
HAL Id: hal-00863179
https://hal.science/hal-00863179

Submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First experimental assessments of the adaptivity of the
scheduling with AS4DR
Daniel Millot, Christian Parrot

To cite this version:
Daniel Millot, Christian Parrot. First experimental assessments of the adaptivity of the scheduling
with AS4DR. PDCAT ’12 : The Thirteenth International Conference on Parallel and Distributed
Computing, Applications and Technologies, Dec 2012, Beijing, China. pp.487-492, �10.1109/PD-
CAT.2012.75�. �hal-00863179�

https://hal.science/hal-00863179
https://hal.archives-ouvertes.fr

First experimental assessments of the adaptivity
of the scheduling with AS4DR

Daniel Millot and Christian Parrot
Telecom sudParis

Institut Mines-Telecom
France

{Daniel.Millot, Christian.Parrot}@mines-telecom.fr

Abstract—The AS4DR (Adaptive Scheduling for Distributed
Resources) scheduling method experimented in this paper aims
at maximizing the CPU use efficiency when executing divisible
load applications on heterogeneous distributed memory plat-
forms. AS4DR adapts the scheduling to: the unawareness of the
total workload, both the unspecification and the variation over
time of the execution parameters (available communication
speed, available computing speed, etc.). This paper presents
the first experimental assessments of the adaptivity of the
scheduling with this method.

Keywords-parallel application; multi-round divisible load
scheduling; heterogeneous platform; adaptive scheduling; un-
specified distributed memory platform;

I. I NTRODUCTION

This paper addresses the problem of maximizing the CPU
utilization with useful work when scheduling a divisible load
over a set of heterogeneous distributed resources, according
to a master-worker model.

On the one hand, we suppose that the master receives
a continuous input stream of data to be processed by the
workers (such as some video stream, for instance). So
the size of the total workload happens to be known only
when the last item is acquired by the master, and as it is
unknown when scheduling starts, the master must proceed
to an iterated distribution as the workload flows in. Hence
the resulting algorithm is necessarily multi-round, wherewe
call ”round” a sequence of consecutive actions leading the
master to feed all the workers with chunks once and collect
the corresponding results from the workers.

On the other hand, we suppose that the execution
platform is a heterogeneous distributed memory platform
whose communication and computation resources have in-
accurately specified characterics: available communication
speeds, available computation speeds, latencies, etc., liable
to vary over time and called execution parameters in the
sequel.

In this paper, we assume that all the available workers
are used, in a predefined order. From now on, for a given
scheduling, we call CPU-efficiency the ratio of the time
spent in useful computation over the corresponding elapsed
time. Our goal is to maximize the CPU-efficiency. We

suppose that the duration of communicating or processing
a chunk is affine according to the chunk size, and we as-
sume that computation can overlap communication. Besides,
we consider a 1-port bi-directional communication model,
which allows a communication from master to worker to
overlap a communication from worker to master; a risk of
contention may then appear when workers compete to access
the master.

The next section is a reminder of the operating principle
of the AS4DR scheduler. Section III gives hints on related
works whereas section IV presents experimental results.
Finally we conclude.

II. PRESENTATION OF THEAS4DR METHOD

A. Operating principle

The ultimate goal of the AS4DR method is to automat-
ically adapt the scheduling of a divisible load application
to: the heterogeneity of the workers, the unawareness of
the total workload, both the unspecification of the execution
parameters and their evolution over time. Letαw,i be the size
of the chunk sent to a worker w for roundi. Let τ andσw,i

be respectively the wanted and the estimated time durations
between the start of the sending of a chunk of sizeαw,i and
the end of the reception of the corresponding result by the
master. The basic idea of the AS4DR multi-round method
is to adaptαw,i according to:

αw,i := αw,i−1

τ

σw,i−1

for i > 1. (1)

