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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS
EXTENSIONS

GAELLE DEJOU AND XAVIER-FRANCOIS ROBLOT

ABsTRACT. The Brumer-Stark conjecture deals with abelian extensions of number fields and
predicts that a group ring element, called the Brumer-Stickelberger element constructed from
special values of L-functions associated to the extension, annihilates the ideal class group of
the extension under consideration. Moreover it specifies that the generators obtained have
special properties. The aim of this article is to propose a generalization of this conjecture to
non-abelian Galois extensions that is, in spirit, very similar to the original conjecture.

1. INTRODUCTION

The Brumer-Stark conjecture was first stated by Tate [I3] and applies to abelian extensions
of number fields. It combines a conjecture of Brumer that a certain group-ring element with
integer coefficients constructed from the special values of L-functions associated the extension,
the Brumer-Stickelberger element, annihilates the class group of the extension, with ideas coming
from conjectures of Stark that predict special properties for a generator of the principal ideals
obtained. A very nice reference for the Brumer-Stark conjecture, and Stark conjectures in
general, is the book of Tate [14]. The aim of this article is to generalize the Brumer-Stark
conjecture to Galois non-abelian extensions.

The plan of this paper is the following. In the second section, we state the Brumer-Stark
conjecture, some of its properties and say a few words about its current status. To avoid confusion
in the set of the paper, we will call this conjecture the abelian Brumer-Stark conjecture and will
call the conjecture that we propose the Galois Brumer-Stark conjecture. The third section is
devoted to the generalization of the Brumer-Stickelberger element to the Galois case. There, we
rely on an earlier work of Hayes [9] that constructs this generalization and studies its properties.
We show that it also satisfies additional properties very similar to the abelian case and, in
particular, that it is rational. We are not able however to prove a suitable denominator for
the Brumer-Stickelberger element, but we make a conjecture, called the Integrality Conjecture,
of its value and makes this conjecture part of our generalization of the abelian Brumer-Stark
conjecture. The next section introduces the notion of strong central extensions. This notion
plays a fundamental part in our generalization. The Galois Brumer-Stark conjecture is stated in
Section 5 and we study its properties in Section 6 with in view the generalization of the properties
of the abelian Brumer-Stark conjecture. The last section is devoted to the study of the conjecture
in the special case where the Galois group of the extension contains an abelian normal subgroup
of prime index. In this setting, we prove that the abelian Brumer-Stark conjecture implies the
Galois Brumer-Stark conjecture.

Note that generalizations to the non-abelian case of the Brumer-Stark conjecture, and other
Stark conjectures in general, are also proposed in [2] and [I0]. However, the direction of the
generalizations, the points of view and the methods used are quite different from the ones we
use here.

Convention. We denote the action of elements of Galois groups on elements, ideals, etc., using
the exponent notation with the convention that they act on the left, that is a7 = o(v(a)).
1
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2. THE ABELIAN BRUMER-STARK CONJECTURE

In this section, we state the abelian Brumer-Stark conjecture and review some of its properties.
Let K/k be an abelian extension of number fields. Denote by G its Galois group. Fix S a finite
set of places of k containing the infinite places of k and the finite places of &k that ramify in K/k.
We assume that the cardinality of S is at least two. To a character x of G is associated the
S-truncated Hecke L-function of y defined for Re(s) > 1 by

Ligjs(s:) = [ (1= x(0)N (p) ™)
p¢sS

where p runs through the prime ideals of £ not in .S, o}, is the Frobenius automorphism of p in G,
and A (p) is the absolute norm of the ideal p. These functions admit meromorphic continuation
to C, and in fact analytic if the character y is non-trivial. A main object of the abelian Brumer-
Stark conjecture is the Brumer-Stickelberger element which is constructed from the values at
s = 0 of Hecke L-functions. It is a relative analogue of the Stickelberger element of cyclotomic
fields and is defined by the formula

Ok /k,s = Z L /r,5(0,x) ex € C[G]
x€G

where G denotes the group of characters of G and, for x € G, ey is the associated idempotent.
Another characterization of this element is to say that it is the only element in C[G] such that

X(Ox/k,s) = Lk /k,s(0,X) (2.1)

for all character Y € G. A third characterization of this element is in term of partial zeta
functions. For o € G, the partial zeta function associated to g (and the extension K/k and the
set S) is defined, for Re(s) > 1, by

Cr/r,s(8,0) Z N(a

(a,9)=1

where a runs through the integral ideals of k, not divisible by the prime ideals in S and whose

Artin symbol o, € G is equal to . These functions also admit meromorphic continuation to the
complex plan and are related to Hecke L-functions by the formula

Lisrs(s,%) =Y Ci/ros(s,0)x(0).
oeG

From this we deduce the third characterization of the Brumer-Stickelberger element

Ok /s = Z Cr/k,s(0,0)0~

geG

It follows from the Siegel-Klingen theorem that the values of the partial zeta functions at s =0
are rational, thus 0 /i ¢ € Q[G]. A more precise result of Deligne et Ribet [5] (see also Barsky
[1] and Cassou-Nogues [3]) states that, for any £ € Anngg(px), the annihilator in Z[G] of the
group px of roots of unity in K, we have { 0k /1, ¢ € Z[G]. In particular, if we let wx denote the
cardinality of g, we have

wibkr,s € Z[G]. (2.2)

We need one last notation before stating the abelian Brumer-Stark conjecture. We say that a
non-zero element « in K is an anti-unit if all its conjugate have absolute value equal to 1. The
group of anti-units of K is denoted by K°.

Conjecture 2.1 (Brumer-Stark conjecture BS(K/k,S)). For any fractional ideal 2 of K, the
ideal AVxOx/k.5 is principal and admits a generator o € K° such that K(a'/"x)/k is abelian.



A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 3

Remark. The last assertion that K (a'/*%)/k is abelian does not depend on the choice of the
wg-th root of « since all these roots generate the same extension of K.

Let v be a place in S and denote by N, 1=} ., o € Z[G] the sum of all the elements in
the decomposition group D, of v in G. Then, one can prove, see [I4, Chap. IV], that

Ny O s = 0. (2.3)

In particular, if the set S contains a place that is totally split in K/k, the Brumer-Stickelberger
element is equal to 0 and the abelian Brumer-Stark conjecture is trivially true. Therefore, the
conjecture is only meaningful when k is not totally real and K totally complexﬂ In [13], Tate
proves equivalent formulations of the conjecture that are very useful for its study. We will later
on generalize this result to the non-abelian Galois case.

Theorem 2.2 (Tate). Let A be a fractional ideal of K. Then the following statements are
equivalent.
(i). There exists an anti-unit o € K° such that AVx%x/x.s = aOk and K (o) /k is abelian.
(i). There exists an extension L/K such that L/k is abelian and an anti-unit v € L° such that
(AO)x/k5 =4O,
(#ii). For almost all prime idealsﬂ p of k,there exists a, € K° such that oy = 1 (mod” pOy)
and A@»—NE)0x/ ks — o, Ok where oy is the Frobenius automorphism of p in G.
(). There exist a family (a;)icr of element of Z[G] generating Anngig(pk) and a family
(ci)ier of anti-units in K such that A%9</xs = a;Ok for all i € I, and ;% = a;% for
alli,j e I.

Remark. In part (ii), (A0)?%/%5 is defined by the formula ((Ql(’)L)”eK/kvs)l/n where n > 1 is
any integer such that nfg . s € Z[G].

