (H 1 (Ω ε )) 2 ≤ ϕ ε (H 1 (Ω ε )) 2 , ψ ε m H 1 (Ω ε ) ≤ ψ ε H 1 (Ω ε ) ∀m ≥ 1.
So from (2.39) and (2.40) we see that there exists a constant C such that

∂v ε δm ∂t L 4/3 (0,T ;(H -1 (Ω ε )) 2 ) ≤ C, ∂Z ε δm ∂t L 4/3 (0,T ;H -1 (Ω ε )) ≤ C. (2.41)
From the estimates (2.37)-(2.38) we infer that there exists a subsequence (denoted also by) vε

δm such that vε δm ⇀ vε δ in L 2 (0, T ; V ε ) × L 2 (0, T ; H 1,ε ) weakly for m → +∞, (2.42) vε δm ⇀ vε δ in L ∞ (0, T ; H ε ) × L ∞ (0, T ; H 0,ε ) weak star for m → +∞, (2.43)
and from (2.41), by Aubin's compactness theorem A.11 in [START_REF] Foias | Encyclopedia of mathematics and its applications[END_REF], there are two subsequences (denoted also by) v ε δm , Z ε δm satisfying for m → +∞ the following strong convergence

v ε δm → v ε δ in L 2 (0, T ; (L 4 (Ω ε )) 2 ), Z ε δm → Z ε δ in L 2 (0, T ; L 4 (Ω ε )). (2.44)
In order to pass to the limit as m → +∞, we remind that for any

Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1,ε , there exists a sequence (q ε i , k ε i ) i≥1 in R 2 such that Θ ε m = (ϕ ε m , ψ ε m ) → (ϕ ε , ψ ε ) strongly in V ε × H 1,ε with ϕ ε m = m i=1 q ε i Φ i , ψ ε m = m i=1 k ε i ψ i ∀m ≥ 1.
We multiply first the two sides of (2.25) by q ε i then we sum for i = 1 to m, and we multiply the two sides of (2.27) by k ε i then we sum also for i = 1 to m, we obtain

( ∂v ε δm ∂t , ϕ ε m ) + (ν + ν r )(∇v ε δm , ∇ϕ ε m ) + b(v ε δm , v ε δm , ϕ ε m ) + 1 2 (v ε δm divv ε δm , ϕ ε m ) + 1 δ (divv ε δm , divϕ ε m ) = (F 1 (v ε δm ), ϕ ε m ) + 2ν r (rot Z ε δm , ϕ ε m ), (2.45) v ε δm (0) = v ε 0m , (2.46) and ( ∂Z ε δm ∂t , ψ ε m ) + α(∇Z ε δm , ∇ψ ε m ) + b 1 (v ε δm , Z ε δm , ψ ε m ) + 1 2 (Z ε δm div v ε δm , ψ ε m ) = (F 2 (v ε δm ), ψ ε m ) + 2ν r (rot v ε δm , ψ ε m ) -4ν r (Z ε δm , ψ ε m ), (2.47) Z ε δ (0) = Z ε 0m . (2.48)
Let θ ∈ D(0, T ), we multiply (2.45) and (2.47) by θ(t) and we integrate over [0, T ]. We get

- T 0 (v ε δm (t), Θ ε m )θ ′ (t)dt + T 0 {a(v ε δm , Θ ε m ) + B(v ε δm , vε δm , Θ ε m )} θ(t)dt + 1 δ T 0 (div v ε δm , divϕ ε m )θ(t)dt + 1 2 T 0 {v ε δm div v ε δm , ϕ ε m ) + (Z ε δ div v ε δm , ψ ε m )} θ(t)dt = T 0 {(F (v ε δm ), Θ ε m ) -R(v ε δm , Θ ε m )} θ(t)dt. (2.49)
Using the convergences (2.42)-( 2.43), we can now pass easily to the limit in all terms of (2.49) except for the nonlinear terms

T 0 B(v ε δm , vε δm , Θ ε m )θ(t)dt = T 0 b(v ε δm , v ε δm , ϕ ε m )θ(t)dt + T 0 b 1 (v ε δm , Z ε δ , ψ ε m )θ(t)dt and T 0 {v ε δm div v ε δm , ϕ ε m ) + (Z ε δ div v ε δm , ψ ε m )} θ(t)dt.
We have first

T 0 b(v ε δm , v ε δm , ϕ ε m )θ(t)dt = - T 0 b(v ε δm , ϕ ε m , v ε δm )θ(t)dt - T 0 (div v ε δm , ϕ ε m • v ε δm )θ(t)dt + T 0 ∂Ω ε (ϕ ε m • v ε δm )(v ε δm • n)θ(t)dσdt. (2.50)
Using the boundary conditions (2.12)-(2.14), we obtain that the last integral is equal to zero, then for the first and the second integrals we use the strong convergence (2.44). So we get

T 0 b(v ε δm , v ε δm , ϕ ε m )θ(t)dt → T 0 b(v ε δ , v ε δ , ϕ ε )θ(t)dt for m → +∞. Similarly T 0 b(v ε δm , Z ε δm , ψ ε m )θ(t)dt = - T 0 b(v ε δm , ψ ε m , Z ε δm )θ(t)dt - T 0 (div v ε δm , ψ ε • Z ε δm )θ(t)dt + T 0 ∂Ω ε (ψ ε m • Z ε δm )(v ε δm • n)θ(t)dσdt. (2.51)
Using the boundary conditions (2.12)-(2.14), we obtain that the last integral is equal to zero, then for the first and the second integrals we use the strong convergence (2.44). So we get

T 0 b(v ε δm , Z ε δm , ψ ε m )θ(t)dt → T 0 b(v ε δ , ψ ε , Z ε δ )θ(t)dt for m → +∞.
We can now pass to the limit (m → +∞) in all terms of (2.49) to get

T 0 (v ε δ , Θ ε )θ ′ (t)dt = T 0 a(v ε δ , Θ ε ) + B(v ε δ , vε δ , Θ ε ) + 1 δ (div v ε δ , divϕ ε ) θ(t)dt + T 0 1 2 (v ε δ div v ε δ , ϕ ε ) + 1 2 (Z ε δ div v ε δ , ψ ε ) -(F (v ε δ ), Θ ε ) -R(v ε δ , Θ ε ) θ(t)dt ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1, ε , (2.52) that is vε δ satisfy (2.20) in D ′ (0, T ) (distribution sense).
Moreover as the two items between the brackets {}, in the right hand side of (2.52), are in L 4/3 (0, T ), we deduce that (2.20) holds for almost every t ∈ (0, T ).

In the following we set

p ε δ = - 1 δ div v ε δ , then, rewrite (2.20) as follows [ ∂v ε δ ∂t , Θ ε ] + a(v ε δ , Θ ε ) + B(v ε δ , vε δ , Θ ε ) + 1 2 {(v ε δ div v ε δ , ϕ ε ) + (Z ε δ div v ε δ , ψ ε )} -(p ε δ , divϕ ε ) = (F (v ε δ ), Θ ε ) -R(v ε δ , Θ ε ) ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1, ε . (2.53)
The aim now is to pass to the limit for δ → 0 in (2.53). Reminding that the different constants C in (2.37)-(2.38) and (2.41) are independent of δ, the same estimates hold for vε δ i.e.

sup

t∈[0,T ] [v ε δ (t)] 2 ≤ C, (2.54) T 0 div v ε δ 2 dt ≤ Cδ, T 0 [[v ε δ (t)]] 2 dt ≤ C, (2.55) and ∂v ε δ ∂t L 4/3 (0,T ;H -1 (Ω ε ) 2 ) ≤ C, ∂Z ε δ ∂t L 4/3 (0,T ;H -1 (Ω ε )) ≤ C. (2.56)
Hence, there exists vε such that, possibly extracting a subsequence still denoted by vε δ :

vε δ ⇀ vε in L 2 (0, T ; V ε ) × L 2 (0, T ; H 1,ε ) weakly for δ → 0, (2.57) vε δ ⇀ vε in L ∞ (0, T ; H ε ) × L ∞ (0, T ; H 0,ε ) weak star for δ → 0, (2.58) div v ε δ → 0 in L 2 (0, T ; L 2 (Ω ε )) strongly for δ → 0, (2.59) and vε δ → vε strongly in L 2 (0, T ; (L 4 (Ω ε ) 2 )) × L 2 (0, T ; L 4 (Ω ε )). (2.60)
So from (2.57) and (2.59) we deduce div v ε = 0 in Ω ε , a.e. in (0, T ). (2.61) We check now that p ε δ remains in a bounded subset of

H -1 (0, T ; L 2 0 (Ω ε )). Re- minding that p ε δ = -1 δ div v ε δ , we have p ε δ ∈ L 2 (0, T ; L 2 0 (Ω ε )). Now let us consider ω ∈ H 1 0 (0, T ; L 2 0 (Ω ε ))
, then (see [START_REF] Lions | Some problems connected with Navier-Stokes equations[END_REF] page 13-15) there exists ϕ ∈ H 1 0 (0, T ;

H 1 0 (Ω ε ) 2 ) such that div ϕ(t) = ω(t), and ϕ(t) = P ω(t), P is a linear continuous operator from L 2 0 (Ω ε ) to H 1 0 (Ω ε ) 2 . The choice of Θ = (ϕ(t), 0) in (2.53), gives T 0 (p ε δ , ω)dt = T 0 -(v ε δ , ∂ϕ ∂t ) + (ν + ν r )(∇v ε δ , ∇ϕ) dt + T 0 b(v ε δ , v ε δ , ϕ)dt + 1 2 T 0 (v ε δ div v ε δ , ϕ)dt -2ν r T 0 (rot Z ε δ , ϕ)dt - T 0 (F 1 (v ε δ ), ϕ)dt, (2.62) with (F 1 (v ε δ ), ϕ) = -(ν + ν r )( ∂U ε ∂z 2 , ∂ϕ 1 ∂z 2 ) -b(U ε e 1 , v ε δ , ϕ) -b(v ε δ , U ε e 1 , ϕ) +2ν r ( ∂W ε ∂z 2 , ϕ 1 ) -( ∂U ε ∂t , ϕ 1 ) + (f ε , ϕ). (2.63) Since ω ∈ H 1 0 (0, T ; L 2 0 (Ω ε )) ⊂ L ∞ (0, T ; L 2 0 (Ω ε )), with continuous injection, it follows that ϕ in L ∞ (0, T ; H 1 0 (Ω ε ) 2 ), and ∂ϕ ∂t ∈ L 2 (0, T ; H 1 0 (Ω ε ) 2 ), then also by the continuous injection of H 1 (Ω ε ) in L 4 (Ω ε ) we have | T 0 b(v ε δ , v ε δ , ϕ)dt| ≤ v ε δ L 2 (0,T ;(L 4 (Ω ε )) 2 ) v ε δ L 2 (0,T ;H 1 (Ω ε ) 2 ) ϕ L ∞ (0,T ;(L 4 (Ω ε )) 2 ) ≤ C 2 v ε δ 2 L 2 (0,T ;H 1 (Ω ε ) 2 ) ϕ H 1 (0,T ;H 1 (Ω ε ) 2 )
. Similarly for the first term in the second line of (2.62). Therefore using (2.54)-(2.55) we get

| T 0 (p ε δ , ω)dt| ≤ C ϕ H 1 (0,T ;H 1 (Ω ε ) 2 ) ∀ϕ ∈ H 1 0 (0, T ; H 1 0 (Ω ε ) 2 ). As P : ω(t) → ϕ(t) is a linear continuous operator from L 2 0 (Ω ε ) to H 1 0 (Ω ε ) 2 , there exists another constant C, independent of δ, such that | T 0 (p ε δ , ω)dt| ≤ C ω H 1 0 (0,T ;L 2 0 (Ω ε )) ∀ω ∈ H 1 (0, T ; L 2 (Ω ε )). (2.64) Let us take now ω ∈ H 1 0 (0, T ; L 2 (Ω ε )) arbitrary, we can apply (2.64) to ω = ω - 1 meas(Ω ε ) Ω ε ωdz which is in H 1 0 (0, T ; L 2 0 (Ω ε )). But p ε δ ∈ L 2 (0, T ; L 2 0 (Ω ε )), so T 0 (p ε δ , ω)dt = T 0 (p ε δ , ω)dt
and (2.64) remains valid for all ω ∈ H 1 0 (0, T ; L 2 (Ω ε ). Thus p ε δ remains in a bounded subset of H -1 (0, T ; L 2 0 (Ω ε )). It follows that there exists

p ε ∈ H -1 (0, T ; L 2 0 (Ω ε )) such that p ε δ ⇀ p ε in H -1 (0, T ; L 2 (Ω ε )) weak. (2.65)
In order to pass to the limit as δ → 0, let θ ∈ D(0, T ), multiply (2.53) by θ(t) and integrate over [0, T ]. We get 

- T 0 (v ε δ (t), Θ ε )θ ′ (t)dt + T 0 (a(v ε δ , Θ ε ) + B(v ε δ , vε δ , Θ ε )) θ(t)dt - T 0 (p ε δ , divϕ ε )θ(t)dt + 1 2 T 0 {(v ε δ div v ε δ , ϕ ε ) + (Z ε δ div v ε δ , ψ ε )} θ(t)dt = T 0 {(F (v ε δ ), Θ ε ) -R(v ε δ , Θ ε )} θ(t)dt ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1, ε . (2.
(v ε , Θ ε )θ ′ (t)dt = T 0 {a(v ε , Θ ε ) + B(v ε , vε , Θ ε ) -(p ε , divϕ ε )} θ(t)dt - T 0 {(F (v ε ), Θ ε ) -R(v ε , Θ ε )} θ(t)dt ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1, ε , that is (v ε , p ε ) satisfy (2.17) in D ′ (0, T ) (distribution sense).
Moreover we can see also that (2.17) is satisfied for almost every t ∈ (0, T ). Finally, by considering test-functions Θ ε ∈ V div × H 1,ε , we can prove the uniqueness of (v ε , Z ε ) and its continuity in time as in Theorem 2.2 [START_REF] Lukaszewicz | Long time behavior of 2D micropolar fluid flows[END_REF]. Thus the proof of the existence and uniqueness of a solution of Problem (P ε ) is complete.