A special feature of AS4DR is that it splits each chunk it has
to deliver to a worker for a round into two subchunks that
it delivers in a row to the worker. So, sending subchunks of
arbitrarily chosen sizeṡαw,1 andα̈w,1 to each worker w for
the first round, the AS4DR scheduler then sends to worker
w, for each roundi, two subchunkṡs and s̈ of respective
sizesα̇w,i and α̈w,i, such that

α̇w,i + α̈w,i = αw,i. (2)

Dividing the chunks in two parts allows the computation
to overlap the communications between a worker and the
master as can be seen in Figure 3. Let us suppose that the

ratio betweenα̇w,i and αw,i is constant, and let us denote
θw this ratio:

θw ≡
α̇w,i

αw,i

. (3)

Figures 1 and 2 give the AS4DR scheduling algorithm for a
M workers platform, and Figure 3 shows how computation
overlaps communication with this method. As can be seen

• With CIP setτ and(αw,1, θw,1)
0≤w≤M−1

. (Figure 6)

• Set (α̇w,1, α̈w,1)0≤w≤M−1
. (3), (2)

• After an appropriate delay, postṡ ands̈ data to each
worker
while (the last data item has not been acquired)do
• Get a ṡ result from some worker w
• Compute the size of the nextṡ and s̈ for worker
w . (4), (1), (3), (2)
• Post ṡ and s̈ data to worker w
• Get previous̈s result from worker w

end while

Figure 1. AS4DR scheduling: master

while (the last subchunk has not been posted)do
• Get a subchunk data from master
• Process the subchunk data
if (ṡ) then
• Post ṡ and previous̈s results to master

end if
end while

Figure 2. AS4DR scheduling: worker

time

Result Comm
Computing
Data Comm

i/2i/1 i-1/2 i+1/1

i+1/2i/1 i+1/1i/2 i+2/1 i+2/2
i/1 i/2 i+2/1i+1/2i+1/1

Figure 3. Overlapping between communication and computation

in Figure 3, worker roundi for worker w is composed of
three phases:

• transmission of the data from master to worker, lasting
Ḋw,i and D̈w,i for subchunkṡs and s̈ respectively,

• worker computation on the received data, lastingĊw,i

and C̈w,i for subchunkṡs and s̈ respectively,
• transmission of the computation result from worker to

master, lastingṘw,i and R̈w,i for subchunkṡs and s̈

respectively.

It is worth noticing in Figure 3 that the result corresponding
to the s̈ subchunk of some round is returned to the master
just after the result corresponding to theṡ subchunk of the

next round has itself been returned. As the scheduler does
not make use of the return of̈s results in any way, AS4DR
delays this return in order to make all actions have the same
period; this helps contentions avoidance. Let us denoteFw

the available computation speed (relative to the processing
of one workload unit) of worker w. Likewise,BD

w (resp.
BR

w) is the available communication speed (relative to one
workload unit) of the link from the master to worker w (resp.
from worker w to the master). FinallybD

w, bR
w and fw are

the respective latencies for a transfer of data from the master
to worker w, for a transfer of result from worker w to the
master and for a computation on worker w. We define

σw,i ≡
Ċw,i − fw

θw

+ 2fw. (4)

When the communications between master and workers are
contention-free,

lim
i→+∞

σw,i = τ.

B. Prevention of idleness

The AS4DR method could experience either of the work-
ers idlenesses illustrated in figures 4: inter-round idleness
and intra-round idleness. Let us respectively define:

D̈ḊḊ D̈
ĊĊ C̈

R̈Ṙ

Data Comm
Computing
Result Comm

inter-round idleness
time

Ḋ D̈ Ḋ D̈

R̈Ṙ
C̈Ċ

Data Comm
Computing
Result Comm

intra-round idleness

time

Figure 4. Example of inter-round and intra-round idlenesses

θmin
w,i+1 ≡

Dw,i+1 −
(
bD

w + fw
)

Dw,i+1 + Cw,i+1 − 2 (bD
w + fw)

, (5)

θmax
w,i+1 ≡

Cw,i −
(
bD

w + fw + bR
w

)