Let 2 be a fractional ideal of K. We say that BS(K/k, S;2) holds if the ideal 2 satisfies
the equivalent condition of the theorem. The conjecture BS(K/k,S) is thus the collection of
the conjectures BS(K/k, S;2() where 2 ranges through the fractional ideals of K. In [13], Tate
proves that the set of fractional ideals 2 of K such that BS(K/k, S;2) holds is a group, stable
under the action of G, and containing the principal ideals of K. In particular, BS(K/k, S) holds
if the field K is principal. Now, let pg be a prime ideal of k£ not in S, then

Ok /k.50{po} = (1 — 0po )0k /k,s- (2.4)
It follows from this formula that the validity of BS(K/k, S) implies that of BS(K/k, S U {po}).
Therefore, the conjecture is true for any admissible set of places S if it is true for the minimal
choice of S formed exactly of the infinite places of k and of the finite places that ramify of K/k.
The validity of conjecture is also preserved under change of extension as a consequence of part
(#i) of Proposition That is, for K/K'/k a tower of extension, the validity of BS(K/k, S)
implies that of BS(K'/k, S). It also preserved under change of base, that is if BS(K/k, S) holds
then does also BS(K/k',S") where K/k'/k is a tower of extensions and S’ denotes the set of
places of k' above the place in k, see [8]. The following cases of the conjecture are proved by
Tate (see [13] or [14]).

Theorem 2.3 (Tate). The abelian Brumer-Stark conjecture BS(K/k, S) is true in the following
cases

o The field k is the field Q of rational numbersﬁ
e The extension K/k is quadratic.

INote that K° = {£1} if K is not totally complex.

2Here and in the rest of the paper, when we say “for almost all prime ideals”, we always implicitly exclude the
ramified primes; therefore the Frobenius automorphism is always uniquely defined.

3In this situation, it boils down to Stickelberger theorem on cyclotomic sums.
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o The extension K/k is of degree 4 and contained into a non-abelian Galois extension

K/ko of degree 8.

Sands proves the abelian Brumer-Stark conjecture in certain cases when the group G has
exponent 2. We refer the interested reader to [12] for more precise statements. In [7], a local
version of the conjecture is stated and is proved in some cases and numerically studied in some
other. The recent results of Greither and Popescu [6] implies that the local abelian Brumer-
Stark conjecture at p holds provided that S contains all the primes above p and some appropriate
Iwasawa p-invariant vanishes.

3. THE GALOIS BRUMER-STICKELBERGER ELEMENT

We assume from now on that the extension K/k is Galois, but not necessarily abelian. The
set S still denotes a finite set of places of k, of cardinality at least 2, containing the infinite
places of k and the finite places that ramify in K/k. The first step in our generalization of the
abelian Brumer-Stark conjecture is to generalize the construction of the Brumer-Stickelberger
element. Fortunately, such a construction is provided by the work of Hayes [9]. We now review
his construction and the first properties of the Brumer-Stickelberger element. Denote by G the
set of irreducible characters of G. For x € G, let Ly /k,s(8, x) denote the Artin L-function of x
with Euler factors at primes in S deleted. The Brumer-Stickelberger element is defined by

Ok /k,s = Z Lic/i,s(0,X) ex (3.5)
xEG‘

1
)|<é|) Z x(o)o~! is the central idempotent of y.
oeG

The following results are extracted from [9].

where e, :=

Theorem 3.1 (Hayes). Denote by € the set of conjugacy classes of G. The Brumer-Stickelberger
element belongs to the center Z(C[G]) of C[G] and is the only element of C[G] such that

Ox(Orc/k,5) = Lic/k,5(0,X) (3.6)
for all x € G where &y is the ring homomorphism from Z(C[G]) to C defined by
x(©)
C):=

for all C € 6¢.
Let B be a normal subgroup of G. Then we have
Ok5 ks = (0K /k,s)

where 7 : Gal(K/k) — Gal(K P /k) is the canonical surjection induced by the restriction to K.
Let H be a subgroup of G. Denote by Sy the set of places of K™ above the places in S. Let
INormg_, i : Z(C[G]) — Z(C[H]) be the inhomogeneous norm defined by

INormg_ g (a) := Z ( H a(X)(x,Indf, ¢>G)e¢
¢€1€I xe@

where a 1=} caa(x)ey € Z(C[G]), (-, ) is the inner product on the characters of G and e
is the central idempotent of C[H] associated to ¢. Then we have

Ok ku.s, = INormg g (O /k,s)-

Remark. In the proposition, we identified the conjugacy class C' € 6 with the element > gec Y
of the group ring C[G].

We are now interested in generalizing properties (2.3)) and (2.4)). We start with (2.3)).
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Proposition 3.2. For v a place of k, define

1
N’U = Z @Co— S Q[G]
€Dy, 7
where w is a place of K above v, D,, is the decomposition group of w in K/k and C, € €¢ is
the conjugacy class of o in G. Then, for any place v in S, we have

Ny Ok r,s = 0.

Proof. Since N, is in Z(C[G]), it is enough, with the notations of Theorem to prove that
Oy (N Ok /1,5) = Ox(No) by (0K /1,s) = 0 for all x € G. Let y € G be such that oy (Ny) # 0. By
, we need to prove that the order r(x) = 7(x) of vanishing at s = 0 of Lg /i s(s, x) is at least
1. Let p: G — GL(V) be an irreducible representation with character x. By [I4, Prop. 1.3.4],
we have

r(x) = Z dim VP — dim V¢ (3.7

v'es

where w’ is a place of K above v' and D,,» denotes the decomposition group of w’ in G. Assume
first that x is the trivial character. Then the above formula yields r(x) = |S| — 1 and the
result follows from our hypothesis that S contains at least two places. Assume now that y is
non-trivial. We compute

N N BN
ox() = 3 (o) = 37y 3 x(0) = T o

where 1p, is the trivial character of D,, and (-, -) p,, is the inner product of the space of characters
of D,,. By the above hypothesis, ¢, (N,) # 0 and thus the trivial character 1p, appears in the
decomposition of x|p, . Therefore the space VP has dimension at least 1. On the other hand,
VY = {0} since x is irreducible. It follows that 7(x) > 1 and the result is proved. O

Assume that there exists v € S that is totally split in K/k. Then N, = 1 and the Brumer-
Stickelberger element is trivial in this case. Therefore, as in the abelian case, the Brumer-
Stickelberger element is always trivial when k is not totally real or K not totally complex. In
fact, we can say more than that. Recall that a number field F is CM if it is a totally complex
quadratic extension of a totally real field. If furthermore E is Galois over some totally real
subfield F, then Gal(E/F) has a unique complex conjugation and we say that a character x of
Gal(E/F) is totally odd if all the eigenvalues of some associated representation at the complex
conjugation are equal to —1.

Proposition 3.3. Let x € G be a character such that dx(Ok/k,s) # 0. Then x is the inflation
of a totally odd character of a Galois CM sub-extension F/k of K/k.