3.

A priori uniform estimates of vε and p ε . The aim in this section is to establish uniform estimates with respect to ε for vε and p ε , which will allow us to derive in the next sections the limit problem as ε tends to zero by using the two-scale convergence technique. More precisely we consider first the following scaling

x 1 = z 1 ,
and

x 2 = z 2 ε , (3.1)
which transforms the domain Ω ε into the domain

Ω ε = x = (x 1 , x 2 ) ∈ R 2 : 0 < x 1 < L 0 < x 2 < h ε (x 1 ) = h(x 1 , x 1 ε ) ,
then we introduce a second scaling

y 1 = x 1 , and y 2 = x 2 h ε (x 1 ) = z 2 εh ε (x 1 ) (3.2)
which transforms the domain Ω ε into Ω = {y = (y 1 , y 2 ) ∈ Γ 0 × (0, 1)}. With the chain rule, we get easily the following relations

∂ ∂z 2 = 1 εh ε (y 1 ) ∂ ∂y 2 , ∂ ∂z 1 = ∂ ∂y 1 ∂y 1 ∂z 1 + ∂ ∂y 2 ∂y 2 ∂z 1 = ∂ ∂y 1 + - y 2 h ε (y 1 ) ∂h ε ∂y 1 ∂ ∂y 2 = 1, - y 2 h ε (y 1 ) ∂h ε ∂y 1   ∂ ∂y1 ∂ ∂y2   = b ε • ∇. (3.3)
Now we define the functional setting in Ω: let Γ 1 = {(y 1 , y 2 ) ∈ Ω : y 2 = 1} and

Ṽ = {v ∈ C ∞ (Ω) 2 : v is L-periodic in y 1 , v |Γ 0 = 0, -ε(h ε ) ′ (y 1 )v 1 + v 2 = 0 on Γ 1 } V = closure of Ṽ in H 1 (Ω) × H 1 (Ω) H1 = {Z ∈ C ∞ (Ω) : Z is L-periodic in y 1 , Z = 0 on Γ 0 ∪ Γ 1 } H = closure of Ṽ in L 2 (Ω) × L 2 (Ω), H 1 = closure of H1 in H 1 (Ω), H 0 = closure of H1 in L 2 (Ω).
In order to avoid new notations, we have still denoted by v ε , Z ε and p ε the unknown velocity, micro-rotation and pressure fields as functions of the rescaled variables (y 1 , y 2 ) instead of (z 1 , z 2 ). Similarly, we still denote the data by f ε and ξε considered now as functions of (y 1 , y 2 ).

Let Θ = (ϕ, ψ)

∈ V × H 1 and let Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1,ε be given by ϕ ε (z 1 , z 2 ) = ϕ z 1 , z 2 εh ε (z 1 ) , ψ ε (z 1 , z 2 ) = ψ z 1 , z 2 εh ε (z 1 ) ∀(z 1 , z 2 ) ∈ Ω ε . Using (3.3) we obtain that a(v ε (t), Θ ε ) = (ν + ν r ) 2 i,j=1 Ω ε ∂v ε i (t) ∂z j ∂ϕ ε i (t) ∂z j dz + α 2 i=1 Ω ε ∂Z ε (t) ∂z i ∂ψ ε ∂z i dz = (ν + ν r ) Ω 2 i=1 (b ε • ∇v ε i (t))(b ε • ∇ϕ i ) + 1 (εh ε ) 2 ∂v ε i (t) ∂y 2 ∂ϕ i ∂y 2 εh ε dy +α Ω (b ε • ∇Z ε (t))(b ε • ∇ψ) + 1 (εh ε ) 2 ∂Z ε (t) ∂y 2 ∂ψ ∂y 2 εh ε dy = (ν + ν r ) ε Ω 2 i=1 (εb ε • ∇v ε i (t))(εb ε • ∇ϕ i ) + 1 (h ε ) 2 ∂v ε i (t) ∂y 2 ∂ϕ i ∂y 2 h ε dy + α ε Ω (εb ε • ∇Z ε (t))(εb ε • ∇ψ) + 1 (h ε ) 2 ∂Z ε (t) ∂y 2 ∂ψ ∂y 2 h ε dy = 1 ε â(v ε (t), Θ), (3.4) B(v ε (t), vε (t), Θ ε ) = b(v ε (t), v ε (t), ϕ ε ) + b 1 (v ε (t), Z ε (t), ψ ε ) = Ω ε 2 i,j=1 v ε i (t) ∂v ε j (t) ∂z i ϕ ε j dz + 2 i=1 Ω ε v ε i (t) ∂Z ε (t) ∂z i ψ ε dz = Ω   2 j=1 v ε 1 (t) εb ε • ∇v ε j (t) ϕ j + v ε 2 (t) h ε ∂v ε j (t) ∂y 2 ϕ j   h ε dy + Ω   2 j=1 v ε 1 (t)(εb ε • ∇Z ε (t))ψ + v ε 2 (t) h ε ∂Z ε (t) ∂y 2 ψ   h ε dy = B(v ε (t), vε (t), Θ), (3.5) R(v ε (t), Θ ε ) = -2ν r Ω ε ∂Z ε (t) ∂z 2 ϕ ε 1 - ∂Z ε (t) ∂z 1 ϕ ε 2 + ∂v ε 2 (t) ∂z 1 - ∂v ε 1 (t) ∂z 2 ψ ε dz +4ν r Ω ε Z ε (t)ψ ε dz = -2ν r Ω 1 h ε ∂Z ε (t) ∂y 2 ϕ 1 -(εb ε • ∇Z ε (t))ϕ 2 h ε dy -2ν r Ω (εb ε • ∇v ε 2 (t)) - 1 h ε ∂v ε 1 (t) ∂y 2 ψh ε dy + 4ν r ε Ω Z ε (t)ψ h ε dy = R(v ε (t), Θ). (3.6) Using Lemma 2.1 we have U ε (t, z 2 ) = U( z2 ε )U 0 (t) = U(y 2 h ε (y 1 ))U 0 (t), so b ε • ∇U(y 2 h ε (y 1 )) = ∂ ∂y 1 - y 2 h ε ∂h ε ∂y 1 ∂ ∂y 2 U(y 2 h ε (y 1 )) = U ′ (y 2 h ε (y 1 )) y 2 ∂h ε ∂y 1 - y 2 h ε ∂h ε ∂y 1 h ε = 0, (3.7) and similarly for W ε (t, z 2 ) = W( z2 ε )W 0 (t) = W(y 2 h ε (y 1 ))W 0 (t), so b ε • ∇W(y 2 h ε (y 1 )) = 0. (3.8) Then a( ξε , Θ ε ) = (ν + ν r ) Ω ε ∇U ε (z 2 , t)e 1 ∇ϕ ε dz + α Ω ε ∇W ε (z 2 , t)∇ψ ε dz = (ν + ν r ) Ω ε 2 i=1 ∂U ε ∂z i ∂ϕ ε 1 ∂z i dz + α Ω ε 2 i=1 ∂W ε ∂z i ∂ψ ε ∂z i dz = (ν + ν r )U 0 (t) Ω (b ε • ∇U)(b ε • ∇ϕ 1 ) + 1 (εh ε ) 2 U ′ (y 2 h ε )h ε ∂ϕ 1 ∂y 2 εh ε dy +αW 0 (t) Ω (b ε • ∇W)(b ε • ∇ψ) + 1 (εh ε ) 2 W ′ (y 2 h ε )h ε ∂ψ ∂y 2 εh ε dy = (ν + ν r ) ε U 0 (t) Ω U ′ (y 2 h ε ) ∂ϕ 1 ∂y 2 dy + α ε W 0 (t) Ω W ′ (y 2 h ε ) ∂ψ ∂y 2 dy = 1 ε â( ξε , Θ). (3.9)
We have also

B( ξε , vε , Θ ε ) = b(U ε e 1 , v ε , ϕ ε ) + b 1 (U ε e 1 , Z ε , ψ ε ) = Ω ε 2 j=1 U ε ∂v ε j ∂z 1 ϕ ε j dz + Ω ε U ε ∂Z ε ∂z 1 ψ ε dz = U 0 (t) Ω U(y 2 h ε )   2 j=1 (εb ε • ∇v ε j )ϕ j + (εb ε • ∇Z ε )ψ   h ε dy = B( ξε , vε , Θ), (3.10) B(v ε , ξε , Θ ε ) = -B(v ε , Θ ε , ξε ) = -b(v ε , ϕ ε , U ε e 1 ) -b 1 (v ε , ψ ε , W ε ) = - 2 i=1 Ω ε v ε i ∂ϕ ε 1 ∂z i U ε dz - 2 i=1 Ω ε v ε i ∂ψ ε ∂z i W ε dz = -U 0 (t) Ω U(y 2 h ε ) v ε 1 (εb ε • ∇ϕ 1 )h ε + v ε 2 ∂ϕ 1 ∂y 2 dy -W 0 (t) Ω W(y 2 h ε ) v ε 1 (εb ε • ∇ψ)h ε + v ε 2 ∂ψ ∂y 2 dy = B(v ε , ξε , Θ), (3.11) R( ξε , Θ ε ) = -2ν r W 0 (t) Ω ϕ 1 1 εh ε ∂ ∂y 2 W(y 2 h ε ) -(b ε • ∇W)ϕ 2 εh ε dy -2ν r U 0 (t) Ω - 1 εh ε ∂ ∂y 2 U(y 2 h ε ) ψεh ε dy + 4ν r W 0 (t) Ω W(y 2 h ε )ψ εh ε dy = -2ν r W 0 (t) Ω W ′ (y 2 h ε )ϕ 1 h ε dy + 2ν r U 0 (t) Ω U ′ (y 2 h ε )ψh ε dy +4ν r W 0 (t) Ω W(y 2 h ε )ψ εh ε dy = R( ξε , Θ), (3.12) and (p ε (t), div ϕ ε ) = Ω ε p ε (t)div ϕ ε dz = Ω p ε (t) (εb ε • ∇ϕ 1 ) + 1 h ε ∂ϕ 2 ∂y 2 h ε dy. (3.13) Lemma 3.1. Using (3.1)-(3.
2), the variational identity (2.17) written in Ω ε leads to the following one in Ω:

ε Ω dv ε dt (t)Θ ε h ε dy + 1 ε â(v ε (t), Θ ε ) + B(v ε (t), vε (t), Θ ε ) + R(v ε (t), Θ ε ) = -ε Ω d ξε dt (t)Θ ε h ε dy - 1 ε â( ξε (t), Θ ε ) -B( ξε (t), vε (t), Θ ε ) -B(v ε (t), ξε (t), Θ ε ) -R( ξε (t), Θ ε ) + ε Ω f ε (t)Θ ε h ε dy + Ω p ε (t) (εb ε • ∇ϕ ε 1 ) + 1 h ε ∂ϕ ε 2 ∂y 2 h ε dy, ∀Θ ε = (ϕ ε , ψ ε ) ∈ V ε × H 1,ε , (3.14) 
where â, B, and R, are defined by (3.4), (3.5), and (3.6) respectively.

Proof. Indeed, from (3.4)-(3.13), the variational identity (3.14) follows.