Dw,i+1 + Cw,i + Rw,i − 2 (bD
w + fw + bR

w)
.(6)

Let us suppose that the communications between master
and workers are contention-free. Then the AS4DR method
prevents idleness, if and only if, for each worker w

θmax
w,i+1 ≥ θw ≥ θmin

w,i+1, ∀i. (7)

C. Prevention of contentions

In order to take advantage of this result, we need to
address the problem of contention avoidance. To make
the instant each worker accesses to the master far enough
from the instants the others access too, time delaysdw are

introduced before posting the very first subchunk to each
worker w. Figure 5 illustrates the model of asymptoticτ -

round iround i−1

time

0

1

2

3

tD
3,i

TD

3,i

ττ

TR

1,i−1
tR
1,i−1

d0

d1

d2

d3

R̈ R̈

R̈

R̈

R̈

Ḋ D̈

Ḋ D̈ Ḋ D̈

R̈

Ḋ D̈ Ḋ D̈

R̈

R̈

Ḋ D̈Ḋ D̈

Ċ

Ṙ Ṙ

C̈ C̈

Ċ

Ṙ Ṙ

C̈

Ċ

Ṙ

C̈

Ċ

Ṙ Ṙ

C̈

C̈

C̈

Ṙ

Ḋ D̈

C̈ Ċ

Ċ

Figure 5. Contention-free asymptotic schedule

periodic (thus round-robin) scheduling we are looking for,
in the case of a four workers platform. The delaydw, to be
computed by the CIP algorithm is defined (modulo M) as
follows:

dw ≡ (1 + λw)max
(
Ḋw−1 + D̈w−1, R̈w−1 + Ṙw

)
; (8)

where:λw stands for a positive constant factor,BD
w (resp.

Fw, BR
w, bD

w, fw andbR
w) denotes an estimate ofBD

w (resp.
Fw, BR

w, bD
w, fw and bR

w) and Ḋw (resp.D̈w, Ṙw and R̈w)
is an estimate oḟDw,1 (resp.D̈w,1, Ṙw,1 and R̈w,1).

Ḋw := θwαw

1

BD
w

+ bD
w, D̈w := (1 − θw)αw

1

BD
w

+ bD
w, (9)

Ṙw := θwαw

1

BR
w

+ bR
w, R̈w := (1 − θw)αw

1

BR
w

+ bR
w. (10)

αw :=
τ − 2fw

1

Fw

(11)

θw := φwθmax
w + (1 − φw) θmin

w , (12)

θmin
w :=

αw

BD
w

+ bD
w − fw

αw

(
1

Fw

+ 1

BD
w

) , θmax
w :=

αw

Fw

+ fw − bR
w − bD

w

αw

(
1

Fw

+ 1

BD
w

+ 1

BR
w

) .

φw = 0.5. (13)

So, before launching AS4DR, a preliminary step: CIP
(for Contentions and Idleness Prevention), determines
τ , (αw,1)0≤w≤M−1

, (θw)
0≤w≤M−1

and (dw)
0≤w≤M−1

as
shown by Figure 6.

• Estimation of
(
BD

w, Fw, BR
w, bD

w, fw, bR
w

)
0≤w≤M−1

• Set (φw)
0≤w≤M−1

. (13)
• Set (λw)

0≤w≤M−1
. (15)

• τ := 2max
0≤s≤M−1

fw

repeat
• τ := τ + τ̂

• Set (αw)
0≤w≤M−1

. (11)
• Set (θw)

0≤w≤M−1
. (12)

• Set
(
Ḋw, D̈w, Ṙw, R̈w

)

0≤w≤M−1
. (9),(10)

• Set (dw)
0≤w≤M−1

. (8)

until
(
τ ≥

∑M−1

w=0
dw

)

Figure 6. CIP algorithm

Besides, the time intervalsdw should allow all the workers
to be served during the first round, i.e. within aτ period.
Thusτ must verify:

τ ≥

M−1∑

w=0

dw. (14)

So, starting from an initial value ofτ , the CIP algorithm
enters an iterative process which incrementsτ with an
arbitrarily fixed valuêτ , then computes(αw)

0≤w≤M−1
and

(dw)
0≤w≤M−1

successively and loops until (14) holds.
Once CIP is processed, proper AS4DR scheduling starts

with a first round which sets the initial time-lags be-
tween successive round beginnings, according to the values
(dw)

0≤w≤M−1
previously computed by CIP.