Proof. Let x be such a character. Since S contains at least two elements, the character x cannot
be trivial. Let p : G — GL(V) be an irreducible representation of character x. Denote by
F := KXer(0) the subfield of K fixed by the kernel of p, by G the Galois group of F/k, and by
p: G — GL(V) the faithful irreducible representation such that p = o m where 7 : G — G is
the canonical surjection induced by the restriction to F. Denote by x the character of p. By
the properties of Artin L-functions, we have r(Y) = r(x) = 0. As ¥ is irreducible, V¢ = {0}
and thus by (3.7), we must have VP = {0} for all the places @ of F above the places in S.
In particular, all the infinite places of F' must be complex and, for w a complex place of F', the
complex conjugation 75 acts as —1 on V. Since p is faithful, it follows that all the complex
conjugations of F' are equal to, say, 7 € G. Therefore {1,7} is a normal subgroup of G and its
fixed field is totally real. This proves that F is CM, y totally odd and concludes the proof. [J

Corollary 3.4. If K/k does not contain a Galois CM sub-extension then O s = 0.
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Proof. Assume that 0k /i s # 0. Then, by Theorem and the fact that (d’x)xecl‘ is a basis of
the dual of Z(C[G]), see [9], we get that there exists an irreducible character x of G such that
r(x) = 0. This character comes from a Galois CM sub-extension by the proposition. O

Corollary 3.5. Let 7 be a complex conjugation of G. Then (T +1) -0k /.5 = 0.

Proof. By the proposition, it is enough to prove that (7 + 1) - e, = 0 for any character x € G
that is the inflation of a totally odd character x of a Galois CM sub-extension. Since y is totally
odd, we have x(¢g7) = —x(g) for all ¢ € G. Let R be a set of representatives of G/{1,7}. We

now compute

(4o = (r+1)- |§|)Z(x<p>pl+x(m><m>1)

=(r+1) )Iﬁl) Z (x(p)p‘1 - x(p)Tp‘l)

=(r+1(1 |G| Zx =0. 0

pPER
The following result generalizes (2.4) to the Galois case.

Proposition 3.6. Let py be a prime ideal of k not in S. Then
Or/k,50(po} = UK /k,s Z det(1 — py(oq,))ex
xEG
where Po is a prime ideal of K above po, o, is the Frobenius automorphism of By in G, and,

for x € G’, py denotes an irreducible representation of G with character x.

Proof. With the notations of Theorem it is enough to prove, for all ¢ € C?, that
¢ (O /k,50{po}) = Pv (0K /k,s) ¢w< > det(1 - Px(mno))%z)
xeé’

= L/k,s(0 Z det(1 = py (o)) Py (ex)-
xEG

On the other hand, from the definition of Artin L-functions, we see that

Gy (O /k,501p0}) = Lic/k,50p0} (0,9) = Lic/k,5(0,9) det(1 — pj(op,))-
The result follows from the fact that ¢y (ey) =1 if ©» = x and zero otherwise. O
We now turn to the question of the rationality of the Brumer-Stickelberger element O /1 g
when G is non-abelian. In fact, we will see that it is a consequence of the principal rank zero
Stark conjecture, proved by Tate [14], that 0, g lies in Q[G]. It is worth noting that the proof
of the principal rank zero Stark conjecture uses as a key ingredient the fact that the values at

s = 0 of partial zeta functions are rational. The principal rank zero Stark conjecture states that,
for any character x of G, we have

LK/k,S(O7XQ) = LK/k,S(O,X)a for all o« € Ath(C) (38)
where x® := a o x. We write

Ox/ks = D Licses(0,x) gﬁ Y x@)o=3) 50

x€G oeG oeG
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where
o= o)L 0,
z \G| Z K/k,5(0, ).
xGG

Let a be an automorphism of C. We compute

a(zy) |G| Z o)Lk k500, x)*
xeG
|G| Z o)Lk /k,s(0,xX%) =
xEG

since the map x — x is a bijection on the set G. Tt follows that z, € Q and we have proved
the following result.

Theorem 3.7. The Brumer-Stickelberger element O /i, g lies in Q[G]. [l

An interesting problem is to find a suitable denominator for the Brumer-Stickelberger element
in the non-abelian case. In the abelian case, as we noted above, wx 0k, s is always integral.
In the Galois case, however, one can see on examples that it is not the case anymore. Let
[G, G] be the commutator subgroup of G, that is the subgroup generated by the commutators
[91,92] :== glgggflggl with g1, 92 € G. Recall that % is the set of conjugacy classes of G. We
make the following conjecture.

Conjecture 3.8 (Integrality conjecture). Define mq to be the lem of the cardinalities of the
conjugacy classes in 6a and let sg be the order of the commutator subgroup |G, G] of G. Define
dg to be the lem of mg and sg. Then, for almost all prime ideals B of K, we have

da(op — N(9)0k ks € Z[G]
where p is the prime ideal of k below P and oy is the Frobenius automorphism of B in G.

Note that we have mg = 1 if and only if s¢ = 1 if and only if G is abelian. Therefore the
conjecture is satisfied when the extension K/k is abelian and is equivalent in that case to the
statement before using Lemma below. It is also satisfied in the special case that we
study in Section [7| and in all the computations that we have performed [4].

Let G** := G/[G, G] be the maximal abelian quotient of G' and K*» = K%l be the maximal
sub-extension of K/k that is abelian over k; we have Gal(K2"/k) = G*". Denote by 7% : G —
G the canonical surjection induced by the restriction to K*” and by P the map from Z[G?P]
to Z[G] defined, for § € G, by

v Z g (3.9)

Tr“b(g) =g

where the sum is over elements g € G whose image by 72 is equal to § and extended linearly.
The characters of degree 1 of G are exactly the ones that are inflation of characters of G?P.
Let x be such a character and let ¥ denote the character of G* such that y = x o 7*”. One
checks readily that e, = v2(e;) where ey is the idempotent of C[G?P] associated to Y. By the
properties of Artin L-functions, we have

> Lijes(0,X)ex = > Ly i,s(0, X)v*(e5)
x€G x€Gab
x()=1

= Vab( Z LKab/k,s(Oafc)ei) = 1" (O 15)-
ieéab
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We define )
91(;/13,5 = > Lisks(0,X)ex.

xeG

x(1)>1

By the above computation, we have
OK/k,S = I/ab(aKab/kvs) + ggs/lk),S' (310)

A direct computation shows that, for £ € C[G], we have £ (Ogan /i 5) = uab(éeKab/hS) where
€= 7P (€). Therefore, it follows from the remark before that, for all £ € Anngq(px),

we have stuab(OKab/kys) € Z|G]. The next result is proved in [I4, Lemme IV.1.1] for abelian
extensions. It is straightforward to extend the proof to Galois extensions.

Lemma 3.9. Let T be a set of prime ideals containing all the unramified prime ideals of K that
do not divide wr except, possibly, a finite number. Then the annihilator Anngg)(pk) of px in
Z|G] is generated as a Z-module by the elements o — N (p) where P runs through the prime
ideals in T, and p denotes the prime ideal of k below P. Furthermore, we have
wg = ged (1= N(p)). =
Eaad

From this, we deduce equivalent formulations of the Integrality Conjecture.

Proposition 3.10. The following assertions are equivalent

(1). For almost all prime ideals B of K, dg(op — N (p))0k ks € Z[G];
(2). For all § € Anngg)(pk), da &0k ks € Z[G];

(3). For almost all prime ideals B of K, dg(op — /\/’(p))Gg/lk),S € Z|G;
(4). For all § € Anngig)(nx), da €037, s € ZIG).