We prove now the following uniform estimates, with respect to ε: Proposition 3.2. Assume that ε 2 f ε and εv ε 0 are bounded independently of ε in (L 2 ((0, T ) × Ω)) 3 and in (L 2 (Ω)) 3 respectively and U 0 ∈ H 1 (0, T ), W 0 ∈ H 1 (0, T ). There exists a constant C > 0 which does not depends on ε, such that, for i = 1, 2, we have the following estimates:

(εb ε • ∇v ε i ) L 2 ((0,T )×Ω) ≤ C, (εb ε • ∇Z ε ) L 2 ((0,T )×Ω) ≤ C, (3.15)
∂v ε i ∂y 2 L 2 ((0,T )×Ω) ≤ C, ∂Z ε ∂y 2 L 2 ((0,T )×Ω) ≤ C, (3.16) ∂v ε i ∂y 1 L 2 ((0,T )×Ω) ≤ C ε , ∂Z ε ∂y 1 L 2 ((0,T )×Ω) ≤ C ε , (3.17) v ε i L 2 ((0,T )×Ω) ≤ C, Z ε L 2 ((0,T )×Ω) ≤ C. (3.18)
Proof. Taking Θ ε = vε (t) in (3.14), and observing that B(v ε (t), vε (t), vε (t)) = B( ξε (t), vε (t), vε (t)) = 0, we obtain

ε d 2dt Ω (v ε (t)) 2 h ε dy + (ν + ν r ) ε Ω (ε b ε • ∇v ε 1 (t)) 2 h ε dy + (ν + ν r ) ε Ω (ε b ε • ∇v ε 2 (t)) 2 h ε dy + + (ν + ν r ) ε Ω 1 h ε ∂v ε 1 (t) ∂y 2 2 h ε dy + Ω 1 h ε ∂v ε 2 (t) ∂y 2 2 h ε dy + α ε Ω (ε b ε • ∇Z ε (t)) 2 h ε dy + + α ε Ω 1 h ε ∂Z ε (t) ∂y 2 2 h ε dy + 4ν r ε Ω (Z ε (t)) 2 h ε dy = 2ν r Ω ∂Z ε (t) ∂y 2 v ε 1 (t) -(εb ε • ∇Z ε (t))v ε 2 (t)h ε dy +2ν r Ω (εb ε • ∇v ε 2 (t))Z ε (t)h ε - ∂v ε 1 (t) ∂y 2 Z ε (t) dy - (ν + ν r ) ε U 0 (t) Ω U ′ (y 2 h ε ) ∂v ε 1 (t) ∂y 2 dy - α ε W 0 (t) Ω W ′ (y 2 h ε ) ∂Z ε (t) ∂y 2 dy + 2ν r W 0 (t) Ω W ′ (y 2 h ε )v ε 1 (t)h ε dy -2ν r U 0 (t) Ω U ′ (y 2 h ε )Z ε (t)h ε dy -4ν r εW 0 (t) Ω W(y 2 h ε )Z ε (t)h ε dy + U 0 (t) Ω U(y 2 h ε ) v ε 1 (t)(εb ε • ∇v ε 1 (t))h ε + v ε 2 (t) ∂v ε 1 (t) ∂y 2 dy +W 0 (t) Ω v ε 1 (t)(εb ε • ∇Z ε (t))W(y 2 h ε )h ε + v ε 2 (t) ∂Z ε (t) ∂y 2 W(y 2 h ε ) dy -εU ′ 0 (t) Ω U(y 2 h ε )v ε 1 (t)h ε dy -εW ′ 0 (t) Ω W(y 2 h ε )Z ε (t)h ε dy +ε Ω g ε (t)Z ε (t)h ε dy + ε Ω (f ε 1 (t)v ε 1 (t) + f ε 2 (t)v ε 2 (t))h ε dy. (3.19)
Now we estimate the right hand side of the above inequality (3.19). Let λ j for 1 ≤ j ≤ 16, which must be some strictly positive constants, such that

2ν r Ω ∂Z ε (t) ∂y 2 v ε 1 (t)dy ≤ ν r ελ 1 1 h ε ∂Z ε (t) ∂y 2 2 L 2 (Ω) + εν r λ 1 h 2 M v ε 1 (t) 2 L 2 (Ω) , (3.20) 2ν r Ω (εb ε • ∇Z ε (t)) v ε 2 (t)h ε dy ≤ ν r ελ 2 (εb ε • ∇Z ε (t) 2 L 2 (Ω) +ν r ελ 2 h 2 M v ε 2 (t) 2 L 2 (Ω) , (3.21) 2ν r Ω (εb ε • ∇v ε 2 (t)) Z ε (t)h ε dy ≤ ν r ελ 3 (εb ε • ∇v ε 2 (t)) 2 L 2 (Ω) +ελ 3 ν r h 2 M Z ε (t) 2 L 2 (Ω) , (3.22) 2ν r Ω ∂v ε 1 (t) ∂y 2 Z ε (t)dy ≤ ν r ελ 4 1 h ε ∂v ε 1 (t) ∂y 2 2 L 2 (Ω) + ν r ελ 4 h 2 M Z ε (t) 2 L 2 (Ω) (3.23) 1 ε Ω U 0 (t)U ′ (y 2 h ε ) ∂v ε 1 (t) ∂y 2 dy ≤ U 0 (t) 2 U ′ 2 L 2 (0,hm) h M L 2ελ 5 (ν + ν r ) + λ 5 (ν + ν r ) 2ε 1 h ε ∂v ε 1 (t) ∂y 2 | 2 L 2 (Ω) , (3.24) α ε Ω W 0 (t)W ′ (t, y 2 h ε ) ∂Z ε (t) ∂y 2 h ε dy ≤ αW 0 (t) 2 W ′ 2 L 2 (0,hm) h M L 2λ 6 ε + λ 6 α 2ε 1 h ε ∂Z ε (t) ∂y 2 2 L 2 (Ω) (3.25) 2ν r W 0 (t) Ω W ′ (y 2 h ε )v ε 1 (t)h ε dy ≤ ν r W 0 (t) 2 W ′ 2 L 2 (0,hm) L ελ 7 h M +ν r λ 7 εh 2 M v ε 1 (t) 2 L 2 (Ω) , (3.26) 2ν r U 0 (t) Ω U ′ (y 2 h ε )Z ε (t)h ε dy ≤ ν r U 0 (t) 2 U ′ 2 L 2 (0,hm) h M L ελ 8 +ν r λ 8 ε Z ε (t)) 2 2 L 2 (Ω) , (3.27) U 0 (t) Ω v ε 1 (t)(εb ε • ∇v ε 1 (t))U(y 2 h ε )h ε dy ≤ εU 2 0 (t) U 2 ∞ h 2 M λ 9 2 v ε 1 (t) 2 L 2 (Ω) + 1 2ελ 9 (εb ε • ∇v ε 1 ) 2 L 2 (Ω) , (3.28) U 0 (t) Ω v ε 2 (t) ∂v ε 1 ∂y 2 U(y 2 h ε )dy ≤ 1 2ελ 10 1 h ε ∂v ε 1 ∂y 2 2 L 2 (Ω) + ελ 10 U 2 0 (t) U 2 ∞ h 2 M 2 v ε 2 (t) 2 L 2 (Ω) , (3.29) W 0 (t) Ω v ε 1 (t)(εb ε • ∇Z ε )W(y 2 h ε )h ε dy ≤ 1 2ελ 11 (εb ε • ∇Z ε ) 2 L 2 (Ω) + ελ 11 W 2 0 (t) W 2 ∞ h 2 M 2 v ε 1 (t) 2 L 2 (Ω) , (3.30) W 0 (t) Ω v ε 2 (t) ∂Z ε ∂y 2 W(y 2 h ε )dy ≤ 1 2ελ 12 1 h ε ∂Z ε ∂y 2 2 L 2 (Ω) + ελ 12 W 2 0 (t) W 2 ∞ h 2 M 2 v ε 2 (t) 2 L 2 (Ω) , (3.31) 4ν r ε W 0 (t) Ω W(y 2 h ε )Z ε (t)h ε dy ≤ 2ν r εW 0 (t) 2 W 2 L 2 (0,hm) h M L λ 13 +2ελ 13 ν r Z ε (t) 2 L 2 (Ω) , (3.32) ε U ′ 0 (t) Ω U(y 2 h ε )v ε 1 (t)h ε dy ≤ ε 2 h 2 M v ε 1 (t) 2 L 2 (Ω) + εL 2h M |U ′ 0 (t)| 2 U 2 L 2 (0,hm) , (3.33) ε|W ′ 0 (t) Ω W(y 2 h ε )Z ε (t)h ε dy| ≤ ε 2 h 2 M Z ε (t) 2 L 2 (Ω) + εL 2h M |W ′ 0 (t)| 2 W 2 L 2 (0,hm) . (3.34) Finally ε Ω g ε (t)Z ε (t)h ε dy ≤ h M ε ε 2 g ε L 2 (Ω) Z ε L 2 (Ω) .
By using Poincaré's inequality and the boundary conditions (2.12)-(2.14), we get

Z ε L 2 (Ω) ≤ ∂Z ε ∂y 2 L 2 (Ω)
a.e. in (0, T ), and 

ε Ω g ε (t)Z ε (t)h ε dy ≤ h M ε ε 2 g ε L 2 (Ω) ∂Z ε ∂y 2 L 2 (Ω) ≤ h 2 M ε ε 2 g ε L 2 (Ω) 1 h ε ∂Z ε ∂y 2 L 2 (Ω) ≤ h 4 M 2λ 14 ε ε 2 g ε 2 L 2 (Ω) + λ 14 2ε 1 h ε ∂Z ε ∂y 2 2 L 2 (Ω) . (3.35) Similarly ε Ω f ε 1 (t)v ε 1 (t)h ε dy ≤ h 4 M 2λ 15 ε ε 2 f ε 1 2 L 2 (Ω) + λ 15 2ε 1 h ε ∂v ε 1 ∂y 2 2 L 2 (Ω) , (3.36) and ε Ω f ε 2 (t)v ε 2 (t)h ε dy ≤ h 4 M 2λ 16 ε ε 2 f ε 2 2 L 2 (Ω) + λ 16 2ε 1 h ε ∂v ε 2 ∂y 2 2 L 2 (Ω) . (3.
d dt ([v ε (t)] 2 ) + c 1 ε (ε b ε • ∇v ε 1 (t) 2 L 2 (Ω) + c 2 ε (ε b ε • ∇v ε 2 (t) 2 L 2 (Ω) + c 3 ε 1 h ε ∂Z ε (t) ∂y 2 2 L 2 (Ω) + c 4 ε 1 h ε ∂v ε 1 (t) ∂y 2 2 L 2 (Ω) + c 5 ε h m 1 h ε ∂v ε 2 (t) ∂y 2 2 L 2 (Ω) + c 6 ε (ε b ε • ∇Z ε (t) 2 L 2 (Ω) + ν r εc 7 Z ε (t) 2 L 2 (Ω) ≤ εc 8 (t)[v ε (t)] 2 + c 9 (t) ε (3.38)
where

c 1 = (ν + ν r )h m - 1 2λ 9 , c 2 = (ν + ν r )h m - ν r λ 3 , c 3 = αh m - ν r λ 1 - λ 6 α 2 - 1 2λ 12 - λ 14 2 , c 4 = (ν + ν r )h m - λ 5 (ν + ν r ) 2 2 - ν r λ 4 - 1 2λ 10 - λ 15 2 , c 5 = (ν + ν r )h m - λ 16 2 , c 6 = αh m - 1 2λ 11 - ν r λ 2 , c 7 = 4h m -λ 8 -2λ 13 , c 8 (t) = max{A(t), B(t), h 2 M (1 + λ 3 + λ 4 )} with A(t) = h 2 M 1 + ν r λ 1 + ν r λ 7 + λ 9 U 2 0 (t) U 2 ∞ + λ 11 W 2 0 (t) W 2 ∞ 2 B(t) = h 2 M 1 2 + ν r λ 2 + λ 10 U 2 0 (t) U 2 ∞ 2 + λ 12 W 2 0 (t) W 2 ∞ 2 and c 9 (t) ε = U 2 0 (t) U ′ 2 L 2 (0,hm) h M L 2ελ 5 + ν r U 2 0 (t) U 2 L 2 (0,hm) h M L ελ 8 + αW 2 0 (t) W ′ 2 L 2 (0,hm) h M L 2ελ 6 + ν r W 2 0 (t) W ′ 2 L 2 (0,hm) L ελ 7 h M + 2ν r εW 0 (t) 2 W 2 L 2 (0,hm) h M L λ 13 + εL 2h M |U ′ 0 (t)| 2 U 2 L 2 (0,hm) + εL 2h M |W ′ 0 (t)| 2 W 2 L 2 (0,hm) + h 4 M 2ε 1 λ 15 ε 2 f ε 1 (t) 2 L 2 (Ω) + 1 λ 16 ε 2 f ε 2 (t) 2 L 2 (Ω) + 1 λ 14 ε 2 g ε (t) 2 L 2 (Ω) .
Each c i for i = 1, • • • , 6 must be strictly positive, which is possible for example with

λ 1 = λ 2 = 4ν r αh m , λ 3 = λ 4 = 1 h m , λ 5 = νh m 2(ν + ν r ) 2 , λ 6 = λ 8 = λ 13 = h m 2 , λ 9 = 4 (ν + ν r )h m , λ 10 = 2 νh m , λ 11 = λ 12 = 2 αh m , λ 14 = αh m 8 , λ 15 = νh m 4 , λ 16 = (ν + ν r )h m 2 .
Note that λ 7 remains arbitrary and can be taken as λ 7 = 1. So from (3.38) we get

ε 2 2 d dt ([v ε (t)] 2 ) ≤ ε 2 c 7 (t)[v ε (t)] 2 + c 8 (t).
As U 0 and W 0 belong to H 1 (0, T ), then c 8 is bounded in L 1 (0, T ) independently of ε and by Grönwall's lemma we deduce that there exists a constant C independent of ε such that

ε 2 [v ε (t)] 2 ≤ C ∀t ∈ [0, T ]. (3.39)
Now we integrate the inequality (3.38) over the time interval (0, s) for 0 < s ≤ T , we deduce

ε 2 2 [v ε (s)] 2 + C 1 s 0 (ε b ε • ∇v ε 1 (t) 2 L 2 (Ω) + (ε b ε • ∇v ε 2 (t) 2 L 2 (Ω) + + (ε b ε • ∇Z ε (t) 2 L 2 (Ω) dt +C 2 s 0 1 h ε ∂Z ε (t) ∂y 2 2 L 2 (Ω) + 1 h ε ∂v ε 1 (t) ∂y 2 2 L 2 (Ω) + 1 h ε ∂v ε 2 (t) ∂y 2 2 L 2 (Ω) dt +ε 2 ν r c 6 s 0 (Z ε (t) 2 L 2 (Ω) dt ≤ ε 2 s 0 c 7 (t)[v ε (t)] 2 dt + s 0 c 8 (t)dt + ε 2 2 [v ε (0)] 2 , (3.40) where C 1 = min{c 1 , c 2 , c 6 }, C 2 = min{c 3 , c 4 , c 5 }, are two constants independent of ε. Observing that c 7 ∈ L ∞ (0, T ) and T 0 Ω 1 h ε ∂v ε i (t) ∂y 2 2 dydt ≥ 1 h 2 M ∂v ε i ∂y 2 2 L 2 ((0,T )×Ω)
we deduce (3.15) and (3.16) from (3.39). Moreover, from (3.3)

b ε • ∇ = ∂ ∂y 1 - y 2 h ε ∂h ε ∂y 1 ∂ ∂y 2 with | ∂h ε ∂y 1 | = | ∂h ∂y 1 + 1 ε ∂h ∂η 1 | ≤ C ε . (3.41) Thus we have T 0 Ω ε ∂v ε i (t) ∂y 1 2 dydt = T 0 Ω (εb ε • ∇v ε i (t)) + y 2 ε h ε ∂h ε ∂y 1 ∂v ε i (t) ∂y 2 2 dydt ≤ 2 (εb ε • ∇v ε i ) 2 L 2 ((0,T )×Ω) + 2 C h m ∂v ε i ∂y 2 2 L 2 ((0,T )×Ω)
and a similar estimate holds for Z ε . Finally with (3.15) and (3.16) we deduce (3.17).