Taking into account the previous results about contentions
and idleness avoidance, the CIP algorithm can avoid con-
tentions and idleness during the AS4DR scheduling first
round. For the next rounds, thanks to assignment (1), the
AS4DR method helps maintain the duration of each round
close to the reference valueτ .

Let us define the valueΛw for each worker w as

Λw ≡
1

M

1

Fw max
(
Kw + 1

BD
w

, 1

BR
w

) − 1;

where Kw ≡
1

BR
w



φw

1

1 + Fw

(
1

BD
w

+ 1

BR
w

)+

(1 − φw)
1

1 +
BD

w

Fw



 .

Let us assume that(λw)
0≤w≤M−1

verifies:

0 ≤ λw ≤ min (Λw, Λw−1) (modulo M), (15)

then the CIP preliminary step provides aτ value and sets
of values(θw)

0≤w≤M−1
, (αw)

0≤w≤M−1
and(dw)

0≤w≤M−1

that allow the AS4DR scheduling to start with neither
contention nor idleness. Let us recall that the value ofλw

characterizes the importance of both the unspecification of
the execution parameters and the variation of their magnitude
over time, for any worker w. For a given set of execution
parameters values, increasing the number M of workers will
ultimately make the relation (15) false.

III. R ELATED WORKS

Details about related works can be found in [1] and the
proof of the results presented in the previous section has
been established in [2]. To the best of our knowledge, no
scheduler aims at maximizing the efficiency of the use of
the CPUs in a similar context.

IV. EXPERIMENTAL ASSESSMENT OF THE ADAPTIVITY

In order to experimentally assess the ability of the AS4DR
method to cope with inaccurately estimated execution pa-
rameters and with variation of their value over time, simula-
tions have been conducted, with the SimGrid framework [3].
Let us consider a star-shaped platform (Figure 7 with
M=1000) and 10 sets(Sk)0≤k≤9

of values for the execution
parameters of the worker nodes, given in Table I. Each
of these sets is randomly allocated to 100 workers among
the 1000 workers which constitute the platform. In order

master

w2w1w0 wM−1

Figure 7. Star-shaped platform

computation communication communication number
master −→ wi master←− wi of

speed latency speed latency speed latency workers
S0 1.0e+4 1.0e-4 1.0e+8 1.0e-4 1.0e+8 1.0e-4 100
S1 0.9e+4 1.5e-4 0.9e+8 1.0e-4 0.9e+8 1.0e-4 100
S2 0.8e+4 1.4e-4 0.8e+8 1.0e-4 0.8e+8 1.0e-4 100
S3 0.7e+4 1.3e-4 0.7e+8 1.0e-4 0.7e+8 1.0e-4 100
S4 0.6e+4 1.2e-4 0.6e+8 1.0e-4 0.6e+8 1.0e-4 100
S5 0.5e+4 0.8e-4 0.5e+8 1.0e-4 0.5e+8 1.0e-4 100
S6 0.4e+4 0.9e-4 0.4e+8 1.0e-4 0.4e+8 1.0e-4 100
S7 0.3e+4 0.8e-4 0.3e+8 1.0e-4 0.3e+8 1.0e-4 100
S8 0.2e+4 0.4e-4 0.2e+8 1.0e-4 0.2e+8 1.0e-4 100
S9 0.1e+4 0.5e-4 0.1e+8 1.0e-4 0.1e+8 1.0e-4 100