Proof. The equivalences (1) < (3) and (2) < (4) are consequences of the above discussion. The
direction (2) = (1) is trivial. The other direction follows from the above lemma. O

4. STRONG CENTRAL EXTENSIONS

Before we generalize the abelian Brumer-Stark conjecture to Galois extensions, we introduce
the notion of strong central extensions that will play a primordial part. For that, we stop
assuming for a moment that G is the Galois group of the extension K/k and just consider G
as a group. Let I and A be two other groups with A a normal subgroup of I" such that the
following sequence is exact

1 A =G 1, (4.11)

that is, I" is a group extension of G by A. We say that I is a strong central extension of G by
Aif AN[[,T] =1 where [I',T] is the commutator subgroup of I'. The choice of terminology is
explained by the following lemma.

Lemma 4.1. Let T be a strong central extension of G by A. Then T' is a central extension of

G by A.
Proof. Let v € T and § € A. We compute
([, 8]) = n(y)a(@)m(7) "7 (8) " = m()a(y) 7 = 1.

Thus, [y,b] € AN, T] = {1} and v and 6 commute. Therefore A is in the center of I" and the
extension is central. (]

The following two lemmas provide us with equivalent characterizations of strong central ex-
tensions.
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Lemma 4.2. Consider the group extension (4.11). This extension is strong central if and only
if, for any abelian subgroup H of G, the subgroup m—1(H) of T is abelian.

Proof. Assume that the extension is strong central. Let H be an abelian subgroup of G. Let
1,72 € 7 Y(H), say 7(y1) = h1, m(72) = he with hy, hy € H. We compute

7([v1,72]) = [h1, he] = 1.

By hypothesis, this implies that [y1,72] = 1 and therefore 7~!(H) is abelian.

Reciprocally, we assume that, for any abelian subgroup H of G, the group 7~ !(H) is abelian.
Let 1,72 € T be such that [y1,72] € A. Then 7([y1,72]) = 1 and 7(y1) and 7(y2) commute.
The subgroup of G that they generate is abelian and, by hypothesis, it follows that v; and ~s
commute, that is [y1,72] = 1. Therefore the extension I' of G by A is strong central. O

Lemma 4.3. Consider the group extension (4.11). This extension is strong central if and only
if the map s restricts to an isomorphism between [[',T'] and |G, G].

Proof. Tt is direct to see that 7 restricts to a surjective map from [I,T] to [G, G]. This map is
injective if and only if [I',T] N Ker(7) = 1. The result follows since Ker(w) = A. d

We note another property of strong central extensions that will be useful later on. For a finite
group A, recall that m4 denote the lem of the cardinalities of the conjugacy classes of A, s, is
the order of the commutator subgroup [A4, A] of A and d4 is the lem of m4 and s4.

Lemma 4.4. Consider the group extension (4.11). Assume that the extension is strong central
and that T is finite. Then we have dr = dg.

Proof. 1t is enough to show that mpr = mg and spr = sg. The fact that sp = sg is a direct
consequence of the previous lemma. We now show that mpr = mg. Let v € I'. Denote by C' and
Z respectively the conjugacy class of v in I and the centralizer of + in I". We have

ICl=T:2)=(xT):n(Z))(Ker(r) : Ker(m) N Z) = (G : 7(Z))(A: AN Z)
=(G:Z0)(Zo:m(Z2))(A:ANZ)=1|Co|(Zo: m(Z))(A: AN Z)
where Cj is the conjugacy class of 7(v) in G and Zj is the centralizer of w(v) in G. Since A
is in the center of I' by Lemma [4.1, we have A C Z and (A : ANZ) = 1. Now, let py € Zg
and let p € 77 1(pg). We have 7([p,]) = [po, 7(7)] = 1 since py commutes with 7 (). Therefore
[p,7] € [[,T)NA = {1} and p € Z. Thus, 7(Z) = Zs and we have finally |C| = |Cy|. As any
conjugacy class of G is the image by 7 of a conjugacy class of I', we have mr = m¢ and the
result is proved. Il

We now come back to our previous setting and assume that G is the Galois group of the
extension K/k. Let L be an extension of K. We say that L is a strong central extension of K/k
if L/k is Galois and the group extension

1 A r G 1

is strong central where A := Gal(L/K) and I' := Gal(L/k). The following result is a direct
consequence of the definition of strong central extensions.

Lemma 4.5. Denote by L*® the mazximal sub-extension of L/k that is abelian over k. Then
L is a strong central extension of K/k if and only if L = KL*. Furthermore, in that case,
restriction to L*® yields an isomorphism between Gal(L/K) and Gal(L*®/K?") where K?" is
the mazximal sub-extension of K/k that is abelian over k. O

We conclude this section with a lemma that shows central extensions behave somewhat nicely.

Lemma 4.6. Let L be a strong central extension of K/k.
(1) Let Lo/ K be a sub-extension of L/K. Then Lg is a strong central extension of K/k.
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(2) Let M be another strong central extensions of K/k. Then LM is a strong central exten-
sion of K/k.

Proof. We prove the first assertion. The group Gal(L/Ly) is a subgroup of Gal(L/K) and thus it
is normal in Gal(L/k). Therefore, Lo/k is a Galois extension. Let L3” = L*»N L, be the maximal

abelian sub-extension of Lg/k. It follows from the above lemma that [Lg® : K*] = [L¢ : K].
Since L3” N K = K" we find that
L3P k|[K : k .
[KLS" : k] = L8 KK k) _ [L§" : K*][K : k] = [Lo : kI,

[Kab . K]
thus K L3 = Lo and Ly is a strong central extension of K/k by the previous lemma.
We now prove the second assertion. The extension LM /k is Galois as the compositum of two

Galois extensions of k. Let FF = L N M. It is an extension of K. Then, a direct computation
shows that [LM : K| = [L*® M?" : KP]. We find that

[L2PM2P : k)[K : k)
[K2b : K
Thus, KL*»M?* = LM. Since the maximal abelian sub-extension (LM)* of LM/k that is

abelian over k contains LM it follows that K(LM)* = LM and LM is a strong central
extension of K/k. O

[KL*PM2P - k] = = [L*PM?P . K*P][K : k] = [LM : k].

5. THE GALOIS BRUMER-STARK CONJECTURE
We now generalize the abelian Brumer-Stark conjecture to Galois extensions.

Conjecture 5.1 (BSq.(K/k,S)). The Integrality Conjecture holds and, for any fractional ideal
A of K, the ideal AWK x/x.5 s principal, and admits a generator o € K° such that K(al/wK)
is a strong central extension of K/k.

Remark. As in the abelian case, the last assertion that K (a!/%%) is a strong central extension
of K/k does not depend on the choice of the wx-th root of «a since all of these generate the same
extension of K.

Before studying the conjecture, we discuss briefly our evidence for it. The first evidence is that
the conjecture is in many ways a natural generalization of the abelian Brumer-Stark conjecture.
Indeed, it is equivalent to it in the abelian case, see below, and share many properties similar to it,
see next section. We prove also in the last section that, in one special setting, the Galois Brumer-
Stark conjecture is implied by the abelian Brumer-Stark conjecture. Finally, in a forthcoming
paper [4], we prove numerically that the conjecture holds in many examples.

Proposition 5.2. Assume that K/k is abelian. Then the Galois Brumer-Stark conjecture
BSca(K/k,S) is equivalent to the abelian Brumer-Stark conjecture BS(K/k, S).