Next, using again the boundary conditions (2.12)-(2.14) and Poincaré's inequality, we get

v ε i 2 L 2 ((0,T )×Ω) ≤ T 0 Ω ∂v ε i ∂y 2 2 dydt = ∂v ε i ∂y 2 2 L 2 ((0,T )×Ω)
and we deduce (3.18) from (3.16). Proposition 3.3. Assume that the proposition 3.2 holds. Then there exists a constant C > 0 which does not depends on ε, such that we have

ε 2 p ε H -1 (0,T ;L 2 (Ω)) ≤ C. (3.42)
Proof. Let ϕ ∈ D(0, T ) × D(Ω), then choose Θ = (0, ϕ(t), 0) as a test-function in (3.14) and multiply the two sides by ε: we obtain

ε T 0 Ω p ε ∂ϕ ∂y 2 dydt = -ε 2 T 0 Ω v ε 2 ∂ϕ ∂t h ε dydt +(ν + ν r ) 2 i=1 T 0 Ω h ε (εb ε • ∇v ε 2 )(εb ε • ∇ϕ) + 1 h ε ∂v ε 2 ∂y 2 ∂ϕ ∂y 2 dydt + T 0 Ω 2 i=1 εv ε 1 (εb ε • ∇v ε 2 )ϕh ε + εv ε 2 ∂v ε 2 ∂y 2 ϕ dydt + 2ν r T 0 Ω (εb ε • ∇Z ε )ϕεh ε dydt + T 0 Ω U ε (εb ε • ∇v ε 2 )ϕεh ε dydt - T 0 Ω ε 2 f ε 2 ϕh ε dydt, (3.43) with U ε (t, y) = U 0 (t)U(y 2 h ε (y 1 )) for all (t, y 1 , y 2 ) ∈ [0, T ] × Ω. Using (3.15)-(3.18), we get | T 0 Ω p ε ∂ϕ ∂y 2 dydt| ≤ C ε ϕ H 1 (0,T,H 1 0 (Ω)) ∀ϕ ∈ D(0, T ) × D(Ω). (3.44)
Now let φ ∈ D(0, T ) × D(Ω) and choose Θ = ( φ h ε , 0, 0) as a test-function in (3.14), then multiply the two sides by ε: we obtain

ε 2 T 0 Ω p ε ∂φ ∂y 1 - ∂ ∂y 2 y 2 1 h ε ∂h ε ∂y 1 φ dydt = -ε 2 T 0 Ω v ε 1 ∂φ ∂t dydt +(ν + ν r ) T 0 Ω ε(εb ε • ∇v ε 1 ) ∂φ ∂y 1 - ∂h ε ∂y 1 1 h ε φ -y 2 1 h ε ∂h ε ∂y 1 ∂φ ∂y 2 dydt +(ν + ν r ) T 0 Ω 1 (h ε ) 2 ∂v ε 1 ∂y 2 ∂φ ∂y 2 dydt + T 0 Ω εv ε 1 (εb ε • ∇v ε 1 )φ + ε h ε v ε 2 ∂v ε 1 ∂y 2 φ dydt +(ν + ν r ) T 0 Ω 1 (h ε ) 2 ∂U ε ∂y 2 ∂φ ∂y 2 dydt -2ν r T 0 Ω ε h ε ∂Z ε ∂y 2 φdydt + T 0 Ω εU ε (εb ε • ∇v ε 1 )φdydt - T 0 Ω ε 2 v ε 1 ∂φ ∂y 1 - ∂h ε ∂y 1 1 h ε φ -y 2 ∂h ε ∂y 1 1 h ε ∂φ ∂y 2 U ε dydt - T 0 Ω ε h ε v ε 2 ∂φ ∂y 2 U ε dydt -2εν r T 0 Ω 1 h ε ∂W ε ∂y 2 φdydt - T 0 Ω f ε 1 φ - ∂U ε ∂t φ ε 2 dydt, (3.45)
where W ε (t, y) = W 0 (t)W(y 2 h ε (y 1 )) for all (t, y 1 , y 2 ) ∈ [0, T ] × Ω.

Using the estimates (3.15)-(3.18) and (3.41), we infer that

| T 0 Ω p ε ∂φ ∂y 1 - ∂ ∂y 2 y 2 1 h ε ∂h ε ∂y 1 φ dydt| ≤ C ε 2 φ H 1 (0,T ;H 1 (Ω))
.

By choosing now ϕ = y 2 1 h ε ∂h ε ∂y1 φ in (3.43), we get ∂ϕ ∂t = y 2 1 h ε ∂h ε ∂y 1 ∂φ ∂t , ∂ϕ ∂y 2 = 1 h ε ∂h ε ∂y 1 φ + y 2 ∂φ ∂y 2 and b ε • ∇ϕ = -y 2 1 (h ε ) 2 ∂h ε ∂y 1 2 2φ + y 2 ∂φ ∂y 2 + y 2 1 h ε ∂ 2 h ε ∂y 2 1 φ + ∂h ε ∂y 1 ∂φ ∂y 1 .
Hence

ϕ L ∞ (0,T ;L 4 (Ω)) ≤ C ε φ H 1 (0,T ;H 1 (Ω)) , ∂ϕ ∂t L 2 ((0,T )×Ω) ≤ C ε φ H 1 (0,T ;H 1 (Ω)) , ∂ϕ ∂y 2 L 2 ((0,T )×Ω) ≤ C ε φ H 1 (0,T ;H 1 (Ω)) , εb ε • ∇ϕ L 2 ((0,T )×Ω) ≤ C ε φ H 1 (0,T ;H 1 (Ω))
and with (3.43)

| T 0 Ω p ε ∂ ∂y 2 y 2 1 h ε ∂h ε ∂y 1 φ dydt| ≤ C ε 2 φ H 1 (0,T ;H 1 (Ω)) .
It follows that

| T 0 Ω p ε ∂φ ∂y 1 dydt| ≤ C ε 2 φ H 1 (0,T ;H 1 (Ω)) ∀φ ∈ D(0, T ) × D(Ω). (3.46) By density of D(0, T ) × D(Ω) into H 1 0 (0, T ; H 1 0 (Ω)) we get from (3.44)-(3.46) ∂p ε ∂y 2 H -1 (0,T ;H -1 (Ω)) ≤ C ε , ∂p ε ∂y 1 H -1 (0,T ;H -1 (Ω)) ≤ C ε 2 . (3.47)
Finally we can deduce [START_REF] Temam | Navier-Stokes Equations. Theory and Numerical Analysis[END_REF] that ε 2 p ε remains in a bounded subset of H -1 (0, T ; L 2 (Ω)).

4. Two-scale convergence properties. Since our unknown functions depend on the time variable, we are not in the classical framework of two-scale convergence as it has been introduced by G. Allaire in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] or G. Nguetseng in [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. Nevertheless this technique can be easily adpated to a time-dependent framework (see for instance [START_REF] Miller | Homogenization of time-dependent systems with Kelvin-Voigt damping by twoscale convergence[END_REF][START_REF] Holmbom | Homogenization of parabolic equations: an alternative approach and some corrector-type results[END_REF][START_REF] Gilbert | Homogenizing the acoustic properties of the seabed: Part I[END_REF][START_REF] Wright | Time-dependent Stokes flow through a randomly perforated porous medium[END_REF]). For the convenience of the reader we will provide a complete proof a the generalization of [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] that will be used later for the study of the sequences (v ε ) ε>0 , (Z ε ) ε>0 and (p ε ) ε>0 .

Let us recall the following usual notations:

Y = [0, 1] 2 , C ∞ ♯ (Y )
is the space of infinitely differentiable functions in R 2 that are Y -periodic and

L 2 ♯ (Y ) = C ∞ ♯ (Y ) L 2 (Y ) , H 1 ♯ (Y ) = C ∞ ♯ (Y ) H 1 (Y ) .
Remark 4.1. The space L 2 ♯ (Y ) coincides with the space of functions of L 2 (Y ) extended by Y -periodicity to R 2 .

We extend the definition of the two-scale convergence as follows Definition 4.

1. A sequence (w ε ) ε>0 of L 2 (0, T )×Ω (resp. in H -1 0, T ; L 2 (Ω) ) two-scale converges to w 0 ∈ L 2 0, T ; L 2 (Ω × Y ) (resp. w 0 ∈ H -1 0, T ; L 2 (Ω × Y ) ) if and only if lim ε→0 T 0 Ω w ε (t, y)ϕ y, y ε θ(t) dydt = T 0 Ω×Y w 0 (t, y, η)ϕ(y, η)θ(t) dηdydt for all θ ∈ D(0, T ), for all ϕ ∈ D Ω; C ∞ ♯ (Y ) .
In such a case we will denote w ε ։ w 0 . Then we obtain Theorem 4.2. Let (w ε ) ε>0 be a bounded sequence of L 2 (0, T ) × Ω (resp. in H -1 0, T ; L 2 (Ω) ). There exists w 0 ∈ L 2 0, T ; L 2 (Ω×Y ) (resp. w 0 ∈ H -1 0, T ; L 2 (Ω× Y ) ) such that, possibly extracting a subsequence still denoted (w ε ) ε>0 , we have

w ε ։ w 0 .
Proof. The proof is similar to the proof of Theorem 1.2 in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]. Let us assume first that (w ε ) ε>0 is a bounded sequence of L 2 (0, T ) × Ω . In our time-dependent framework we consider test-functions ψ ∈ C [0, T ]; C(Ω; C ♯ (Y )) . Furthermore, For any ψ ∈ C [0, T ]; C(Ω; C ♯ (Y )) and for any fixed ε > 0, the mapping (t, y) → ψ ε (t, y) = ψ t, y, y ε is mesurable on (0, T ) × Ω and satisfies

ψ ε L 2 ((0,T )×Ω) = T 0 Ω ψ t, y, y ε 2 dydt 1/2 ≤ T |Ω| ψ C([0,T ];C(Ω;C ♯ (Y ))) .

Hence we can define Λ

ε ∈ C [0, T ]; C(Ω; C ♯ (Y )) ′ by Λ ε (ψ) = T 0 Ω w ε (t, y)ψ t, y, y ε dydt ∀ψ ∈ C [0, T ]; C(Ω; C ♯ (Y )) .
Since (w ε ) ε>0 is a bounded sequence of L 2 (0, T )×Ω , we infer with Cauchy-Schwarz's inequality that there exists a real number C > 0, independent of ε, such that

Λ ε (ψ) ≤ w ε L 2 ((0,T )×Ω) ψ ε L 2 ((0,T )×Ω) ≤ C ψ ε L 2 ((0,T )×Ω) ≤ C T |Ω| ψ C([0,T ];C(Ω;C ♯ (Y ))) (4.1) for all ψ ∈ C [0, T ]; C(Ω; C ♯ (Y )) and the sequence (Λ ε ) ε>0 is bounded in C [0, T ]; C(Ω; C ♯ (Y )) ′ . Reminding that C [0, T ]; C(Ω; C ♯ (Y )
) is a separable Banach space, we infer that there

exists Λ 0 ∈ C [0, T ]; C(Ω; C ♯ (Y )) ′ such that, possibly extracting a subsequence still denoted (Λ ε ) ε>0 , (Λ ε ) ⇀ Λ 0 weak * in C [0, T ]; C(Ω; C ♯ (Y )) ′ i.e. lim ε→0 T 0 Ω w ε (t, y)ψ t, y, y ε dydt = Λ 0 (ψ) ∀ψ ∈ C [0, T ]; C(Ω; C ♯ (Y )) .
Observing that, for all t ∈ [0, T ], 

ψ 2 (t, •, •) ∈ L 1 Ω; C ♯ (Y )) ,
Λ 0 (ψ) ≤ C ψ L 2 (0,T ;L 2 (Ω×Y )) ∀ψ ∈ C [0, T ]; C(Ω; C ♯ (Y )) .
It follows that Λ 0 can be extended to L 2 0, T ; L 2 (Ω × Y ) ′ and with Riesz's representation theorem we infer that there exists

w 0 ∈ L 2 0, T ; L 2 (Ω × Y ) such that Λ 0 (ψ) = T 0 Ω×Y w 0 (t, y, η)ψ(t, y, η) dηdydt ∀ψ ∈ L 2 0, T ; L 2 (Ω × Y )
which allows us to conclude for the first part of the theorem.