Table I
REFERENCE VALUES OF THE EXECUTION PARAMETERS

to assess the relevance of AS4DR adapting the workload
(of each worker at each round), we compare this method
to a scheduler called “Baseline”. The Baseline method is
identical to AS4DR except that, on the one hand, the wanted
period τ is not computed but just set, and that, on the
other hand, the workload is not adapted at each round; in

other words, neither CIP algorithm nor assignment (1) are
run. With τ and estimates of the execution parameters, it
is possible, due to (11), to computeαw an initial workload
for each worker w. For our simulations, we set the estimate
of each execution parameter for each worker as the time-
average of the value of this execution parameter for this
worker, during the simulation. In order to be able to compare
the two methods efficiently, the value ofτ for the Baseline
scheduler is set to the one obtained by the CIP method when
running AS4DR.

For the comparison of the simulation results, let us define
CPUeff the CPU-efficiency:

CPUeff ≡ 1 −
CPU idleness + CPU latencies

elapsed time
.

When the execution parameters are exactly known and
steady, both schedulers make the workers process data
without idleness; except time spent in latencies. So, in the
sequel, we will successively compare the schedulers when
the parameters are either poorly estimated or time-varying.

A. Poor estimates in a steady context

In order to assess the effect of estimates’ inaccuracy of
the execution parameters on both schedulings, the effective
workload initially allocated to each worker w is set by
penalizing the value(αw)

ref
computed using assignment

(11) and the reference values contained in Table I:

αw,1 := (1 ± ιk) (αw)
ref

; (16)

where ιk is a strictly positive real number which values
are given in Table II and where the operator± means that
the operation performed is randomly chosen between either
addition or substraction. The values ofιk characterize esti-

ι0 ι1 ι2 ι3 ι4 ι5

0.0 0.18 0.36 0.54 0.72 0.9

Table II
ESTIMATES’ INACCURACY PARAMETER

mates’ inaccuracy of the execution parameters; inaccuracy
is minimum with ι0, whereas it is maximum withι5. It is
supposed to be the same for all the workers.

Figure 8 shows the measured CPU-efficiency of the whole
platform for each scheduler, as a function of estimates’
inaccuracy. For this simulation, which lasted 2000 sec-
onds, the value ofτ computed by CIP equals 3 seconds.
When the execution parameters are exactly known (ι0),
both schedulers offered the same CPU-efficiency: 99.99%.
The computation latencies are responsible for the gap with
the theorical maximum CPU-efficiency: 100%. As expected,
CPU-efficiency decreases for both methods when estimates’
inaccuracy increases. This decrease is considerably faster
for the Baseline scheduler than for AS4DR. For instance,
when the inaccuracy is maximum (ι5), the CPU-efficiency

52.93%

58.16%

64.11%

74.33%

84.58%

99.99%

i0 i1 i2 i3 i4 i5

99.99% 99.99% 99.99% 99.97% 99.95% 99.92%

AS4DR
Baseline scheduler

Figure 8. CPU-efficiency of the platform as a function of estimates’
inaccuracy

with AS4DR is 2.13 times higher than with the Baseline
scheduler.

B. Time-varying context

This subsection assesses to what extent one can put this
ability to good use in adapting to the variations of the values
of execution parameters over time, given that it has already
been proved that the outbreak of these variations will not
make the AS4DR scheduling unstable.

In this subsection, the reference values for the execution
parameters, which are contained in Table I, are still randomly
allocated to the workers at the initial instant. But, from this
initial instant these values are likely to vary over time, ac-
cording to the 10 profiles(Pk)0≤k≤9

of variation shown by
Figure 9. Whatever the profilePk being allocated to a worker
w and whatever an execution parameter, the higher value of
Pk equals the reference value (in Table I) allocated to the
worker w, for the execution parameter under consideration;
the lower value ofPk is computed as a perturbation of the
reference value:

BD
w := (1 − δk)

(
BD

w

)
ref

, BR
w := (1 − δk)