Proof. This is clear since dg = 1 in that case and, by Lemma we see that K (al/“x)/k is
abelian if and if only if K (a'/*) is as strong central extension of K /k. O

Assume that the Integrality Conjecture holds. For a fractional ideal 21 of K, we say that
BSca(K/k,S;2) is satisfied if the ideal 2 verifies the properties stated in the conjecture. The
conjecture BSga (K /k,S) is thus equivalent to the Integrality Conjecture and the collection
of the conjectures BSqa(K/k, S;2) where 2 ranges through the fractional ideals of K. The
following result gives equivalent formulations for BSq.(K/k, S;2) and is the generalization of
Theorem [2.2] Recall that, for a prime ideal 3 of K, we denote by p the prime ideal of k below
B and by oy the Frobenius automorphism of 9 in G.

Theorem 5.3. Assume the Integrality Conjecture holds. Let A be a fractional ideal of K. The
following assertions are equivalent.
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(i). BSqa(K/k,S;) is satisfied, that is there exists an anti-unit o € K° such that A4eWx0x/xs =

a0k and K(a'/"x) is a strong central extension of K /k.

(#). There exists an extension L/K that is a strong central extension of K/k and an anti-unit
v € L° such that (A0L)%x/ks = vOp

(idi). For almost all prime ideals P of K, there exists an anti-unit asg € K° such that %6 (@ =N®)0x/ks =
apOk and asp =1 (mod™ Q) for all prime ideals Q of K above p such that oq = og.

(iv). For any abelian subgroup H of G, there exists a finite family (a;)ier of elements of Z[H]
generating Anng ) (ux ) as a Z-module and anti-units (o;)icr of K such that A6 % /s = 0,0
and o;% = ;% for alli,jel.

Remark. In part (i), (AO)%%/x.s is defined by the formula ((QlOL)”dGGK/’WS)l/n where
n > 1 is any integer such that ndgOx /i s € Z[G].

Proof. We use repeatedly the fact that 0/ g lies in the center of C[G].

(i) = (ii). Let v := a/*% and L := K(v). Then, L is a strong central extension of K/k and ~
is an anti-unit in L. Furthermore, we have

(’)/OL)wK = OéOL = (QlOL)deKeK/k’S
and the result follows since the group of ideals of a number field is torsion-free.
(#4) = (4i7). Denote by I' the Galois group of L/k and by A the Galois group of L/K. Let T
be the set of prime ideals of K, unramified in L/K and K/Q, relatively prime with wg and
with 2 and all its conjugates over k. Note that 7 contains all but finitely many prime ideals

of K. Let p € 7 and let ‘I} be a prime ideal of L above B. Denote by g the Frobenius

automorphism of 9P in I'. We set oy 1= ~oR “N®) | Let Q be another prime ideal of L above p

such that (o) = m(0g) where 7 : I' = G is the canonical surjection induced by the restriction
to K and og is the Frobenius automorphism of Qin . Then, there exists p € T' such that
9 = p(’B), and we .have oy = p0q~3p’1. Since m([p, op]) = 77(-0{3)77(053)*1 =1, it lies in A
and is therefore trivial. Thus o5 = O and ag = gy In particular, oy does not depend on

the choice of the prime ideal ‘f3 of L above P, and we can just denote it by as. Furthermore,
agp =479 “N®) =1 (mod* Q) for all prime ideals Q of L above p such that oq = oq where Q
is the prime ideal of K below Q. We now prove that csp lies in K. Let p € Gal(L/K). We have

(o)™ = ((vw")”*w(”)p_l - (aom—f\f(p))p_l —1

since « lies in K. Thus, there exists a root of unity & € px such that oz%_l = £. We have
ayp = a% =1 (mod* P) by the above remark, hence £ = 1 (mod* 9P) and thus £ = 1 by the
choice of . Therefore, aup € K as desired. Furthermore, it is clear from its construction that it
is an anti-unit and we have asp = 1 (mod” Q) for all prime ideals Q above p such that oq = oy
by the above. We have

apOp, = (’YOL)O‘ﬁ_N(p) _ ((QLOL)dGGK/k,S)U‘i&_N(p) _ (mOL)dG(Gﬁ—N(p))eK/k,S7

and, since 2 is an ideal of K and dg(op — N(p))GK/k,S € Z|G] by the Integrality Conjecture,
we get
O[;:BOK = Q[dG(U‘v*N(P))eK/k,s'

The implication is proved.

(#i) = (iv). Let H be an abelian subgroup of G. Denote by Tg the subset of prime ideals of K
for which (#i¢) applies, that are unramified in L/K and K/k, relatively prime with wg and with
2 and all its conjugates over k, and whose Frobenius automorphism in G actually lies in H. Let
I be a set indexing Ty, so that Ty = {9, : i € I}. For i € I, we set a; := og, — N (p;) € Z[H]
and a; ;= ag, € K°. It follows from Lemma |3.9|that the family (a;)icr generates Anngm) ().
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By construction, we have also A%¢®%x/k.s = q;Of. It remains to prove that, for i,j € I, we

have a?i = a?j, that is, for two prime ideas P and £ in Tg, the two elements a%ﬂ N and
g’ N are equal. We have
(O )72 N = (mdc;(omffv(p))ex/k,s)aa—fv (p)

= (Ade(oa—NE)ox/ks) TN _ (ag O )TN ®)

where we used the fact that o and og commute since they both belong to H. Since asp and
ag are both anti-units, there exists a root of unity § € ux such that ag —N@) tay N,
Reasoning as above, we see that £ = 1 (mod™ §3), thus £ = 1 and the equality is proved.

(tv) = (i). Let H be an abelian subgroup of G. Let (a;);er and (oy)icr be the corresponding
families. There exists a family (\;);es of integers, with only finitely many non-zero terms, such

that
WK = Z /\iai.
i€l

In the same way, for any h € H, there exists an integer n;, € N such that h — n;, annihilates pg.
Therefore, there exists a family (Ay;)ier of integers, with only finitely many non-zero terms,

such that
h— np = Z /\hJ‘CLi.
iel

We set ag = Hiel ozf‘i. It is clear that ay is an anti-unit of K and we have

agOp = mdc(zi Xia;)o _ QldeKeK/k,S.

In particular, up to a root of unity in K, ay does not depend on the choices made, and we will
therefore denote it simply by «. Furthermore, for h € H, we have

_ YRy Ap i\ Aia; ; Aia;
R V10| IS | ) R e
il jel il jel

where ap, = [];¢; ajh’i. For g, another element of H, one can prove in the same way that
ap " = ahTmm Let v := a!/*% and L := K(y). We now prove that L/K is an abelian
extension. First, we prove that L/K is a Galois extension. For h € H, let h be any lift of A to
L. We compute

h— h—nn _ h—nn __
('Y nh)wK — (,ywk) Mh — " — a;lUK.
Thus, there exists &, € pux such that 'y;‘*”h = &pay. Therefore, we have

Y = Ehany™ € L

and L/K¥ is a Galois extension. We now prove that Gal(L/K™) is abelian. Let h,§ be two
elements of Gal(L/K*™); denote by h and g their restriction to K. We have

,y(fl—"g)(h—nh) — (fhah)g_ng — ai’j*”g — a:—nh _ (fgag)h_nh — ,y(h—nh)(é—"g)

and therefore 49" = ~h9. Thus Gal(L/K™) is abelian as desired. Since this is true for any
abelian subgroup H of G, we get by Lemma that L is a strong central extension of K/k.
This concludes the proof. O
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6. SOME PROPERTIES OF THE GALOIS BRUMER-STARK CONJECTURE

In this section, we look at the properties satisfied by the Galois Brumer-Stark conjecture
with in view the generalization of the properties of the abelian Brumer-Stark conjecture listed in
Section 2l We start by proving that the set of fractional ideals that satisfy the Galois Brumer-
Stark conjecture have properties similar to the abelian case.