Let us assume now that (w ε ) ε>0 is a bounded sequence of H -1 0, T ; L 2 (Ω) and let

C 1 0 [0, T ]; C(Ω; C ♯ (Y )) = ψ ∈ C 1 [0, T ]; C(Ω; C ♯ (Y )) ; ψ(0, y, η) = ψ(T, y, η) = 0 ∀(y, η) ∈ Ω × Y . It is a closed subspace of C 1 [0, T ]; C(Ω; C ♯ (Y )) for the usual norm of C 1 [0, T ]; C(Ω; C ♯ (Y ))
and for any ψ ∈ C 1 0 [0, T ]; C(Ω; C ♯ (Y )) , we have

ψ ε H 1 (0,T ;L 2 (Ω)) = T 0 Ω ψ t, y, y ε 2 dydt + T 0 Ω ∂ψ ∂t t, y, y ε 2 dydt 1/2 ≤ T |Ω| ψ C 1 ([0,T ];C(Ω;C ♯ (Y )))
.

Furthermore, we may now define Λ

ε ∈ C 1 0 [0, T ]; C(Ω; C ♯ (Y )) ′ by Λ ε (ψ) = T 0 Ω w ε (t, y)ψ t, y, y ε dydt ∀ψ ∈ C 1 0 [0, T ]; C(Ω; C ♯ (Y )) .
Since (w ε ) ε>0 is a bounded sequence of H -1 0, T ; L 2 (Ω) , we infer that there exists a real number C ′ > 0, independent of ε, such that

Λ ε (ψ) ≤ w ε H -1 (0,T ;L 2 (Ω)) ψ ε H 1 (0,T ;L 2 (Ω)) ≤ C ′ ψ ε H 1 (0,T ;L 2 (Ω)) ≤ C ′ T |Ω| ψ C 1 ([0,T ];C(Ω;C ♯ (Y ))) for all ψ ∈ C 1 0 [0, T ]; C(Ω; C ♯ (Y )) and the sequence (Λ ε ) ε>0 is bounded in C 1 0 [0, T ]; C(Ω; C ♯ (Y )) ′ . Since C 1 [0, T ]; C(Ω; C ♯ (Y )
) is a separable Banach space, we can conclude in the same way as previously. Remark 4.2. We may observe that this proof shows that we can choose test-

functions in C [0, T ]; C(Ω; C ♯ (Y )) (resp. in C 1 0 [0, T ]; C(Ω; C ♯ (Y )) ) instead of D(0, T )× D Ω; C ∞ ♯ (Y ) .
Then the convergence results for the velocity, the micro-rotation and the pressure are given in the following three propositions.

Proposition 4.3. (Two-scale limit of the velocity) Under the assumptions of Proposition 3.2, there exist

v 0 ∈ L 2 0, T ; L 2 (Ω; H 1 ♯ (Y )) 2 such that ∂v 0 ∂y 2 ∈ L 2 0, T ; L 2 (Ω × Y ) 2 and v 1 ∈ L 2 0, T ; L 2 Ω × (0, 1); H 1 ♯ (0, 1) /R ) 2 such that,
possibly extracting a subsequence still denoted (v ε ) ε>0 , we have for i = 1, 2: and

v ε i ։ v 0 i , ∂v ε i ∂y 2 ։ ∂v 0 i ∂y 2 + ∂v 1 i ∂η 2 , (4.
v 0 = 0 on (0, T ) × Γ 0 × (0, 1), Γ 0 = (0, L) × {0}, (4.6) -v 0 1 ∂h ∂η 1 (y 1 , η 1 ) + v 0 2 = 0 on (0, T ) × Γ 1 × (0, 1), Γ 1 = (0, L) × {1}. (4.7)
Proof. The first part of the result is a direct consequence of the previous theorem and is obtained by using the same techniques as in Proposition 1.14 in [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]. Indeed, from Proposition 3.2 we know that (v ε i ) ε>0 ,

∂v ε i ∂y 2 ε>0
and ε ∂v ε i ∂y 1 ε>0 are bounded in L 2 (0, T ) × Ω . It follows that, possibly extracting a subsequence, they two-scale converge to v 0 i , ξ 0 i and ξ 1 i respectively, i.e. 

lim ε→0 T 0 Ω v ε i (t, y)ϕ y, y ε θ(t) dydt = T 0 Ω×Y v 0 i (t, y, η)ϕ(y, η)θ(t) dηdydt (4.8) lim ε→0 T 0 Ω ∂v ε i ∂y 2 (t, y)ϕ y, y ε θ(t) dydt = -lim ε→0 T 0 Ω v ε i (t,
= - T 0 Ω×Y v 0 i (t, y, η) ∂ϕ ∂η 1 (y, η)θ(t) dηdydt = T 0 Ω×Y ξ 1 i (t, y, η)ϕ(y, η)θ(t) dηdydt (4.11) for all θ ∈ D(0, T ), ϕ ∈ D Ω; C ∞ ♯ (Y ) , which implies that ξ 1 i = ∂v 0 i ∂η 1 ∈ L 2 0, T ; L 2 (Ω × Y ) .
∂v 0 i ∂η 1 (t, y, η 1 )ϕ(y)θ(t) dη 1 dydt = 0 = T 0 Ω v 0 i (t, y, 1) -v 0 i (t, y, 0) ϕ(y)θ(t) dydt and v 0 i ∈ L 2 0, T ; L 2 (Ω; H 1 ♯ (Y ))
. Next, by choosing ϕ ∈ D Ω × (0, 1) (i.e. ϕ does not depend on η 2 ), we obtain now

lim ε→0 T 0 Ω v ε i (t, y) ∂ϕ ∂y 2 y, y 1 ε θ(t) dydt = T 0 Ω×Y v 0 i (t, y, η 1 ) ∂ϕ ∂y 2 (y, η 1 )θ(t) dηdydt = - T 0 Ω×Y ξ 0 i (t, y, η)ϕ(y, η 1 )θ(t) dηdydt. Hence T 0 Ω×Y - ∂v 0 i ∂y 2 (t, y, η 1 ) + ξ 0 i (t, y, η) ϕ(y 1 , y 2 , η 1 )θ(t) dηdydt = 0.
It follows that there exists v 1 i ∈ L 2 0, T ; L 2 Ω × (0, 1); H 1 ♯ (0, 1) |R such that

∂v ε i ∂y 2 ։ ξ 0 i = ∂v 0 i ∂y 2 + ∂v 1 i ∂η 2 ,
and the second part of (4.3) holds.

Now, let ϕ ε (z) = ϕ z 1 , z 2 εh ε (z 1 ) , z 1 ε for all (z 1 , z 2 ) ∈ Ω ε . Recalling that div z v ε = 0 in Ω ε , we get 0 = T 0 Ω ε ∂v ε 1 ∂z 1 (t, z) + ∂v ε 2 ∂z 2 (t, z) ϕ ε (z)θ(t) dzdt = - T 0 Ω ε v ε 1 (t, z) ∂ϕ ε ∂z 1 (z) + v ε 2 (t, z) ∂ϕ ε ∂z 2 (z) θ(t) dzdt = - T 0 Ω v ε 1 (t, y) b ε • ∇ϕ ε (y) + v ε 2 (t, y) 1 εh ε (y 1 ) ∂ϕ ε ∂y 2 (y) εh ε (y 1 )θ(t) dydt = - T 0 Ω v ε 1 (t, y) εh y 1 , y 1 ε ∂ϕ ∂y 1 y, y ε + h y 1 , y 1 ε ∂ϕ ∂η 1 y, y ε -y 2 ε ∂h ∂y 1 y 1 , y 1 ε + ∂h ∂η 1 y 1 , y 1 ε ∂ϕ ∂y 2 y, y ε θ(t) dydt - T 0 Ω v ε 2 (t, y) ∂ϕ ∂y 2 y, y ε θ(t) dydt. 
We pass to the limit as ε tends to zero:

0 = - T 0 Ω×(0,1) v 0 1 (t, y, η 1 ) h(y 1 , η 1 ) ∂ϕ ∂η 1 (y, η 1 ) -y 2 ∂h ∂η 1 (y 1 , η 1 ) ∂ϕ ∂y 2 (y, η 1 ) θ(t) dη 1 dydt - T 0 Ω×(0,1) v 0 2 (t, y, η 1 ) ∂ϕ ∂y 2 (y, η 1 )θ(t) dη 1 dydt = T 0 Ω×(0,1) h(y 1 , η 1 ) ∂v 0 1 ∂η 1 (t, y, η 1 ) -y 2 ∂h ∂η 1 (y 1 , η 1 ) ∂v 0 1 ∂y 2 (t, y, η 1 ) + ∂v 0 2
∂y 2 (t, y, η 1 ) ϕ(y, η 1 )θ(t) dη 1 dydt which gives (4.5). But, taking into account the boundary conditions on v ε , we may reproduce the same computation with ϕ ∈ C ∞ Ω; C ∞ ♯ (0, 1) such that ϕ is L-periodic in y 1 , so with (4.5) it remains

T 0 Γ1×(0,1) -v 0 1 (t, y, η 1 ) ∂h ∂η 1 (y 1 , η 1 ) + v 0 2 (t, y, η 1 ) ϕ(y, η 1 )θ(t) dη 1 dy 1 dt - T 0 Γ0×(0,1) v 0 2 (t, y, η 1 )ϕ(y, η 1 )θ(t) dη 1 dy 1 dt = 0.
We choose more precisely ϕ(y

1 , y 2 , η 1 ) = φ(y 2 ) φ(y 1 , η 1 ) with φ ∈ C ∞ [0, 1]) and φ ∈ C ∞ ♯ [0, L]; C ∞ ♯ (0, 1)
. With φ(1) = 0 and φ(0) = 1 we get first v 0 2 = 0 on (0, T ) × Γ 0 × (0, 1). Next with φ(1) = 1 and φ(0) = 0 we get

-v 0 1 ∂h ∂η 1 + v 0 2 = 0 on (0, T ) × Γ 1 × (0, 1).
Finally, let ϕ ∈ D 0, L; C ∞ ♯ (0, 1) and ϕ ε (y 1 , y 2 ) = ϕ y 1 , y 1 ε (1y 2 ) for all (y 1 , y 2 ) ∈ Ω. Taking into account the boundary conditions for v ε 1 (see (2.12)-(2.14)) we have

T 0 Ω ∂v ε 1 ∂y 2 (t, y)ϕ ε (y)θ(t) dydt = T 0 Ω v ε 1 (t, y)ϕ y 1 , y 1 ε θ(t) dydt.
By passing to the limit as ε tends to zero we obtain T 0 Ω×(0,1)

∂v 0 1 ∂y 2 (t, y, η 1 )ϕ(y 1 , η 1 )(1 -y 2 )θ(t) dη 1 dydt = T 0 Ω×(0,1) v 0 1 (t, y, η 1 )ϕ(y 1 , η 1 )θ(t) dη 1 dydt.
It follows that

T 0 Γ0×(0,1)
v 0 1 (t, y, η 1 )ϕ(y 1 , η 1 )θ(t) dη 1 dydt = 0 which implies that v 0 1 = 0 on (0, T ) × Γ 0 × (0, 1). Similarly we can define the two-scale limit of Z ε . Proposition 4.4. (Two-scale limit of the micro-rotation field) Under the assumptions of Proposition 3.2, there exist

Z 0 ∈ L 2 0, T ; L 2 (Ω; H 1 ♯ (Y )) such that ∂Z 0 ∂y 2 ∈ L 2 0, T ; L 2 (Ω × Y ) and Z 1 ∈ L 2 0, T ; L 2 Ω × (0, 1); H 1 ♯ (0, 1
) /R such that, possibly extracting a subsequence still denoted (Z ε ) ε>0 , we have

Z ε ։ Z 0 , ∂Z ε ∂y 2 ։ ∂Z 0 ∂y 2 + ∂Z 1 ∂η 2 , (4.12) 
and

ε ∂Z ε ∂y 1 ։ ∂Z 0 ∂η 1 . (4.13)
Furthermore Z 0 does not depend on η 2 , and Z 0 ≡ 0 on (Γ 0 ∪ Γ 1 ) × (0, 1) × (0, T ).

Proof. The first part of the proof is identical to the proof of the previous proposition. Let us establish now the boundary conditions for the limit

Z 0 . Let θ ∈ D(0, T ), ϕ ∈ C ∞ Ω; C ∞ ♯ (0, 1) such that ϕ is L-periodic in y 1 and we define ϕ ε (z) = ϕ z 1 , z 2 εh ε (z 1 ) , z 1 ε for all (z 1 , z 2 ) ∈ Ω ε . With the boundary conditions (2.12)-(2.14) for Z ε we get T 0 Ω ε ∂Z ε ∂z 2 (t, z)ϕ ε (z)θ(t) dzdt = - T 0 Ω ε Z ε (t, z) ∂ϕ ε ∂z 2 (z)θ(t) dzdt = - T 0 Ω Z ε (t, y) ∂ϕ ∂y 2 y, y 1 ε θ(t) dydt = T 0 Ω ∂Z ε ∂y 2 (t, y)ϕ y, y 1 ε θ(t) dydt
and taking ε → 0 + we obtain

T 0 Ω×Y ∂Z 0 ∂y 2 (t, y, η 1 ) + ∂Z 1 ∂η 2 (t, y, η) ϕ(y, η 1 )θ(t) dη 1 dydt = - T 0 Ω×(0,1)
Z 0 (t, y, η 1 ) ∂ϕ ∂y 2 (y, η 1 )θ(t) dη 1 dydt.