(
BR

w

)
ref

,

Fw := (1 − δk) (Fw)
ref

;

whereδk is a strictly positive number, the values of which
are given in Table III. In this context, the coefficientδk

characterizes the variations of the execution parameters and
is called “dynamicity” in the sequel; withδ4 the amplitude
of the variation of the execution parameters is maximum,
whereas it is minimum withδ0. For each simulation the
dynamicity is the same for all the workers. The same profile
is used to simultaneously perturb the speeds of computation
and communication. The profiles(Pk)0≤k≤9

are randomly
allocated to the 1000 workers as well. Figure 10 shows the

δ0 δ1 δ2 δ3 δ4

0.0 0.2 0.4 0.6 0.8

Table III
DYNAMICITY PARAMETER

measured CPU-efficiency of the whole platform for each
scheduler, as a function of dynamicity. For this simulation,

67.62%

76.08%

84.27%

92.33%

99.99%

d0 d1 d2 d3 d4

99.99% 99.93% 99.54% 98.03% 93.26%

AS4DR
Baseline scheduler

Figure 10. CPU-efficiency of the platform as a function of dynamicity

which lasted 2000 seconds, the value ofτ computed by
CIP equals 3 seconds. When the execution parameters
are steady (δ0), both schedulers offered the same CPU-
efficiency: 99.99%. As expected, the decrease of the CPU-
efficiency, when the dynamicity of the execution parameters
increases, is significantly faster for the scheduler Baseline
than for AS4DR. For instance, when the dynamicity equals
δ4, the CPU-efficiency with AS4DR is 1.38 times higher
than with the Baseline scheduler.

V. CONCLUSION

The AS4DR method experimentally assessed in this paper
succeeds in maximizing the CPU-efficiency when schedul-
ing a divisible load of unknown total size on distributed
resources with inaccurately specified or time-varying char-
acteristics. Despite the fact that a bidirectionnal 1-port
communication model is prone to contention, AS4DR can
avoid the idleness of the CPU due to contentions, thanks
both to the asymptotic periodicity it installs (for both data
and results) and to its preliminary step CIP. AS4DR can
only be efficient when the unspecification of the execution
parameters and their variation over time are small enough;
especially AS4DR cannot manage the complete stop of a
worker. The pseudo-periodicity of the rounds limits the
workload discrepancy when the last data is acquired by the
master; when the cleanup phase begins. Thus AS4DR limits

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

0 100 300 500 700 900 1100 1300 1500 1700 1900

Figure 9. Perturbed execution parameter as a function of time (in seconds)

the cost of the communications for reallocating the extra
load of the overloaded workers among the others ones; to
make workers ending their processing simultaneously. The
experimental results of this paper confirm that the adaptation
to either poor estimates of the characteristics of the platform,
or to their time-variation, are similar problems. Compared to
using pure hardware performance figures, such as measured
bandwidth or CPU frequency to adapt the workload at each
round, AS4DR has the extra advantage of taking into account
characterics of the software such as algorithmic complexity.

Up to now we have considered that the whole set of
resources is used. Of course, for a given set of execution
parameters values, using all the available resources will
ultimately become impossible with an evermore increasing
amount of resources. The CIP algorithm could help to select

relevant subsets of resources. It is the aim of a future work.

REFERENCES

[1] D.Millot and C.Parrot, “Scheduling on unspecified heteroge-
neous distributed resources,” inProceeding of the 25th Inter-
national Symposium on Parallel and Distributed Processing
Workshops (IPDPSW’11), vol. 1, no. 1, IEEE Computing
Society Press, May 2011, pp. 45–56.

[2] D. Millot and C. Parrot, “Fundamental results on the AS4DR
scheduler,” TELECOM sudParis,́Evry(France), Tech. Rep.
RR-11005-INF, December 2011.

[3] H. Casanova, A. Legrand, and L. Marchal, “Scheduling dis-
tributed applications: the simgrid simulation framework,” in
Proceedings of the 3th International Symposium on Cluster
Computing and the Grid (CCGrid03), IEEE Computing Soci-
ety Press, 2003.