Proposition 6.1. The set of fractional ideals A of K that satisfy BSca(K/k,S;2) is a group,
stable under the action of G and that contains the principal ideals of K.

Proof. We first prove that this set is a group. Let 2 and 28 be two fractional ideals of K such
that BSqa(K/k, S;2) and BSga (K /k, S;B) hold. Let o and S the anti-units satisfying part
(i) of Theorem for the ideals 24 and B respectively. Then «f is an anti-unit such that
aBOk = (AB)dcwxlx/rs  Furthermore, since K ((af)/"x) C K(a/wx gY/wK) it is a strong
central extension of K/k by Lemma [4.6| and therefore BSq.1(K/k, S;AB) is satisfied. Thus the
set of ideals 2 such that BSg.(K/k, S;2) is satisfied is a subgroup of the group of fractional
ideals of K.

Let o be an element of G. We now prove that BSqa1(K/k, S; %) is satisfied if BSga1(K/k, S; )
holds. Since 0k g is in the center of C[G], a” is a generator of

(Q’[deKek/k‘S)g — (Q[o')deKGK/k,S'

Furthermore, o is clearly an anti-unit. Let v := o'/*% and § := (a“)l/wK. Denote by & a lift
of o to L := K(v). Then there exists £ € ux such that § = £&y°. Since L/k is Galois, we get
that L' := K(6) C L. This proves that L’ is a strong central extension of K/k by Lemma
and thus concludes the proof that BSqa(K/k, S;27) is satisfied.

Finally, we prove that BSg.(K/k, S;2) is satisfied if 2 is a principal ideal, say 2 = nOk.
For that, we use the equivalent formulation (iv) of Theorem Let H be an abelian subgroup
of G. For h € H, let n, € N be such that &" = &™ for all ¢ € pg with the convention that
n1 = wg + 1. Then the family aj := h — ny, for h € H, generates Anngg)(ux). For h € H,
we define ay, := n?eerfx/ks  Note that dganfk ks € Z|G] by the Integrality Conjecutre. For
all h € H, we have (nQy )% 0x/rs = q;, O by construction. Furthermore, let w be an infinite
(complex) place of K. Denote by 7, € G the complex conjugation at w. By Corollary we
have that (1 + 7,)0k/k,s = 0 and thus a,lfﬂ” =1 for all complex places w of K. Therefore ay,
is an anti-unit for all o € H. It remains to prove that a,;l'q = ag" for all g,h € H. But this is a
direct consequence of the fact that (h —np)(g —ng) = (9 — ng)(h — ny) since H is abelian. This
concludes the proof. O

Corollary 6.2. Assume that K is principal. Then BSga(K/k,S) is satisfied. O

Using the decomposition of the Brumer-Stickelberger element given by (3.10)), we can prove
the following result that relates BS(K®"/k, S) and BSqa(K/k, S).

Proposition 6.3. Assume that BS(K®"/k,S) holds. Then BSga(K/k,S) is satisfied if, for

>1)
any fractional ideal A of K, the ideal lewrlic/s principal, and admits a generator § € K°
such that K(BY"“%) is a strong central extension of K/k.

Proof. Let 2 be a fractional ideal of K. Set a := N/ gan(2). An direct computation shows that

b
Q[dcw;(l/a (gKab/k,S) _ a(dc/sc)wkgxab/k,SOK.

By hypothesis, there exists ag, an anti-unit in &?P, such that a(4¢/*) WK%k /ks = 00O pgar and
Kab(a(l)/wK)/k is abelian. Let « := 8. Then « is an anti-unit of K and by (3.10)), we have

a0y = YdcwrOx/k,s
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It remains to prove that K (a!/"“x) is a strong central extension of K/k. It is a sub-extension
of K(aé/wK,Bl/wK)/K. But K(3'/"“x) is a strong central extension of K/k by hypothesis and

K(aé/wK) is a strong central extension of K/k by Lemma M Thus, K(a'/"x) is a strong
central extension of K/k by Lemma and the result is proved. O

For x € @, recall that KX denote the subfield of K fixed by the kernel of y.

Corollary 6.4. Assume that BS(K?"/k,S) is satisfied and that, for all x € G such that x(1) >
1, KX is not a CM extension. Then BSqga(K/k,S) holds.

Proof. Indeed, in that case, 9;?/1]3 s = 0 by Proposition (]

We now turn to the question of the change of extension for the Galois Brumer-Stark conjecture.
We will prove that it is satisfied in many cases up to a factor.

Proposition 6.5. Let K'/k be a Galois sub-extension of K/k with G' := Gal(K'/k). Denote
by BSqa(K'/k,S) the Galois Brumer-Stark conjecture for the extension K'/k and the set of

places S with the factor dg: replaceﬁﬁ by dg. Assume that wi is relatively prime with the degree
of the extension K/K'K®. Then BSga(K/k,S) implies BSga(K'/k, S).

Remark. If G is abelian then K2 = K, thus K = K’K? and the condition of the proposition
is always satisfied. Furthermore, we have dg = dg- = 1 and we recover the fact that BS(K/k, S)
implies BS(K'/k, S).

Remark. We prove actually a slighter stronger statement: if BSga1(K/k, S) holds then, for all
fractional ideal 2 of K’, there exists an anti-unit o € K’ such that

Ql’deK'GK’/k«S _ (a)

The extra hypothesis that wg is relatively prime with the degree of K/K’K?" is only used to
prove that K’(a!/*x") is a strong central extension of K'/k.

In order to see that the statement of the proposition makes sense, we have the following
lemma.

Lemma 6.6. Let A be a finite group and let B be a quotient group of A. Then dp divides d 4.

Proof. Tt is enough to prove that sp divides s4 and mp divides m4. Let 7 : A — B be the
canonical surjection and denote by D its kernel. Tt is clear that sp divides s4 since 7([A, A]) =
[B, B]. We now prove that mp divides my4. Let b € B and let a € A be such that w(a) = b.
Denote by Z the centralizer of a and by Z the centralizer of b. Note that Z := 771(Zp) is a
subgroup of A containing Z and that
1zl _(2:2)]7]
2l = 5] = o]

On the other hand, if we denote by C' and Cj the conjugacy classes of a and b in A and B
respectively. We have

Al _ [Al(2: 2) Bl
0] = = = =(Z2:2) =(Z:2)|Cy|.
12l DIl |Zo]
Thus |Cy| divides |C| and therefore mp divides m 4. O

Proof. Observe to start that, thanks to Theorem 3] the Integrality Conjecture for the extension
K/k and the set of places S implies the Integrality Conjecture for the extension K’/k and the
set of places S with dg replaced by dg. We first prove the result when K = K’K?P. In this
situation, we shall actually prove that BSq.1(K/k, .S) implies BSga (K’ /k, S). Indeed, we have

4included in the statement of the Integrality Conjecture.
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dg = dg by Lemma [.4] since one can see, thanks to Lemma [£.5] that K is a strong central
extension of K'/k. Let A’ be a fractional ideal of K’. We assume that BSg.(K/k, S) holds,
thus taking 2 := 'Ok, we see that there exists an anti-unit « in K such that

a0 = (A0 )1owKls/ns — Q dewicli/es O — U WKt /s O (6.12)

where the last equality comes from Theorem and such that L := K(v) is a strong central
extension of K/k where 7 := al/wx  Clearly, we have

V0L = (A Or) e ns,

We now use Theorem [5.3(ii) with the extension L/K’ and the element . The only assertion that
needs to be checked is the fact that L is a strong central extension of K'/k. By Lemma this
is equivalent to the fact that L = K'L*" where L is the maximal sub-extension of L/k that is
abelian over k. Clearly, K2 C L*P thus K'K*» = K ¢ K'L*" and therefore K'L*® = KL = L,
and L is a strong central extension of K'/k. Therefore BSga (K'/k,S;2") holds for all fractional
ideals 2" of K’ and thus BSqa.(K'/k, S) is satisfied.