But the periodicity properties of Z 1 with respect to η 2 imply that

T 0 Ω×Y ∂Z 1 ∂η 2 (t, y, η)ϕ(y, η 1 )θ(t) dη 1 dydt = 0. Hence T 0 Ω×(0,1) ∂Z 0 ∂y 2 (t, y, η 1 )ϕ(y, η 1 )θ(t) dη 1 dydt = - T 0 Ω×(0,1)
Z 0 (t, y, η 1 ) ∂ϕ ∂y 2 (y, η 1 )θ(t) dη 1 dydt.

By Green's formula we infer that

0 = - T 0 Γ0×(0,1) Z 0 (t, y, η 1 )ϕ(y, η 1 )θ(t) dη 1 dydt + T 0 Γ1×(0,1)
Z 0 (t, y, η 1 )ϕ(y, η 1 )θ(t) dη 1 dydt.

Now we choose ϕ(y 1 , y 2 , η 1 ) = φ(y 2 ) φ(y 1 , η 1 ) with φ ∈ C ∞ [0, 1] and φ ∈ C ∞ ♯ ([0, L]; C ∞ ♯ (0, 1) , with φ(1) = 0, φ(0) = 1 then φ(1) = 1, φ(0) = 0, we get 0 = T 0 Γ0×(0,1) Z 0 (t, y, η 1 ) φ(y 1 , η 1 )θ(t) dη 1 dydt = T 0 Γ1×(0,1)
Z 0 (t, y, η 1 ) φ(y 1 , η 1 )θ(t) dη 1 dydt which allows us to conclude the proof of Proposition 4.4.

Finally we can define the two-scale limit of p ε . Proposition 4.5. (Two-scale limit of the pressure field) Under the assumptions of Proposition 3.3, there exists p 0 ∈ H -1 0, T ; L 2 (Ω × Y ) such that, possibly extracting a subsequence still denoted (p ε ) ε>0 , we have

ε 2 p ε ։ p 0 .
Moreover p 0 depends only t and y 1 , p 0 ∈ H -1 0, T ; H 1 ♯ (0, 1) and satisfies Proof. The first part of the result is an immediate consequence of the estimate (3.42) (see Proposition 3.3). From proposition 3.2 and (3.43) we know that there exists a constant C > 0, independent of ε, such that for all ϕ ε ∈ H 1 0 0, T ; H 1 0 (Ω) we have

T 0 Ω p ε (t, y) ∂ϕ ε ∂y 2 (t, y) dydt ≤ C ϕ ε L 2 (0,T ;L 2 (Ω)) + ε ∂ϕ ε ∂t L 2 (0,T ;L 2 (Ω)) + C ε ϕ ε L ∞ (0,T ;L 4 (Ω)) + εb ε • ∇ϕ ε L 2 (0,T ;L 2 (Ω)) + ∂ϕ ε ∂y 2 L 2 (0,T ;L 2 (Ω)) . Now let ϕ ∈ D Ω; C ∞ ♯ (Y )
and θ ∈ D(0, T ). We define ϕ ε (t, y) = θ(t)ϕ y, y ε for all (t, y) ∈ (0, T ) × Ω and we get

T 0 Ω ε 2 p ε (t, y) ∂ϕ ∂y 2 t, y, y ε + 1 ε ∂ϕ ∂η 2 t, y, y ε θ(t) dydt ≤ O(ε) + C θ C 0 ([0,T ]) ∂ϕ ∂η 2 C 0 (Ω;C ♯ (Y )) . (4.14)
We multiply the two members of this inequality by ε and we pass to the limit as ε tends to zero. We obtain T 0 Ω×Y p 0 (t, y, η) ∂ϕ ∂η 2 (y, η)θ(t) dηdydt = 0.

Hence p 0 does not depend on η 2 . Now we consider ϕ ∈ D Ω; C ∞ ♯ (0, 1) (i.e ϕ is independent of η 2 ) and we pass to the limit in (4.14) as ε tends to zero. We get

T 0 Ω×(0,1)
p 0 (t, y, η) ∂ϕ ∂y 2 (y, η 1 )θ(t) dηdydt = 0 which implies that p 0 does not depend on y 2 . Now we take Θ = (ϕ ε , 0, 0) in (3.14) and we multiply by ε: we get

ε 2 T 0 Ω p ε ∂ϕ ε ∂y 1 - y 2 h ε ∂h ε ∂y 1 ∂ϕ ε ∂y 2 h ε dydt = -ε 2 T 0 Ω v ε 1 ∂ϕ ε ∂t h ε dydt +(ν + ν r ) T 0 Ω h ε (εb ε • ∇v ε 1 )(εb ε • ∇ϕ ε ) + 1 h ε ∂v ε 1 ∂y 2 ∂ϕ ε ∂y 2 dydt + T 0 Ω εv ε 1 (εb ε • ∇v ε 1 )ϕ ε h ε + εv ε 2 ∂v ε 1 ∂y 2 ϕ ε dydt + (ν + ν r ) T 0 Ω 1 h ε ∂U ε ∂y 2 ∂ϕ ε ∂y 2 dydt -2ν r T 0 Ω ε ∂Z ε ∂y 2 ϕ ε dydt + T 0 Ω U ε (εb ε • ∇v ε 1 )ϕ ε εh ε dydt - T 0 Ω εv ε 1 (εb ε • ∇ϕ ε )U ε h ε dydt - T 0 Ω εv ε 2 ∂ϕ ε ∂y 2 U ε dydt -2εν r T 0 Ω ∂W ε ∂y 2 ϕ ε dydt - T 0 Ω f ε 1 ϕ ε - ∂U ε ∂t ϕ ε ε 2 h ε dydt, (4.15)
where we recall that U ε (t, y) = U 0 (t)U(y 2 h ε (y 1 )) and W ε (t, y) = W 0 (t)W(y 2 h ε (y 1 )) for all (t, y 1 , y 2 ) ∈ [0, T ] × Ω. With the results of Proposition 3.2, we infer that there exists a constant C > 0, independent of ε, such that

T 0 Ω ε 2 p ε (t, y)(b ε • ∇ϕ ε )(t, y)h ε (y) dydt ≤ C ϕ ε L 2 (0,T ;L 2 (Ω)) + εb ε • ∇ϕ ε L 2 (0,T ;L 2 (Ω)) + ∂ϕ ε ∂y 2 L 2 (0,T ;L 2 (Ω)) + ϕ ε L ∞ (0,T ;L 4 (Ω)) +Cε 2 ∂ϕ ε ∂t L 2 (0,T ;L 2 (Ω)) .
We multiply the two members of this inequality by ε and we obtain Thus we can conclude that p 0 is independent of η 1 . Now let ϕ ∈ C ∞ ♯ (0, L) and θ ∈ D(0, T ). We define ϕ ε by

ϕ ε (y) = ϕ(y 1 ) h y 1 , y1 ε y 2 e 1 + εy 2 2 ∂h ∂y 1 y 1 , y 1 ε + 1 ε ∂h ∂η 1 y 1 , y 1 ε e 2 (4.16)
for all (y 1 , y 2 ) ∈ Ω. We can check that ϕ ε ∈ Ṽ and with Lemma 3.1, Proposition 3.2 and (3.43)-(4.15), we obtain

T 0 Ω ε 2 p ε (b ε • ∇ϕ ε 1 ) + 1 εh ε ∂ϕ ε 2 ∂y 2 h ε θ(t) dydt ≤ O(ε) + C ϕθ L 2 ((0,T )×(0,L))
with a constant C > 0 independent of ε. Hence T 0 Ω ε 2 p ε (t, y)y 2 ∂ϕ ∂y 1 (y 1 )θ(t) dydt ≤ O(ε) + C ϕθ L 2 ((0,T )×(0,L)) .

We pass to the limit as ε tends to zero:

T 0 Ω p 0 (t, y 1 )y 2 ∂ϕ ∂y 1 (y 1 )θ(t) dydt = 1 2 T 0 L 0 p 0 (t, y 1 ) ∂ϕ ∂y 1 (y 1 )θ(t) dydt ≤ C ϕθ L 2 ((0,T )×(0,L))
and we infer that p 0 ∈ H -1 0, T ; H 1 ♯ (0, L) . Finally, recalling that Ω ε p ε (t, z) dz = 0 almost everywhere in (0, T ), we have

T 0 Ω ε 2 p ε (t, y)h ε (y)θ(t) dydt = 0 ∀θ ∈ D(0, T )
and by passing to the limit as ε tends to zero, we get T 0 Ω×(0,1) p 0 (t, y 1 , η 1 )h(y 1 , η 1 )θ(t) dη 1 dydt = 0 ∀θ ∈ D(0, T ) which allows us to conclude the proof of Proposition 4.5.

5. The limit problem. Now let us pass to the limit in equation (2.17). It is convenient to introduce the following functional spaces: 

Ṽ = ϕ ∈ C ∞ (Ω; C ∞ ♯ (0, 1) 2 ; ϕ is L-periodic in y 1 , ϕ = 0 on Γ 0 × (0, 1), -ϕ 1 ∂h ∂η 1 + ϕ 2 = 0 on Γ 1 × (0, 1) Ṽdiv = ϕ ∈ Ṽ ; h ∂ϕ 1 ∂η 1 -y 2 ∂h ∂η 1 ∂ϕ 1 ∂y 2 + ∂ϕ 2 ∂y 2 = 0 in Ω × (0, 1) H1 = ψ ∈ C ∞ (Ω; C ∞ ♯ (0, 1) ; ψ is L-periodic in y 1 , ψ = 0 on (Γ 0 ∪ Γ 1 × (0, 1) , V div = closure of Ṽdiv in L 2 ♯ 0, L; F 2 , H 1 0,♯ = closure of H1 in L 2 ♯ 0, L; F with F = v ∈ L 2 (0, 1); H 1 ♯ (0,
ε 2 f ε (t, y) = f t, y, y 1 ε , ε 2 g ε (t, y) = g t, y, y 1 ε ∀(t, y) ∈ [0, T ] × Ω.
Then the functions v 0 , Z 0 and p 0 satisfy the following limit problem:

(ν + ν r ) T 0 Ω×(0,1) 2 i=1 h( b • ∇v 0 i )( b • ∇ϕ i ) + 1 h ∂v 0 i ∂y 2 ∂ϕ i ∂y 2 θ dη 1 dydt +α T 0 Ω×(0,1) h( b • ∇Z 0 )( b • ∇ψ) + 1 h ∂Z 0 ∂y 2 ∂ψ ∂y 2 θ dη 1 dydt - T 0 Ω×(0,1) ∂p 0 ∂y 1 hϕ 1 θ dη 1 dydt = -(ν + ν r ) T 0 Ω×(0,1) h( b • ∇ Ū )( b • ∇ϕ 1 ) + 1 h ∂ Ū ∂y 2 ∂ϕ 1 ∂y 2 θ dη 1 dydt -α T 0 Ω×(0,1) h( b • ∇ W )( b • ∇ψ) + 1 h ∂ W ∂y 2 ∂ψ ∂y 2 θ dη 1 dydt + T 0 Ω×(0,1) f ϕhθ dη 1 dydt + T 0 Ω×(0,1)
gψhθ dη 1 dydt

for all Θ = (ϕ, ψ) ∈ V div × H 1 0♯ and θ ∈ D(0, T ), where b • ∇ is the differential operator defined by b • ∇ = 1, - y 2 h(y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 )      ∂ ∂η 1 ∂ ∂y 2      and Ū (t, y 1 , y 2 , η 1 ) = U 0 (t)U (h(y 1 , η 1 )y 2 ) , W (t, y 1 , y 2 , η 1 ) = W 0 (t)W (h(y 1 , η 1 )y 2 ) for all (t, y 1 , y 2 , η 1 , t) ∈ [0, T ] × Ω × [0, 1].
Proof. With the above assumptions for f ε and g ε we can check immediately that

ε 2 f ε L 2 ((0,T )×Ω) ≤ T |Ω| f C [0,T ];C Ω;C ♯ (0,1) , ε 2 g ε L 2 ((0,T )×Ω) ≤ T |Ω| g C [0,T ];C Ω;C ♯ (0,1)
and

ε 2 f ε ։ f, ε 2 g ε ։ g.
Let us recall that

b ε • ∇ = 1, - y 2 h ε (y 1 ) ∂h ε ∂y 1 (y 1 )      ∂ ∂y 1 ∂ ∂y 2     
Taking into account the convergence results of Proposition 4.3 and Proposition 4.4, we get