We now prove the general case. By the first part, we can assume that K’ contains K*" and
therefore, by hypothesis, wg is relatively prime with the degree of K/K’. Let 2’ be a fractional
ideal of K'. Reasoning as above, we see that there exists o € K° such that

aOK — Ql/deKgK//k'SOK

and the extension L/K is a strong extension of K/k where L := K(v) and 7 := o'/*%. Denote
by I the Galois group of L/k. For o € ', L? = L is a Kummer extension of K° = K generated
by 7?. Thus there exist an integer n, relatively prime to wg with 1 <n, < d:=[L: K] and an
element k, € K* such that 77 = k,7"=. Observe that, for § an element of A := Gal(L/K), we
have ng = 1 and ks is a root of unity in K. Furthermore, using the fact that ¢ and § commute,
we get

Ng

07 = (koY) = Kak§™Y" =770 = (K57)7 = K KoY

Y
and thus k§ = x§7. As § runs through the elements of A, ks runs through the roots of unity
of order d, thus o — n, annihilates the group pgq of d-th roots of unity. Assume now that o lies
in A := Gal(L/K'). Therefore, o fixes the group of roots of unity ux: = px and thus n, = 1.
Using the fact that 0k 5 g is in the center of C[G], we get

OLJOK _ (Q[/U)deKeK'/kaOK _ Ql/deKeK,/k’SOK _ OLOK.

Since « is an anti-unit, there exists a root of unity &, in K* such that a = {,a. Combining
with the above expression for 77, we find that k2% = ¢,. Thus K, is a root of unity in K and
¢, = 1. It follows that a € K’. Again we use Theorem (u) to prove that BSqa (K /k, S) holds
for 2. It remains to prove that there is a strong central extension of K'/k containing ~. Let
L' := L** K’ where L?" is the maximal sub-extension of L/k that is abelian over k. The Galois
group of the extension L/L’ is [[’,I'] N A. Hence, by Lemma it is the maximal sub-extension
of L/k that is strong central for K'/k. We now prove that v € L. Denote by 7 : ' — G
the canonical surjection induced by the restriction to K. Its kernel is A, thus it restricts to an
isomorphism between [I',I'] and [G, G] (see also Lemma [£.3). Therefore v € L’ if and only if
m(Gal(L/L")) C n(Gal(L/K'(y))), that is 7([I’, T|N A) C Gal(K/N) where N = KNK'(~). But
N/K' is a sub-extension of K/K’ of degree dividing wg and therefore N = K’ and the above
condition is always satisfied. Hence BSga1(K’/k, S) holds and this concludes the proof. O

We conclude this section with a proof of when the validity of the conjecture is preserved when
one enlarges the set S. Recall that, for x € G, we denote by p, an irreducible representation of
G with character x.
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Lemma 6.7. Let Bq,...,B; be prime ideals of K. We have

H Z det(1 — py(oyp,))eg € %HZ[G]-

1= IXGG

Proof. Let a € Gal(Q/Q). It is easy to see that the above expression is invariant under the
action of « using the fact that the map y — x® is a bijection on GG. Therefore, it lies in Q[G].
Now, by the orthogonality of characters, we have

HZdetl—pXUqg ZHdetl—PxU‘B))

= 1X€G XEGZ 1

For all x € G, |G|e, and det(1 — py(ow,)), for i = 1,...,t, are algebraic integers and thus the
result follows. 0

Proposition 6.8. Let py,...,p; be distinct prime ideals of k not belonging to S. Define

~TIY dett - o )Jex € g ZIC

= IXEG

where P; is a prime ideal of K above p;, for i = 1,...,t. Let d > 1 be the smallest integer
such that dw € Z[G]. Assume that BSga(K/k,S) holds and let S" := S U {p1,...,p:}. Then
BSca(K/k,S";2) is satisfied for any fractional ideal A of K whose class in Clg has order
relatively prime to d.

Proof. Assume that BSga (K/k, S) holds. Let 2 be an ideal of K whose class in Cli has order
relatively prime to d. Thus there exists an ideal 2y of K and 7 € K* such that 2 = n2(g. Let
g be an anti-unit of K such that

deKG
agOx = Age s

and the extension K(oz(l)/w’() is a strong central extension of K/k. Define

= Oégw'r]dchGK/k’S/ .

One checks directly that
QOK — Q[deKGK/k,S’

From the proof of Propostion we see that § := ndeKeK/k,S’ is an anti-unit and that the
extension K (0'/“x) is a strong central extension of K/k. Therefore, o is an anti-unit and the
extension K (a'/"x) C K(aé/wK751/wK) is a strong central extension of K/k by Lemma
Thus BSGal(K/k‘, S/) holds. O

7. GROUPS WITH A NORMAL ABELIAN SUBGROUP OF PRIME INDEX

In this final section, we study the conjecture in the case where the Galois group G contains
an abelian normal subgroup H such that the index (G : H) is equal to a prime number ¢. We
assume furthermore that G is not abelian. We prove in this setting that the Galois Brumer-
Stark conjecture is satisfied provided the abelian Brumer-Stark conjecture holds for the abelian
extensions K" /k and K/K*.

Let m denote the order of H, thus |G| = mf. We have [G, G| C H since G/H is cyclic of order
¢ and therefore K is a subfield of K2P. Let Sy denote the set of places in K that are above
the places in S. The set Sy contains the infinite places of K and the finite places that ramify
in K/KH. The first result of this section gives a decomposition of the Brumer-Stickelberger
element in this situation.
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Theorem 7.1. Let N, := ), c€Z[G]. We have
c€[G,G]

1
Ok s,s = V™ (Oranjp.5) + (1 - gN[G,G])aK/KH,SH-

Proof. By , it remains to prove that 0&?/116)75 is equal to (1 — iN[G',G])GK/KH’SH. The group
G contains an abelian normal subgroup of index ¢, thus the degrees of the irreducible characters
of G divide ¢. Hence any character in G such that x(1) > 1 is of degree £. Denote by G, the set
of irreducible characters of G of degree .

Lemma 7.2. Let Hy be the set of irreducible characters of H whose kernel does not contain
[G,G]. For x € Gy, define Hy(x) to be the subset of those characters in H; whose induction to
G is x. Then, for oall x € Gy and g € G, we have

0 ifg ¢ H,
X =9 > o9 ifgeH,

wEH(x)

and
Hy = U Hy(x) (disjoint union).
x€Ge

Furthermore, each Hy(x) has € elements.