εb ε • ∇v ε i = ε ∂v ε i ∂y 1 (y) - y 2 h y 1 , y1 ε ε ∂h ∂y 1 y 1 , y 1 ε + ∂h ∂η 1 y 1 , y 1 ε ∂v ε i ∂y 2 (y) ։ ∂v 0 i ∂η 1 (y, η 1 ) - y 2 h(y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 ) ∂v 0 i ∂y 2 (y, η 1 ) + ∂v 1 i ∂η 2 (y, η) = b • ∇v 0 i - y 2 h ∂h ∂η 1 ∂v 1 i ∂η 2 for i = 1, 2 and b ε • ∇Z ε ։ b • ∇Z 0 - y 2 h ∂h ∂η 1 ∂Z 1 ∂η 2 .
Similarly, let φ ∈ C ∞ Ω; C ∞ ♯ (0, 1) and φ ε (y 1 , y 2 ) = φ y 1 , y 2 , y 1 ε for all (y 1 , y 2 ) ∈ Ω. We have

b ε • ∇φ ε = ∂φ ε ∂y 1 (y) - y 2 h y 1 , y1 ε ∂h ∂y 1 y 1 , y 1 ε + 1 ε ∂h ∂η 1 y 1 , y 1 ε ∂φ ε ∂y 2 (y) = ∂φ ∂y 1 y, y 1 ε + 1 ε ∂φ ∂η 1 y, y 1 ε - y 2 h y 1 , y1 ε ∂h ∂y 1 y 1 , y 1 ε + 1 ε ∂h ∂η 1 y 1 , y 1 ε ∂φ ∂y 2 y, y 1 ε . Now let θ ∈ D(0, T ), Θ = (ϕ, ψ) ∈ Ṽdiv × H1 and let Θ ε = (ϕ ε , ψ ε ) with ϕ ε (z) = ϕ z 1 , z 2 εh ε (z 1 ) , z 1 ε + z 2 h ε (z 1 ) ∂h ∂y 1 z 1 , z 1 ε ϕ 1 z 1 , z 2 εh ε (z 1 ) , z 1 ε e 2 and ψ ε (z) = ψ z 1 , z 2 εh ε (z 1 ) , z 1 ε for all (z 1 , z 2 ) ∈ Ω ε . We have Θ ε ∈ Ṽ ε × H1,ε and from (3.4) ε T 0 a vε (t), Θ ε θ(t) dt → (ν + ν r ) T 0 Ω×Y 2 i=1 h( b • ∇v 0 i )( b • ∇ϕ i ) + 1 h ∂v 0 i ∂y 2 ∂ϕ i ∂y 2 θ dηdydt +α T 0 Ω×Y h( b • ∇Z 0 )( b • ∇ψ) + 1 h ∂Z 0 ∂y 2 ∂ψ ∂y 2 θ dηdydt +(ν + ν r ) T 0 Ω×Y 2 i=1 -y 2 ∂h ∂η 1 ∂v 1 i ∂η 2 ( b • ∇ϕ i ) + 1 h ∂v 1 i ∂η 2 ∂ϕ i ∂y 2 θ dηdydt +α T 0 Ω×Y -y 2 ∂h ∂η 1 ∂Z 1 ∂η 2 ( b • ∇ψ) + 1 h ∂Z 1 ∂η 2 ∂ψ ∂y 2 θ dηdydt.
But these last two integral terms vanish since ϕ, ψ and h do not depend on η 2 and v 1 and Z 1 are η 2 -periodic. Hence we obtain Let us consider now the right hand side of equation (2.18). We recall that ξε = (U ε e 1 , W ε ) with 

ε T 0 a vε (t), Θ ε θ(t) dt → T 0 ā v0 (t), Θ θ(t) dt with v0 = (v 0 , Z 0 ) and ā(v, Θ) = (ν + ν r ) Ω×(0,1) 2 i=1 h( b • ∇v i )( b • ∇ϕ i ) + 1 h ∂v i ∂y 2 ∂ϕ i ∂y 2 dη 1 dy +α Ω×(0,1) h( b • ∇Z)( b • ∇ψ) + 1 h ∂Z ∂y 2 ∂ψ ∂y 2 dη 1 dy for all v = (v, Z) ∈ V div × H 1 0♯ , for all Θ = (ϕ, ψ) ∈ V div × H 1 0♯ . From (3.
U ε (t, z) = U 0 (t)U (h ε (y 1 )y 2 ) = Ū t, y 1 , y 2 , y 1 ε W ε (t, z) = W 0 (t)W (h ε (y 1 )y 2 ) = W t, y 1 , y 2 , y 1 ε and U 0 , W 0 belong to H 1 (0, T ), U, W belong to D (-∞, h max ) . Hence Ū and W belong to C [0, T ]; C 1 (Ω; C 1 ♯ (0,
ε T 0 a ξε (t), Θ ε θ(t) dt → T 0 ā ξ(t), Θ)θ(t) dt ε T 0 B ξε (t), vε (t), Θ ε θ(t) dt = O(ε) → 0 ε T 0 B vε (t), ξε (t), Θ ε θ(t) dt = O(ε) → 0 ε T 0 R ξε (t), Θ ε θ(t) dt = O(ε) → 0 with ξ = ( Ū e 1 , W ).
Next, using (3.13) and reminding that ϕ ε ∈ Ṽ ε : 

ε T 0 Ω ε p ε (t, z)div z ϕ ε (z)θ(t) dzdt = T 0 Ω εp ε (εb ε • ∇ϕ ε 1 ) + 1 h ε ∂ϕ ε 2 ∂y 2 h ε θ dydt = T 0 Ω εp ε εh
p 0 ∂(hϕ 1 ) ∂y 1 θ dη 1 dydt = - T 0 Ω×(0,1) ∂p 0 ∂y 1 hϕ 1 θ dη 1 dydt. Finally ε 2 T 0 d dt vε , Θ ε (t)θ(t) dt = -ε 2 T 0 vε , Θ ε (t)θ ′ (t) dt = O(ε 2 ) → 0 -ε 2 T 0 ∂ ξε ∂t , Θ ε (t)θ(t) dt = O(ε 2 ) → 0.
By multiplying equation (2.18) by εθ(t), integrating over [0, T ] and passing to the limit as ε tends to zero we obtain for all Θ = (ϕ, ψ) ∈ Ṽdiv × H1 and θ ∈ D(0, T ). By density of Ṽdiv × H1 into V div ×H 1

0♯

we get the announced result. We may observe that the limit problem is totally decoupled with respect to the velocity and micro-rotation fields. Furthermore the time variable appears as a parameter in the limit problem. More precisely, for all y 1 ∈ [0, L], let a y1 be the bilinear symmetric form defined on F by

a y1 (w, ψ) = Y h(y 1 , η 1 )( b • ∇w)(y 2 , η 1 )( b • ∇ψ)(y 2 , η 1 ) + 1 h(y 1 , η 1 ) ∂w ∂y 2 (y 2 , η 1 ) ∂ψ ∂y 2 (y 2 , η 1 ) dη 1 dy 2
for all (w, ψ) ∈ F . The limit velocity, pressure and micro-rotation fields are solution of the problems (P v 0 ,p 0 ) and (P Z 0 ) given respectively by

Find v 0 ∈ L 2 (0, T ; V div ) and p 0 ∈ H -1 (0, T ; H 1 ♯ (0, L)) such that L 0 p 0 (t, y 1 ) 1 0 h(y 1 , η 1 ) dη 1 dy 1 = 0 a.e. t ∈ [0, T ] and (ν + ν r ) L 0 2 i=1 a y1 (v 0 i , ϕ i ) dy 1 - L 0 ∂p 0 ∂y 1 1 0 h(y 1 , •)ϕ 1 dη 1 dy 1 = -(ν + ν r ) L 0 a y1 Ū (t), ϕ 1 dy 1 + L 0 Y f (t, y 1 , •, •)h(y 1 , •)ϕ dη 1 dy 2 dy 1 ∀ϕ ∈ V div , a.e. t ∈ [0, T ] and Find Z 0 ∈ L 2 (0, T ; H 1 0,♯ ) such that α L 0 a y1 (Z 0 , ψ) dy 1 = -α L 0 a y1 W (t), ψ dy 1 + L 0 Y g(t, y 1 , •, •)h(y 1 , •)ψ dη 1 dy 2 dy 1 ∀ψ ∈ H 1 0,♯ , a.e. t ∈ [0, T ].
Proposition 5.2. Under the assumptions of theorem 5.1, the limit microrotation field Z 0 is uniquely given by

Z 0 (t, y 1 , y 2 , η 1 ) = W 0 (t)z 1 y1 (y 2 , η 1 ) + z 2 t,y1 (y 2 , η 1 ) a.e. in (0, T ) × Ω × (0, 1)
where z 1 y1 ∈ H 1 0,♯ and z 2 t,y1 ∈ H 1 0,♯ are the unique solutions of the following auxiliary problems:

a y1 (z 1 y1 , ψ) = -a y1 W(y 1 , •), ψ ∀ψ ∈ H 1 0,♯ and 
αa y1 (z 2 t,y1 , ψ) = Y g t,y1 h(y 1 , •)ψ dη 1 dy 2 ∀ψ ∈ H 1 0,♯ .
Proof. It is clear that, for all y 1 ∈ [0, L], the mapping a y1 is continuous on F . Moreover

a y1 (w, w) ≥ h min b • ∇w 2 L 2 (Y ) + 1 h max ∂w ∂z 2 L 2 (Y ) and b • ∇w 2 L 2 (Y ) = ∂w ∂η 1 2 L 2 (Y ) + Y y 2 2 h 2 (y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 , t) 2 ∂w ∂y 2 2 dη 1 dy 2 -2 Y y 2 h(y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 ) ∂w ∂y 2 ∂w ∂η 1 dη 1 dy 2 ≥ (1 -λ) ∂w ∂η 1 2 L 2 (Y ) + 1 - 1 λ Y y 2 2 h 2 (y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 ) 2 ∂w ∂y 2 2 dη 1 dy 2 ∀λ > 0.
But, recalling that h ∈ C [0, L] × [0, 1] , there exists C > 0, independent of y 1 , such that

y 2 h(y 1 , η 1 ) ∂h ∂η 1 (y 1 , η 1 ) ≤ C ∀(y 1 , y 2 , η 1 ) ∈ [0, L] × Y
and, for all λ ∈ (0, 1)

a y1 (w, w) ≥ C 1 (λ) ∂w ∂η 1 2 L 2 (Y ) + C 2 (λ) ∂w ∂y 2 2 L 2 (Y ) , (5.1) where C 1 (λ) = h min (1 -λ) and C 2 (λ) = 1 -1 λ C 2 h min + 1 hmax . Then we may choose λ such that λ ∈ C 2 h max h min 1 + C 2 h max h min , 1 (5.2)
which shows that a y1 is coercive on H 1 0,♯ , uniformly with respect to y

1 . Since g ∈ C [0, T ]; C Ω; C ♯ (0, 1) the mapping g t,y1 = g(t, y 1 , •, •) belongs to L 2 (Y ) for all (t, y 1 ) ∈ [0, T ] × [0, L]. Then Lax-Milgram's theorem implies that, for all (t, y 1 ) ∈ [0, T ] × [0, L] the problems Find z 1 y1 ∈ H 1 0,♯ such that a y1 (z 1 y1 , ψ) = -a y1 W(y 1 , •), ψ ∀ψ ∈ H 1 0,♯ and Find z 2 t,y1 ∈ H 1 0,♯ such that αa y1 (z 2 t,y1 , ψ) = Y g t,y1 h(y 1 , •)ψ dη 1 dy 2 ∀ψ ∈ H 1 0,♯ admit a unique solution. Furthermore, recalling that W 0 ∈ H 1 (0, T ) ⊂ C [0, T ] and h ∈ C 1 [0, L] × [0, 1]; R with values in [h min , h max ] ⊂ R + * , we infer that the mapping (t, y 1 ) → Z 0 t,y1 = W 0 z 1 y1 + z 2 t,y1 is continuous on [0, T ] × [0, L] with values in H 1 0,♯ and is L-periodic in y 1 .
Thus the mapping Z 0 : (t, y 1 , y 2 , η 1 ) → Z 0 t,y1 (y 2 , η 1 ) belongs to L 2 (0, T ; H 1 0,♯ and solves the problem (P Z0 ). Indeed, let ψ ∈ H1 . Then ψ(y 1 , •, •) ∈ H 1 ♯ and we get

αa y1 Z 0 t,y1 , ψ(y 1 , •, •) = -αa y1 W (t, y 1 , •, •), ψ(y 1 , •, •) + Y g(t, y 1 , •, •)h(y 1 , •)ψ dη 1 dy 2 ∀y 1 ∈ [0, L].
Both sides of this equality are continuous on [0, L], hence we may integrate with respect to y 1 and

L 0 a y1 (Z 0 t,y1 , ψ) dy 1 = - L 0 a y1 W , ψ dy 1 + L 0 Y g t,y1 h(y 1 , •)ψ dη 1 dy 2 dy 1 ∀ψ ∈ H1 . It follows that L 0 a y1 (Z 0 (t), ψ) dy 1 = - L 0 a y1 W (t), ψ dy 1 + L 0 Y g(t)h(y 1 , •)ψ dη 1 dy 2 dy 1 ∀ψ ∈ H1 , a.e. t ∈ [0, T ]
and the density of H1 into H 1 0,♯ allows us to conclude the existence part of the proof. Then we observe that the uniqueness is a immediate consequence of the uniform coercivity of a y1 with respect to y 1 .

Now, for all y

1 ∈ [0, L], let Ṽy1 = ϕ ∈ C ∞ [0, 1]; C ∞ ♯ (0, 1) 2 ; ϕ(0, •) = 0 on (0, 1), -ϕ 1 (1, •) ∂h ∂y 1 (y 1 , •) + ϕ 2 (1, •) = 0 on (0, 1) , Ṽy1,div = ϕ ∈ Ṽy1 ; h(y 1 , •) ∂ϕ 1 ∂η 1 -y 2 ∂h ∂η 1 (y 1 , •) ∂ϕ 1 ∂y 2 + ∂ϕ 2 ∂y 2 = 0 in Y and V y1,div = closure of Ṽy1,div in F 2 .
Let āy1 (w, ϕ) = (ν + ν r )

2 i=1
a y1 (w i , ϕ i ) for all (w, ϕ) ∈ V 2 y1,div . With Poincaré's inequality we know that w → ∇w L 2 (Y ) defines a norm on V y1,div which is equivalent to the H 1 -norm. Furthermore, with (5.1)-( 5.2), we may infer that āy1 is coercive on V y1,div for all y 1 ∈ [0, L], uniformly with respect to y 1 . It follows that we can define w 1 y1 ∈ V y1,div , w 2 y1 ∈ V y1,div and w 3 t,y1 ∈ V y1,div as the unique solutions of āy1 (w 1 y1 , ϕ) = - Then we have Proposition 5.3. Under the assumptions of theorem 5.1, the limit velocity v 0 is uniquely given by v 0 (t, y 1 , y 2 , η 1 ) = ∂p 0 ∂y 1 (t, y 1 )w 1 y1 (y 2 , η 1 ) + U 0 (t)w 2 y1 (y 2 , η 1 ) + w 3 t,y1 (y 2 , η 1 ) a.e. in (0, T ) × Ω × (0, 1).

Furthermore, for almost every t ∈ [0, T ], the limit pressure p 0 (t, •) is the unique solution in H 1 ♯ (0, L) |R of the following homogenized Reynolds equation Proof. The first part of the result is obtained by using the same kind of arguments as in Proposition 5.2.

Let θ ∈ D(0, T ), ψ ∈ C ∞ ♯ [0, L] and ψ ε (z) = ψ(z 1 ) for all z = (z 1 , z 2 ) ∈ Ω ε . Recalling that div z v ε = 0 in Ω ε and using the boundary conditions (2.12)-( 2 Since āy1 defines an inner product on V y1,div , we have 1 6 = āy1 (w 1 y1 , ϕ y1 ) ≤ āy1 (w 1 y1 , w 1 y1 ) 1/2 āy1 (ϕ y1 , ϕ y1 ) 1/2 .

But the mapping y 1 → āy1 (ϕ y1 , ϕ y1 ) is continuous on [0, L] and does not vanish since ϕ y1 ≡ 0. It follows that there exists α > 0 such that āy1 (ϕ y1 , ϕ y1 ) ≥ α for all y 1 ∈ [0, L] and ā(w 1 y1 , w 1 y1 ) ≥ 1 36α for all y 1 ∈ [0, L]. We may observe also that the mapping ψ → - As a consequence of the uniqueness of p 0 , we can state the next result: Theorem 5.4. The whole sequences (ε 2 p ε ) ε>0 , (v ε ) ε>0 and (Z ε ) ε>0 satisfy the following convergence:

εp ε ։ p 0 v ε ։ v 0 Z ε ։ Z 0 .
6. Concluding remarks. A possible generalization of this study consists in considering a domain Ω ε where both the upper and lower boundary are oscillating. More precisely, let us assume that Ω ε = (z 1 , z 2 ) ∈ R 2 ; 0 < z 1 < L, -εβ(z 1 )h ε (z 1 ) < z 2 < εh ε (z 1 ) where β belongs to C ∞ ([0, L]; R + ) and is L-periodic in z 1 (with β ≡ 0 we recognize the case presented in the previous sections). Now we should denote by Γ ε 0 the lower boundary of Ω ε and we can choose the functions U and W (see Lemma 2.1) such that U and W belong to C ∞ (R, R) with U(σ) = W(σ) = 1 for all σ ≤ 0 and Supp(U) ⊂ (-∞, h m ), Supp(W) ⊂ (-∞, h m ). Then we define again

U ε (t, z 2 ) = U ε (z 2 )U 0 (t) = U( z 2 ε )U 0 (t), W ε (t, z 2 ) = W ε (z 2 )W 0 (t) = W( z 2 ε )W 0 (t)
and we get the same variational problem (P ε ). It follows that the existence and uniqueness result given at Theorem 2.2 is still valid. Furthermore, we can use the same scalings (see (3.1) and (3.2)) which transforms the domain Ω ε into Ω = (y 1 , y 2 ) ∈ R 2 ; 0 < y 1 < L, -β(y 1 ) < y 2 < 1 and by reproducing the same computations, we obtain the same a priori estimates as in Proposition 3.2 and Proposition 3.3. Finally we may apply once again the two-scale convergence technique to pass to the limit as ε tends to zero. We obtain the same convergence properties for the velocity and the micro-rotaion field as in Proposition 4.3 and Proposition 4.4 with Γ 0 = y 1 , -β(y 1 ) ; 0 < y 1 < L . For the convergence of the pressure, we follow the same arguments as in Proposition 4.5 with a natural modification of the test-function ϕ ε introduced at formula (4.16) which may be chosen now as Then we may conclude by considering any φ ∈ C ∞ ♯ (0, L) and letting ϕ = 2φ (1+β) 2 . Hence the limit problem remains the same as in Theorem 5.1: Z 0 and v 0 can be decomposed by using the same auxiliary problems and p 0 is the unique solution of the same Reynolds equation, with obvious adaptations in the definition of a y1 and āy1 , i.e. for all y 1 ∈ [0, L]: 

  37) So from (3.19) and (3.20)-(3.35) we get ε 2

4 )

 4 Furthermore v 0 does not depend on η 2 , v 0 is divergence free in the following sense h(y 1 , η 1 )

1 , η 1 )

 11 dη 1 dy 1 = 0 almost everywhere in (0, T ).

1 ) , ∂v ∂y 2 ∈

 12 L 2 (0, 1) × (0, 1) . Theorem 5.1. Assume that there exist f ∈ C [0, T ]; C Ω; C ♯ (0, 1) 2 and g ∈ C [0, T ]; C Ω; C ♯ (0, 1) such that f and g are L-periodic in y 1 and

0 B 0 R

 00 5) and the estimates (3.15)-(3.16)-(3.18) obtained at Proposition 3.2 we get ε T vε (t), vε (t), Θ ε θ(t) dt = O(ε) → 0 and similarly, from (3.6) and (3.15)-(3.16)-(3.18) ε T vε (t), vε (t), Θ ε θ(t) dt = O(ε) → 0.

1 )

 1 and with (3.9)-(3.10)-(3.11)-(3.12)

  + gψ)hθ dη 1 dydt

Y h(y 1 ,

 1 •)ϕ 1 dη 1 dy 2 ∀ϕ ∈ V y1,div , āy1 (w 2 y1 , ϕ) = -(ν + ν r )a y1 U(y 1 , •), ϕ 1 ∀ϕ ∈ V y1,divand āy1 (w 3 t,y1 , ϕ) = Y f t,y1 h(y 1 , •)ϕ 1 dη 1 dy 2 ∀ϕ ∈ V y1,div with f t,y1 = f (t, y 1 , •, •) for all (t, y 1 ) ∈ [0, T ] × [0, L].

1 )

 1 dη 1 dy 1 = 0.

  dy 1 is linear and continuous on H 1 ♯ (0, L) for every t ∈ [0, T ] and the mapping (p, ψ) → y1 ) dy 1 is bilinear, symmetric, continuous and coercive on H 1 ♯ (0, L) |R . We can apply Lax-Milgram's theorem to conclude the proof of Proposition 5.3.

  ϕ ε (y) = ϕ(y 1 ) h y 1 , y1 ε y 2 + β(y 1 ) e 1 + εy 2 y 2 + β(y 1 ) β) 2 ϕ (y 1 )θ(t) dydt ≤ C ϕθ L 2 ((0,T )×(0,L)) .

a 1 - 2 (y 2 , η 1 ) ∂ψ ∂y 2 (y 2 , η 1 ) 2 i=1a 1 (y 1 ,

 122221211 y1 (w, ψ) = 1 , η 1 )( b • ∇w)(y 2 , η 1 )( b • ∇ψ)(y 2 , η 1 ) + 1 h(y 1 , η 1 ) ∂w ∂y dη 1 dy 2 for all (w, ψ) ∈ F y1 = v ∈ L 2 (-β(y 1 ), 1); H 1 ♯ (0, 1) ; ∂v ∂y 2 ∈ L 2 (-β(y 1 ), 1)×(0, 1)and āy1 (w, ϕ) = (ν + ν r ) y1 (w i , ϕ i ) for all (w, ϕ) ∈ V 2 y1,div where V y1,div is theclosure of Ṽy1,div in F 2 y1 and Ṽy1,div = ϕ ∈ C ∞ [-β(y 1 ), 1]; C ∞ ♯ (0, 1) 2 ; ϕ(-β(y 1 ), •) = 0 on (0, 1), -ϕ 1 (1, •) ∂h ∂y •) + ϕ 2 (1,•) = 0 on (0, 1), (-β(y 1 ), 1) × (0, 1) .

  By taking the limit as ε tends to zero, we have , y 2 , η 1 )h(y 1 , η 1 )y 2 ∂h ∂η 1 (y 1 , η 1 ) ∂ϕ ∂y 2 (y 1 , y 2 , η 1 ) θ(t) dη 1 dydt = 0. , y 2 , η 1 ) dη 1 dydt = 0.

	T (y 1 Reminding that p 0 is independent of y 2 and ϕ ∈ D Ω; C ∞ 0 Ω×(0,1) p 0 (t, y 1 , η 1 ) ∂ϕ ∂η 1 ♯ (0, 1) , we get
	0	T	Ω×(0,1)	p 0 (t, y 1 , η 1 )	∂ϕ ∂η 1	(y 1 , η 1 )h(y 1 , y 2 , η 1 ) -y 2	∂h ∂η 1	(y 1 , η 1 )	∂ϕ ∂y 2	(y 1 , y 2 , η 1 ) θ(t) dη 1 dydt
	=		0	T	Ω×(0,1)	p 0 (t, y 1 , η 1 )	∂ϕ ∂η 1	(y 1 , y 2 , η 1 )h(y 1 , η 1 ) +	∂h ∂η 1	(y 1 , η 1 )ϕ(y 1 , y 2 , η 1 ) θ(t) dη 1 dydt
	=		0	T	Ω×(0,1)	p 0 (t, y 1 , η 1 )	∂(hϕ) ∂η 1	(y 1 , y 2 , η 1 ) dη 1 dydt = 0.
	Then for any φ ∈ D Ω; C ∞ ♯ (0, 1) , we may define ϕ = obtain	φ h	∈ D Ω; C ∞ ♯ (0, 1) and we
								0	T	Ω×(0,1)	p 0 (t, y 1 , η 1 )	∂φ ∂η 1	(y 1
	0	T	Ω	ε 2 p ε (t, y) ε	∂ϕ ∂y 1	y 1 , y 2 ,			y 1 ε	+	∂ϕ ∂η 1	y 1 , y 2 ,	y 1 ε	h y 1 ,	y 1 ε	θ(t) dydt
	-		0	T	Ω	ε 2 p ε (t, y)y 2 ε	∂h ∂y 1	y 1 ,	y 1 ε	+	∂h ∂η 1	y 1 ,	y 1 ε	∂ϕ ∂y 2	y 1 , y 2 ,	y 1 ε	θ(t) dydt ≤ O(ε)

  )h(y 1 , η 1 )θ(t) dη 1 dydt. h(y 1 , •) dη 1 dy 2 dy 1 + h(y 1 , •) dη 1 dy 2 dy 1 ,1 h(y 1 , •) dη 1 dy 2 dy 1 = 0 a.e. t ∈ [0, T ].We can check that this Reynolds problem admits a unique solution inH 1 ♯ (0, L) |R . Indeed, let ϕ y1 (y 2 , η 1 ) = -y 2 + y 2 , η 1 ) for all (y 2 , η 1 ) ∈ Y , for all y 1 ∈ [0, L].Then we obtain ϕ y1 ∈ V y1,div and āy1 (w 1 y1 , ϕ y1 ) = -Y h(y 1 , η 1 )ϕ y1,1 (y 2 , η 1 ) dη 1 dy 2 = 1 6 .

													.13)-
	(2.14) we get					
	0 =	1 ε		0	T		Ω ε		∂v ε 1 ∂z 1	(t, z) +	∂v ε 2 ∂z 2	(t, z) ψ ε (z)θ(t) dzdt
	0 = -	1 ε	0	T	Ω ε	v ε 1 (t, z)	∂ψ ε ∂z 1	(z)θ(t) dzdt = -	0	T	Ω	v ε 1 (t, y)(b ε • ∇ψ ε )(y)h ε (y)θ(t) dydt
	= -	0	T	Ω	v ε 1 (t, y)	∂ψ ∂y 1	(y 1 )h y 1 ,	y 1 ε	θ(t) dydt.
	By passing to the limit as ε tends to zero we get
	0 = (y 1 It follows that T 0 Ω×(0,1) v 0 1 (t, y, η 1 ) ∂ψ ∂y 1
	L y1,1 + 0 ∂p 0 ∂y 1 ∂ψ ∂y 1 Y w 1 y1,1 L 0 U 0 (t) ∂ψ ∂y 1 Y w 2 L 0 ∂ψ ∂y 1 Y w 3 t,y1But
													1 y1 , w 3 y1 )
	and by density of C ∞ ♯ [0, L] in H 1 ♯ (0, L) we get
							0	L	∂p 0 ∂y 1	∂ψ ∂y 1	ā(w 1 y1 , w 1 y1 ) dy 1 = -	0	L	U 0 (t)	∂ψ ∂y 1	ā w 1 y1 , w 2 y1 dy 1
							-	0	L	∂ψ ∂y 1	ā w 1 y1 , w 3 t,y1 dy 1 ∀ψ ∈ H 1
													2 h(y 1 , η 1 )	,	∂h ∂η 1	(y 1 , η 1 )	y 2 2 (y 2 -1) h(y 1

Y w 1 y1,1 h(y 1 , •) dη 1 dy 2 = -ā y1 (w 1 y1 , w 1 y1 ), Y w 2 y1,1 h(y 1 , •) dη 1 dy 2 = -ā y1 (w 1 y1 , w 2 y1 ), Y w 3 t,y1,1 h(y 1 , •) dη 1 dy 2 = -ā y1 (w ♯ (0, L), a.e. t ∈ [0, T ].
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