Proof of the lemma. Let ¢ be a character in Hy; and let y := Indg(ap). Then x is of degree /.
Assume Y is not irreducible. Then it is a sum of ¢ degree-1 characters and all these characters
are trivial on [G, G]. By Frobenius reciprocity law, the restriction of any of these characters to
H is equal to ¢. Thus g is trivial on [G, G|, a contradiction. Therefore x is irreducible and lies in
Gy. The restriction of x to H is the sum of ¢ characters of H, and using, once again, Frobenius
reciprocity law, we see that these characters are exactly the characters of H whose induction to
G is x and that there are all distinct. Therefore, we have proved that, if x € G, is the induction
of some character in Hg, then the set I:Ig(x) contains ¢ distinct characters, say ¢1,..., @z, such
that x|z = w1+ + @ Furthermore, if ¥/ is another character of G ¢ induced from a character
in Hy, the sets H ¢(x) and H ¢(x') are clearly disjoint. This implies that H, is the disjoint union
of the ﬁg(x)’s for x € Gy. We now prove that ﬁg(x) is non-empty for all y € Gy. This amounts
to prove that any character in G, is the induction of some character in Hy. Characters of H
whose kernel contains [G, G| are in bijection with characters of H/[G, G]. Denote by t the index
of [G,G] in H. The number of characters in Hy is therefore m — ¢ and therefore, by the above
discussion, the inductions of characters in H, yield (m — t)/¢ characters in Gy. On the other
hand, we have the formula mf = t¢ + a2, where a is the number of characters in Gy, which
is obtained by looking at the degree of the irreducible characters of G and using the fact that
(G : [G,G]) = tl. Therefore, we have a = (m — t)/¢ and all the characters of G are inductions
of characters in H, ¢. To conclude, it remains to prove the expression for y € Gg. Let o € H, 0(X).
Recall the expression of x in terms of ¢; for all g € G, we have

x(g):% > elrgr ).

reG
rgr-'cH

Since the group H is normal in G, rgr=! € H if and only g € H. Thus x(g) = 0if g ¢ H. If
g € H, the expression follows from the fact that x|z = ZweHz(x) ®. O
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As a consequence of the above lemma, we have, for x € ég,
= Y e
EH(x)

where e, is the idempotent of C[H] associated to the character ¢. We now compute

9§(>/1k)s = Z Li/k,s(0,x) e Z Lk /1,500, x) Z e

x€Ge x€Gy wEH(x)
=D D LrpsOIdfles= > > Liyxns,(0.9)eq

xE€G EH(X) xE€Gr wEH(X)
= Y Lyjxn,s,(0 =Y Lixms,(0,9) e — Y Liyxm s, (0,9) eq

peH, wEH eeH\H,
= Ox/knsu — Y, Lijxnsy(0,0)ep

Lpefl
[G,G]CKer ¢

Let ¢ be a character of H whose kernel contains [G,G]. Let ¢ be the only character of J :=
H/|G, G] such that the inflation of @ to H is equal to ¢. From the properties of Artin L-function,
we have Ly g g,(0,¢) = Lias/gu g, (0,¢) and a direct calculation shows that e, = viP(egz)
where e is the idempotent of C[G*P] associated to @, v3f : C[J] — C[H] is the map defined for

g€ Jby
VH Z 9,
22(9)=3

and extended linearly to C[J], and 7% : H — J is the canonical surjection. Therefore,

Z Ly rn,s,(0,0) e = Z Ly et 5, (0, @)3r (e)
gaEH géej

[G,G]CKer ¢
= V?}D(Z LKab/KH,SH(Oﬂgé) 65)
ped

= V?_Ib(eKab/KH SH)'
Now, for a € C[H] and 3 € C[J], one checks readily that avP(8) = vP(a3) where & := 73 (a).
Therefore, we have

1
V?Ib(eKab/KH,SH) = HK/KH’SH Vja{b(l) = ;N[GyG] QK/KH,SH~

The result then follows by substituting in the above expression. [l

The main advantage of the decomposition given by the theorem is the fact that the extensions
involved are abelian. Therefore, in our study of BSq. (K/k,S) in that setting, we can reduce
to the abelian case. As a first consequence, we prove that the Integrality Conjecture is satisfied
in this situation.

Proposition 7.3. We have
(s¢ — Nig,))0k/kn s, € Z[G].

In particular, for almost all prime ideals B of K, dg(op — N(p)) Ok /k,s € Z[G] where p is the
prime ideal of k below B.
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Proof. First note that, by Theorem and the discussion after (3.10)), the first assertion implies
the second assertion. Now, we have

(s¢ — N[G,G])QK/KH,SH = Z (1- C)HK/KH7SH~
c€[G,G]

But 1 — ¢ € Anngg|(ux) for all ¢ € [G,G] and thus, by the properties of the abelian Brumer-
Stickelberger element, all the terms in that last sum are in Z[H]. The first assertion and the
proof of the proposition follow. ([

We now prove that the Galois Brumer-Stark conjecture in that setting is a consequence of
the abelian Brumer-Stark conjecture.

Theorem 7.4. Assume that BS(K®"/k,S) and BS(K/K* Sg) hold. Then BSga(K/k,S) is
satisfied.

Proof. We will prove the theorem using Proposition [6.3] First note that, by Theorem we
have )
>1
0 s = 5o %6~ Nie.a)) Orc/cn s
Let 2 be a fractional ideal of K. By our hypothesis, there exist ag € K° such that

AR/ K sy = 0y O
and the extension K(v)/K* is abelian where 7o := oz(l)/wK. Define

s S dg/s
8= a((JdG/ ¢)(sa=Na.c) _ ( H a(lfc) ¢ G.
c€[G,G]

By construction, £ is an anti-unit of K and satisfies
BOK = QldeKeg/l’“)vS.

It remains to prove that K (61/ “K) is a strong central extension of K/k. We will actually prove
that K (B'/“x) = K. Let Ly be the Galois closure of K(vo)/k. Denote by I'y the Galois group
Gal(Lo/k). Let ¢y € [[g,I'g]. Note that ¢y € Gal(Lo/K™) since K /k is abelian. Thus,
by Theorem there exists a prime ideal Py of Lo, relatively prime to the order of ur,,
whose Frobenius automorphism in I'y is equal to c¢g, and an anti-unit oy, € K° such that
agpy =1 (mod™ pyOk) and

@0,py Ok = v —N @)yt sy

where py is the prime ideal of K below 9B, and Opy is the Frobenius automorphism of py in
H. We have
75O, = leo=Dx /x5 Or,
— Q[(UPH _N(pH))QK/KHysH Q[(N(pH)_l)ek/KstH OLO

I e L To

Observe that vy, o, and «g are anti-units, thus there exists a root of unity £ € ur, such
that &y5°0~! = a07pHoz(()N(pH)_1)/wK and the latter belongs to K° since wy divides N (py) — 1.
Raising to the power wyg, we get

-1 N( -1
wrg TP H _ WK pH)
5 ) - aO,PHaO

and therefore o
EYE = q () =ovn — 1 (mod™ prOk).
Therefore we find that £¥% = 1, hence £ € ux and 780_1 cK.
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Now, for all ¢ € [G, G], fix an element ¢y in [Ty, ['y] whose restriction to K is equal to ¢, and

define
(5::( H ’yéfc°>

c€[G,G]
By the above computation, we see that § € K and, by construction, we get that §*% = f.
Therefore K(3'/“x) = K and the result follows. O

da/sa
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